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Abstract We consider the problem of describing the form of biderivations of a trian-
gular ring. Our approach is based on the notion of the maximal left ring of quotients,
which enables us to generalize Benkovič’s result on biderivations (Benkovič in Linear
Algebra Appl 431:1587–1602, 2009). Our result is applied to block upper triangular
matrix rings and nest algebras.
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1 Introduction

Let R be an associative ring. For x, y ∈ R we denote xy − yx by [x, y]. An additive
map d : R → R is called a derivation if d(xy) = d(x)y + xd(y) for all x, y ∈ R.
For example, if we take an element a ∈ R, then the map x �→ [a, x] is a derivation.
These kinds of derivations are called inner derivations. Next, a biadditive map B :
R × R → R is said to be a biderivation if it is a derivation in each argument, i.e., for
each y ∈ R the maps
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x �→ B(x, y) and x �→ B(y, x)

are derivations. For example, if we take a central element λ ∈ Z(R), then the map
(x, y) �→ λ[x, y] is a biderivation. Such kind of biderivations is called inner bideriva-
tions.

Biderivations appear in many areas. Brešar et al. [5] have shown that each bideriva-
tion B of a noncommutative prime ring R is of the form B(x, y) = λ[x, y], for
some element λ in the extended centroid of R. It has turned out that this result can
be applied to the problem of describing the form of commuting maps. The reader
is referred to a survey paper [4] where applications of biderivations to some other
areas are described. Biderivations were also studied on nest algebras by Zhang et al.
[12] and on upper triangular matrix algebras by Zhao et al. [13]. In 2009, Benkovič
[2] considered biderivations on a certain class of triangular algebras. He proved that
a bilinear biderivation B of a triangular algebra R satisfying certain conditions (see
conditions (a)–(e) on page 4) is of the form

B(x, y) = λ[x, y] + [x, [y, r ]]

for some elements λ ∈ Z(R) and r ∈ R. On the other hand, Ghosseiri [9] considered
(biadditive) biderivations of an arbitrary triangular ring R (not assuming that eR f is a
faithful bimodule). He proved that each biderivation B : R × R → R can be written
as

B(x, y) = B1(x, y) + [x, [y, r ]] + �(x, y),

for some element r ∈ R and some biderivations B1 and� satisfying certain conditions.
However, the explicit form of biderivations B1 and � was not described. The goal of
this paper is to generalize Benkovič’s result [2, Theorem 4.11]. Namely, using the
notion of the maximal left ring of quotients, we shall describe the form of (biadditive)
biderivations for a much larger class of triangular rings than the one considered in
[2] (see our main result, Theorem 3.3). In this context, we shall obtain a refinement
of the result of Ghosseiri [9, Theorem 2.4] giving explicit form of biderivations B1,
� and consequently the one of B. We shall also apply Theorem 3.3 to (block) upper
triangular matrix rings and nest algebras, obtaining a generalization of [2, Corollary
4.13] and an extension of [2, Corollary 4.14].

2 Preliminaries

The maximal left ring of quotients (or Utumi left quotient ring) of an associative ring
R was introduced in 1956 by Utumi [14]. It turns out that each associative ring R,
whose right annihilator rannR(R) := {x ∈ R | Rx = 0} is zero (in particular, if R is
unital), has its maximal left ring of quotients, denoted by Q(R). A left ideal I of R is
called dense if for every 0 �= r1 ∈ R, r2 ∈ R there exists an element r ∈ R such that
rr1 �= 0 and rr2 ∈ I . Let us denote the set of all dense left ideals of R by Dl(R). The
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maximal left ring of quotients of a unital ring R can be characterized in the following
way.

Proposition 2.1 (Theorem 24.8 in [11]) Let R be a unital ring. The maximal left ring
of quotients Q(R) satisfies the following properties:

(i) R is a subring of Q(R) with the same 1,
(ii) for any q ∈ Q(R), there exists a dense left ideal I of R such that Iq ⊆ R,
(iii) if 0 �= q ∈ Q(R) and I is a dense left ideal of R, then Iq �= 0,
(iv) for any dense left ideal I of R and a left R-module homomorphism f : I → R

there exists q ∈ Q(R) such that f is a right multiplication by q.

Moreover, the properties (i)–(iv) characterize Q(R) up to an isomorphism, which is
the identity on R.

By C(R), we denote the center Z(Q(R)) of Q(R), and we call it the extended
centroid of R. Note that Proposition 2.1 implies that

C(R) = {q ∈ Q(R)| qx = xq for all x ∈ R} ⊇ Z(R).

A unital ring R with a nontrivial idempotent e is said to be a triangular ring if eR f
is a faithful (eRe, f R f )-bimodule and f Re = 0, where f denotes the idempotent
1 − e. Each triangular ring R has the following Peirce decomposition:

R = eRe ⊕ eR f ⊕ f R f.

Obviously, a unital ring R is triangular if and only if there exist unital rings A, B and
a unital faithful (A, B)-bimodule M such that R is isomorphic to the ring

Tri(A, M, B) :=
{[

a m
0 b

]
; a ∈ A, m ∈ M, b ∈ B

}

with the usual matrix addition and multiplication. The most important examples of
triangular rings are upper triangular matrix rings, block upper triangular matrix rings,
and nest algebras. We shall need the following three results on triangular rings, which
were obtained in our previous paper [8].

