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Abstract We give an integral version and a refinement of M. Niezgoda’s extension
of the variant of Jensen’s inequality given by A. McD. Mercer.
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1 Introduction and Preliminaries

Let us start with Jensen’s inequality for convex functions, one of the most celebrated
inequalities in mathematics and statistics (for detailed discussion and history, see [7]
and [12]). Throughout the paper we assume that J and [a, b] are intervals in R.
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Proposition 1 Let x1, x2,...,x, € [a, b], and let w1, wy, ..., w, be positive real
numbers such that W,, = Z?:l w; = L. If ¢ : [a, b] — R is a convex function, then

the inequality
n n
@ (Z wixi) <Y wiex)
i=1 i=1
holds.

In paper [8], A. McD. Mercer proved the following variant of Jensen’s inequality,
which we will refer to as Mercer’s inequality.

Proposition 2 Let x1, x3,...,x, € [a, b], and let wi, wy, ..., w, be positive real
numbers such that W, = Y 7, w; = 1. If ¢ : [a, b] — R is a convex function, then
the inequality

§0(m1 +m2—2wixi> E‘P(ml)+§0(m2)_zwi‘ﬂ(xi) e

i=1 i=1
holds, where

mi; = min {x;} and my = max {x;}.
1<i<n I<i<n

There are many versions, variants and generalizations of Proposition 1 and Propo-

sition 2, see, e.g., [1], [3], [9] and [10]. Here we state few integral versions of Jensen’s

inequality from [12, pp. 58-59] which will be needed in the main theorems of our

paper.
Proposition 3 Ler f : [a,b] — J be a continuous function. If the function H :

[a, b] — R is nondecreasing, bounded and H (a) # H (b), then for every continuous
convex function ¢ : J — R the inequality

b b
(fa f(t)dH(t)) 3 [ @(f()dH (1) o

[PaH@) [P dH@)
holds.

Inequality (2) can hold under different set of assumptions. For example, for a
monotonic f, assumptions on H can be relaxed. The following proposition gives
Jensen—Steffensen’s inequality.

Proposition 4 If f : [a, b] — J is continuous and monotonic (either nonincreasing
or nondecreasing) and H : [a, b] — R is either continuous or of bounded variation

satisfying
H(a) < H({t) < H(b) forallt € [a,b], H®b) > H(a),

then (2) holds.
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If we replace the assumption of monotonicity of f over the whole interval [a, b] in
Proposition 4 with monotonicity over subintervals, we obtain the following, Jensen—
Boas inequality.

Proposition 5 If H : [a, b] — R is continuous or of bounded variation satisfying
H(a) < H(x1) <H(y1) < H(xp) <+ < H(yk—1) < H(xx) < H(b)

forall x; € (yi—1,yi) (Yo =a, yx = b), and H(b) > H(a), and if f is continuous
and monotonic (either nonincreasing or nondecreasing) in each of the k intervals
(yi—1, ¥i), then inequality (2) holds.

In our construction for next proposition, we recall the definitions of majorization:
For fixed n > 2,

X=X X)), Y=O1---5 V)
denote two real n-tuples and
Il = X2 = = Xl Y1l = Y21 2000 2 Yinl
be their ordered components.

Definition 1 Forx, y € R”,

k k
< <v if {Zi_lx[i] <Yy, ke{l,....n—1}
y 1 n n
21:1 X[i] = 2521 Vil »

when X <y, X is said to be majorized by 'y or y majorizes X.

This notion and notation of majorization was introduced by Hardy et al. in [4]. The
following extension of (1) is given by M. Niezgoda in [9] which we will refer to as
Niezgoda’s inequality.

Proposition 6 Ler ¢ : [a, b] — R be a continuous convex function. Suppose that
a = (a1,...,ap) withaj € J, and X = (x;;) is a real n x m matrix such that
xij € Jforalli e{l,...,n}, jefl,...,m}.

If a majorizes each row of X, i.e.,

xi. = (Xi1, ..., Xim) < (@1, ...,0p) =« foreachi € {1,...,n},
then we have the inequality

m m—1 n m m—1 n
2 DTED I ED W ICHED DI 3)
j=1 j=1i=1 j=1 j=1i=1

where Y i, w; = 1 with w; > 0.
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The paper is organized as follows: In Sect. 2 we will give an integral generalization
of Niezgoda’s inequality. In the process we will use an integral majorization result of
Pecari¢ [11] and prove a lemma which gives the Jensen—Boas inequality on disjoint
set of subintervals. In Sect.3 we will give a refinement of the inequality obtained in
Sect. 2.

