

A Note on Generalized Mercer's Inequality

Asif R. Khan^{1,2} • Josip Pečarić³ • Marjan Praljak⁴

Received: 10 March 2014 / Revised: 8 July 2014 / Published online: 20 January 2017 © Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2017

Abstract We give an integral version and a refinement of M. Niezgoda's extension of the variant of Jensen's inequality given by A. McD. Mercer.

Keywords Convex functions · Jensen's inequality · Mercer's inequality

Mathematics Subject Classification Primary 26D15

1 Introduction and Preliminaries

Let us start with Jensen's inequality for convex functions, one of the most celebrated inequalities in mathematics and statistics (for detailed discussion and history, see [\[7\]](#page-8-0) and $[12]$). Throughout the paper we assume that *J* and $[a, b]$ are intervals in \mathbb{R} .

 \boxtimes Asif R. Khan asifrk@uok.edu.pk

> Josip Pečarić pecaric@mahazu.hazu.hr

Marjan Praljak mpraljak@pbf.hr

- ¹ Department of Mathematics, University of Karachi, University Road, Karachi-75270, Pakistan
- ² Abdus Salam School of Mathematical Sciences, GC University, Lahore, Pakistan
- ³ Faculty of Textile Technology, University of Zagreb, Zagreb, Croatia
- ⁴ Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia

Communicated by Lee See Keong.

Proposition 1 *Let* $x_1, x_2, \ldots, x_n \in [a, b]$ *, and let* w_1, w_2, \ldots, w_n *be positive real numbers such that* $W_n = \sum_{i=1}^n w_i = 1$ *. If* $\varphi : [a, b] \to \mathbb{R}$ *is a convex function, then the inequality*

$$
\varphi\left(\sum_{i=1}^n w_i x_i\right) \leq \sum_{i=1}^n w_i \varphi(x_i)
$$

holds.

In paper [\[8\]](#page-8-2), A. McD. Mercer proved the following variant of Jensen's inequality, which we will refer to as Mercer's inequality.

Proposition 2 Let $x_1, x_2, \ldots, x_n \in [a, b]$, and let w_1, w_2, \ldots, w_n be positive real *numbers such that* $W_n = \sum_{i=1}^n w_i = 1$ *. If* $\varphi : [a, b] \to \mathbb{R}$ *is a convex function, then the inequality*

$$
\varphi\left(m_1 + m_2 - \sum_{i=1}^n w_i x_i\right) \le \varphi(m_1) + \varphi(m_2) - \sum_{i=1}^n w_i \varphi(x_i) \tag{1}
$$

holds, where

$$
m_1 = \min_{1 \le i \le n} \{x_i\} \quad and \quad m_2 = \max_{1 \le i \le n} \{x_i\}.
$$

There are many versions, variants and generalizations of Proposition [1](#page-0-0) and Propo-sition [2,](#page-1-0) see, e.g., [\[1](#page-8-3)], [\[3](#page-8-4)], [\[9\]](#page-8-5) and [\[10\]](#page-8-6). Here we state few integral versions of Jensen's inequality from [\[12,](#page-8-1) pp. 58–59] which will be needed in the main theorems of our paper.

Proposition 3 Let $f : [a, b] \rightarrow J$ be a continuous function. If the function H : $[a, b] \rightarrow \mathbb{R}$ *is nondecreasing, bounded and* $H(a) \neq H(b)$ *, then for every continuous convex function* $\varphi : J \to \mathbb{R}$ *the inequality*

$$
\varphi\left(\frac{\int_a^b f(t) dH(t)}{\int_a^b dH(t)}\right) \le \frac{\int_a^b \varphi(f(t)) dH(t)}{\int_a^b dH(t)}\tag{2}
$$

holds.

Inequality [\(2\)](#page-1-1) can hold under different set of assumptions. For example, for a monotonic f , assumptions on H can be relaxed. The following proposition gives Jensen–Steffensen's inequality.

