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Abstract In this paperwe identify the structure of complexfinite-dimensional Leibniz
algebras with associated Lie algebras sl12 ⊕ sl22 ⊕· · ·⊕ sls2 ⊕ R, where R is a solvable
radical. The classifications of such Leibniz algebras in the cases dimR = 2, 3 and
dimI �= 3 have been obtained. Moreover, we classify Leibniz algebras with L/I ∼=
sl12 ⊕ sl22 and some conditions on ideal I = id < [x, x] | x ∈ L >.
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1 Introduction

The notion of Leibniz algebra was first introduced by Loday in [7,8] as a non-
antisymmetric generalization of Lie algebra. During the last 20 years, the theory of
Leibniz algebras has been actively studied and many results of the theory of Lie alge-
bras have been extended to Leibniz algebras. A lot of papers have been devoted to the
study of finite-dimensional Leibniz algebras [1,2,11], etc. However, just a few works
are related to the semisimple part of Leibniz algebras [3,5,10].

We know that an arbitrary Lie algebra can be decomposed into a semidirect sum
of the solvable radical and its semisimple subalgebra (Levi’s theorem [6]). According
to the Cartan–Killing theory, a semisimple Lie algebra can be represented as a direct
sum of simple ideals, which are completely classified [6].

In a recent study, Barnes has proved an analogue of Levi’s theorem for the case of
Leibniz algebras [3]. Namely, a Leibniz algebra is decomposed into a semidirect sum
of its solvable radical and a semisimple Lie algebra.

The inherent properties of non-LieLeibniz algebras imply that the subspace spanned
by squares of elements of the algebra is a non-trivial ideal (denoted by I ).Moreover, the
ideal I is abelian, and hence, it is contained in the solvable radical. Thanks to result of
Barnes in order to describe Leibniz algebras it is enough to investigate the relationship
between products of a semisimple Lie algebra and the radical (see [5,9,10]).

The present work is devoted to describing the structure of Leibniz algebras with the
associated Lie algebras isomorphic to sl12 ⊕ sl22 ⊕ · · · ⊕ sls2 ⊕ R with I an irreducible
right slk2-module for some k. Since the description of such Leibniz algebras is very
complicated, we have to focus on Leibniz algebras with semisimple part sl12 ⊕ sl22
under some conditions on the ideal I .

In order to achieve our goal we organize the paper as follows. In Sect. 2, we give
some necessary notions and preliminary results about Leibniz algebras with associated
Lie algebra sl2+̇R.Section3 is devoted to the studyof the structure ofLeibniz algebras,
whose semisimple part is a direct sumof copies of sl2 algebra andwith some conditions
on the ideal I. In Sect. 4, we classify Leibniz algebras whose semisimple part is a direct
sum sl12 ⊕ sl22 and I is decomposed into a direct sum of two irreducible modules
I1,1, I1,2 over sl12 such that dimI1,1 = dimI1,2. The description of the structure of
Leibniz algebraswith associated Lie algebra sln and dim I = 1, 2 is obtained in Sect. 5.

Throughout the work, vector spaces and algebras are finite dimensional over the
field of complex numbers. Moreover, in the table of multiplication of an algebra the
omitted products are assumed to be zero. We shall use the following symbols: +, ⊕
and +̇ for notations of the direct sum of the vector spaces, the direct and semidirect
sums of algebras, respectively.

2 Preliminaries

In this section we give some necessary definitions and preliminary results.
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Leibniz Algebras Whose Semisimple Part is Related to sl2 601

Definition 2.1 [7] An algebra (L , [·, ·]) over a field F is called a Leibniz algebra if
for any x, y, z ∈ L the so-called Leibniz identity

[x, [y, z]] = [[x, y], z] − [[x, z], y]

holds.

Let L be a Leibniz algebra, and let I = ideal < [x, x] | x ∈ L > be an ideal of
L generated by all squares. The natural epimorphism ϕ : L → L/I determines the
associated Lie algebra L/I of the Leibniz algebra L . It is clear that the ideal I is the
minimal ideal with respect to the property that the quotient algebra by this ideal is a
Lie algebra.

It was noted in [3] that the ideal I coincides with the space spanned by squares of
elements of an algebra.

According to [6] there exists a unique (up to isomorphism) three-dimensional simple
Lie algebra with the following table of multiplications:

sl2 : [e, h] = −[h, e] = 2e, [h, f ] = −[ f, h] = 2 f, [e, f ] = −[ f, e] = h,

The basis {e, f, h} is called the canonical basis.
In [9], Leibniz algebras whose quotient Lie algebra is isomorphic to sl2 are

described. Let us present a Leibniz algebra L with the table of multiplication in a basis
{e, f, h, x10 , . . . , x

1
t1 , x

2
0 , . . . , x

2
t2 , . . . , x

p
0 , . . . , x p

tp } and the quotient algebra L/I is sl2
as follows:

[e, h] = −[h, e] = 2e, [h, f ] = −[ f, h] = 2 f, [e, f ] = −[ f, e] = h,

[x j
k , h] = (t j − 2k)x j

k , 0 ≤ k ≤ t j ,

[x j
k , f ] = x j

k+1, 0 ≤ k ≤ t j − 1,

[x j
k , e] = −k(t j + 1 − k)x j

k−1, 1 ≤ k ≤ t j .

where L = sl2 + I1 + I2 + · · · + Ip and I j = 〈x j
1 , . . . , x j

t j 〉, 1 ≤ j ≤ p.
The last three types of products of the above table ofmultiplication are characterized

as an irreducible sl2-module with the canonical basis of sl2 [6].
Now we give the notion of semisimplicity for Leibniz algebras.