Proposition 2.2 (Proposition 2.6 in [8]) Let R be a triangular ring. Then eR is a
dense left ideal of R and for each q ∈ Q(R) the following holds:

(i) eR f q = 0 implies f q = 0,
(ii) qeR f = 0 implies qe = 0.

Proposition 2.3 (Proposition 2.7 in [8]) Let R be a triangular ring. Then the following
holds:

(i) Z(R) = {c ∈ eRe ⊕ f R f | c · ex f = ex f · c for all x ∈ R},
(ii) C(R) = {q ∈ eQe ⊕ f Q f | q · ex f = ex f · q for all x ∈ R},
(iii) Z(eRe) ⊆ C(R)e,
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(iv) There exists a unique ring isomorphism τ : C(R)e → C(R) f such that λe ·
ex f = ex f · τ(λe) for all x ∈ R, λ ∈ C(R). Moreover, τ

(
Z(R)e

) = Z(R) f .

Lemma 2.4 (Lemma 3.1 in [8]) Let R be a triangular ring. Suppose that F,G :
eR f → C(R)e are arbitrary maps such that

F(ex f )ey f + G(ey f )ex f = 0 (2.1)

for all x, y ∈ R. Then there exist s, t ∈ Q(R) such that

F(ex f ) = ex f se and G(ex f ) = ex f te,

and ex f se − f tex f, ex f te − f sex f ∈ C(R) for all x ∈ R.

Remark 2.5 If both F and G from Lemma 2.4 map eR f to Z(R)e, then ex f se −
f tex f ∈ Z(R) and ex f te − f sex f ∈ Z(R) for all x ∈ R.

Let R be a triangular ring. We know that

Z(R)e ⊆ Z(eRe) ⊆ C(R)e and Z(R) f ⊆ Z( f R f ).

In general, however, Z( f R f ) � C(R) f (see [8, Section 6]). We shall see that the set

S(R) := {q ∈ f Q(R) f | [q, f R f ] = 0 and eRq ⊆ R}

plays an important role in our treatise. Obviously,

Z(R) f ⊆ Z( f R f ) ⊆ S(R).

In the following proposition, we give a sufficient condition for a triangular ring R to
satisfy S(R) ⊆ C(R) f . As in [2], we say that an (R, R)-bimodule endomorphism ψ

of eR f is of the standard form if there exist a ∈ Z(eRe) and b ∈ Z( f R f ) such that
ψ(ex f ) = aex f + ex f b for all x ∈ R.

Proposition 2.6 If R is a triangular ring such that:

(i) Z( f R f ) ⊆ C(R) f ,
(ii) each (R, R)-bimodule endomorphism of eR f is of the standard form,

then S(R) ⊆ C(R) f . In particular, if Z(eRe) = Z(R)e and Z( f R f ) = Z(R) f ,
then S(R) = Z(R) f .

Proof Let q be an arbitrary element in S(R). Then [q, f R f ] = 0 and eRq ⊆ R. We
claim that q ∈ C(R) f . Let us define a map ψ : eR f → eR f by ψ(ex f ) = ex f q.
Obviously, ψ is an (R, R)-bimodule endomorphism. Thus, there exist a ∈ Z(eRe) ⊆
C(R)e and b ∈ Z( f R f ) ⊆ C(R) f such that

ψ(ex f ) = aex f + ex f b
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for all x ∈ R. Consequently, we get ψ(ex f ) = ex f
(
τ(a) + b

)
and so

eR f (q − τ(a) − b) = 0.

Hence, q = τ(a) + b ∈ C(R) f . In particular, if Z(eRe) = Z(R)e and Z( f R f ) =
Z(R) f , then q = τ(a) + b ∈ Z(R) f . 	


Let R be an arbitrary ring. For any subsets X,Y ⊆ R,wedefine the sets: annX (Y ) :=
{x ∈ X | xY ∪ Y x = 0} and rannX (Y ) := {x ∈ X | Y x = 0}.

3 The Main Result

In [2], Benkovič described the form of bilinear biderivations of a triangular algebra R
satisfying the following assumptions:

(a) Z(R)e = Z(eRe),
(b) Z(R) f = Z( f R f ),
(c) either eRe or f R f is noncommutative,
(d) if 0 �= α ∈ Z(R) and 0 �= a ∈ R, then αa �= 0,
(e) each linear derivation of R is inner.

Namely, he proved that in this case, each biderivation B : R × R → R is of the form

B(x, y) = λ[x, y] + [x, [y, r ]] (3.1)

for some λ ∈ Z(R) and r ∈ R. The goal of this paper is to show that using the notion
of the maximal left ring of quotients, we are able to describe the form of (biadditive)
biderivations of a triangular ring R assuming only that S(R) ⊆ C(R) f . Note that this
condition is considerablyweaker than assumptions (a)–(e) together. Namely, assuming
only (b) and (e), it follows already that S(R) ⊆ C(R) f (see [2, Corollary 3.4] and
Proposition 2.6). However, when dealing with this more general class of triangular
rings, we may also encounter biderivations different from those described in (3.1). For
example, suppose that R = T2(K ) is the ring of all upper triangular 2 × 2 matrices
over a commutative ring K with unity. Let e := e11 and f := e22. Pick any 0 �= q ∈
f M2(K )e. Then it is easy to see that a map B : R × R → R defined by

B(x, y) = ex f qey f

is a biderivation, which is not of the form (3.1) (see also [2, Remark 4.15]). The main
result of this paper, Theorem 3.3, states that each biderivation B of a triangular ring
R such that S(R) ⊆ C(R) f is of the form

B(x, y) = λ[x, y] + [x, [y, μe + r ]] + ex f qey f,

for some elements λ,μ ∈ C(R), r ∈ R, and q ∈ Q(R).
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Let R be a unital ring, and let B : R × R → R be a biderivation. Then

B(x, 1) = B(1, x) = 0 and B(x, 0) = B(0, x) = 0,

and according to [3, Corollary 2.4], we have

B(x, y)[u, v] = [x, y]B(u, v) (3.2)

for all x, y, u, v ∈ R.