Proposition 4 If $f : [a, b] \rightarrow J$ is continuous and monotonic (either nonincreasing *or nondecreasing) and H* : [a, b] $\rightarrow \mathbb{R}$ *is either continuous or of bounded variation satisfying*

$$
H(a) \le H(t) \le H(b) \quad \text{for all } t \in [a, b], \quad H(b) > H(a),
$$

then [\(2\)](#page-1-1) holds.

If we replace the assumption of monotonicity of f over the whole interval $[a, b]$ in Proposition [4](#page-1-2) with monotonicity over subintervals, we obtain the following, Jensen– Boas inequality.

Proposition 5 If $H : [a, b] \to \mathbb{R}$ is continuous or of bounded variation satisfying

$$
H(a) \le H(x_1) \le H(y_1) \le H(x_2) \le \cdots \le H(y_{k-1}) \le H(x_k) \le H(b)
$$

for all x_i ∈ (y_{i-1}, y_i) $(y_0 = a, y_k = b)$, and $H(b) > H(a)$, and if f is continuous *and monotonic (either nonincreasing or nondecreasing) in each of the k intervals* (*yi*−1, *yi*)*, then inequality [\(2\)](#page-1-1) holds.*

In our construction for next proposition, we recall the definitions of majorization: For fixed $n > 2$,

$$
\mathbf{x}=(x_1,\ldots,x_n),\quad \mathbf{y}=(y_1,\ldots,y_n)
$$

denote two real *n*-tuples and

$$
x_{[1]} \ge x_{[2]} \ge \cdots \ge x_{[n]}, \quad y_{[1]} \ge y_{[2]} \ge \cdots \ge y_{[n]}
$$

be their ordered components.

Definition 1 For **x**, $y \in \mathbb{R}^n$,

$$
\mathbf{x} \prec \mathbf{y} \text{ if } \left\{ \sum_{i=1}^{k} x_{[i]} \leq \sum_{i=1}^{k} y_{[i]}, \quad k \in \{1, \ldots, n-1\}, \sum_{i=1}^{n} y_{[i]} = \sum_{i=1}^{n} y_{[i]}, \right\}
$$

when $\mathbf{x} \prec \mathbf{y}$, \mathbf{x} *is said to be majorized by* \mathbf{y} *or* \mathbf{y} *majorizes* \mathbf{x} .

This notion and notation of majorization was introduced by Hardy et al. in [\[4\]](#page-8-7). The following extension of [\(1\)](#page-1-3) is given by M. Niezgoda in [\[9\]](#page-8-5) which we will refer to as Niezgoda's inequality.

Proposition 6 *Let* $\varphi : [a, b] \to \mathbb{R}$ *be a continuous convex function. Suppose that* $\alpha = (\alpha_1, \ldots, \alpha_m)$ *with* $\alpha_j \in J$, and $X = (x_{ij})$ *is a real* $n \times m$ *matrix such that x*_i $$

If α *majorizes each row of X, i.e.,*

$$
\mathbf{x}_i = (x_{i1}, \ldots, x_{im}) \prec (\alpha_1, \ldots, \alpha_m) = \alpha \text{ for each } i \in \{1, \ldots, n\},\
$$

then we have the inequality

$$
\varphi\left(\sum_{j=1}^{m} \alpha_j - \sum_{j=1}^{m-1} \sum_{i=1}^{n} w_i x_{ij}\right) \le \sum_{j=1}^{m} \varphi(\alpha_j) - \sum_{j=1}^{m-1} \sum_{i=1}^{n} w_i \varphi(x_{ij}),\tag{3}
$$

where $\sum_{i=1}^{n} w_i = 1$ *with* $w_i \geq 0$.

 \mathcal{D} Springer

The paper is organized as follows: In Sect. [2](#page-3-0) we will give an integral generalization of Niezgoda's inequality. In the process we will use an integral majorization result of Pečarić [\[11](#page-8-8)] and prove a lemma which gives the Jensen–Boas inequality on disjoint set of subintervals. In Sect. [3](#page-6-0) we will give a refinement of the inequality obtained in Sect. [2.](#page-3-0)

2 Generalized Mercer's Inequalities

Here we state some results needed in the main theorems of this section. The following proposition is a consequence of Theorem 1 in $[11]$ $[11]$ (see also [\[12](#page-8-1), p. 328]) and represents an integral majorization result.