Definition 2.2 [5] ALeibniz algebra is called semisimple if itsmaximal solvable ideal
is equal to I .

Since in the Lie algebras case the ideal I is equal to zero, this definition also agrees
with the definition of semisimple Lie algebra.

Although Levi’s theorem is proved for the left Leibniz algebras [3], it is also true
for right Leibniz algebras (here we consider the right Leibniz algebras).

Theorem 2.3 [3] (Levi’s theorem)Let L be afinite-dimensional Leibniz algebra over a
field of characteristic zero and R be its solvable radical. Then there exists a semisimple
subalgebra S of L, such that L = S+̇R.
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A Leibniz algebra L is called simple if its only ideals are {0}, I, L and [L , L] �= I .
From the proof of Theorem 2.3, it is not difficult to see that S is a semisimple Lie
algebra. Therefore, we have that a simple Leibniz algebra is a semidirect sum of simple
Lie algebra S and the irreducible right module I over S, i.e., L = S+̇I. Hence, we
obtain the description of the simple Leibniz algebras in terms of simple Lie algebras
and ideal I .

Definition 2.4 [6] A nonzero module M over a Lie algebra whose only submodules
are the module itself and zero module is called irreducible module. A nonzero module
M which admits decomposition into a direct sum of irreducible modules is said to be
completely reducible.

Further, we shall use the following Weyl’s semisimplicity theorem.

Theorem 2.5 [6] Let G be a semisimple Lie algebra over a field of characteristic
zero. Then every finite-dimensional module over G is completely reducible.

Now we present results on classification of Leibniz algebras with the conditions
L/I ∼= sl2⊕R, dimR = 2, 3,where I is an irreducible rightmodule over sl2 (dimI �=
3).

Theorem 2.6 [4]Let L be aLeibniz algebrawhose quotient L/I ∼= sl2⊕R,where R is
a two-dimensional solvable ideal and I is a right irreducible module over sl2 (dimI �=
3). Then there exists a basis {e, h, f, x0, x1, . . . , xm, y1, y2} of the algebra L such that
the table of multiplication in L has the following form:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[e, h] = −[h, e] = 2e, [h, f ] = −[ f, h] = 2 f, [e, f ] = −[ f, e] = h,

[y1, y2] = −[y2, y1] = y1, [xk, y2] = axk, 0 ≤ k ≤ m, a ∈ C,

[xk, h] = (m − 2k)xk 0 ≤ k ≤ m,

[xk, f ] = xk+1, 0 ≤ k ≤ m − 1,

[xk, e] = −k(m + 1 − k)xk−1, 1 ≤ k ≤ m.

The following theorem extends Theorem 2.6 for dimR = 3.

Theorem 2.7 [10] Let L be a Leibniz algebra whose quotient L/I ∼= sl2 ⊕ R, where
R is a three-dimensional solvable ideal and I is an irreducible right module over
sl2 (dimI �= 3). Then there exists a basis {e, h, f, x0, x1, . . . , xm, y1, y2, y3} of the
algebra L such that the table of multiplication in L has one of the following two forms:
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L1(α, a) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[e, h] = −[h, e] = 2e, [h, f ] = −[ f, h] = 2 f, [e, f ] = −[ f, e] = h,

[y1, y2] = −[y2, y1] = y1, [y3, y2] = −[y2, y3] = αy3,

[xk , h] = (m − 2k)xk , 0 ≤ k ≤ m,

[xk , f ] = xk+1, 0 ≤ k ≤ m − 1,

[xk , e] = −k(m + 1 − k)xk−1, 1 ≤ k ≤ m,

[xi , y2] = axi , 0 ≤ i ≤ m.

L2(a) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[e, h] = −[h, e] = 2e, [h, f ] = −[ f, h] = 2 f, [e, f ] = −[ f, e] = h,

[y1, y2] = −[y2, y1] = y1 + y3, [y3, y2] = −[y2, y3] = y3,

[xk , h] = (m − 2k)xk , 0 ≤ k ≤ m,

[xk , f ] = xk+1, 0 ≤ k ≤ m − 1,

[xk , e] = −k(m + 1 − k)xk−1, 1 ≤ k ≤ m,

[xi , y2] = axi , 0 ≤ i ≤ m.