Lemma 3.1 Let R be a triangular ring. If B : R × R → R is a biderivation, then

(i) B(e, e) = −B(e, f ) = −B( f, e) = B( f, f ),
(ii) B(e, e)[R, R] = 0 = [R, R]B(e, e),
(iii) B(x, e), B(e, x), B(x, f ), B( f, x) ∈ eR f ,
(iv) B(ex f, ey f ) ∈ eR f ,
(v) B(exe, e) = B(e, exe) = exeB(e, e) f ,
(vi) B( f x f, f ) = B( f, f x f ) = eB( f, f ) f x f
(vii) B(exe, ey f ), B(ey f, exe), B( f x f, ey f ), B(ey f, f x f ) ∈ eR f
(viii) B(exe, f y f ) = exeB(e, f ) f y f = B( f y f, exe)

for all x, y ∈ R.

Proof Obviously, the proof of (i) is straightforward (see [2, Lemma 4.2(iii)]) and (ii)
follows immediately from (3.2). Note that [2, Lemma 4.3] implies (iv). Since

B(x, e) = B(x, e)e + eB(x, e)

we get eB(x, e)e = 0 and f B(x, e) f = 0. Hence, B(x, e) = eB(x, e) f ∈ eR f for
all x ∈ R. Similarly, B(e, x), B(x, f ), B( f, x) ∈ eR f for all x ∈ R and so (iii) holds
true. Using (iii), we see that

B(exe, e) = eB(exe, e) f = eB(exe, e)e f + exeB(e, e) f = exeB(e, e) f

and similarly B(e, exe) = eB(e, exe) f = exeB(e, e) f for all x ∈ R, which proves
(v). Analogously, (vi) holds true. Using (iii), we get

B(exe, ey f ) = B(exe, ey f ) f = eB(exe, ey f ) f ∈ eR f

for all x, y ∈ R. Analogously, B(ey f, exe), B( f x f, ey f ), B(ey f, f x f ) ∈ eR f for
all x, y ∈ R and so (vii) holds true. For all x, y ∈ R, we have

B(exe, f y f ) = B(exe, f y f )e + exeB(e, f y f )

= f B(exe, f y f )e + B(exe, f ) f y f e + exeB(e, f ) f y f

= exeB(e, f ) f y f

and similarly B( f y f, exe) = exeB(e, f ) f y f , which proves (viii). 	
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Lemma 3.2 Let R be a triangular ring. If B : R× R → R is a biderivation such that
B(e, e) = 0, then there exist s, s1 ∈ S(R) and additive maps p, p′ : eR f → S(R)

such that

(i) B(x, y) − B(exe, eye) = [x, y]s1 + [y, ex f ]s + ex f p(ey f ),
(ii) B(exe, eye)ez f = [exe, eye]ez f s1,
where [R, R]eRs = 0 = f [R, R]s and ex f p(ey f ) = ey f p′(ex f ) for all x, y ∈ R.

Proof Since B(e, e) = 0, Lemma 3.1 yields

B(exe, e) = B(e, exe) = 0,

B( f x f, f ) = B( f, f x f ) = 0,

B(exe, f y f ) = B( f y f, exe) = 0, (3.3)

and hence B(exe, eye) ∈ eRe and B( f x f, f y f ) ∈ f R f for all x, y ∈ R. Let us
define a map ϕ1 : eR → eR f by

ϕ1(ex) = B(e, ex f ).

Then

ϕ1(yex) = ϕ1(eyex) = B(e, eye · ex f ) = eyeB(e, ex f ) + B(e, eye)ex f

= eyeB(e, ex f ) = yϕ1(ex)

for all x, y ∈ R. Thus, ϕ1 : eR → R is a left R-module homomorphism. Moreover,
since eR is a dense left ideal of R, Proposition 2.1 implies that there exists s1 ∈ Q(R)

such that ϕ1(ex) = exs1 for all x ∈ R. Since es1 = ϕ1(e) = B(e, 0) = 0 and
ϕ1(eR) ⊆ eR f , we see that s1 = f s1 f ∈ f Q(R) f . Thus,

B(e, ex f ) = ex f s1

for all x ∈ R. Analogously, defining a map ϕ2 : eR → eR f by ϕ2(ex) = B(ex f, e),
we obtain an element s2 ∈ f Q(R) f such that

B(ex f, e) = ex f s2

for all x ∈ R. Consequently,

B(exe, ey f ) = B(exe · e, ey f ) = B(exe, ey f )e + exeB(e, ey f )

= eB(exe, ey f )e + exey f s1 f

and since eB(exe, ey f )e = 0 (see Lemma 3.1(vii)), we get

B(exe, ey f ) = exey f s1 f (3.4)
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for all x, y ∈ R. Analogously,

B(ey f, exe) = exey f s2 f (3.5)

for all x, y ∈ R. Note that

B(ex f, f ) = eB(ex f, f ) = B(ex f, e f ) − B(ex f, e) f

= −ex f s2 f

and hence

B(ex f, f y f ) = f B(ex f, f y f ) + B(ex f, f ) f y f = −ex f s2 f y f.

