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1 Introduction

The notion of Leibniz algebra was first introduced by Loday in [7,8] as a non-
antisymmetric generalization of Lie algebra. During the last 20 years, the theory of
Leibniz algebras has been actively studied and many results of the theory of Lie alge-
bras have been extended to Leibniz algebras. A lot of papers have been devoted to the
study of finite-dimensional Leibniz algebras [1,2,11], etc. However, just a few works
are related to the semisimple part of Leibniz algebras [3,5,10].

We know that an arbitrary Lie algebra can be decomposed into a semidirect sum
of the solvable radical and its semisimple subalgebra (Levi’s theorem [6]). According
to the Cartan—Killing theory, a semisimple Lie algebra can be represented as a direct
sum of simple ideals, which are completely classified [6].

In a recent study, Barnes has proved an analogue of Levi’s theorem for the case of
Leibniz algebras [3]. Namely, a Leibniz algebra is decomposed into a semidirect sum
of its solvable radical and a semisimple Lie algebra.

The inherent properties of non-Lie Leibniz algebras imply that the subspace spanned
by squares of elements of the algebra is a non-trivial ideal (denoted by 7). Moreover, the
ideal [ is abelian, and hence, it is contained in the solvable radical. Thanks to result of
Barnes in order to describe Leibniz algebras it is enough to investigate the relationship
between products of a semisimple Lie algebra and the radical (see [5,9,10]).

The present work is devoted to describing the structure of Leibniz algebras with the
associated Lie algebras isomorphic to slé @ sl% @ --- @ sl3 ® R with I an irreducible
right sllz‘—module for some k. Since the description of such Leibniz algebras is very
complicated, we have to focus on Leibniz algebras with semisimple part sl; &) sl%
under some conditions on the ideal /.

In order to achieve our goal we organize the paper as follows. In Sect.2, we give
some necessary notions and preliminary results about Leibniz algebras with associated
Lie algebra sl + R. Section 3 is devoted to the study of the structure of Leibniz algebras,
whose semisimple part is a direct sum of copies of s/, algebra and with some conditions
on the ideal /. In Sect. 4, we classify Leibniz algebras whose semisimple part is a direct
sum sl% ® sl% and [ is decomposed into a direct sum of two irreducible modules
11, I 2 over 512l such that dim/;; = dim/j ». The description of the structure of
Leibniz algebras with associated Lie algebra s/,, and dim/ = 1, 2 is obtained in Sect. 5.

Throughout the work, vector spaces and algebras are finite dimensional over the
field of complex numbers. Moreover, in the table of multiplication of an algebra the
omitted products are assumed to be zero. We shall use the following symbols: +, &
and + for notations of the direct sum of the vector spaces, the direct and semidirect
sums of algebras, respectively.

2 Preliminaries

In this section we give some necessary definitions and preliminary results.
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Leibniz Algebras Whose Semisimple Part is Related to sl 601

Definition 2.1 [7] An algebra (L, [-, -]) over a field F is called a Leibniz algebra if
for any x, y, z € L the so-called Leibniz identity

[x, [y, 21l = [[x, y1, 2] — [[x, z], ¥]
holds.

Let L be a Leibniz algebra, and let I = ideal < [x,x] | x € L > be an ideal of
L generated by all squares. The natural epimorphism ¢ : L — L/I determines the
associated Lie algebra L /I of the Leibniz algebra L. It is clear that the ideal / is the
minimal ideal with respect to the property that the quotient algebra by this ideal is a
Lie algebra.

It was noted in [3] that the ideal I coincides with the space spanned by squares of
elements of an algebra.

According to [6] there exists a unique (up to isomorphism) three-dimensional simple
Lie algebra with the following table of multiplications:

sh: le,hl =—[h,e]l=2e, [h, fl=~[f,hl=2f le, fl=—[f.el=h,
The basis {e, f, h} is called the canonical basis.

