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Abstract We give an integral version and a refinement of M. Niezgoda’s extension
of the variant of Jensen’s inequality given by A. McD. Mercer.
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1 Introduction and Preliminaries

Let us start with Jensen’s inequality for convex functions, one of the most celebrated
inequalities in mathematics and statistics (for detailed discussion and history, see [7]
and [12]). Throughout the paper we assume that J and [a, b] are intervals in R.
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Proposition 1 Let x1, x2, . . . , xn ∈ [a, b], and let w1, w2, . . . , wn be positive real
numbers such that Wn = ∑n

i=1 wi = 1. If ϕ : [a, b] → R is a convex function, then
the inequality

ϕ

(
n∑

i=1

wi xi

)

≤
n∑

i=1

wiϕ(xi )

holds.

In paper [8], A. McD. Mercer proved the following variant of Jensen’s inequality,
which we will refer to as Mercer’s inequality.

Proposition 2 Let x1, x2, . . . , xn ∈ [a, b], and let w1, w2, . . . , wn be positive real
numbers such that Wn = ∑n

i=1 wi = 1. If ϕ : [a, b] → R is a convex function, then
the inequality

ϕ

(

m1 + m2 −
n∑

i=1

wi xi

)

≤ ϕ(m1) + ϕ(m2) −
n∑

i=1

wiϕ(xi ) (1)

holds, where

m1 = min
1≤i≤n

{xi } and m2 = max
1≤i≤n

{xi }.

There are many versions, variants and generalizations of Proposition 1 and Propo-
sition 2, see, e.g., [1], [3], [9] and [10]. Here we state few integral versions of Jensen’s
inequality from [12, pp. 58–59] which will be needed in the main theorems of our
paper.

Proposition 3 Let f : [a, b] → J be a continuous function. If the function H :
[a, b] → R is nondecreasing, bounded and H(a) �= H(b), then for every continuous
convex function ϕ : J → R the inequality

ϕ

(∫ b
a f (t)dH(t)
∫ b
a dH(t)

)

≤
∫ b
a ϕ( f (t))dH(t)

∫ b
a dH(t)

(2)

holds.

Inequality (2) can hold under different set of assumptions. For example, for a
monotonic f , assumptions on H can be relaxed. The following proposition gives
Jensen–Steffensen’s inequality.

Proposition 4 If f : [a, b] → J is continuous and monotonic (either nonincreasing
or nondecreasing) and H : [a, b] → R is either continuous or of bounded variation
satisfying

H(a) ≤ H(t) ≤ H(b) for all t ∈ [a, b], H(b) > H(a),

then (2) holds.
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If we replace the assumption of monotonicity of f over the whole interval [a, b] in
Proposition 4 with monotonicity over subintervals, we obtain the following, Jensen–
Boas inequality.

Proposition 5 If H : [a, b] → R is continuous or of bounded variation satisfying

H(a) ≤ H(x1) ≤ H(y1) ≤ H(x2) ≤ · · · ≤ H(yk−1) ≤ H(xk) ≤ H(b)

for all xi ∈ (yi−1, yi ) (y0 = a, yk = b), and H(b) > H(a), and if f is continuous
and monotonic (either nonincreasing or nondecreasing) in each of the k intervals
(yi−1, yi ), then inequality (2) holds.

In our construction for next proposition, we recall the definitions of majorization:
For fixed n ≥ 2,

x = (x1, . . . , xn) , y = (y1, . . . , yn)

denote two real n-tuples and

x[1] ≥ x[2] ≥ · · · ≥ x[n], y[1] ≥ y[2] ≥ · · · ≥ y[n]

be their ordered components.

Definition 1 For x, y ∈ R
n ,

x ≺ y if

{∑k
i=1 x[i] ≤ ∑k

i=1 y[i] , k ∈ {1, . . . , n − 1},∑n
i=1 x[i] = ∑n

i=1 y[i] ,

when x ≺ y, x is said to be majorized by y or y majorizes x.

This notion and notation of majorization was introduced by Hardy et al. in [4]. The
following extension of (1) is given by M. Niezgoda in [9] which we will refer to as
Niezgoda’s inequality.

Proposition 6 Let ϕ : [a, b] → R be a continuous convex function. Suppose that
α = (α1, . . . , αm) with α j ∈ J , and X = (xi j ) is a real n × m matrix such that
xi j ∈ J for all i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}.