Thus,

B(ex f, f y f ) = −ex f s2 f y f (3.6)

and analogously

B( f y f, ex f ) = −ex f s1 f y f (3.7)

for all x, y ∈ R. Next, we claim that s1, s2 ∈ S(R). Namely, using Lemma 3.1(iii)
and (3.4), we see that

0 = ex f B(e, f y f ) = B(e, ex f y f ) − B(e, ex f ) f y f

= ex f y f s1 f − ex f s1 f y f = ex f [ f y f, s1]

for all x, y ∈ R. Hence, Proposition 2.2 implies that [s1, f R f ] = 0 and so s1 ∈ S(R).
Similarly, s2 ∈ S(R). Setting x = exe, y = eye, u = e, v = ez f in (3.2) and using
(3.4), we obtain

B(exe, eye)ez f = [exe, eye]ez f s1 f (3.8)

for all x, y, z ∈ R. Similarly, setting x = exe, y = eye, u = ez f , v = f in (3.2) and
using (3.6), we get

B(exe, eye)ez f = −[exe, eye]ez f s2 f (3.9)

for all x, y, z ∈ R. Consequently, [R, R]eR f (s1 + s2) = 0. On the other hand, setting
x = e, y = ez f , u = f x f , v = f y f in (3.2) and using (3.4), we obtain

ez f s1 f [ f x f, f y f ] = ez f B( f x f, f y f )
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and so eR f
(
s1[ f x f, f y f ] − B( f x f, f y f )

) = 0 for all x, y ∈ R. Hence, Proposition
2.2 yields

B( f x f, f y f ) = s1[ f x f, f y f ] (3.10)

for all x, y ∈ R. Similarly, we see that

B( f x f, f y f ) = −s2[ f x f, f y f ] (3.11)

for all x, y ∈ R. Thus, (s1 + s2)[ f R f, f R f ] = 0. Next, for eachm ∈ eR f , we define
a map ψm : eR → eR f by

ψm(ex) = B(ex f,m).

Since ψm is additive and

ψm(yex) = ψm(eyex) = B(eyex f,m)

= eyeB(ex f,m) + B(eye,m)ex f

= yψm(ex)

for all x, y ∈ R, we see thatψm : eR → R is a left R-module homomorphism. Hence,
there exists pm ∈ Q(R) such that

ψm(ex) = expm = ex f pm f

for all x ∈ R. Moreover, using Proposition 2.2, we see that f pm f is uniquely deter-
mined bym. Consequently, a map p : eR f → f Q(R) f given by p : ex f �→ f pex f f
is well defined. Thus,

B(ex f, ey f ) = ex f p(ey f ) (3.12)

for all x, y ∈ R. Analogously, defining a map ψ ′
m : eR → eR f by ψ ′

m(ey) =
B(m, ey f ), we see that there exists a map p′ : eR f → f Q(R) f such that

B(ex f, ey f ) = ey f p′(ex f ) (3.13)

for all x, y ∈ R. Comparing (3.12) and (3.13), we get

ex f p(ey f ) − ey f p′(ex f ) = 0

for all x, y ∈ R. Moreover, since B is a biderivation, we have

ex f [ f z f, p(ey f )] = B(ex f z f, ey f ) − B(ex f, ey f ) f z f = 0
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for all x, y, z ∈ R and so Proposition 2.2 yields that p(eR f ) ⊆ S(R). Analogously,
p′(eR f ) ⊆ S(R). Now, using (3.3), (3.11), (3.4), (3.7), (3.5), (3.6), and (3.12), we
obtain

B(x, y) − B(exe, eye) = B( f x f, f y f ) + B(exe, ey f ) + B( f x f, ey f )

+ B(ex f, eye) + B(ex f, f y f ) + B(ex f, ey f )

=[ f x f, f y f ]s1 + exey f s1 − ey f s1 f x f + eyex f s2
− ex f s2 f y f + ex f p(ey f )

=[x, y]s1 + eyex f s1 − ex f y f s1 + eyex f s2
− ex f y f s2 + ex f p(ey f )

=[x, y]s1 + eyex f s − ex f y f s + ex f p(ey f )

for all x, y ∈ R, where s := s1 + s2. Thus,

B(x, y) − B(exe, eye) = [x, y]s1 + [y, ex f ]s + ex f p(ey f )

for all x, y ∈ R, where f [R, R]s = 0 and [R, R]eRs = 0. 	

We are now ready to prove our main theorem.

Theorem 3.3 Let R be a triangular ring such thatS(R) ⊆ C(R) f . If B : R×R → R
is a biderivation, then there exist λ ∈ C(R), μ ∈ annC(R)( f [R, R] ∪ [R, R]e),
r ∈ annR([R, R]), and q, q ′ ∈ f Q(R)e such that

B(x, y) = λ[x, y] + [x, [y, μe + r ]] + ex f qey f (3.14)

and ex f qey f = ey f q ′ex f ∈ eR f for all x, y ∈ R.
In particular, if S(R) = Z(R) f , then λ,μ, ex f q ′e + f qex f, ex f qe + f q ′ex f ∈

Z(R) for each x ∈ R.