In [9], Leibniz algebras whose quotient Lie algebra is isomorphic to sl are
described. Let us present a Leibniz algebra L with the table of multiplication in a basis

{e, f,h,x(l), . ..,xtll,xg, ...,xtzz,...,xg, .. .,x,l;}andthequotientalgebraL/I 18 sy
as follows:
le, h] = —[h, e] = 2e, [h, f1=—Lf.h] = 2f. [e. f1 = —[f, el = h,
[xj, hl = (1; — 2k)x}, 0<k<t,
[x(, f1=x,,, 0<k<t;—1,

[x], el = —k(tj + 1 —k)x]_,, 1 <k <1;.

where L=shb+h+DL+---+1I,and I; = (xf,...,x,]/,), 1<j<p.

The last three types of products of the above table of multiplication are characterized
as an irreducible sl;-module with the canonical basis of s/ [6].

Now we give the notion of semisimplicity for Leibniz algebras.

Definition 2.2 [5] A Leibniz algebra is called semisimple if its maximal solvable ideal
is equal to 1.

Since in the Lie algebras case the ideal 7 is equal to zero, this definition also agrees
with the definition of semisimple Lie algebra.

Although Levi’s theorem is proved for the left Leibniz algebras [3], it is also true
for right Leibniz algebras (here we consider the right Leibniz algebras).

Theorem 2.3 [3] (Levi’s theorem) Let L be a finite-dimensional Leibniz algebra over a
field of characteristic zero and R be its solvable radical. Then there exists a semisimple
subalgebra S of L, such that L = S+R.
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A Leibniz algebra L is called simple if its only ideals are {0}, I, L and [L, L] # I.
From the proof of Theorem 2.3, it is not difficult to see that S is a semisimple Lie
algebra. Therefore, we have that a simple Leibniz algebra is a semidirect sum of simple
Lie algebra S and the irreducible right module 7 over S, ie., L = § +1. Hence, we
obtain the description of the simple Leibniz algebras in terms of simple Lie algebras
and ideal /.

Definition 2.4 [6] A nonzero module M over a Lie algebra whose only submodules
are the module itself and zero module is called irreducible module. A nonzero module
M which admits decomposition into a direct sum of irreducible modules is said to be
completely reducible.

Further, we shall use the following Weyl’s semisimplicity theorem.

Theorem 2.5 [6] Let G be a semisimple Lie algebra over a field of characteristic
zero. Then every finite-dimensional module over G is completely reducible.

Now we present results on classification of Leibniz algebras with the conditions
L/I =slh®R, dimR = 2, 3, where [ is an irreducible right module over s/ (dim/ #
3).

Theorem 2.6 [4]Let L be a Leibniz algebrawhose quotient L/1 = sly® R, where R is
a two-dimensional solvable ideal and I is a right irreducible module over sl (dimI #
3). Then there exists a basis {e, h, f, xo, X1, ..., Xm, Y1, y2} of the algebra L such that
the table of multiplication in L has the following form:

le, h] = —[h, e] = 2e, A, f1=—=[fihl =2f, [e, f1=—[f, el =h,
[y1, y21 = —[y2, y1] = y1, [xk, y21 = axg, 0<k=<m,aecC,
[xk, ] = (m — 2k)xp 0<k=<m,

Xk, f1= Xk+1, O0<k=m-—1,

[xk, e] = —k(m + 1 —k)xg—1, 1 <k <m.

The following theorem extends Theorem 2.6 for dimR = 3.

Theorem 2.7 [10] Let L be a Leibniz algebra whose quotient L/1 = sl @ R, where
R is a three-dimensional solvable ideal and I is an irreducible right module over
sly (dim/ # 3). Then there exists a basis {e, h, f, X0, X1, ..., Xm, Y1, Y2, Y3} of the
algebra L such that the table of multiplication in L has one of the following two forms:
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[e, h] = —[h, e] = 2e, [h, f1=—Lf k]l =2f, le, f1=—Lf.el=h,
[y1, y21 = —[y2, yil = y1, [y3, y21 = =[y2, y3] = ay3,
[xk, h] = (m — 2k)xg, 0<k=<m,
Liea): [xk. f1=xp11, O<k<m-—1,
[xk,e] = —k(m + 1 —k)xg—1, 1 <k <m,
[xi, y2] = axi, 0<i<m.
le, h] = —[h, e] = 2e, [h, f1==1f,h1=2f, e, fl=—[f el=h,
[y1, y21 = =[y2, yil = y1 + y3, [y3, y2l = —[y2, y31 = y3,
[xk, h] = (m — 2k)xg, 0<k=<m,
Lo(a) :
Xk, f1= Xk+1, 0<k=<=m-—1,
[xg, el = —k(m +1=K)xg—1, 1<k =<m,
[xi, y2] = ax;, 0<i<m.