If α majorizes each row of X, i.e.,

xi. = (xi1, . . . , xim) ≺ (α1, . . . , αm) = α for each i ∈ {1, . . . , n},

then we have the inequality

ϕ

⎛

⎝
m∑

j=1

α j −
m−1∑

j=1

n∑

i=1

wi xi j

⎞

⎠ ≤
m∑

j=1

ϕ(α j ) −
m−1∑

j=1

n∑

i=1

wiϕ(xi j ), (3)

where
∑n

i=1 wi = 1 with wi ≥ 0.
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The paper is organized as follows: In Sect. 2 we will give an integral generalization
of Niezgoda’s inequality. In the process we will use an integral majorization result of
Pečarić [11] and prove a lemma which gives the Jensen–Boas inequality on disjoint
set of subintervals. In Sect. 3 we will give a refinement of the inequality obtained in
Sect. 2.

2 Generalized Mercer’s Inequalities

Here we state some results needed in the main theorems of this section. The following
proposition is a consequence of Theorem1 in [11] (see also [12, p. 328]) and represents
an integral majorization result.

Proposition 7 Let f, g : [a, b] → J be two nonincreasing continuous functions, and
let H : [a, b] → R be a function of bounded variation. If

∫ x

a
f (t) dH(t) ≤

∫ x

a
g(t) dH(t), for each x ∈ (a, b),

and
∫ b

a
f (t) dH(t) =

∫ b

a
g(t) dH(t),

hold, then for every continuous convex function ϕ : J → R the following inequality
holds ∫ b

a
ϕ( f (t)) dH(t) ≤

∫ b

a
ϕ(g(t)) dH(t). (4)

Remark 1 If f, g : [a, b] → J are two nondecreasing continuous functions such that

∫ b

x
f (t) dH(t) ≤

∫ b

x
g(t) dH(t), for each x ∈ (a, b),

and
∫ b

a
f (t) dH(t) =

∫ b

a
g(t) dH(t),

then again inequality (4) holds. In this paper we will state our results for nonincreas-
ing f and g satisfying the assumption of Proposition 7, but they are still valid for
nondecreasing f and g satisfying the above condition, see, for example, [6, p. 584].

The following lemma shows that the subintervals in the Jensen–Boas inequality (see
Proposition 5) can be disjoint for the inequality of type (2) to hold.

Lemma 1 Let H : [a, b] → R be continuous or a function of bounded variation, and
let a ≤ a1 ≤ b1 ≤ a2 ≤ · · · ≤ ak ≤ bk ≤ b be a partition of the interval [a, b],
I = ⋃k

i=1[ai , bi ] and L = ∫
I dH(t). If

H(ai ) ≤ H(t) ≤ H(bi ) for all t ∈ (ai , bi ) and 1 ≤ i ≤ k (5)

and L > 0, then for every function f : [a, b] → J which is continuous and monotonic
(either nonincreasing or nondecreasing) in each of the k intervals (ai , bi ) and every
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A Note on Generalized Mercer’s Inequality 885

convex and continuous function ϕ : J → R, the following inequality holds

ϕ

(
1

L

∫

I
f (t) dH(t)

)

≤ 1

L

∫

I
ϕ( f (t)) dH(t).

Proof Denote wi = ∫ bi
ai

dH(t). Due to (5), if H(ai ) = H(bi ) then dH is a null-
measure on [ai , bi ] and wi = 0, while otherwise wi > 0. Denote S = {i : wi > 0}
and

xi = 1

wi

∫ bi

ai
f (t) dH(t), for i ∈ S.

Notice that

L =
∫

I
dH(t) =

∑

i∈S
wi > 0,

∫

I
ϕ( f (t)) dH(t) =

∑

i∈S

∫ bi

ai
ϕ( f (t)) dH(t)

and, due to Proposition 4,

wiϕ(xi ) ≤
∫ bi

ai
ϕ( f (t)) dH(t), for i ∈ S.

Therefore, taking into account the discrete Jensen’s inequality,

ϕ

(
1

L

∫

I
f (t) dH(t)

)

= ϕ

(
1

L

∑

i∈S
wi xi

)

≤ 1

L

∑

i∈S
wiϕ(xi )

≤ 1

L

∑

i∈S

∫ bi

ai
ϕ( f (t)) dH(t) = 1

L

∫

I
ϕ( f (t)) dH(t).

The following theorem is our main result of this section, and it gives a generalization
of Proposition 6.