Proof According to [2, Proposition 4.10]

B(x, y) = B1(x, y) + [x, [y, r ]] (3.15)

for all x, y ∈ R, where r = B(e, e) ∈ eR f , r [R, R] = 0 = [R, R]r , and B1 :
R × R → R is a biderivation such that B1(e, e) = 0. Hence, Lemma 3.2 implies that
there exist elements s, s1 ∈ S(R) and additive maps p, p′ : eR f → S(R) such that

B1(x, y) = B1(exe, eye) + [x, y]s1 + [y, ex f ]s + ex f p(ey f ), (3.16)

B1(exe, eye)ez f = [exe, eye]ez f s1, (3.17)

and

ex f p(ey f ) − ey f p′(ex f ) = 0 (3.18)
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for all x, y, z ∈ R, where f [R, R]s = 0 and [R, R]eRs = 0. Since s1 ∈ S(R) ⊆
C(R) f , (3.17) yields

(
B1(exe, eye) − τ−1(s1)[exe, eye]

)
eR f = 0

and hence

B1(exe, eye) = τ−1(s1)[exe, eye]

for all x, y ∈ R. Thus, (3.16) can be rewritten as

B1(x, y) = τ−1(s1)[exe, eye] + [x, y]s1 + [y, ex f ]s + ex f p(ey f ) (3.19)

for all x, y ∈ R. Note that

τ−1(s1)[exe, eye] + [x, y]s1 = τ−1(s1)e[x, y]e + e[x, y] f s1 + f [x, y] f s1
= (τ−1(s1) + s1)

(
e[x, y]e + e[x, y] f + f [x, y] f )

= (τ−1(s1) + s1)[x, y]

and so

τ−1(s1)[exe, eye] + [x, y]s1 = λ[x, y] (3.20)

for all x, y ∈ R, where λ′ := τ−1(s1) + s1 ∈ C(R). Let μ := −τ−1(s) − s ∈
C(R). Note that in case Z(R) f = S(R), it follows that λ′, μ ∈ Z(R). Obviously,
μ f [R, R] = 0 and [R, R]eR f μ = 0. Thus, μ[R, R]e = 0 and

[y, ex f ]s = μ[ex f, y] (3.21)

for all x, y ∈ R. Since (3.18) can be rewritten as

τ−1(p(ey f ))ex f − τ−1(p′(ex f ))ey f = 0

for all x, y ∈ R, Lemma 2.4 implies that there exist q, q ′ ∈ f Q(R)e such that

τ−1(p(ex f )) = ex f q ′e and τ−1(p′(ex f )) = ex f qe,

where

ex f q ′e + f qex f ∈ C(R) and ex f qe + f q ′ex f ∈ C(R)

for all x ∈ R. Note that if Z(R) f = S(R), then τ−1(p(eR f )), τ−1(p′(eR f )) ⊆
Z(R)e and so ex f q ′e + f qex f, ex f qe + f q ′ex f ∈ Z(R) for each x ∈ R (see
Remark 2.5). Hence,

p(ex f ) = f qex f and p′(ex f ) = f q ′ex f (3.22)
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for all x ∈ R. Now, using (3.19), (3.20), (3.21), and (3.22), we obtain

B1(x, y) = λ′[x, y] + μ[ex f, y] + ex f qey f, (3.23)

where ey f q ′ex f = ex f qey f ∈ eR f for all x, y ∈ R. Since μ[eRe, eRe] = 0 and
μ[ f R f, f R f ] = 0, it follows that

μ[ex f, y] = μ[x, y] + [x, [y, μe]] (3.24)

for all x, y ∈ R. Thus, using (3.15), (3.23), and (3.24), we may conclude that

B(x, y) = λ[x, y] + [x, [y, μe + r ]] + ex f qey f

for all x, y ∈ R, where λ := λ′ + μ ∈ C(R) (in case Z(R) f = S(R), we have
λ ∈ Z(R)). 	

Corollary 3.4 Let R be a triangular ring such that Z(R) f = S(R). If either eRe or
f R f does not contain nonzero central ideals, then each biderivation B of R is of the
form

B(x, y) = λ[x, y] + [x, [y, μe + r ]] (x, y ∈ R)

for some λ ∈ Z(R), μ ∈ annZ(R)( f [R, R] ∪ [R, R]e), and r ∈ annR([R, R]).
Proof Since S(R) = Z(R) f ⊆ C(R) f Theorem 3.3 implies that there exist λ ∈
Z(R), μ ∈ annZ(R)( f [R, R] ∪ [R, R]e), r ∈ annR([R, R]), and q, q ′ ∈ f Q(R)e
such that

B(x, y) = λ[x, y] + [x, [y, μe + r ]] + ex f qey f

and

ex f q ′e + f qex f, ex f qe + f q ′ex f ∈ Z(R)

for all x, y ∈ R. Consequently, eR f qe ⊆ Z(R)e and f q ′eR f ⊆ Z(R) f . Moreover,
eR f qe is a central ideal of eRe and f q ′eR f is a central ideal of f R f . Thus, the
assumption implies that either eR f qe = 0 or f q ′eR f = 0. Now, using Proposition
2.2, it follows that q = q ′ = 0. 	