For a semisimple Lie algebra S we consider a semisimple Leibniz algebra L such
that L = (sl2 ⊕ S)+̇I. We put I1 = [I, sl2].

Let I1 be a reducible module over sl2. Then by Theorem 2.5 we have a decompo-
sition:

I1 = I1,1 ⊕ I1,2 ⊕ · · · ⊕ I1,p,

where I1, j are irreducible modules over sl2 for every j , 1 ≤ j ≤ p.

Theorem 2.8 [5] Let dimI1, j1 = dimI1, j2 = · · · = dimI1, js = t + 1, 1 ≤ s ≤ p.
Then there exist t + 1 submodules I2,1, I2,2, . . . I2,t+1 of dimension s of the module
I2 = [I, S] such that

I2,1 + I2,2 + · · · + I2,t+1 = I1 ∩ I2.

3 On Leibniz Algebras Whose Associated Lie Algebra is Isomorphic to
sl12 ⊕ Sl22 ⊕ · · · ⊕ Sl s2 ⊕ R

In this section, we will consider a Leibniz algebra satisfying the following conditions:

(i) The quotient algebra L/I is isomorphic to the direct sum sl12 ⊕sl22 ⊕· · ·⊕sls2⊕ R,

where R is n-dimensional solvable Lie algebra;
(ii) the ideal I is a right irreducible slk2-module for some k ∈ {1, . . . , s}.
By reordering direct sums and changing indexes in the condition (i i) we can assume
k = 1.

We consider the standard basis {ei , fi , hi } of sli2, I =< x0, . . . , xm > and R =<

y1, . . . , yn >. Thus, a basis of L is {e1, f1, h1, . . . , es, fs, hs, x0, . . . , xm, y1, . . . , yn}.
Then due to [6] we have

[e1, h1] = −[h1, e1] = 2e1, [h1, f1] = −[ f1, h1] = 2 f1, [e1, f1] = −[ f1, e1] = h1,
[xi , h1] = (m − 2i)xi , 0 ≤ i ≤ m,

[xi , f1] = xi+1, 0 ≤ i ≤ m − 1,
[xi , e1] = −i(m + 1 − i)xi−1, 1 ≤ i ≤ m.
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The validity of the next lemma follows from Lemma 3.3 in [5].

Lemma 3.1 Let L be a Leibniz algebra satisfying the conditions (i)–(ii). Then
[I, sl j2 ] = 0 for any j ∈ {2, . . . , s}.

The following lemma is a direct consequence of Theorem 2.3.

Lemma 3.2 Let L be a Leibniz algebra satisfying the conditions (i)–(ii). Then
[slt2, slt2] = slt2 for 1 ≤ t ≤ s and [sli2, sl j2 ] = 0 for 1 ≤ i, j ≤ s, i �= j.

The next lemma establishes that the solvable ideal R is contained in two-sided
annihilator of each sli2, 2 ≤ i ≤ s.

Lemma 3.3 Let L be a Leibniz algebra satisfying the conditions (i)–(ii). Then

[R, sli2] = [sli2, R] = 0, 2 ≤ i ≤ s.

Proof Applying Leibniz identity for the following triples

(ys, e1, a), (ys, f1, a), (a, ys, e1), (a, ys, f1)

leads [ys, a] = 0, [a, ys] = 0, 1 ≤ s ≤ n for an arbitrary element a ∈ sli2, 2 ≤ i ≤
s. ��

Summarizing the results of Lemmas 3.1–3.3, we obtain the following theorem.

Theorem 3.4 Let L be a finite-dimensional Leibniz algebra satisfying the conditions:

(i) L/I ∼= sl12 ⊕ sl22 ⊕ · · · ⊕ sls2 ⊕ R, where R is an n-dimensional solvable Lie
algebra;

(ii) the ideal I is a right irreducible module over sl12 .

Then, L ∼= ((sl12 ⊕ R) � I ) ⊕ sl22 ⊕ · · · ⊕ sls2.

As a result of Theorems 2.6–2.7 and 3.4, we have the following corollaries.

Corollary 3.5 Let L/I ∼= sl12 ⊕ sl22 ⊕ · · · ⊕ sls2 ⊕ R with dimR = 2 and dimI �= 3.
Then L is isomorphic to the following algebra:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

[e j , h j ] = −[h j , e j ] = 2e j , [h j , f j ] = −[ f j , h j ] = 2 f j ,
[e j , f j ] = −[ f j , e j ] = h j , 1 ≤ j ≤ s,
[y1, y2] = −[y2, y1] = y1,
[xk, h1] = (m − 2k)xk, 0 ≤ k ≤ m,

[xk, f1] = xk+1, 0 ≤ k ≤ m − 1,
[xk, e1] = −k(m + 1 − k)xk−1, 1 ≤ k ≤ m,

[xk, y2] = axk, 0 ≤ k ≤ m, a ∈ C.
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Corollary 3.6 Let L/I ∼= sl12 ⊕ sl22 ⊕ · · · ⊕ sls2 ⊕ R, with dimR = 3 and dimI �= 3.
Then L is isomorphic to the following non-isomorphic algebras:

