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Abstract In this paper, we consider of finding efficient solution and weakly efficient
solution for nonconvex vector optimization problems. When X and Y are normed
spaces, F is an anti-Lipschitz mapping from X to Y , and the ordering cone is regular,
we present an algorithm to guarantee that the generated sequence converges to an
efficient solution with respect to normed topology. If the domain of the mapping is
compact, we prove that the generated sequence converges to an efficient solution with
respect to normed topology without requiring that mapping is anti-Lipschitz. We also
give an algorithm to guarantee that the generated sequence converges to a weakly
efficient solution with respect to normed topology.
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1 Introduction

Recently, some numerical methods for solving convex multiobjective optimization
problems have been proposed in the following papers: The steepest descent method
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for multiobjective optimization was dealt with in [1], and an extension of the pro-
jective gradient method to the case of convex constrained vector optimization can be
found in [2]. Bonnel et al. [3] constructed a vector-valued proximal point algorithm to
investigate convex vector optimization problem in Hilbert space, and they generalized
the famous Rockafellar’s results [4] from scalar case to vector case. Ceng and Yao
generalized Bonnel’s results to approximate case in [5]. Chen and Zhao [6] proposed
a generalized proximal point algorithm for convex vector optimization problems in
uniformly convex and uniformly smooth Banach spaces. Chen et al. [7] introduced
a vector-valued Tikhonov-type regularization algorithm for an extended-valued mul-
tiobjective optimization problem, and under some mild conditions, they proved that
any sequence generated by the algorithm converges to a weak Pareto optimal solution
of the multiobjective optimization problem. Similar study can also be found in [8].

In this paper, we consider of finding efficient solution and weakly efficient solution
for nonconvex vector optimization problems. By the method of scalarization, under
the condition that mapping is anti-Lipschitz, and the ordering cone is regular, we
present an algorithm to guarantee that the generated sequence converges to an efficient
solution with respect to normed topology. If the domain of the mapping is compact,
we prove that the generated sequence converges to an efficient solution with respect
to normed topology without requiring that the mapping is anti-Lipschitz. We also give
an algorithm to guarantee that the generated sequence converges to a weakly efficient
solution with respect to normed topology.

2 Preliminaries and Definitions

Throughout this paper, let X and Y be real normed linear spaces. Let Y ∗ be the
topological dual space of Y . Let C be a closed convex pointed cone in Y . The cone C
induces a partial ordering in Y defined by

x ≤ y if and only if y − x ∈ C.

Let

C∗ = { f ∈ Y ∗ : f (y) ≥ 0, for ally ∈ C}

be the dual cone of C . Denote the quasi-interior of C∗ by C�, i.e.,

C� := { f ∈ Y ∗ : f (y) > 0 for all y ∈ C\{0}}.

Let D be a nonempty subset of Y . The cone hull of D is defined as

cone(D) = {td : t ≥ 0, d ∈ D}.

Denote the closure of D by cl(D) and the interior of D by intD.
A nonempty convex subset B of the convex cone C is called a base of C if C=

cone(B) and 0 /∈ cl(B).
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By the separation theorem of convex sets (see [9], Theorem 3.20, Theorem 3.16),
we can get the following two lemmas.

Lemma 2.1 If C is a closed convex pointed cone in Y , then C� �= ∅ if and only if C
has a base.

Lemma 2.2 IfC is a closed convex pointed cone inY with intC �= ∅, thenC∗\{0} �= ∅.

Let A be a nonempty subset of X , and let F : A → Y be a mapping. We consider
the following vector optimization problem (in short (VOP)):

min
x∈A

F(x).

Definition 2.1 A vector x0 ∈ A is called an efficient solution to the (VOP) if

{F(x0)} = (F(x0) − C) ∩ F(A).

The set of efficient solutions to the (VOP) is denoted by E(A, F).

Definition 2.2 Let intC �= ∅. A vector x0 ∈ A is called a weakly efficient solution to
the (VOP) if

(F(x0) − intC) ∩ F(A) = ∅.