Proposition 7 Let $f, g : [a, b] \rightarrow J$ be two nonincreasing continuous functions, and *let* $H : [a, b] \rightarrow \mathbb{R}$ *be a function of bounded variation. If*

$$
\int_{a}^{x} f(t) dH(t) \le \int_{a}^{x} g(t) dH(t), \text{ for each } x \in (a, b),
$$

and
$$
\int_{a}^{b} f(t) dH(t) = \int_{a}^{b} g(t) dH(t),
$$

hold, then for every continuous convex function $\varphi : J \to R$ *the following inequality holds*

$$
\int_{a}^{b} \varphi(f(t)) dH(t) \le \int_{a}^{b} \varphi(g(t)) dH(t).
$$
 (4)

Remark 1 If f , g : $[a, b] \rightarrow J$ are two nondecreasing continuous functions such that

$$
\int_{x}^{b} f(t) dH(t) \le \int_{x}^{b} g(t) dH(t), \text{ for each } x \in (a, b),
$$

and
$$
\int_{a}^{b} f(t) dH(t) = \int_{a}^{b} g(t) dH(t),
$$

then again inequality [\(4\)](#page-3-1) holds. In this paper we will state our results for nonincreasing *f* and *g* satisfying the assumption of Proposition [7,](#page-3-2) but they are still valid for nondecreasing *f* and *g* satisfying the above condition, see, for example, [\[6](#page-8-9), p. 584].

The following lemma shows that the subintervals in the Jensen–Boas inequality (see Proposition [5\)](#page-2-0) can be disjoint for the inequality of type [\(2\)](#page-1-1) to hold.

Lemma 1 Let $H : [a, b] \to \mathbb{R}$ be continuous or a function of bounded variation, and *let* $a \le a_1 \le b_1 \le a_2 \le \cdots \le a_k \le b_k \le b$ *be a partition of the interval* [a, b], $I = \bigcup_{i=1}^{k} [a_i, b_i]$ *and* $L = \int_I dH(t)$ *.* If

$$
H(a_i) \le H(t) \le H(b_i) \quad \text{for all } t \in (a_i, b_i) \text{ and } 1 \le i \le k \tag{5}
$$

and L > 0, then for every function $f : [a, b] \rightarrow J$ which is continuous and monotonic *(either nonincreasing or nondecreasing) in each of the k intervals* (a_i, b_i) *and every* *convex and continuous function* $\varphi : J \to \mathbb{R}$ *, the following inequality holds*

$$
\varphi\left(\frac{1}{L}\int_I f(t)\,dH(t)\right)\leq \frac{1}{L}\int_I \varphi(f(t))\,dH(t).
$$

Proof Denote $w_i = \int_{a_i}^{b_i} dH(t)$. Due to [\(5\)](#page-3-3), if $H(a_i) = H(b_i)$ then dH is a nullmeasure on $[a_i, b_i]$ and $w_i = 0$, while otherwise $w_i > 0$. Denote $S = \{i : w_i > 0\}$ and

$$
x_i = \frac{1}{w_i} \int_{a_i}^{b_i} f(t) \, dH(t), \quad \text{for } i \in S.
$$

Notice that

$$
L = \int_I dH(t) = \sum_{i \in S} w_i > 0, \quad \int_I \varphi(f(t)) \, dH(t) = \sum_{i \in S} \int_{a_i}^{b_i} \varphi(f(t)) \, dH(t)
$$

and, due to Proposition [4,](#page-1-2)

$$
w_i \varphi(x_i) \le \int_{a_i}^{b_i} \varphi(f(t)) \, dH(t), \quad \text{for } i \in S.
$$