L1(α, a) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[e j , h j ] = −[h j , e j ] = 2e j , [h j , f j ] = −[ f j , h j ] = 2 f j ,

[e j , f j ] = −[ f j , e j ] = h j , 1 ≤ j ≤ s,

[y1, y2] = −[y2, y1] = y1, [y3, y2] = −[y2, y3] = αy3,

[xk, h1] = (m − 2k)xk, 0 ≤ k ≤ m,

[xk, f1] = xk+1, 0 ≤ k ≤ m − 1,

[xk, e1] = −k(m + 1 − k)xk−1, 1 ≤ k ≤ m,

[xi , y2] = axi , 0 ≤ i ≤ m,

L2(a) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[e j , h j ] = −[h j , e j ] = 2e j , [h j , f j ] = −[ f j , h j ] = 2 f j ,

[e j , f j ] = −[ f j , e j ] = h j , 1 ≤ j ≤ s,

[y1, y2] = −[y2, y1] = y1 + y3, [y3, y2] = −[y2, y3] = y3,

[xk, h1] = (m − 2k)xk, 0 ≤ k ≤ m,

[xk, f1] = xk+1, 0 ≤ k ≤ m − 1,

[xk, e1] = −k(m + 1 − k)xk−1, 1 ≤ k ≤ m,

[xi , y2] = axi , 0 ≤ i ≤ m.

4 On Leibniz Algebras with Semisimple Part sl12 ⊕ Sl22

Let the quotient Lie algebra L/I for a Leibniz algebra L be isomorphic to a direct
sum of two copies of the sl2, i.e., L/I ∼= sl2 ⊕ sl2. In this section we shall investigate
the case when the ideal I is reducible over each copy of sl2. In order to distinguish
copies of sl2 we shall denote them by sl12 and sl

2
2 . One can assume that I is reducible

over sl12 . Due to Theorem 2.5 we have the following decomposition:

I = I1,1 ⊕ I1,2 ⊕ ... ⊕ I1,s+1,

where I1, j , 1 ≤ j ≤ s + 1 are irreducible sl12-modules.
We shall focus our study on the casewhen dim I1,1 = dimI1,2 = · · · = dimI1,s+1 =

m + 1.
Let us introduce notations as follows:

I1, j =< x j
0 , x j

1 , . . . , x j
m >, 1 ≤ j ≤ s + 1.

In the proof of Theorem 3.7 in the paper [5] it was proved that

[x j
i , e2] =

s + 1∑

k = 1

aki, j x
k
i , [x j

i , f2] =
s + 1∑

k = 1

bki, j x
k
i , [x j

i , h2] =
s + 1∑

k = 1

cki, j x
k
i ,

where 0 ≤ i ≤ m, 1 ≤ j ≤ s + 1.
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Without loss of generality one can assume that the products [I1, j , sl12 ], 1 ≤ j ≤
s + 1 are expressed as follows:

[x j
i , e1] = −i(m + 1 − i)x j

i−1, 1 ≤ i ≤ m,

[x j
i , f1] = x j

i+1, 0 ≤ i ≤ m − 1,

[x j
i , h1] = (m − 2i)x j

i , 0 ≤ i ≤ m.

Proposition 4.1 Let L/I be isomorphic to sl12⊕sl22 ,where I = I1,1⊕ I1,2⊕...⊕ I1,s+1
with dimI1, j = m + 1 and I1, j be irreducible sl12-modules for 1 ≤ j ≤ s + 1. Then

[x j
i , e2] =

s + 1∑

k = 1
akj x

k
i , [x j

i , f2] =
s + 1∑

k = 1
bkj x

k
i , [x j

i , h2] =
s + 1∑

k = 1
ckj x

k
i ,

where 0 ≤ i ≤ m, 1 ≤ j ≤ s + 1.

Proof Applying the Leibniz identity for the following triples of elements:

(x j
1 , e1, e2), 1 ≤ j ≤ s + 1

we derive the restrictions:

ak1, j = ak0, j , 1 ≤ k ≤ s + 1.

Consequently, we obtain

[x j
0 , e2] =

s + 1∑

k = 1

ak0, j x
k
0 , [x j

1 , e2] =
s + 1∑

k = 1

ak0, j x
k
1 , 1 ≤ j ≤ s + 1.

By induction we shall prove the equality

[x j
i , e2] =

s + 1∑

k = 1

ak0, j x
k
i , 0 ≤ i ≤ m. (4.1)

Using the assumption of correctness of Equality 4.1 for i in the following chain of
equalities:

0 = [x j
i+1, [e1, e2]] = [[x j

i+1, e1], e2] − [[x j
i+1, e2], e1] = −[(i + 1)(m − i)x j

i , e2]

−
s + 1∑

k = 1

aki+1, j [xki+1, e1] = −(i + 1)(m − i)
s + 1∑

k = 1

ak0, j x
k
i

+
s + 1∑

k = 1

aki+1, j (i + 1)(m − i)xki ,
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we conclude that aki+1, j = ak0, j for 1 ≤ k ≤ s + 1, that is, [x j
i+1, e2] =

s + 1∑

k = 1
ak0, j x

k
i+1

and Equality 4.1 is proved.