Theorem 1 Let a = b0 ≤ a1 < b1 < a2 < b2 < · · · < ak < bk ≤ ak+1 = b,
I = ⋃k

i=1(ai , bi ), I
c = [a, b]\I = ⋃k+1

i=1 [bi−1, ai ] and H : [a, b] → R be a function
of bounded variation such that H(bi−1) ≤ H(t) ≤ H(ai ) for all t ∈ (bi−1, ai ) and
1 ≤ i ≤ k + 1 and L = ∫

I c dH(t) > 0.
Furthermore, let (X, �,μ) be a measure space with positive finite measure μ, let

g : [a, b] → J be a nonincreasing continuous function, and let f : X × [a, b] → J
be a measurable function such that the mapping t �→ f (s, t) is nonincreasing and
continuous for each s ∈ X,

∫ x

a
f (s, t) dH(t) ≤

∫ x

a
g(t)dH(t), for each x ∈ (a, b),

and
∫ b

a
f (s, t) dH(t) =

∫ b

a
g(t) dH(t). (6)
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Then, for a continuous convex function ϕ : J → R the following inequality holds

ϕ

(
1

L

(∫ b

a
g(t)dH(t) − 1

μ(X)

∫

I

∫

X
f (s, t)dμ(s)dH(t)

))

≤ 1

L

(∫ b

a
ϕ(g(t))dH(t) − 1

μ(X)

∫

I

∫

X
ϕ( f (s, t))dμ(s)dH(t)

)

. (7)

Proof Using Fubini’s theorem, equality (6) and the integral Jensen’s inequality (2) we
get

ϕ

(
1

L

(∫ b

a
g(t)dH(t) − 1

μ(X)

∫

I

∫

X
f (s, t)dμ(s)dH(t)

))

= ϕ

(
1

μ(X)

∫

X

[
1

L

∫

I c
f (s, t)dH(t)

]

dμ(s)

)

≤ 1

μ(X)

∫

X
ϕ

(
1

L

∫

I c
f (s, t)dH(t)

)

dμ(s). (8)

Applying Lemma 1 and Proposition 7, respectively, we have

ϕ

(
1

L

∫

I c
f (s, t)dH(t)

)

≤ 1

L

∫

I c
ϕ( f (s, t))dH(t)

≤ 1

L

(∫ b

a
ϕ(g(t))dH(t) −

∫

I
ϕ( f (s, t))dH(t)

)

. (9)

Finally, combining (8) and (9) we obtain inequality (7).

Corollary 1 Let α = (α1, . . . , αm)with α j ∈ J and X = (xi j ) be a real n×m matrix
such that xi j ∈ J for all i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}, and let α majorize each row
of X, that is

xi. = (xi1, . . . , xim) ≺ (α1, . . . , αm) = α for each i ∈ {1, . . . , n}.

Moreover, let al , bl ∈ N, l ∈ 1, . . . , k, be such that 1 = b0 ≤ a1 < b1 < a2 < b2 <

· · · < ak < bk ≤ ak+1 = m + 1 and denote L = ∑k+1
l=1 (al − bl−1). Then, for every

continuous convex function ϕ : J → R the inequality

ϕ

⎛

⎝ 1

L

⎛

⎝
m∑

j=1

a j − 1

Wn

k∑

l=1

bl−1∑

j=al

n∑

i=1

wi xi j

⎞

⎠

⎞

⎠

≤ 1

L

⎛

⎝
m∑

j=1

ϕ(a j ) − 1

Wn

k∑

l=1

bl−1∑

j=al

n∑

i=1

wiϕ(xi j )

⎞

⎠

holds, where Wn = ∑n
i=1 wi > 0 with wi ≥ 0.
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Proof The proof of this corollary follows from Theorem 1 by taking step func-
tions. More concretely, for a = b0 = 1, b = ak+1 = m + 1, f (s, t) =∑n

i=1
∑m

j=1 xi j χ[i,i+1)(s)χ[ j, j+1)(t), g(t) = ∑m
j=1 α j χ[ j, j+1)(t), X = [1, n + 1),

dμ(s) = ∑n
i=1 wiχ[i,i+1)(s)ds and H(t) = t .

Remark 2 If in Corollary 1 we take k = 1, a1 = 1 and b1 = m and assume Wn =∑n
i=1 wi = 1, then we get Niezgoda’s inequality (3).

Remark 3 For some similar results involving generalized convex functions, see [5].

3 Refinements

Throughout this section we assume that E ⊂ X with μ(E), μ(Ec) > 0 and we use
the following notations

WE = μ(E)

μ(X)
, WEc = μ(Ec)

μ(X)
= 1 − WE .

The following refinement of (7) is valid.