Corollary 3.5 Let R be a triangular ring such that S(R) ⊆ C(R) f . If either
eR[R, R]Re = eRe or f R[R, R]R f = f R f , then each biderivation B of R is
of the form

B(x, y) = λ[x, y] (x, y ∈ R)

for some λ ∈ C(R). In particular, if S(R) = Z(R) f , then λ ∈ Z(R).
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Proof According to Theorem 3.3, there exist λ ∈ C(R), μ ∈ annC(R)( f [R, R] ∪
[R, R]e), r ∈ annR([R, R]), and q, q ′ ∈ f Q(R)e such that

B(x, y) = λ[x, y] + [x, [y, μe + r ]] + ex f qey f

and

ex f q ′e + f qex f, ex f qe + f q ′ex f ∈ C(R)

for all x, y ∈ R. Hence, eR f qe ⊆ C(R)e and f q ′eR f ⊆ C(R) f and so

exe(eye · ex f qe) = (eye · ex f qe)exe = (ex f qe · eye)exe = eye(exe · ex f qe)

for all x, y, z ∈ R. Thus, [exe, eye]eR f qe = 0 and analogously f q ′eR f [ f x f, f y f ]
= 0 for all x, y ∈ R. Then eR[R, R]ReR f qe = 0 and f q ′eR f R[R, R]R f = 0.
Now, the assumption yields that q = q ′ = 0. Next, since r ∈ annR([R, R]) ⊆ eR f , it
follows that [eRe, eRe]r = 0 and r [ f R f, f R f ] = 0. Consequently, eR[R, R]Rer =
0 and r f R[R, R]R f = 0. Now, the assumption implies that r = er f = 0. Similarly,
since μ = μe + μ f ∈ C(R) and μeR[R, R]Re = 0, μ f R[R, R]R f = 0 our
assumption yields that μ = 0. Note that according to Theorem 3.3 λ ∈ Z(R) if
S(R) = Z(R) f . 	


Let us give an example of a triangular ring R such that S(R) � C(R) f and an
example of a biderivation of R, which is not of the form (4.3).

Example 3.6 Let F [X,Y ] be the unital ring of all polynomials in commuting indeter-
minates X and Y with coefficients in a field F with char(F) = 0. By M , we denote the
quotient ring F [X,Y ] /(X2,Y 2, XY ). Let A := F [X ] /(X2) and B := F [Y ] /(Y 2).

Obviously, A and B are unital subrings of M . Moreover, M is an (A, B)-bimodule,
which is faithful as a left A-module and also as a right B-module. Let R be the
triangular ring

Tri(A, M, B) =
{[

α0 + α1X μ0 + μ1X + μ2Y
0 β0 + β1Y

]
; αi , βi , μi ∈ F

}
.

Then Z (R) = F I , Z (eRe) = eRe, and Z ( f R f ) = f R f , where

e :=
[
1 0
0 0

]
and f :=

[
0 0
0 1

]
.

According to [8, Section 4], it turns out that

C(R) =
{ [

α0 + α1X 0
0 α0 + α1X

]
;α0, α1 ∈ F

}
.
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Since f R f = Z ( f R f ) ⊆ S(R), it follows that S(R) � C(R) f . Thus, R does not
satisfy the assumption from Theorem 3.3. Let us define a map φ : R → R by

φ

([
α0 + α1X μ0 + μ1X + μ2Y

0 β0 + β1Y

])
=

[
0 μ0Y
0 (β0 − α0)Y

]
.

We leave it to the reader to verify that a map B : R × R → R defined by

B(x, y) = [φ(x), y]

is a biderivation, which is not of the form (4.3).

4 Applications

(Block) upper triangular matrix rings Let S be a unital ring and let n ≥ 2. Suppose
that k = (k1, k2, . . . , km) ∈ Nm is an ordered m-tuple of positive integers such that
k1 + k2 + · · · + km = n. The block upper triangular matrix ring Bk

n (S) is a subring of
Mn (S) of the form

Bk
n (S) =

⎛
⎜⎜⎜⎝

Mk1 (S) Mk1×k2 (S) · · · Mk1×km (S)

0 Mk2 (S) · · · Mk2×km (S)
...

...
. . .

...

0 0 · · · Mkm (S)

⎞
⎟⎟⎟⎠ .

Obviously, the full matrix ring Mn(S) and the upper triangular matrix ring Tn(S)

are just special examples of block upper triangular matrix rings. It turns out that
Q(Mn(S)) = Mn(Q(S)) (see, e.g., [1, Proposition 2.4]) and hence C(Mn(S)) =
C(S)I . By ei j , we denote the (i, j)th matrix unit. Since e11Mn(S) ⊆ Tn(S) ⊆
Bk
n (S) ⊆ Mn (S) and since e11Mn(S) is a right ideal of Mn(S) such that

rannMn(S)(e11Mn(S)) = 0.

it follows that

Q(Tn(S)) = Q(Bk
n (S)) = Mn (Q(S))

(see Exercise 9 on page 380 in [10]). Hence

C(Tn(S)) = C(Bk
n (S)) = C(S)I.