Putting akj = ak0, j , we have [x j
i , e2] =

s + 1∑

k = 1
akj x

k
i , 1 ≤ j ≤ s + 1, 0 ≤ i ≤ m.

Applying the Leibniz identity for the triples of elements:

(x j
1 , e1, f2), 1 ≤ j ≤ s + 1,

we obtain

bk1, j = bk0, j , 1 ≤ k ≤ s + 1.

Therefore, we obtain

[x j
0 , f2] =

s + 1∑

k = 1

bk0, j x
k
0 , [x j

1 , f2] =
s + 1∑

k = 1

bk0, j x
k
1 , 1 ≤ j ≤ s + 1.

Applying the induction and the following chain of equalities

0 = [x j
i+1, [e1, f2]] = [[x j

i+1, e1], f2] − [[x j
i+1, f2], e1] = −[(i + 1)(m − i)x j

i , f2]

−
s + 1∑

k = 1

bki+1, j [xki+1, e1] = −(i + 1)(m − i)
s + 1∑

k = 1

bk0, j x
k
i

+
s + 1∑

k = 1

bki+1, j (i + 1)(m − i)xki ,

we derive the equality

[x j
i , f2] =

s + 1∑

k = 1

bk0, j x
k
i , 0 ≤ i ≤ m, 1 ≤ j ≤ s + 1.

Setting bkj = bk0, j , we obtain [x j
i , f2] =

s + 1∑

k = 1
bkj x

k
i , 0 ≤ i ≤ m, 1 ≤ j ≤ s + 1.

Analogously, one can prove the equality [x j
i , h2] =

s + 1∑

k = 1
ckj x

k
i with 1 ≤ j ≤ s + 1.

��
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Now we shall describe Leibniz algebras such that L/I ∼= sl12 ⊕ sl22 and I =
I1,1 ⊕ I1,2,where I1,1, I1,2 are irreducible sl12-modules. Without loss of generality we
can suppose

[x j
i , h1] = (m − 2i)x j

i , 0 ≤ i ≤ m,

[x j
i , f1] = x j

i+1, 0 ≤ i ≤ m − 1,

[x j
i , e1] = −i(m + 1 − i)x j

i−1, 1 ≤ i ≤ m.

for j = 1, 2.
According to Proposition 4.1, one can assume that

[x1i , e2] = a1x1i + a2x2i , [x2i , e2] = a3x1i + a4x2i ,

[x1i , f2] = b1x1i + b2x2i , [x2i , f2] = b3x1i + b4x2i ,

[x1i , h2] = c1x1i + c2x2i , [x2i , h2] = c3x1i + c4x2i ,

where 0 ≤ i ≤ m.

From the following chains of equalities obtained applying the Leibniz identity

2(a1x
1
0 + a2x

2
0 ) = 2[x10 , e2] = [x10 , [e2, h2]]

= (a2c3 − c2a3)x
1
0 + (a1c2 + a2c4 − c1a2 − c2a4)x

2
0 ,

2(a3x
1
0 + a4x

2
0 ) = 2[x20 , e2] = [x20 , [e2, h2]]

= (a3c1 + a4c3 − c3a1 − c4a3)x
1
0 + (a3c2 − a2c3)x

2
0 ,

−2(b1x
1
0 + b2x

2
0 ) = −2[x10 , f2] = [x10 , [ f2, h2]] = (b2c3 − c2b3)x

1
0

+ (b1c2 + b2c4 − c1b2 − c2b4)x
2
0 ,−2(b3x

1
0 + b4x

2
0 )

= 2[x20 , e2] = [x20 , [ f2, h2]]
= (b3c1 + b4c3 − c3b1 − c4b3)x

1
0 + (b3c2 − b2c3)x

2
0 ,

−c1x
1
1 − c2x

2
1 = −[x11 , h2] = [x11 , [ f2, e2]]

= (a3b2 − a2b3)x
1
1 + 2(a2b1 − a1b2)x

2
1 ,

−c3x
1
1 − c4x

2
1 = −[x21 , h2] = [x21 , [ f2, e2]]

= 2(a1b3 − a3b1)x
1
1 + (a2b3 − a3b2)x

2
1 .

we derive:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2a1 = a2c3 − a3c2,

2a2 = a1c2 + a2c4 − c1a2 − c2a4,

2a3 = a3c1 + a4c3 − c3a1 − c4a3,

2a4 = a3c2 − a2c3,

−2b1 = b2c3 − c2b3,

−2b2 = b1c2 + b2c4 − c1b2 − c2b4,

−2b3 = b3c1 + b4c3 − c3b1 − c4b3,

−2b4 = b3c2 − b2c3,

c1 = a2b3 − a3b2,

c2 = 2(a1b2 − a2b1),

c3 = 2(a3b1 − a1b3),

c4 = a3b2 − a2b3.