Theorem 2 Let a = b0 ≤ a1 < b1 < a2 < b2 < · · · < ak < bk ≤ ak+1 = b,
I = ⋃k

i=1(ai , bi ), I
c = [a, b]\I = ⋃k+1

i=1 [bi−1, ai ] and H : [a, b] → R be a function
of bounded variation such that H(bi−1) ≤ H(t) ≤ H(ai ) for all t ∈ (bi−1, ai ) and
1 ≤ i ≤ k + 1 and L = ∫

I c dH(t) > 0.
Furthermore, let (X, �,μ) be a measure space with positive finite measure μ, let

g : [a, b] → J be a nonincreasing continuous function, and let f : X × [a, b] → J
be a measurable function such that the mapping t �→ f (s, t) is nonincreasing and
continuous for each s ∈ X,

∫ x

a
f (s, t) dH(t) ≤

∫ x

a
g(t)dH(t), for each x ∈ (a, b),

and
∫ b

a
f (s, t) dH(t) =

∫ b

a
g(t) dH(t).

Then, for a continuous convex function ϕ : J → R, the inequalities

ϕ

(
1

L

(∫ b

a
g(t)dH(t) − 1

μ(X)

∫

I

∫

X
f (s, t)dμ(s)dH(t)

))

≤ F( f, g, ϕ; E) ≤
1

L

(∫ b

a
ϕ(g(t))dH(t) − 1

μ(X)

∫

I

∫

X
ϕ( f (s, t))dμ(s)dH(t)

)

(10)

hold, where

F( f, g, ϕ; E) = WEϕ

(
1

L

(∫ b

a
g(t)dH(t) − 1

μ(E)

∫

I

∫

E
f (s, t)dμ(s)dH(t)

))

+WEcϕ

(
1

L

(∫ b

a
g(t)dH(t) − 1

μ(Ec)

∫

I

∫

Ec
f (s, t)dμ(s)dH(t)

))

.
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Proof Following the proof of Theorem 3 of [2], by using convexity of the function ϕ,
we have

ϕ

(
1

L

(∫ b

a
g(t)dH(t) − 1

μ(X)

∫

I

∫

X
f (s, t)dμ(s)dH(t)

))

= ϕ

(

WE

[
1

L

(∫ b

a
g(t)dH(t) − 1

μ(E)

∫

E

∫

I
f (s, t)dH(t)

)

dμ(s)

]

+ WEc

[
1

L

(∫ b

a
g(t)dH(t) − 1

μ(Ec)

∫

Ec

∫

I
f (s, t)dH(t)

)

dμ(s)

])

≤ WEϕ

(
1

L

(∫ b

a
g(t)dH(t) − 1

μ(E)

∫

E

∫

I
f (s, t)dH(t)

)

dμ(s)

)

+WEcϕ

(
1

L

(∫ b

a
g(t)dH(t) − 1

μ(Ec)

∫

Ec

∫

I
f (s, t)dH(t)

)

dμ(s)

)

= F( f, g, ϕ; E)

for any E , which proves the first inequality in (10).
By inequality (7) we also have

F( f, g, ϕ; E) = WEϕ

(
1

L

(∫ b

a
g(t)dH(t) − 1

μ(E)

∫

I

∫

E
f (s, t)dμ(s)dH(t)

))

+WEcϕ

(
1

L

(∫ b

a
g(t)dH(t) − 1

μ(Ec)

∫

I

∫

Ec
f (s, t)dμ(s)dH(t)

))

≤ WE

[
1

L

(∫ b

a
ϕ(g(t))dH(t) − 1

μ(E)

∫

I

∫

E
ϕ( f (s, t))dμ(s)dH(t)

)]

+WEc

[
1

L

(∫ b

a
ϕ(g(t))dH(t) − 1

μ(Ec)

∫

I

∫

Ec
ϕ( f (s, t))dμ(s)dH(t)

)]

= 1

L

(∫ b

a
ϕ(g(t))dH(t) − 1

μ(X)

∫

I

∫

X
ϕ( f (s, t))dμ(s)dH(t)

)

for any E , which proves the second inequality in (10).

Remark 4 Direct consequences of the previous theorem are the following two inequal-
ities

ϕ

(
1

L

(∫ b

a
g(t)dH(t) − 1

μ(X)

∫

I

∫

X
f (s, t)dμ(s)dH(t)

))

≤ inf{E :0<μ(E)<μ(X)} F( f, g, ϕ; E)
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and

sup
{E :0<μ(E)<μ(X)}

F( f, g, ϕ; E)

≤ 1

L

(∫ b

a
ϕ(g(t))dH(t) − 1

μ(X)

∫

I

∫

X
ϕ( f (s, t))dμ(s)dH(t)

)

.
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1. Abramovich,A.,Klaričić Bakula,M.,Matić,M., Pečarić, J.:Avariant of Jensen–Steffensen’s inequality
and quasi-arithmetic means. J. Math. Anal. Appl. 307, 370–386 (2005)
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