The set of weakly efficient solutions to the (VOP) is denoted by EW (A, F).

A set D ⊂ Y is said to be bounded from below if there exists some y0 ∈ Y , such
that

y0 ≤ y for all y ∈ D.

Definition 2.3 (see [10]) The closed convex pointed cone C is said to be regular
if every decreasing sequence which is bounded from below is convergent in norm
topology.

Remark 2.1 The spaces Rn, c0, l, l2, L[a, b], and L2[a, b] are Banach spaces, whose
positive cones are regular.

Definition 2.4 Let A be a nonempty subset of X . A mapping F : A → Y is said to be
anti-Lipschitz, if there exists a real number α > 0 such that

‖x − y‖ ≤ α‖F(x) − F(y)‖ for all x, y ∈ A.

Remark 2.2 Let X be a realHilbert with inner product 〈·, ·〉 and norm ‖·‖, respectively.
Let A be a nonempty subset of X . Let F : A → X be amapping. If F is strongmonotone
on A, that is , there exists some β > 0 such that

〈F(x) − F(y), x − y〉 ≥ β‖x − y‖2 for all x, y ∈ A,
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then, by Schwarz inequality, we have

‖F(x) − F(y)‖‖x − y‖ ≥ 〈F(x) − F(y), x − y〉 ≥ β‖x − y‖2 for all x, y ∈ A.

Thus, we have

‖F(x) − F(y)‖ ≥ β‖x − y‖ for all x, y ∈ A.

From this, we can see that if X is a real Hilbert space, A is a nonempty subset of X ,
and F : A → X is strong monotone on A, then F is anti-Lipschitz.

3 Algorithm

In this section, let C be a closed convex pointed cone in Y , A be a nonempty subset
of X , and F : A → Y be a mapping. Assume that F(A) is bounded from below.

The first algorithm (to be called A1 ) is given as follows.
Let C have a base, and let f ∈ C� (see Lemma 2.1). The method generates a

sequence {xn} ⊂ X in the following way:

Initialization: Choose x1 ∈ A.

Stopping rule: Given xn ∈ A, if xn ∈ E(A, F), then xn+p = xn for all p ≥ 1.
Iterative step: Given xn ∈ A, if xn /∈ E(A, F), then take as the next iterate any
xn+1 ∈ A such that

F(xn+1) ∈ (F(xn) − C) ∩ F(A), (3.1)

and

f (F(xn+1)) < inf{ f (y) : y ∈ (F(xn) − C) ∩ F(A)} + 1/2n . (3.2)

The second algorithm ( to be called A2 ) is given as follows.
Let intC �= ∅, and let f ∈ C∗\{0} (see Lemma 2.2). The method generates a

sequence {xn} ⊂ X in the following way:

Initialization: Choose x1 ∈ A.

Stopping rule: Given xn ∈ A, if xn ∈ EW (A, F), then xn+p = xn for all p ≥ 1.
Iterative step: Given xn ∈ A, if xn /∈ EW (A, F), then take as the next iterate any
xn+1 ∈ A such that

F(xn+1) ∈ (F(xn) − intC) ∩ F(A), (3.3)

and

f (F(xn+1)) < inf{ f (y) : y ∈ (F(xn) − intC) ∩ F(A)} + 1/2n . (3.4)
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Under some conditions, we will prove that the generated sequence converges to an
efficient solution.

Theorem 3.1 Let X and Y be real normed linear spaces, and C be a closed convex
pointed cone in Y . Let A be a nonempty subset of X, and let F: A → Y be a mapping.
Assume that the following conditions are satisfied:

(i) C has a base, and C is regular;
(ii) F(A) is closed and bounded from below;
(iii) F is an anti-Lipschitz mapping.

Then, any sequence {xn} generated by algorithm A1 converges to an efficient solution
of the (VOP) with respect to norm topology.