(4.2)

It is easy to see that a4 = −a1, b4 = −b1 and c4 = −c1.
Thus, we obtain the following products:

[x1i , e2] = a1x1i + a2x2i , [x1i , f2] = b1x1i + b2x2i ,

[x2i , e2] = a3x1i − a1x2i , [x2i , f2] = b3x1i − b1x2i ,

[x1i , h2] = (a2b3 − a3b2)x1i + 2(a1b2 − a2b1)x2i ,

[x2i , h2] = 2(a3b1 − a1b3)x1i − (a2b3 − a3b2)x2i ,
(4.3)

where the structure constants a1, a2, a3 and b1, b2, b3 satisfy relations (4.2).
Wepresent the classificationofLeibniz algebras satisfying the following conditions:

(a) L/I ∼= sl12 ⊕ sl22;
(b) I = I1,1 ⊕ I1,2 such that I1,1, I1,2 are irreducible sl12-modules and dimI1,1 =

dimI1,2;
(c) I = I2,1 ⊕ I2,2 ⊕ ... ⊕ I2,m+1 such that I2,k are irreducible sl22-modules with

1 ≤ k ≤ m + 1.

Theorem 4.2 An arbitrary Leibniz algebra satisfying the conditions (a)–(c) is iso-
morphic to the following algebra:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ei , hi ] = −[hi , ei ] = 2ei ,
[ei , fi ] = −[ fi , ei ] = hi ,
[hi , fi ] = −[ fi , hi ] = 2 fi ,
[xik, h1] = (m − 2k)xik, 0 ≤ k ≤ m,

[xik, f1] = xik+1, 0 ≤ k ≤ m − 1,
[xik, e1] = −k(m + 1 − k)xik−1, 1 ≤ k ≤ m,

[x1j , e2] = [x2j , h2] = x2j ,
[x1j , h2] = [x2j , f2] = −x1j ,

with 1 ≤ i ≤ 2 and 0 ≤ j ≤ m.
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Proof We set dimI1,1 = dimI1,2 = m+1.Then, according to Theorem 2.8, we obtain
dimI2,k = 2 for 1 ≤ k ≤ m + 1.

Let {x10 , x11 , ..., x1m}, {x20 , x21 , ..., x2m} and {y1i+1, y
2
i+1} be bases of I1,1, I1,2 and

I2,i+1, 0 ≤ i ≤ m, respectively. We set

y1i+1 = α1
i x

1
i + α2

i x
2
i , y2i+1 = β1

i x
1
i + β2

i x
2
i , 0 ≤ i ≤ m. (4.4)

Taking into account the products (4.3) for 0 ≤ i ≤ m we consider the equalities

0 = [y2i+1, f2] = [β1
i x

1
i + β2

i x
2
i , f2] = β1

i (b1x
1
i + b2x

2
i ) +

+β2
i (b3x

1
i − b1x

2
i ) = (β1

i b1 + β2
i b3)x

1
i + (β1

i b2 − β2
i b1)x

2
i .

Therefore, {
β1
i b1 + β2

i b3 = 0,

β1
i b2 − β2

i b1 = 0,
(4.5)

with 0 ≤ i ≤ m.

If b21 +b2b3 �= 0, then the system of equations (4.5) has only trivial solution, which
is a contradiction. Hence, b21 + b2b3 = 0.

Similarly, from

0 = [y1i+1, e2] = (α1
i a1 + α2

i a3)x
1
i + (α1

i a2 − α2
i a1)x

2
i

we derive a21 + a2a3 = 0.
Thus, we have a1 = ±i

√
a2a3 and b1 = ±i

√
b2b3.

Let us summarize the obtained products:

[x1i , e2] = a1x1i + a2x2i , [x1i , f2] = b1x1i + b2x2i ,

[x2i , e2] = a3x1i − a1x2i , [x2i , f2] = b3x1i − b1x2i ,

[x1i , h2] = (a2b3 − a3b2)x1i + 2(a1b2 − a2b1)x2i ,

[x2i , h2] = 2(a3b1 − a1b3)x1i − (a2b3 − a3b2)x2i ,

(4.6)

with 0 ≤ i ≤ m and the relations a21 + a2a3 = b21 + b2b3 = 0.
Taking the following basis transformation:

x1
′

i = Ax1i + Bx2i , x2
′

i = (Aa1 + Ba3)x
1
i + (Aa2 − Ba1)x

2
i , 0 ≤ i ≤ m

we can assume that the products (4.6) have the following form:

[x1i , e2] = x2i , [x2i , e2] = 0,

[x1i , f2] = b1x1i + b21x
2
i , [x2i , f2] = −x1i − b1x2i ,

[x1i , h2] = −x1i − 2b1x2i , [x2i , h2] = x2i .
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Applying the change of basis as follows

x1
′

i = x1i + b1x
2
i , x2

′
i = x2i , 0 ≤ i ≤ m,

we complete the proof of theorem. ��
The following theorem establishes that condition (c) can be omitted because if

conditions (a)–(b) are true, then condition (c) is always executable.