For a semisimple Lie algebra S we consider a semisimple Leibniz algebra L such
that L = (sl @ S)+1. We put I} = [, slp].

Let I; be a reducible module over sl>. Then by Theorem 2.5 we have a decompo-
sition:

L=0L1®L:2® &1,

where [ ; are irreducible modules over s, for every j, 1 < j < p.

Theorem 2.8 [5] Let dim[l,h =dim/; j, =---=dim/; ;, =t+1,1 <s < p.
Then there exist t + 1 submodules 121, I3, . .. I>1+1 of dimension s of the module
I, = [1, S] such that

hi+ho+- -4+ b1 =0LHNI1h

3 On Leibniz Algebras Whose Associated Lie Algebra is Isomorphic to
sLoSEe---0 S50 R

In this section, we will consider a Leibniz algebra satisfying the following conditions:

(i) The quotient algebra L /I is isomorphic to the direct sum s121 @sl% D - DSLOR,
where R is n-dimensional solvable Lie algebra;
(i1) the ideal [ is a right irreducible sllz‘ -module for some k € {1, ..., s}.

By reordering direct sums and changing indexes in the condition (ii) we can assume
k=1.
We consider the standard basis {e;, f;, h;} of slé, I =<x0,...,xy, >and R =<
Y1, ..., ¥n >.Thus,abasisof Lis{e1, f1,h1,..., €5, fss Mgy X0y -« oy Xy Y1y o vy Y}
Then due to [6] we have

le1, h1] = —[h1,e1] =2e1,  [h1, fil = =[f1, b1l =211, [e1, fil = —[f1.e1]l = Iy,
[xi, hi]l = (m — 20)x;, 0<i=<m,

[xi, fil = xiq1, 0<i<m-—1,

[xj,er]l=—im+1—-i)xj_1, 1 <i <m.
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The validity of the next lemma follows from Lemma 3.3 in [5].

Lemma 3.1 Let L be a Leibniz algebra satisfying the conditions (i)—(ii). Then
7, slé] =0forany je{2,...,s}.

The following lemma is a direct consequence of Theorem 2.3.

Lemma 3.2 Let L be a Leibniz algebra satisfying the conditions (i)—(ii). Then
(s}, sI5] = sl for 1 <t < s and [slé, slé] =0forl<i,j<s,i#]j.

The next lemma establishes that the solvable ideal R is contained in two-sided
annihilator of each sl5, 2 <i <s.

Lemma 3.3 Let L be a Leibniz algebra satisfying the conditions (i)—(ii). Then
[R,sl5]=[sl5,R1=0, 2<i<s.
Proof Applying Leibniz identity for the following triples

(ySvelva)3 (yS’ flva)9 (av )’s:el)» (av Vs> fl)

leads [ys,a]l =0, [a,ys] =0, 1 <s < nforan arbitrary elementa € slé, 2<i<
S.

[m|

Summarizing the results of Lemmas 3.1-3.3, we obtain the following theorem.

Theorem 3.4 Let L be a finite-dimensional Leibniz algebra satisfying the conditions:

(i) L)1 = slé ® sl% ® - ®sl; ® R, where R is an n-dimensional solvable Lie
algebra;
(ii) the ideal I is a right irreducible module over slé.

Then, L= (L@ R+ 1D @®si2@® - @ sls.
As a result of Theorems 2.6-2.7 and 3.4, we have the following corollaries.