Therefore, taking into account the discrete Jensen's inequality,

$$
\varphi\left(\frac{1}{L}\int_I f(t) dH(t)\right) = \varphi\left(\frac{1}{L}\sum_{i\in S} w_i x_i\right) \le \frac{1}{L}\sum_{i\in S} w_i \varphi(x_i)
$$

$$
\le \frac{1}{L}\sum_{i\in S} \int_{a_i}^{b_i} \varphi(f(t)) dH(t) = \frac{1}{L} \int_I \varphi(f(t)) dH(t).
$$

The following theorem is our main result of this section, and it gives a generalization of Proposition [6.](#page-2-1)

Theorem 1 Let $a = b_0 \le a_1 < b_1 < a_2 < b_2 < \cdots < a_k < b_k \le a_{k+1} = b$, $I = \bigcup_{i=1}^{k} (a_i, b_i), I^c = [a, b] \setminus I = \bigcup_{i=1}^{k+1} [b_{i-1}, a_i]$ *and H* : $[a, b] \to \mathbb{R}$ *be a function of bounded variation such that* $H(b_{i-1}) \leq H(t) \leq H(a_i)$ *for all* $t \in (b_{i-1}, a_i)$ *and* $1 \leq i \leq k+1$ and $L = \int_{I^c} dH(t) > 0$.

Furthermore, let (X, Σ, μ) *be a measure space with positive finite measure* μ *, let* $g : [a, b] \rightarrow J$ be a nonincreasing continuous function, and let $f : X \times [a, b] \rightarrow J$ *be a measurable function such that the mapping* $t \mapsto f(s, t)$ *is nonincreasing and continuous for each* $s \in X$,

$$
\int_{a}^{x} f(s, t) dH(t) \le \int_{a}^{x} g(t) dH(t), \quad \text{for each} \quad x \in (a, b),
$$
\n
$$
\text{and} \quad \int_{a}^{b} f(s, t) dH(t) = \int_{a}^{b} g(t) dH(t). \tag{6}
$$

 \mathcal{D} Springer

Then, for a continuous convex function $\varphi : J \to \mathbb{R}$ *the following inequality holds*

$$
\varphi\left(\frac{1}{L}\left(\int_{a}^{b}g(t)dH(t) - \frac{1}{\mu(X)}\int_{I}\int_{X}f(s,t)d\mu(s)dH(t)\right)\right)
$$

$$
\leq \frac{1}{L}\left(\int_{a}^{b}\varphi(g(t))dH(t) - \frac{1}{\mu(X)}\int_{I}\int_{X}\varphi(f(s,t))d\mu(s)dH(t)\right).
$$
 (7)

Proof Using Fubini's theorem, equality [\(6\)](#page-4-0) and the integral Jensen's inequality [\(2\)](#page-1-1) we get

$$
\varphi\left(\frac{1}{L}\left(\int_{a}^{b}g(t)dH(t) - \frac{1}{\mu(X)}\int_{I}\int_{X}f(s,t)d\mu(s)dH(t)\right)\right)
$$

\n
$$
= \varphi\left(\frac{1}{\mu(X)}\int_{X}\left[\frac{1}{L}\int_{I^{c}}f(s,t)dH(t)\right]d\mu(s)\right)
$$

\n
$$
\leq \frac{1}{\mu(X)}\int_{X}\varphi\left(\frac{1}{L}\int_{I^{c}}f(s,t)dH(t)\right)d\mu(s).
$$
\n(8)

Applying Lemma [1](#page-3-4) and Proposition [7,](#page-3-2) respectively, we have

$$
\varphi\left(\frac{1}{L}\int_{I^c} f(s,t)dH(t)\right) \leq \frac{1}{L}\int_{I^c} \varphi(f(s,t))dH(t)
$$

$$
\leq \frac{1}{L}\left(\int_a^b \varphi(g(t))dH(t) - \int_I \varphi(f(s,t))dH(t)\right). \quad (9)
$$

Finally, combining [\(8\)](#page-5-0) and [\(9\)](#page-5-1) we obtain inequality [\(7\)](#page-5-2).