Theorem 4.3 Let L be a Leibniz algebra satisfying the conditions (a)–(b). Then either
L satisfies the condition (c) or L ∼= (sl12 + I ) ⊕ sl22 .

Proof Let L be a Leibniz algebra satisfying conditions (a) and (b), but not (c). In
order to prove the assertion of theorem we have to establish that all modules I2,i , 1 ≤
i ≤ m + 1 are reducible over sl22 . Indeed, according to Theorem 2.5 we conclude
that I2,i are completely reducible modules over sl22 . In denotation of (4.4) we have
I2,i =< y1i > ⊕ < y2i >, where < y1i >, < y2i > are one-dimensional trivial
sl22-modules, that is,

[y1i , e2] = [y2i , e2] = [y1i , f2] = [y2i , f2] = [y1i , h2] = [y2i , h2] = 0.

We shall prove by contrary method, that is, we shall assume that not all modules I2,i
are reducible over sl22 .Thenwe can assume that there exist some s, 1 ≤ s ≤ m+1 and
t, 1 ≤ t ≤ m+1, t �= s such that I2,s is irreducible, but I2,t is reducible sl22-modules.
By renumerating of indexes, without loss of generality, we can suppose s = 2 and
t = 1.

From the products in the proof of Theorem 4.2 we have

[x11 , e2] = [x21 , h2] = x21 , [x11 , h2] = [x21 , f2] = −x11 , [x21 , e2] = [x11 , f2] = 0.

Consider the chain of equalities

0 = [y11 , [e2, f1]] = [[y11 , e2], f1] − [[y11 , f1], e2] = −[[y11 , f1], e2] =
− [[α1

0x
1
0 + α2

0x
2
0 , f1], e2] = −[α1

0x
1
1 + α2

0x
2
1 , e2] = −α1

0x
2
1 ,

0 = [y11 , [ f2, f1]] = [[y11 , f2], f1] − [[y11 , f1], f2] = −[[y11 , f1], f2] =
− [[α1

0x
1
0 + α2

0x
2
0 , f1], e2] = −[α1

0x
1
1 + α2

0x
2
1 , f2] = α2

0x
1
1 .

Therefore, α1
0 = α2

0 = 0, which means y11 = 0. Thus, we obtain a contradiction. ��

5 Some Remarks on Leibniz Algebras with Semisimple Part sln

In this section we present the structure of Leibniz algebras with associated Lie algebra
sln and with dimension of ideal I equal to 1 and 2.

Proposition 5.1 Let L/I be isomorphic to G where G =< e1, e2, ..., em > is a
semisimple Lie algebra and dimI = 1. Then L = G ⊕ I.

123



612 L. M. Camacho et al.

Proof We put I =< x > and [x, ei ] = αi x . For the semisimple Lie algebra G
we have [G,G] = G, that is, for any ei , 1 ≤ i ≤ m there exist βp,q such that
ei = ∑

p,q
βp,q [ep, eq ].

The following chain of equalities completes the proof of proposition.

[x, ei ] =
[

x,
∑

p,q

βp,q [ep, eq ]
]

=
∑

p,q

βp,q [x, [ep, eq ]]

=
∑

p,q

βp,q([[x, ep], eq ] − [[x, eq ], ep])

=
∑

p,q

βp,q(αp[x, eq ] − αq [x, ep])

=
∑

p,q

βp,q(αpαq x − αqαpx) = 0.

��
Let G be a simple Lie algebra with a basis {e1, e2, . . . em} which satisfies the

condition that for any ei there exist p, q such that ei = [ep, eq ].
We consider the case of L/I ∼= G and dimI = 2. We set {x, y} the basis elements

of I and

[x, ei ] = αi x + βi y, [y, ei ] = γi x + δi y, 1 ≤ i ≤ n.

Consider

[x, ei ] = [x, [ep, eq ]] = [[x, ep], eq ] − [[x, eq ], ep]
= (βpγq − βqγp)x + (αpβq + βpδq − αqβp − βqδp)y.

On the other hand, [x, ei ] = αi x + βi y.
Comparing the coefficients we derive

{
αi = βpγq − βqγp,

βi = αpβq + βpδq − αqβp − βqδp,
(5.1)

where 1 ≤ i ≤ n.

Similarly, if we consider [y, ei ], then
{

γi = γpαq + δpγq − γqαp − δqγp,

δi = γpβq − γqβp,
(5.2)

where 1 ≤ i ≤ n.