Suppose that Bk
n (S) �= Mn (S). Then Bk

n (S) can be represented as a triangu-
lar ring. Namely, pick any l ∈ {1, 2, . . . ,m − 1}. Setting n′ := k1 + · · · + kl ,
e := e1,1 + · · · + en′,n′ , and f := I − e, we see that f Bk̄

n (S)e = 0, eBk̄
n (S)e ∼=

B(k1,...,kl )
n′ (S), f Bk̄

n (S) f ∼= B(kl+1,...,km )

n−n′ (S), and eBk̄
n (S) f ∼= Mn′×(n−n′) (S) is a
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faithful (eBk̄
n (S)e, f Bk̄

n (S) f )-bimodule. Accordingly, we may consider Bk̄
n (S) as a

triangular ring of the form

Bk
n (S) =

(
B(k1,...,kl )
n′ (S) Mn′×(n−n′) (S)

B(kl+1,...,km )

n−n′ (S)

)
. (4.1)

Moreover, we claim that Z(Bk̄
n (S)) f = S(Bk̄

n (S)). Namely, let q ∈ S(Bk̄
n (S)). Then

q ∈ f Mn(Q(S)) f , [q, f Bk̄
n (S) f ] = 0, and eBk̄

n (S) f q f ⊆ eBk̄
n (S) f . Hence, e1i ∈

eBk̄
n (S) f and so

n∑
j=n′+1

[q]i j · e1 j = e1i q ∈ eBk̄
n (S) f

for each i ∈ {n′ + 1, . . . , n}, where [q]i j denotes the (i, j)th term of q. Consequently,

[q]i j ∈ S for all i, j ∈ {n′ + 1, . . . , n}. Thus, q ∈ f Mn(S) f and [q, f Bk̄
n (S) f ] = 0,

which yields that q ∈ Z( f Bk̄
n (S) f ) = Z(S) f = Z(Bk̄

n (S)) f .

Applying our results from the previous section to Bk̄
n (S), we obtain the following

corollary, which is a generalization of [2, Corollary 4.13].

Corollary 4.1 Let S be a unital ring and let n ≥ 3. Suppose that B is a bideriva-
tion of Bk̄

n (S), where Bk̄
n (S) �= Mn (S). Then there exist λ ∈ Z(S)I , r ∈

annBk̄
n (S)

([Bk̄
n (S), Bk̄

n (S)]) such that

B(x, y) = λ[x, y] + [x, [y, r ]], (4.2)

for all x, y ∈ Bk̄
n (S). In particular, if k1 > 1 or km > 1, then r = 0.

Proof Suppose that k1 > 1. Let n′ := k1, e := e11 + · · · + en′n′ , and f := I − e.
Then eBk̄

n (S)e ∼= Mn′ (S). Since n′ > 1, it follows that Mn′(S) coincides with its

ideal generated by the set [Mn′(S), Mn′(S)]. Thus, Z(Bk̄
n (S)) f = S(Bk̄

n (S)) and

eBk̄
n (S)[Bk̄

n (S), Bk̄
n (S)]Bk̄

n (S)e = eBk̄
n (S)e and so Corollary 3.5 implies that B is an

inner biderivation.
Next, suppose that km > 1. Let n′ := k1 + · · · + km−1, e := e11 + · · · + en′n′ , and

f := I − e. Then f Bk̄
n (S) f ∼= Mkm (S). Hence, f Bk̄

n (S)[Bk̄
n (S), Bk̄

n (S)]Bk̄
n (S) f =

f Bk̄
n (S) f and so Corollary 3.5 implies that B is an inner biderivation.
It remains to consider the case when k1 = km = 1. Let e := e11 and f :=

I − e. Then f Bk̄
n (S) f ∼= Bk̄

n−1(S) �= Mn−1(S). Hence, f Bk̄
n (S) f is a triangular

ring and so it does not contain nonzero central ideals. Thus, according to Corollary
3.4, there exist λ ∈ Z(S)I , μ ∈ annZ(S)I ( f [Bk̄

n (S), Bk̄
n (S)] ∪ [Bk̄

n (S), Bk̄
n (S)]e), and

r ∈ annBk̄
n (S)

([Bk̄
n (S), Bk̄

n (S)]) such that

B(x, y) = λ[x, y] + [x, [y, μe + r ]]
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for all x, y ∈ Bk̄
n (S). Obviously, there exist i, j such that i < j and eii , ei j ∈

f Bk̄
n (S) f . Since ei j = [eii , ei j ] ∈ f [Bk̄

n (S), Bk̄
n (S)] f , it follows that μei j = 0

and so μ = 0. 	

Now, we are able to describe biderivations of Tn(S), where n ≥ 3.

Corollary 4.2 Let S be a unital ring and let n ≥ 3. Suppose that B is a biderivation
of Tn(S). Then there exist λ ∈ Z(S)I , r ∈ annTn(S)([Tn(S), Tn(S)]) such that

B(x, y) = λ[x, y] + [x, [y, r ]],

for all x, y ∈ Tn(S).

Proof Obviously, Tn(S) = B(1,...,1)
n (S) and hence Corollary 4.1 yields the conclusion.

Next, applying Theorem 3.3, we also describe biderivations of T2(S).

Corollary 4.3 Let S be a unital ring and let B be a biderivation of T2(S). Then there
exist λ ∈ Z(S), μ, ν ∈ annZ(S)([S, S]), and s ∈ annS([S, S]) such that

B(x, y) = λ[x, y] + [x, [y, μe11 + se12]] + νe11xe21ye22 (4.3)

for all x, y ∈ T2(S).