Corollary 1 *Let* $\alpha = (\alpha_1, \ldots, \alpha_m)$ *with* $\alpha_j \in J$ *and* $\mathbf{X} = (x_{ij})$ *be a real* $n \times m$ *matrix such that* $x_{ij} \in J$ *for all* $i \in \{1, ..., n\}$, $j \in \{1, ..., m\}$, and let α majorize each row *of* **X***, that is*

$$
\mathbf{x}_i = (x_{i1}, \ldots, x_{im}) \prec (\alpha_1, \ldots, \alpha_m) = \alpha \text{ for each } i \in \{1, \ldots, n\}.
$$

Moreover, let $a_l, b_l \in \mathbb{N}, l \in 1, ..., k$, *be such that* $1 = b_0 \le a_1 < b_1 < a_2 < b_2 <$ $\cdots < a_k < b_k \le a_{k+1} = m + 1$ *and denote* $L = \sum_{l=1}^{k+1} (a_l - b_{l-1})$ *. Then, for every continuous convex function* $\varphi : J \to \mathbb{R}$ *the inequality*

$$
\varphi\left(\frac{1}{L}\left(\sum_{j=1}^{m}a_j - \frac{1}{W_n}\sum_{l=1}^{k}\sum_{j=a_l}^{b_l-1}\sum_{i=1}^{n}w_ix_{ij}\right)\right) \le \frac{1}{L}\left(\sum_{j=1}^{m}\varphi(a_j) - \frac{1}{W_n}\sum_{l=1}^{k}\sum_{j=a_l}^{b_l-1}\sum_{i=1}^{n}w_i\varphi(x_{ij})\right)
$$

holds, where $W_n = \sum_{i=1}^n w_i > 0$ *with* $w_i \ge 0$.

 $\bigcircled{2}$ Springer

Proof The proof of this corollary follows from Theorem [1](#page-4-1) by taking step functions. More concretely, for $a = b_0 = 1$, $b = a_{k+1} = m + 1$, $f(s, t) = \sum_{i=1}^n \sum_{j=1}^m x_{ij} \chi_{[i,i+1)}(s) \chi_{[j,j+1)}(t)$, $g(t) = \sum_{i=1}^m \alpha_j \chi_{[j,j+1)}(t)$, $X = [1, n+1)$, $\sum_{i=1}^{n} \sum_{j=1}^{m} x_{ij} \chi_{[i,i+1)}(s) \chi_{[j,j+1)}(t), g(t) = \sum_{j=1}^{m} \alpha_j \chi_{[j,j+1)}(t), X = [1, n+1),$ $d\mu(s) = \sum_{i=1}^{n} w_i \chi_{[i,i+1)}(s)$ ds and $H(t) = t$.

Remark 2 If in Corollary [1](#page-5-3) we take $k = 1$, $a_1 = 1$ and $b_1 = m$ and assume $W_n = \sum_{k=1}^{n} a_k y_k = 1$ then we get Niezgoda's inequality (3) $\sum_{i=1}^{n} w_i = 1$, then we get Niezgoda's inequality [\(3\)](#page-2-2).

Remark 3 For some similar results involving generalized convex functions, see [\[5](#page-8-10)].

3 Refinements

Throughout this section we assume that $E \subset X$ with $\mu(E)$, $\mu(E^c) > 0$ and we use the following notations

$$
W_E = \frac{\mu(E)}{\mu(X)}, \quad W_{E^c} = \frac{\mu(E^c)}{\mu(X)} = 1 - W_E.
$$

The following refinement of [\(7\)](#page-5-2) is valid.