2 Generalized Mercer’s Inequalities

Here we state some results needed in the main theorems of this section. The following
proposition is a consequence of Theorem 1 in [11] (see also [12, p. 328]) and represents
an integral majorization result.

Proposition 7 Let f, g : [a, b] — J be two nonincreasing continuous functions, and
let H : [a, b] — R be a function of bounded variation. If

/X f@®)dH(@) < /xg(t)dH(t), foreach x € (a,b),
ab ab
and / f(t)dH(t)zf g dH(1),

hold, then for every continuous convex function ¢ : J — R the following inequality

holds . Y
/ o(f () dH () < / o(g(1)) dH(1). @

Remark 1 1If f, g : [a, b] — J are two nondecreasing continuous functions such that

b b
/f(t)dH(t) 5/ g(t)dH(1), foreach x € (a,b),
xb xb

and /f(f)dH(f)=/ g®)dH (),

then again inequality (4) holds. In this paper we will state our results for nonincreas-
ing f and g satisfying the assumption of Proposition 7, but they are still valid for
nondecreasing f and g satisfying the above condition, see, for example, [6, p. 584].

The following lemma shows that the subintervals in the Jensen—Boas inequality (see
Proposition 5) can be disjoint for the inequality of type (2) to hold.

Lemma 1 Let H : [a, b] — R be continuous or a function of bounded variation, and
leta <ay <by <ay <--- < ar < by < b be a partition of the interval [a, D],
I=Uf la, biland L = [, dH (). If

H(a;) < H(t) < H(b;) forallt € (a;j,b;))and 1 <i <k (5)

and L > 0, then for every function f : [a, b] — J which is continuous and monotonic
(either nonincreasing or nondecreasing) in each of the k intervals (a;, b;) and every
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convex and continuous function ¢ : J — R, the following inequality holds

1 1
¢ (Z /1 f(t)dH(t)> = fl o(f() dH ).

Proof Denote w; = fa};i dH(t). Due to (5), if H(a;) = H(b;) then dH is a null-
measure on [a;, b;] and w; = 0, while otherwise w; > 0. Denote S = {i : w; > 0}
and

1 (b
xi:—[ f(@)dH(t), forieS.
wi a;

Notice that

L= [an) =Y w0 [eroano=Y [

ieS ieS V4

e(f(1)dH (1)

bi
;

and, due to Proposition 4,

b;
w;ip(x;) S/ o(f®)dH(t), fories.

Therefore, taking into account the discrete Jensen’s inequality,
L[ rwanm ; > < > wipx)
— - — Wi — w0 (x:
% L) @ L - iXi | = L - i QX
ieS ieS
1
<12

bi
ies U4

1
(f(1)dH (1) = Z/Iw(f(t))dH(t)-

The following theorem is our main result of this section, and it gives a generalization
of Proposition 6.

Theorem 1 Leta = by < a; < by <ay <by < -+ <ay < by <ayy1 = b,
I = Uf-‘zl(ai, b)), I¢ = [a,b\I = Uf{ill [bi_1,a;land H : [a, b] — R be afunction
of bounded variation such that H(b;—1) < H(t) < H(a;) forallt € (bj_1, a;) and
1<i §k+1andL=flcdH(t) > 0.

Furthermore, let (X, X, ) be a measure space with positive finite measure |, let
g : la, b] — J be a nonincreasing continuous function, and let f : X x [a,b] — J
be a measurable function such that the mapping t +— f (s, t) is nonincreasing and
continuous for each s € X,

/x f(s,)dH(t) < /xg(t)dH(t), foreach x € (a,b),

b b
and / f(s,)dH () [g(t)dH(t). (©6)
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Then, for a continuous convex function ¢ : J — R the following inequality holds

1 b
w(f (/a g(dH (f)—ﬁf/ fGs. t)dpL(S)dH(t)))

1 b
< I </ o(g@®)dH(t) — ﬁ// o(f (s, t))du(s)dH(t)) (7

Proof Using Fubini’s theorem, equality (6) and the integral Jensen’s inequality (2) we

get
(1 < g()dH (t)_ﬁ// fs, t)d,u(s)dH(t)))
( (X)/[ cf(s,t)dH(t)}du(s)>

M(X) (Z fz f(s,t)dH(t)) dpu(s). ®)

Applying Lemma 1 and Proposition 7, respectively, we have
1 1
%7 fGs,0)dH (@) ) = I @(f (s, 1))dH (1)
Ic 1€

1 b
=7 (/ @(g()dH (1) —/Iw(f(s,r))dH(z)>, )

Finally, combining (8) and (9) we obtain inequality (7).