Proof By assumption, C has a base, in view of Lemma 2.1, C� �= ∅. Let f ∈ C�.
Given x1 ∈ A, if x1 ∈ E(A, F), then x1+p = x1 for all p ≥ 1.

If x1 /∈ E(A, F). Since F(A) is bounded from below, there exists some y0 ∈ Y
such that

y0 ≤ F(x) for all x ∈ A. (3.5)

By f ∈ C�, we have

f (y0) ≤ f (F(x)) for all x ∈ A.

Thus, inf{ f (y):y ∈ (F(x1) − C) ∩ F(A)} is a real number. By the definition of
infimum, there exists x2 ∈ A such that

F(x2) ∈ (F(x1) − C) ∩ F(A),

and

f (F(x2)) < inf{ f (y) : y ∈ (F(x1) − C) ∩ F(A)} + 1/2.

So, we can obtain the conclusion through finite iterations to get some xn such that
xn ∈ E(A, F) , by picking xn+p = xn for all p ≥ 1, or else we can get a sequence
{F(xn)} with xn ∈ A such that

F(xn+1) ∈ (F(xn) − C) ∩ F(A), (3.6)

and

f (F(xn+1)) < inf{ f (y) : y ∈ (F(xn) − C) ∩ F(A)} + 1/2n . (3.7)

By (3.5) and (3.6), we have

y0 ≤ · · · ≤ F(xn+1) ≤ F(xn) ≤ · · · ≤ F(x1).
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Since C is regular, {F(xn)} converges to some ȳ ∈ Y in norm. As F(A) is closed, we
have ȳ ∈ F(A). Thus, there exists some x̄ ∈ A such that ȳ = F(x̄). So

lim
n→∞ F(xn) = F(x̄). (3.8)

Now we claim that x̄ ∈ E(A, F). If not, then there exists some x́ ∈ A such that

F(x̄) − F(x́) ∈ C\{0}. (3.9)

Since f ∈ C�, we have

f (F(x̄)) > f (F(x́)). (3.10)

Noting that {F(xn)} is a decreasing sequence, for any fixed n, when m ≥ n, we have
that

F(xm) ≤ F(xn). (3.11)

Taking the limit on the both sides of (3.11), letm → ∞, by (3.8) and by the closedness
of C , we get

F(x̄) ≤ F(xn).

Thus,

F(x̄) ≤ F(xn) for all n. (3.12)

By (3.12), for each n, there exists cn ∈ C such that

F(x̄) = F(xn) − cn .

This together with (3.9), we have

F(x́) ∈ (F(xn) − C) ∩ F(A) for all n.

From (3.7), we have

f (F(xn+1)) ≤ f (F(x́)) + 1/2n for all n. (3.13)

Taking limit on the both sides of (3.13), by the continuity of f , we get

f (F(x̄)) ≤ f (F(x́)).

It contradicts (3.10). Thus, x̄ ∈ E(A, F).
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Now, we show that {xn} converges to x̄ with respect to norm topology. If not, then
there exist some ε0 > 0 and a subsequence {xnk } of {xn} such that

‖xnk − x̄‖ ≥ ε0. (3.14)

By assumption, there exists some α > 0 such that

‖x − y‖ ≤ α‖F(x) − F(y)‖ for any x, y ∈ A.

This together with (3.14), for all k, we have

ε0 ≤ ‖xnk − x̄‖ ≤ α‖F(xnk ) − F(x̄)‖.

This contradicts (3.8). The proof is completed. ��
Theorem 3.2 Let X and Y be real normed linear spaces, and C be a closed convex
pointed cone in Y with intC �= ∅. Let A be a nonempty subset of X, and let F: A → Y
be a mapping. Assume that the following conditions are satisfied:

(i) C is regular;
(ii) F(A) is closed and bounded from below;
(iii) F is an anti-Lipschitz mapping.

Then, any sequence {xn} generated by algorithm A2 converges to a weakly efficient
solution of the (VOP) with respect to norm topology.