Theorem 2 Let $a = b_0 \le a_1 < b_1 < a_2 < b_2 < \cdots < a_k < b_k \le a_{k+1} = b$, $I = \bigcup_{i=1}^{k} (a_i, b_i), I^c = [a, b] \setminus I = \bigcup_{i=1}^{k+1} [b_{i-1}, a_i]$ and $H : [a, b] \to \mathbb{R}$ be a function *of bounded variation such that* $H(b_{i-1}) \leq H(t) \leq H(a_i)$ *for all* $t \in (b_{i-1}, a_i)$ *and* $1 \leq i \leq k+1$ and $L = \int_{I^c} dH(t) > 0$.

Furthermore, let (X, Σ, μ) *be a measure space with positive finite measure* μ *, let* $g : [a, b] \rightarrow J$ be a nonincreasing continuous function, and let $f : X \times [a, b] \rightarrow J$ *be a measurable function such that the mapping* $t \mapsto f(s, t)$ *is nonincreasing and continuous for each* $s \in X$,

$$
\int_{a}^{x} f(s, t) dH(t) \le \int_{a}^{x} g(t) dH(t), \text{ for each } x \in (a, b),
$$

and
$$
\int_{a}^{b} f(s, t) dH(t) = \int_{a}^{b} g(t) dH(t).
$$

Then, for a continuous convex function $\varphi : J \to \mathbb{R}$ *, the inequalities*

$$
\varphi\left(\frac{1}{L}\left(\int_{a}^{b}g(t)dH(t) - \frac{1}{\mu(X)}\int_{I}\int_{X}f(s,t)d\mu(s)dH(t)\right)\right) \le F(f,g,\varphi;E) \le \frac{1}{L}\left(\int_{a}^{b}\varphi(g(t))dH(t) - \frac{1}{\mu(X)}\int_{I}\int_{X}\varphi(f(s,t))d\mu(s)dH(t)\right)
$$
\n(10)

hold, where

$$
F(f, g, \varphi; E) = W_E \varphi \left(\frac{1}{L} \left(\int_a^b g(t) dH(t) - \frac{1}{\mu(E)} \int_I \int_E f(s, t) d\mu(s) dH(t) \right) \right)
$$

+
$$
W_{E^c} \varphi \left(\frac{1}{L} \left(\int_a^b g(t) dH(t) - \frac{1}{\mu(E^c)} \int_I \int_{E^c} f(s, t) d\mu(s) dH(t) \right) \right).
$$

 \mathcal{D} Springer

Proof Following the proof of Theorem 3 of [\[2\]](#page-8-11), by using convexity of the function φ , we have

$$
\varphi \left(\frac{1}{L} \left(\int_{a}^{b} g(t) dH(t) - \frac{1}{\mu(X)} \int_{I} \int_{X} f(s, t) d\mu(s) dH(t) \right) \right)
$$
\n
$$
= \varphi \left(W_{E} \left[\frac{1}{L} \left(\int_{a}^{b} g(t) dH(t) - \frac{1}{\mu(E)} \int_{E} \int_{I} f(s, t) dH(t) \right) d\mu(s) \right] \right.
$$
\n
$$
+ W_{E^{c}} \left[\frac{1}{L} \left(\int_{a}^{b} g(t) dH(t) - \frac{1}{\mu(E^{c})} \int_{E^{c}} \int_{I} f(s, t) dH(t) \right) d\mu(s) \right] \right)
$$
\n
$$
\leq W_{E} \varphi \left(\frac{1}{L} \left(\int_{a}^{b} g(t) dH(t) - \frac{1}{\mu(E)} \int_{E} \int_{I} f(s, t) dH(t) \right) d\mu(s) \right)
$$
\n
$$
+ W_{E^{c}} \varphi \left(\frac{1}{L} \left(\int_{a}^{b} g(t) dH(t) - \frac{1}{\mu(E^{c})} \int_{E^{c}} \int_{I} f(s, t) dH(t) \right) d\mu(s) \right)
$$
\n
$$
= F(f, g, \varphi; E)
$$

for any E , which proves the first inequality in (10) .