Corollary 3.5 Let L/I = sl) @ sl5 & - - @ sl5 ® R with dimR = 2 and dim[ # 3.
Then L is isomorphic to the following algebra:

lej, hjl = —lhj,ejl=2e;, [hj, f;1=—[f;,hjl1=2f,
lej, fi1=—Lfj,ejl=hy, l<j<s,

[y1, y21 = —[y2, y11 = y1,

[xk, h1] = (m — 2k)xy, 0<k=<m,

[xk, f1]l = Xkt1, 0<k<m-—1,

[xp,e1] = —k(m +1—K)xg—1, 1 <k <m,

[xx, y2] = axy, 0<k<m, aecC.
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Corollary 3.6 Let L/1 = sy ®sl5 & - @ sl3 ® R, with dimR = 3 and dim! # 3.
Then L is isomorphic to the following non-isomorphic algebras:

lej. hjl=—lhj.ejl=2e;,  [hy, fj]1=—=1f;. hjl=2F;

lej, fil=—fj.ejl=nhj, 1<j<s,

[y1, y2I = —=[y2, y1l = y1, [y3, y21 = —[y2, y3] = ays,
Li(x,a): { [xx, 1]l = (m — 2k)xy, 0<k<m,

[xk, f1] = xk41, 0<k<m-—1,

[xk, e1] = —k(m +1 = k)xp—1, 1 <k <m,

[xi, y2] = ax;, 0<i<m,

lej, hjl=—lhj,e;] =2e;,  [hy, fi1=—1f;.h;]1=2Ff;,

lej, fil=—Lfj.e;]l = hj, I<j<s,

[y1. y21 = —=[y2, yil = y1 + 3, [y3, y21 = —[y2, y3] = y3,
Ly(a): [xk, h1] = (m — 2k)xg, 0<k=<m,

Lk, f1] = xet1, 0<k=m-—1,

[xk, e1] = —k(m +1 = K)xp—1, 1 <k <m,

[xi, y21 = ax;, 0<i=<m.

4 On Leibniz Algebras with Semisimple Part sl% ®S l%

Let the quotient Lie algebra L/I for a Leibniz algebra L be isomorphic to a direct
sum of two copies of the sl, i.e., L/I = sl & sl,. In this section we shall investigate
the case when the ideal 7 is reducible over each copy of s/>. In order to distinguish
copies of sl we shall denote them by s12l and sl%. One can assume that I is reducible
over slzl. Due to Theorem 2.5 we have the following decomposition:

I=01L1©L2®..0 1541,
where /1 j, 1 < j < s+ 1 are irreducible slzl—modules.
We shall focus our study on the case whendim/;; = dim/; > = - - =dim/j 441 =
m+ 1.
Let us introduce notations as follows:
I, =<x(1).,x{,...,x,],-, > 1<j<s+1.
In the proof of Theorem 3.7 in the paper [5] it was proved that

s+1 s+1 s+1

j k Lk j k k j k k
[xi], 62] = Z ai,jxi s [Xi], fz] = Z bi’jxi s [Xl-], ]’l2] = Z Ci,jxi s
k=1 k=1 k=1

where 0 <i <m, 1 <j <s+1.
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Without loss of generality one can assume that the products [/ ;, slzl], 1<j<
s + 1 are expressed as follows:

el =—im+1—ix! ,1<i<m,
[x/. fil = x/,4. 0<i<m-—1,

Proposition 4.1 Let L /I be isomorphic to sl% EBS[%, wherel =11 1®112®...®1] 541
withdimly j = m + 1 and I1; be irreducible slé-modulesfor 1<j<s+1 Then

s+1

. , s+1 . s+1
[x/.eal = 3 alxf, [x], 1= X bhxf, [x) hal = 30 cAxf,
k=1 k=1 k=1

where 0 <i <m, 1 <j<s+1.