Corollary 1 Leta = (ay, ..., ay) withaj € J and X = (x;;) be a real n x m matrix
such that x;; € J foralli € {1,...,n}, j € {l,..., m}, and let &« majorize each row
of X, that is

Xi = (Xi1, ..., Xim) < (1, ..., 0y) =« foreachi € {l,..., n}.
Moreover, let aj, by e N, 1 € 1,...,k, be suchthat1l = by <a; < by <ay < by <

- <ar < bp <arr1 =m+ 1 anddenote L = Zk+1(al bi—1). Then, for every
continuous convex function ¢ : J — R the inequality

1 k b—1 n
Y\ Z“/__ZZZ'“U
llj =a; i=1
k bi—1 n
Sz Z‘p(aj)__zzzwl‘p(xl/)
ll] =q; i=1

holds, where W, = 37, w; > 0 with w; > 0.
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Proof The proof of this corollary follows from Theorem 1 by taking step func-
tions. More concretely, for a = by = 1, b = ary1 = m + 1, f(s,t) =
Doimt 2y Xij XD ) Xpj 40 (1), g(1) = Y0 o x40 @), X = [1,n + 1),
dp(s) = Y7 wixpii+1)(s)ds and H(t) = 1.

Remark 2 1f in Corollary 1 we take k = 1, a; = 1 and by = m and assume W, =
Yo', w; = 1, then we get Niezgoda’s inequality (3).

Remark 3 For some similar results involving generalized convex functions, see [5].

3 Refinements

Throughout this section we assume that £ C X with w(E), u(E€) > 0 and we use
the following notations

u(E) W(E®)
E=—1, Ee = =1- Wg.
n(X) wu(X)
The following refinement of (7) is valid.
Theorem 2 Leta = bg < a1 < by <ax < by < -+ < ay < by < ayy1 = b,

1 = Ule(ai, b)), I¢ =[a,b]\I = Ui.‘:]l [bi—1,a;land H : [a, b] — R be afunction
of bounded variation such that H(b;—1) < H(t) < H(a;) forallt € (bj—1, a;) and
l<i<k+4+landL = [,.dH(1) > 0.

Furthermore, let (X, X, 1) be a measure space with positive finite measure [, let
g : [a, b] — J be a nonincreasing continuous function, and let f : X x [a,b] — J
be a measurable function such that the mapping t — f(s, t) is nonincreasing and
continuous for each s € X,

A

/x f(s,t)dH(t) < /xg(t)dH(t), foreach x € (a,b),

b b
and / f(s,)dH(t) /g(t)dH(t).

Then, for a continuous convex function ¢ : J — R, the inequalities

b

w(% </a gn)dH(t) — m f s, t)d,u(S)dH(t)>> <F(f.g.¢;E) <

1 b

T (/a @(g()dH((1) — W// o(f (s, t))dM(S)dH(l)> (10)

hold, where

1 b

F(f g ¢; E) = Wgo (— </ gW)dH () — ——— / S, t)dM(S)dH(l)>>
L \Ja M(E)

1 b 1
+ Wgegp (Z </ g)dH(t) — M(EC)/I ch(s,t>du(s)dH(t>>>.
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Proof Following the proof of Theorem 3 of [2], by using convexity of the function ¢,
we have

0 (% ( / ’ ewdH @) - W / fGs, r)dms)dH(r)))
- (WE E </abg<r)dﬂ(r) - E NEC t)dH(r)) du(S)}
wwer |7 ([ Y — i | [ronanm)ane])
< Wie (% ( / et - ﬁ [ [ e r)dH(r)) dM(S))

1 b
T Wee (Z ( [ ewane - —=[ [ f(sJ)dH(t)) du<s>)

=F(f g ¢ E)

for any E, which proves the first inequality in (10).
By inequality (7) we also have

F(f, 8 ¢ E) = Wi (% ( f  edH@) - E / £, r)dw)dH(r)))
+ Wreg (% ( f ’ gdH@) . (26) [ [ s t)dM(S)dH(t)>>
< We E ( / " (e t)dH (@) ~ W | [otre, t))du(s)dH(t)ﬂ
W [% ( / ’ o(et)dH () - | e t))du(S)dH(t)>]

1 b
L </ 9(g()dH (1) - ﬁ// P(f (s, t))du(s)dH(t)>

for any E, which proves the second inequality in (10).

Remark 4 Direct consequences of the previous theorem are the following two inequal-
ities

1 b
@ (Z (/u g(dH (1) — ﬁ / fs, t)du(s)dH(;)»

< inf F(f, E)
{E0<p(E)<p(X)) )80
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and

sup F(f. g, ¢: E)
{E:0<p(E)<pu(X)}

1 b 1
< Z(/ go(g(t))dH(t)—m/I/Xw(f(s,t))dM(s)dH(;)),
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