By inequality [\(7\)](#page-5-2) we also have

$$
F(f, g, \varphi; E) = W_E \varphi \left(\frac{1}{L} \left(\int_a^b g(t) dH(t) - \frac{1}{\mu(E)} \int_I \int_E f(s, t) d\mu(s) dH(t) \right) \right)
$$

+
$$
W_{E^c} \varphi \left(\frac{1}{L} \left(\int_a^b g(t) dH(t) - \frac{1}{\mu(E^c)} \int_I \int_{E^c} f(s, t) d\mu(s) dH(t) \right) \right)
$$

$$
\leq W_E \left[\frac{1}{L} \left(\int_a^b \varphi(g(t)) dH(t) - \frac{1}{\mu(E)} \int_I \int_E \varphi(f(s, t)) d\mu(s) dH(t) \right) \right]
$$

+
$$
W_{E^c} \left[\frac{1}{L} \left(\int_a^b \varphi(g(t)) dH(t) - \frac{1}{\mu(E^c)} \int_I \int_{E^c} \varphi(f(s, t)) d\mu(s) dH(t) \right) \right]
$$

=
$$
\frac{1}{L} \left(\int_a^b \varphi(g(t)) dH(t) - \frac{1}{\mu(X)} \int_I \int_X \varphi(f(s, t)) d\mu(s) dH(t) \right)
$$

for any E , which proves the second inequality in (10) .

Remark 4 Direct consequences of the previous theorem are the following two inequalities

$$
\varphi\left(\frac{1}{L}\left(\int_{a}^{b}g(t)dH(t) - \frac{1}{\mu(X)}\int_{I}\int_{X}f(s,t)d\mu(s)dH(t)\right)\right)
$$

$$
\leq \inf_{\{E:0<\mu(E)<\mu(X)\}}F(f,g,\varphi;E)
$$

and

$$
\sup_{\{E:0<\mu(E)<\mu(X)\}} F(f,g,\varphi;E)
$$

\n
$$
\leq \frac{1}{L} \left(\int_a^b \varphi(g(t)) dH(t) - \frac{1}{\mu(X)} \int_I \int_X \varphi(f(s,t)) d\mu(s) dH(t) \right).
$$

References

- 1. Abramovich, A., Klaričić Bakula, M., Matić, M., Pečarić, J.: A variant of Jensen–Steffensen's inequality and quasi-arithmetic means. J. Math. Anal. Appl. **307**, 370–386 (2005)
- 2. Adil Khan, M., Khan, Asif R., Pečarić, J.: On the refinements of Jensen–Mercer's Inequality. Rev. Anal. Numér. Théor. Approx **41**, 62–81 (2012)
- 3. Cheung, W.S., Matković, A., Pečarić, J.: A variant of Jessen's inequality and generalized means. J. Ineq. Pure Appl. Math. **7**(1), 10 (2006)
- 4. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge University Press, Cambridge (1978)
- 5. Krulić, K., Pečarić, J., Smoljak, K.: *a*(*x*)-Convex functions and their inequalities. Bull. Malays. Math. Sci. Soc. (2) **35**(3), 695–716 (2012)
- 6. Marshall, A.W., Olkin, I., Arnold, B.C.: Inequalities: Theory of majorization and its applications, 2nd edn. Springer, New York (2011)
- 7. Mitrinović, D.S., Pečarić, J., Fink, A.M.: Classical and New Inequalities in Analysis. Kluwer, The Netherlands (1993)
- 8. Mercer, AMcD: A variant of Jensen's inequality. J. Ineq. Pure and Appl. Math. **4**, 73 (2003)
- 9. Niezgoda, M.: A generalization of Mercer's result on convex functions. Nonlinear Anal. **71**, 2771–2779 (2009)
- 10. Pečarić, J.: A variant of Jensen's inequality. J. Ineq. Pure Appl. Math. 4(4), 73 (2003)
- 11. Pečarić, J.: On some inequalities for functions with nondecreasing increments. J. Math. Anal. Appl. **98**, 188–197 (1984)
- 12. Pečarić, J., Proschan, F., Tong, Y.L.: Convex Functions, Partial Orderings and Statistical Applications. Academic Press, New York (1992)