Proof Applying the Leibniz identity for the following triples of elements:
(X{,el,ez), I<j<s+1

we derive the restrictions:

k _ k
ayj =ap 1<k<s+1.
Consequently, we obtain
s+1 s+1
J k _k J k _k ;
[x0,62]=2a0,]~x0, [xl,ez]=2ao,,-x1, l<j=s+1L
k=1 k=

By induction we shall prove the equality

s+1
[x/.el =) ag xf, 0<i<m. (4.1)
k=1

Using the assumption of correctness of Equality 4.1 for i in the following chain of
equalities:

0= [/, [er, ell =[x/, . e1l, e2] — [/, 1. el 1] = =[G + D(m — i)x!, ea]
s+ 1 s+1
— Z aﬁl’j[xlﬁ], eil=—G+1)(m—1i) Z al&jxl{‘
k=1 k=1
s+1
+ Y afy i+ Dm = ixf,
k=1
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k Lk

. s+1
k _ k . J _
we conclude that Ay ;=4 ; for 1 <k <s+1,thatis, [x;, |, e2] = kzl ap i Xiy1

and Equality 4.1 is proved.

. s+1
Putting af = a’&j, we have [x/, e2] = kzl afxf, l<j<s+1,0<i<m.
Applying the Leibniz identity for the trip_les of elements:

f.et, ), 1<j<s+1,
we obtain
bllc’j:bl(ijy lkaS‘Fl.

Therefore, we obtain

s+1 s+1
[gs 2= ) b6 %0, [xf. fal = D b af. 1<j<s+1.
k=1 k=1

Applying the induction and the following chain of equalities

0=[x/ . ler, LIl =[x, . erl, ] =[x, ol erl = =[G+ Dm — D)x], fo]
s+1 s+1
=Y b lxb el = =G+ D —i) Y b xf
k=1 k=1
s+1

+ D bl Dm = Dxf,
k=1
we derive the equality
s+1

¥/, fol =) bfxk 0<i<m 1<j<s+1
k=1

. s+1
Setting b% = b ;, we obtain [x/, f2] =k§1b’]‘.xk 0<i<m 1<j<s+]l.

i

. s+ 1
Analogously, one can prove the equality [xij Jhol= > clj‘.xf withl < j <s+1.
k=1

]
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Now we shall describe Leibniz algebras such that L/I = s121 &) sl% and I =
11,1 ® 11,2, where I 1, I} > are irreducible slé -modules. Without loss of generality we
can suppose

[/, il = (m —2i)x], 0<i<m,
[/, fil=xi. 0O<i<m-—1,
[ eill=—im+1—ix/_,1<i<m.

for j =1,2.
According to Proposition 4.1, one can assume that

2

i°

[x!, f2] = bix! + box?, [x2, fol = bax] + bax?,

[x}, e2] = a1x! +axx?, [x?, e2] = azx] + asx

[x!, ol = c1x} + cox?, [x2, hol = e3x! + cax?,

where 0 <i <m.
From the following chains of equalities obtained applying the Leibniz identity

2(a1xg + axxg) = 2[xg, e2] = [xg, le2, ha]]
= (axc3 — Cza3)x(% + (a1c2 + azeq — craz — Cza4)x§,
2(a3x8 + a4x8) = 2[)63, e] = [x(%, [ea, h2]]
= (a3c1 + asc3 — c3a1 — c4a3)x) + (@3¢ — a2€3)x3
—2(bixg + baxg) = —2[xg, f2] = [xg, [f2, hall = (bacs — c2b3)x;
+ (bica + bacy — c1by — c2ba)xg, —2(b3xg + bax()
= 2[xg, e2] = [x3, [ f2, hal]
= (b3c1 + bacs — c3b1 — cab3)x( + (b3ca — bac3)xE,
—c1x{ — caxt = —[x], hal = [x], [f2, e2]]
= (asby — azb3)x] + 2(azby — a1by)x?,
—c3x] —eqx? = =[x}, hal = [x7, [ fo, ea]]
= 2(a1by — azby)x| + (aab3 — azby)x?.

we derive:
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2a1 = axcz — azcy,

2ay = ajcy + axeq — crap — Cra4,
2a3 = azcy + aqcz — c3ay — c44a3,
2a4 = azcy — axcs,