Proof Since intC �= ∅, by Lemma 2.2, C∗\{0} �= ∅. Let f ∈ C∗\{0}. Given x1 ∈ A,
if x1 ∈ EW (A, F), then x1+p = x1 for all p ≥ 1. Let x1 /∈ EW (A, F). Since F(A) is
bounded from below, there exists some y0 ∈ Y such that

y0 ≤ F(x) for all x ∈ A.

By f ∈ C∗\{0}, we have that

f (y0) ≤ f (F(x)) for all x ∈ A. (3.15)

Since x1 /∈ EW (A, F),

(F(x1) − intC) ∩ F(A) �= ∅.

This together with (3.15), we know that

inf{ f (y) : y ∈ (F(x1) − intC) ∩ F(A)}

is a real number. By the definition of infimum, there exists x2 ∈ A such that

F(x2) ∈ (F(x1) − intC) ∩ F(A),
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and

f (F(x2)) < inf{ f (y) : y ∈ (F(x1) − intC) ∩ F(A)} + 1/2.

So, we can obtain the conclusion through finite iterations to get some xn such that
xn ∈ EW (A, F) , and by picking xn+p = xn for all p ≥ 1, or else we can get a
sequence {F(xn)} by induction with xn+1 ∈ A such that

F(xn+1) ∈ (F(xn) − intC) ∩ F(A), (3.16)

and

f (F(xn+1)) < inf{ f (y) : y ∈ (F(xn) − intC) ∩ F(A)} + 1/2n . (3.17)

By (3.15) and (3.16), we have

y0 ≤ · · · ≤ F(xn+1) ≤ F(xn) ≤ · · · ≤ F(x1).

Since C is regular, {F(xn)} converges to some ȳ ∈ Y in norm. As F(A) is closed, we
have ȳ ∈ F(A). Thus, there exists some x̄ ∈ A such that ȳ = F(x̄). So

lim
n→∞ F(xn) = F(x̄). (3.18)

Now we claim that x̄ ∈ EW (A, F).
If not, then there exists some x́ ∈ A such that

F(x̄) − F(x́) ∈ intC. (3.19)

This together with f ∈ C∗\{0}, we have

f (F(x̄)) > f (F(x́)). (3.20)

Noting that {F(xn)} is a decreasing sequence, for any fixed n, when m ≥ n, we have
that

F(xm) ≤ F(xn). (3.21)

Taking the limit on the both sides of (3.21), letm → ∞, by (3.18) and by the closedness
of C , we get

F(x̄) ≤ F(xn).

Thus,

F(x̄) ≤ F(xn) for all n. (3.22)
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By (3.22), for each n, there exists cn ∈ C such that

F(x̄) = F(xn) − cn .

This together with (3.19), we have

F(x́) ∈ (F(xn) − intC) ∩ F(A) for all n.

From (3.17), we have

f (F(xn+1)) ≤ f (F(x́)) + 1/2n for all n. (3.23)

Taking limit on the both sides of (3.23), by the continuity of f , we get

f (F(x̄)) ≤ f (F(x́)).

It contradicts (3.20). Thus x̄ ∈ EW (A, F).

In a fashion similar to Theorem 3.1, we can see that limn→∞ xn = x̄ . The proof is
completed. ��
Theorem 3.3 Let X and Y be real normed linear spaces, and C be a closed convex
pointed cone in Y . Let A be a nonempty subset of X, and let F: A → Y be a mapping.
Assume that the following conditions are satisfied:

(i) A is a nonempty compact subset of X;
(ii) C has a base, and C is regular;
(iii) F is continuous on A, and F(A) is bounded from below;
(iv) F is injective.

Then, any sequence {xn} generated by algorithm A1 converges to an efficient solution
of the (VOP) with respect to norm topology.