Proof Let e = e11 and f = e22. Then Theorem 3.3 implies that there exist λ,μ ∈
Z(S), r ∈ T2(S), and q, q ′ ∈ f M2(Q(S))e such that

B(x, y) = λ[x, y] + [x, [y, μe + r ]] + ex f qey f (4.4)

and ex f qe + f q ′ex f ∈ Z(S)I for all x, y ∈ T2(S), where μ f [T2(S), T2(S)] f =
0, μe[T2(S), T2(S)]e, r [T2(S), T2(S)] = 0, and [T2(S), T2(S)]r = 0. Hence, μ ∈
annZ(S)([S, S]), and there exists s ∈ S such that r = se12 and s[S, S] = 0 = [S, S]s.
Thus,μe+r = μe11+se12.Next, since ex f qe+ f q ′ex f ∈ Z(S)I for all x, y ∈ T2(S),
it follows that q = q ′ = νe21 for some ν ∈ Z(S) such that νS ⊆ Z(S). Therefore,
ν ∈ annZ(S)([S, S]) and (4.4) can be rewritten as

B(x, y) = λ[x, y] + [x, [y, μe11 + se12]] + νe11xe21ye22

for all x, y ∈ T2(S). 	

Let us mention that Corollary 4.3 is a generalization of [2, Proposition 4.16].

Nest algebrasRecall that a nest is a chainN of closed subspaces of a complex Hilbert
space H containing {0} and H , which is closed under arbitrary intersections and closed
linear spans of its elements. The algebra

T (N ) = {T ∈ B (H) | T (N ) ⊆ N for all N ∈ N } .
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is called a nest algebra associated with N . A nest N is called trivial if N = {0, H}.
We refer the reader to [7] for the general theory of nest algebras. According to [6,
Proposition 5] and [7, Chapter 2], each nest algebra associated with a nontrivial nest
can be considered as a triangular ring. Namely, let N be a nontrivial nest and pick
any N ∈ N \ {0, H}. Let e be the orthonormal projection onto N and f := I − e.
ThenN1 := e (N ) andN2 := f (N ) are nests of N and N⊥, respectively. Moreover,
T (N1) = eT (N ) e and T (N2) = f T (N ) f are nest algebras, f T (N ) e = 0, and
eT (N ) f is a faithful (T (N1) , T (N2))-bimodule. Thus,

T (N ) =
(
T (N1) eT (N ) f

T (N2)

)
(4.5)

is a triangular ring and Z(T (N )) = CI . It is easy to see that Z (eT (N ) e) = Ce =
Z(T (N ))e ⊆ C(T (N ))e and Z ( f T (N ) f ) = C f = Z(T (N )) f ⊆ C(T (N )) f
and so (i) from Proposition 2.6 holds true. Next, let φ : eT (N ) f → eT (N ) f be
a (T (N ) , T (N ))-bimodule endomorphism. We define a map d : T (N ) → T (N )

by d(x) = φ(ex f ). Obviously, d is a C-linear derivation of T (N ). Since each C-
linear derivation of a nest algebra is inner (see, e.g., [7, Theorem 19.7]), there exists
a ∈ T (N ) such that d(x) = ax − xa and so

φ(ex f ) = aex f − ex f a

for all x ∈ T (N ). Thus, φ is of the standard form and hence (ii) from Proposition 2.6
holds true. Now, Proposition 2.6 implies that S(T (N )) = Z(T (N )) f .

Using Corollaries 3.4 and 4.3, we obtain the following extension of Benkovič’s
result [2, Corollary 4.14].

Corollary 4.4 LetN be a nontrivial nest of a complex Hilbert space H. Suppose that
B is a biderivation of T (N ). Then the following hold.

(i) If dimH = 2, then T (N ) ∼= T2(C) and B is of the form (4.3).
(ii) If dimH ≥ 3, then there exist λ ∈ CI and r ∈ annT (N )([T (N ), T (N )]) such

that

B(x, y) = λ[x, y] + [x, [y, r ]],

for all x, y ∈ T (N ).

Proof Obviously, (i) follows from Corollary 4.3. Next, suppose that dimH ≥ 3 and
pick N ∈ N \ {0, H}. Let e be the orthonormal projection onto N and f := I − e.
Since dimH ≥ 3, it follows that either dimN > 1 or dimN⊥ > 1. If dimN > 1,
then either eT (N ) e = B(N ) is a noncommutative prime ring or eT (N ) e is
a triangular ring. Similarly, if dimN⊥ > 1, then either f T (N ) f = B(N⊥)

is a noncommutative prime ring or f T (N ) f is a triangular ring. Consequently,
either eT (N ) e or f T (N ) f does not contain nonzero central ideals. Moreover,
since S(T (N )) = Z(T (N )) f Corollary 3.4 implies that there exist λ ∈ CI ,
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μ ∈ annCI ( f [T (N ), T (N )]∪ [T (N ), T (N )]e), and r ∈ annT (N )([T (N ), T (N )])
such that

B(x, y) = λ[x, y] + [x, [y, μe + r ]]

for all x, y ∈ T (N ). Since either eT (N ) e or f T (N ) f is noncommutative, it follows
that μ = 0. 	
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