—2b1 = bycz — b3,

—2by = bicy + bacs — c1by — c2ba,

“4.2)
—2b3 = b3cy + bsc3 — c3b1 — c4b3,
—2b4 = b3cr — bacs,
c1 = axby — azby,
c2 = 2(a1by — azby),
c3 = 2(azby — a1 b3),
c4 = azbr — arbs.
It is easy to see that ay = —ay, by = —bj and ¢4 = —c;.
Thus, we obtain the following products:
[x!, e2] = a1x] + azx?, [x!, f2] = bix! + bax?,
[xiz, e = agxil — alxiz, [xl-z, fl= b3xil — b1xi2,
[x}, 2l = (a2b3 — azb2)x + 2(a1by — azb1)x7,
[x7, ha] = 2(asb — a1b3)x} — (a2bs — asbo)x7,
4.3)

where the structure constants ayp, az, az and by, by, b3 satisfy relations (4.2).
We present the classification of Leibniz algebras satisfying the following conditions:
(a L/I = sl% ® si3;
(b) I = 11,1 @ 112 such that I 1, I 2 are irreducible slé-modules and dim/y | =
dim/; 2;
© I =05L1®hy®..® It such that I are irreducible sl%—modules with
1 <k<m+1.

Theorem 4.2 An arbitrary Leibniz algebra satisfying the conditions (a)—(c) is iso-
morphic to the following algebra:

lei, hil = —[h;, ei] = 2e;,

lei, fil = —Lfi,eil = hi,

lhi, fil = =Lfi, hil =2fi,

[x;, h1] = (m — 2k)xp, 0<k=<m,

[ f1] =X,y - O0=k=m-1,
[x;,e1l=—k(m+1—-kx;_;, 1 <k <m,
[x}, e2l = [x7, ha] = x7,

[xj, ha]l =[x, fo] = —x],

withl <i <2and0 < j < m.
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Proof Wesetdim/; | = dim/j, = m+-1. Then, according to Theorem 2.8, we obtain
dimlh; =2forl <k <m+ 1.
Let {xé,xll, ...,x,ln}, {xg, x12, ...,xi} and {yilﬂ, yl.2+]} be bases of /1,1, /12 and
DIi+1, 0 <i < m, respectively. We set
yig =alx! Haixt, v =Blxl + B, 0<i<m. (4.4)

17

Taking into account the products (4.3) for 0 < i < m we consider the equalities

0= [vA,, L1=18x! + B}, 1= Blbix! + box?) +
+ BH(b3x; — bix}) = (B'b1 + BPb3)x] + (Blby — BEb1)x}.

Therefore,
Blbr + Bibs =0,

4.5
Blbs — B2b) =0, )

with0 <i <m.

If b% +byb3 # 0, then the system of equations (4.5) has only trivial solution, which
is a contradiction. Hence, b% + byb3s = 0.

Similarly, from

1 1 2 1 1 2 2
0=[yi 1, e2l = (o;a1 +ajaz)x; + (o; a2 — ajar)x;

we derive a% + araz = 0.

Thus, we have ay = =i /ara3z and by = *i~/bybs3.
Let us summarize the obtained products:

[x}, e2] = arx! + axx}, [x}, fa] = bix! + bax?,
2 1 2 2 1 2
[x;, e2] = azx; —aix;, [x;7, fal = bax; — bix;,

: ' 5 4.6)
[x;, hal = (a2b3 — azby)x; + 2(a1by — axby)x},

[x7, ha]l = 2(azby — aib3)x; — (axb3 — azba)x},

with 0 < i < m and the relations a% + araz = b% + brby = 0.
Taking the following basis transformation:

X = Axi1 + Bxiz, xiz/ = (Aa; + Ba3)xi1 + (Aapy — Ba1)xi2, 0<i<m

1

we can assume that the products (4.6) have the following form:

[x!, e2] = x7. [x7,e2] =0,
[x!, ol = bix! + bix?, [x7, ol = —x} — bix?,
[x!, hol = —x} —2b1x?, [x2, ho] = x2.
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Applying the change of basis as follows

!’ !’
x! =x!+bix?, 7

we complete the proof of theorem. O

The following theorem establishes that condition (c) can be omitted because if
conditions (a)—(b) are true, then condition (c) is always executable.