From the systems (5.1) and (5.2) we obtain

[x, ei ] = αi x + βi y, [y, ei ] = γi x − αi y, 1 ≤ i ≤ n. (5.3)
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Let L/I be isomorphic to sln . From [6] we have the standard basis {hk, ei, j , 1 ≤
k ≤ n − 1, 1 ≤ i, j ≤ n, i �= j} of sln . We recall the table of multiplication of sln

[ei j , e jk ] = eik , 1 ≤ i, j, k ≤ n, i �= j, j �= k, k �= i,
[hk , ein] = ein, [hk , eni ] = −eni , 1 ≤ i, k ≤ n − 1, k �= i,
[hi , ei j ] = ei j , [h j , ei j ] = −ei j , [ei j , e ji ] = hi − h j , 1 ≤ i, j ≤ n − 1,
[hi , ein] = 2ein, [hi , eni ] = −2eni , [ein, eni ] = hi , 1 ≤ i ≤ n − 1.

Theorem 5.2 Let L/I be isomorphic to sln (n ≥ 3), where dimI = 2. Then L =
sln ⊕ I.

Proof From (5.3) we have

[x, hi ] = αi x + βi y, 1 ≤ i ≤ n − 1, [y, hi ] = γi x − αi y, 1 ≤ i ≤ n − 1,

[x, ei j ] = αi j x + βi j y, [y, ei j ] = γi j x − αi j y, 1 ≤ i, j ≤ n, i �= j.

Applying the Leibniz identity for the following triples of elements

(x, hi , ei j ), (y, hi , ei j ), (x, hi , ein), (y, hi , ein), (x, hi , eni ), (y, hi , eni ).

we deduce
⎧
⎪⎨

⎪⎩

αi j + γiβi j − βiγi j = 0,

2βiαi j + (1 − 2αi )βi j = 0,

−2γiαi j + (1 + 2αi )γi j = 0,

(5.4)

⎧
⎪⎨

⎪⎩

2αin + γiβin − βiγin = 0,

βiαin + (1 − αi )βin = 0,

−γiαin + (1 + αi )γin = 0,

(5.5)

⎧
⎪⎨

⎪⎩

−2αni + γiβni − βiγni = 0,

βiαni − (αi + 1)βni = 0,

−γiαni + (αi − 1)γni = 0.

(5.6)

Determinants of the systems (5.4)–(5.6) have the following values:

Det

⎛

⎝
1 γi −βi

2βi 1 − 2αi 0
−2γi 0 1 + 2αi

⎞

⎠ = 1 − 4(α2
i + βiγi ),

Det

⎛

⎝
2 γi −βi

βi 1 − αi 0
−γi 0 1 + αi

⎞

⎠ = 2 − 2(α2
i + βiγi ),

Det

⎛

⎝
−2 γi −βi

βi −1 − αi 0
−γi 0 αi − 1

⎞

⎠ = −2 + 2(α2
i + βiγi ).
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It is easy to see that these determinants do not equal to zero simultaneously. There-
fore, we conclude that either

αin = βin = γin = αni = βni = γni = 0, 1 ≤ i ≤ n − 1

or

αi j = βi j = γi j = 0, 1 ≤ i, j ≤ n − 1.

Case 1 Let αin = βin = γin = αni = βni = γni = 0 where 1 ≤ i ≤ n − 1. Then the
nonzero products [I, sln] are the following

[x, hi ] = αi x + βi y, [y, hi ] = γi x − αi y, 1 ≤ i ≤ n − 1,

[x, ei j ] = αi j x + βi j y, [y, ei j ] = γi j x − αi j y, 1 ≤ i, j ≤ n − 1, i �= j.

From the equalities

[x, hi ] = [x, [ein, eni ]] = [[x, ein], eni ] − [[x, eni ], ein] = 0,

[y, hi ] = [y, [ein, eni ]] = [[y, ein], eni ] − [[y, eni ], ein] = 0,

[x, ei j ] = [x, [ein, enj ]] = [[x, ein], enj ] − [[x, enj ], eni ] = 0,

[y, ei j ] = [y, [ein, enj ]] = [[y, ein], enj ] − [[y, enj ], eni ] = 0,

we obtain [I, sln] = 0.
Case 2 Let αi j = βi j = γi j = 0 where 1 ≤ i, j ≤ n − 1. Then we have

[x, hi ] = αi x + βi y, [y, hi ] = γi x − αi y, 1 ≤ i ≤ n − 1,
[x, ein] = αin x + βin y, [y, ein] = γin x − αin y, 1 ≤ i ≤ n − 1,
[x, eni ] = αni x + βni y, [y, eni ] = γni x − αni y, 1 ≤ i ≤ n − 1,
[x, ei j ] = [y, ei j ] = 0, 1 ≤ i, j ≤ n − 1, i �= j.

Using Leibniz identity for the following triples

(x, ei j , e ji ), (y, ei j , e ji ), (x, h j , ein), (y, h j , ein),
(x, h j , eni ), (y, h j , eni ), (x, ein, eni ), (y, ein, eni ),

we obtain

[x, hi ] = [y, hi ] = [x, ein] = [y, ein] = [x, eni ] = [y, eni ] = 0, 1 ≤ i ≤ n − 1.

��
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