Proof Let f ∈ C�. By assumption, we can see that F(A) is closed. In a fashion similar
to Theorem 3.1, we can obtain the conclusion through finite iterations to get some xn
such that xn ∈ E(A, F) , and by picking xn+p = xn for all p ≥ 1, or else we can get
a sequence {F(xn)} by induction with xn+1 ∈ A such that

F(xn+1) ∈ (F(xn) − C) ∩ F(A),

and

f (F(xn+1)) < inf{ f (y) : y ∈ (F(xn) − C) ∩ F(A)} + 1/2n,

and there exists some x̄ ∈ E(A, F) such that limn→∞ F(xn) = F(x̄). Now, we show
that xn → x̄ . We pick any subsequence {xnk } of {xn}. By the compactness of A,
there exists a subsequence {xnk j } of {xnk }, {xnk j } converges to some x̀ ∈ A. By the

continuity of F , we have lim j→∞ F(xnk j ) = F(x̀). Since lim j→∞ F(xnk j ) = F(x̄),
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we have F(x̀) = F(x̄). As F is injective, we have x̀ = x̄ . Thus, for any subsequence
{xnk } of {xn}, there exists a subsequence {xnk j } of {xnk }, {xnk j } converges to same
x̄ ∈ A. We can see that {xn} converges to x̄ . The proof is completed. ��

Similar to the proof of Theorem 3.2 and Theorem 3.3, we can get the following
theorem.

Theorem 3.4 Let X and Y be real normed linear spaces, C be a closed convex pointed
cone in Y with intC �= ∅. Let A be a nonempty subset of X, and let F: A → Y be a
mapping. Assume that the following conditions are satisfied:

(i) A is a nonempty compact subset of X;
(ii) C is regular;
(iii) F is continuous on A, and F(A) is bounded from below;
(iv) F is injective.

Then, any sequence {xn} generated by algorithm A2 converges to a weakly efficient
solution of the (VOP) with respect to norm topology.

Now, we give two examples illustrating Theorem 3.1 and Theorem 3.2.

Example 3.1 Let

X = R,Y = R2,C = R2+ = {u = (x, y) : x ≥ 0, y ≥ 0}, A = [1,+∞).

Let F : A → R2 be defined by

F(x) = (x2, x
1
2 ), x ∈ A.

It is clear that F is not convex.
By the mean value theorem, for any x, y ∈ A with x < y, there exist ξ ∈ (x, y)

and η ∈ (x, y) such that

‖F(x) − F(y)‖ = ‖(x2 − y2, x
1
2 − y

1
2 )‖ = ‖(2ξ(x − y),

1

2
η− 1

2 (x − y))‖

=
√

(2ξ(x − y))2 + (
1

2
η− 1

2 (x − y))2 ≥ 2|x − y|.

It is clear the conditions of Theorem 3.1 and Theorem 3.2 are satisfied.

Example 3.2 Let

X = Y = Rn,C = Rn+ = {x = (x1, x2, . . . , xn) : xi ≥ 0, i = 1, 2, . . . , n},
A1 = {x = (x1, . . . , xn) : x21 + x22 + · · · + x2n = 1}, A = A1 + Rn+,

and let a1, a2, . . . , an be positive real numbers. Let F : Rn → Rn be defined by

F(x) = (a1x1, a2x2, . . . , anxn), x = (x1, x2, . . . , xn) ∈ Rn .
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We have

〈F(x) − F(y), x − y〉 = 〈(a1(x1 − y1), . . . , an(xn − yn)), (x1 − y1, . . . , xn − yn)〉

=
n∑

i=1

ai (xi − yi )
2 ≥ β

n∑
i=1

|xi − yi |2 = β‖x − y‖2,

where β = min{a1, a2, . . . , an}. This means that F : A → Y is anti-Lipschitz. It is
easy to see that F(A1) is closed and bounded, and so is compact. We can also see that
F(A) = F(A1) + Rn+. Since F(A1) is compact and Rn+ is closed, F(A) is closed.
It follows from intC �= ∅ and F(A1) is bounded that F(A) is bounded from below.
Thus, the conditions of Theorem 3.1 and Theorem 3.2 are satisfied.
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