Theorem 4.3 Let L be a Leibniz algebra satisfying the conditions (a)—(b). Then either
L satisfies the condition (c) or L = (sl% +1)® sl%.

Proof Let L be a Leibniz algebra satisfying conditions (a) and (b), but not (c). In
order to prove the assertion of theorem we have to establish that all modules /> ;, 1 <
i < m + 1 are reducible over sl%. Indeed, according to Theorem 2.5 we conclude
that I ; are completely reducible modules over sl%. In denotation of (4.4) we have
L; =< yl.1 > P < in >, where < yl.l >, < yi2 > are one-dimensional trivial
sl%-modules, that is,

[y}, el = V7, 2l = [y}, ol = vE, fol = [y hal = [y7, hal = 0.

We shall prove by contrary method, that is, we shall assume that not all modules 15 ;
are reducible over sl%. Then we can assume that there exist some s, 1 <s < m+1and
t, 1 <t <m+1, t # ssuchthat I ; is irreducible, but I, ; is reducible sl%-modules.
By renumerating of indexes, without loss of generality, we can suppose s = 2 and
t=1.

From the products in the proof of Theorem 4.2 we have

[x{.e2] = [xf, hal = xf,  [x{,hal =[x, fal = —x{.  [xf.e2] = [x{, f2] = 0.
Consider the chain of equalities

0= [y}, le2, fill = [[y1, e2l, fil = [y), f1l, e2] = —[Iy}, fil, ea] =

— [[a(l)x(% + ot%xg, fil, e2] = —[a(l)xll + a(z)xlz, er] = —aéx%,
0=[yl. LA All = [yl. fol. Al =[], Al ] = =[] AL Al =
— [logxd + adxd, f1l, e2] = —[apx] + adx?, fo] = adx}.

Therefore, aé = o;% = 0, which means yl1 = 0. Thus, we obtain a contradiction. O

5 Some Remarks on Leibniz Algebras with Semisimple Part s/,

In this section we present the structure of Leibniz algebras with associated Lie algebra
sl,, and with dimension of ideal / equal to 1 and 2.

Proposition 5.1 Let L/1 be isomorphic to G where G =< ey, e, ...,ey > is a
semisimple Lie algebra and diml = 1. Then L = G @ 1.
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Proof We put I =< x > and [x,e¢;] = «;x. For the semisimple Lie algebra G
we have [G, G] = G, that is, for any ¢;, 1 < i < m there exist 8, , such that

e = Z ﬁp,q[ep, eq]~

pq
The following chain of equalities completes the proof of proposition.

[x.ei] = [x, > Bralep, eq]] = Bpglx.lep. egll
p.q pr.q

= > Bpa(llx. epl.eg] — [[x. eq]. €p])

p.q

=D Bpalaplx. eg] — aglx, ep])
p-q

= Z Bp.qapogx —agapx) = 0.
p.q

m}

Let G be a simple Lie algebra with a basis {er, ez, ...e,} which satisfies the
condition that for any e; there exist p, g such that e; = [e), ¢4].

We consider the case of L/I = G and dim/ = 2. We set {x, y} the basis elements
of I and

[x,eil =aix + Biy, [yv.eill=vix+38y, 1=<i=<n.
Consider

[x,ei] =[x, [ep, eq]]l = [[x, epl, eq] — [[x, 4], ep]
= (,prq - ,qup)x + (Olp,Bq + ,31,5,1 - aqﬂp - ,3(1817))’~

On the other hand, [x, ¢;] = a;x + B;y.
Comparing the coefficients we derive

{ai Z,prq_ﬂqyp’ (5.1)
Bi = apBy + Bpdg — atqBp — Bydp.

where 1 <i <n.
Similarly, if we consider [y, ¢;], then

{ Yi = Vplg +8p¥g — Vgtp — 8q¥p, (5.2)
8 = Vp.Bq - )/q,Bps

where 1 <i <n.
From the systems (5.1) and (5.2) we obtain

[x,eil=aix + Biy, [y,eil=vyix —a;y, 1=<i<n. (5.3)
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Let L/I be isomorphic to s/,,. From [6] we have the standard basis {h, ¢; j, 1 <
k<n—1,1<i,j<n,i# j}ofsl,. Werecall the table of multiplication of s/,

leij, ejr] = eix, L<i,jk<ni#j, j#k k#i
[k, ein] = €in, i, eni]l = I1<i,k<n-—1, k#i,
[hiveij]:eijﬂ [hj el]:_elj [elj ejl]_h _hjs 1<i,j<n-—1,

(i, ein] = 2ein, [hi, enil = —2eni, lein, enil = hi, I<i<n-—1.

Theorem 5.2 Let L /I be isomorphic to sl,, (n > 3), where diml = 2. Then L =
sl, ® 1.

Proof From (5.3) we have

[x,hil=aix +Biy, 1 <i<n—1, [y,hil=yix -y, 1=<i=<n-1,
[x,eij] = aijx + Bijy, [y,eijl=vijx —aijy, 1=i,j<n, i#].
Applying the Leibniz identity for the following triples of elements
(xahi3el‘j)7 (yshlvelj)a (-xvhl‘sein)» (yshivein)v (xvhiseni)v (y9 hi’eni)‘
we deduce
aij +viBij — Bivij =0,
2Biaij + (1 = 2a;)Bij = 0, 5.4
—2y;a;j + (1 4+ 204)yij =0,
20, + Viﬂin - ,Bi)/in =0,
Bicin + (1 —a;)Bin =0, (5.5)
—Yittin + (1 +aj)yin =0,
—20ni + ViBni — Bivni =0,

,Biani — (o + 1),31”" =0, (5.6)
—Yiti + (@i — Dyni = 0.

Determinants of the systems (5.4)—(5.6) have the following values:

1 Vi —Bi
Det| 28 1-20; 0O =1—4(cf + Bivi),
—2]/, O 1 + 2(1,‘
2 v =B
Det| B 1—a; 0 | =2-2@?+Biv),
—Vi 0 1+
-2 oy —Bi
Det| i —1—a; O = —2+2(Ol,'2+,3i)/i)-

—Vi 0 o — 1
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It is easy to see that these determinants do not equal to zero simultaneously. There-
fore, we conclude that either

Qin=PBin=Vin=0i =Pni=Vui =0, 1 <i <n-—1

or

OlijZﬂijZ)/ijZO, 1<i,j<n-—1.

Case 1 Let i, = Bin = Yin = i = Pni = Yni = 0 where 1 <i < n — 1. Then the
nonzero products [/, sl,] are the following

[x,hil =aix + Biy, [y, hil=vyix —a;y, 1<i<n-—1,
[x,eij] = ajjx + Bijy, [y,eijl =vijx —aijy, 1=i,j<n—1, i#].

From the equalities

[-xv hl] == [-xv [einv e}’ll]] == [[xv eill]7 e}’ll] - [[-xv eni]a eln] == Oa
[y, hil = Ly, [ein, enill = [y, €inl, enil — 1y, enil, €in] = 0,
[x,eij] =[x, lein, enjl] = [[x, €inl, enj] — [[x, enjl, eni] =0,

[y, eij]l = [y, [ein, enjl] = [y, €inl, enj] — [[y, enjl, eni]l = 0,

we obtain [, sl,,] = 0.
Case 2 Leta;j = Bij = vij = 0where 1 <1i, j <n — 1. Then we have

[x,hil = aix + Biy, [y, hil=yix —aiy, 1=<i<n-1,
[x, ein]l = dinx + Biny, [y, €in] = VinX —ainy, 1 <i <n—1,
[x, enil = apix + Buiy, [y, enil = vnix —apiy, 1 <i <n—1,
[x,eij] =y, el =0, I<i,j<n—1, i#].

Using Leibniz identity for the following triples

(x,eij,eji), (v,eij,eji), (x,hj,ein), (v, hj,ein),
(-xvhjveni)v (yvhj»eni)a (x7ein7eni)a (%eimeni)a

we obtain

[x,hil=[y, hil =[x, ein] = [y, ein]l =[x, enil =[y, el =0, 1 <i=<n-—1
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