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Abstract We give a property of symplectic quadratic Lie algebras that their Lie alge-
bra of inner derivations has an invertible derivation. A family of symplectic quadratic
Lie algebras is introduced to illustrate this situation. Finally, we calculate explicitly
the Betti numbers of a family of solvable Lie algebras in two ways: using the coho-
mology of quadratic Lie algebras and applying a Pouseele’s result on extensions of
the one-dimensional Lie algebra by Heisenberg Lie algebras.
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1 Introduction

Let g be a complex Lie algebra endowed with a non-degenerate invariant symmetric
bilinear form B, {X1, . . . , Xn} be a basis of g and {ω1, . . . , ωn} be its dual basis.
Denote by {Y1, . . . ,Yn} the basis of g defined by B(Yi , .) = ωi , 1 ≤ i ≤ n. Pinc-
zon and Ushirobira [5] discovered in that the differential ∂ on

∧
(g∗), the space of

antisymmetric forms on g, is given by ∂ := −{I, .} where I is defined by:
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736 T. M. Duong

I (X,Y, Z) = B([X,Y ], Z), ∀ X, Y, Z ∈ g

and {,} is the super Poisson bracket on
∧

(g∗) defined by

{�,�′} = (−1)k+1
∑

i, j

B(Yi ,Y j )ιXi (�) ∧ ιX j (�
′), ∀ � ∈

∧
k(g∗), �′ ∈

∧
(g∗).

In Sect. 1, by using this, we detail a result of Medina and Revoy [4] that there is an
isomorphism between the second cohomology group H2(g,C) and Dera(g)/ ad(g)
where Dera(g) is the vector space of skew-symmetric derivations of g and ad(g) is its
subspace of inner ones.

A well-known theorem of Jacobson says that a Lie algebra over a field of charac-
teristic zero is nilpotent if it admits an invertible derivation, but on the contrary, there
exist nilpotent Lie algebras that have no invertible derivation. It is also well known
that symplectic quadratic Lie algebras are nilpotent and hence so too are their algebras
of inner derivations. We prove that the latter algebras have an invertible derivation. In
particular, we have the following (Proposition2.5).

Theorem 1 Let (g, B, ω) be a symplectic quadratic Lie algebra. Consider the map-
ping D : ad(g) → ad(g) defined by D(ad(X)) = ad

(
φ−1 (ιX (ω))

)
with φ : g → g∗,

φ(X) = B(X, .), then D is an invertible derivation of ad(g).

The reader is referred to [2] for further information about symplectic quadratic Lie
algebras. A family of such algebras is given to illustrate this situation.

In Sect. 2, motivated by Corollary 4.4 in [4], we give the Betti numbers for
a family of solvable quadratic Lie algebras defined as follows. For each n ∈ N,
let g2n+2 denote the Lie algebra with basis {X0, . . . , Xn,Y0, . . . ,Yn} and nonzero
Lie brackets [Y0, Xi ] = Xi , [Y0,Yi ] = −Yi , [Xi ,Yi ] = X0, 1 ≤ i ≤ n.
Denote by Bk(g2n+2) = Bk(g2n+2,C), Zk(g2n+2) = Zk(g2n+2,C), Hk(g2n+2) =
Hk(g2n+2,C) and bk = bk(g2n+2,C). By computing on super Poisson brackets, our
second result is the following.

Theorem 2 The kth Betti numbers of g2n+2 are given as follows:

(1) If k is even, then one has

bk =
∣
∣
∣
∣

(
n
k
2

)(
n
k
2

)

−
(

n
k−2
2

)(
n

k−2
2

)∣
∣
∣
∣ .

(2) If k is odd, then one has
• if k < n + 1, then

bk =
(

n
k−1
2

) (
n

k−1
2

)

−
(

n
k−3
2

) (
n

k−3
2

)

,

• if k = n + 1, then

bn+1 = 2

(
n
n
2

) (
n
n
2

)

− 2

(
n

n+2
2

)(
n

n+2
2

)

,
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• if k > n + 1, then

bk =
(

n
k−1
2

) (
n

k−1
2

)

−
(

n
k+1
2

) (
n

k+1
2

)

.

Our method is direct and different from Pouseele’s method given in [6] that we
shall recall in Appendix 1. In Pouseele’s method, the Betti numbers of g2n+2 are
derived from the Betti numbers of the 2n + 1-dimensional Lie algebra f defined by
[Y, Xi ] = Xi and [Y,Yi ] = −Yi for all 1 ≤ i ≤ n.

For other results of Betti numbers for some families of nilpotent Lie algebras, we
refer the reader to [1,6] or [7].

2 A Characterization of Symplectic Quadratic Lie Algebras

Let g be a complex Lie algebra endowed with a non-degenerate invariant symmetric
bilinear form B. In this case, we call the pair (g, B) a quadratic Lie algebra. Denote
by Dera(g) the vector space of skew-symmetric derivations of g, that is, the vector
space of derivations D satisfying B(D(X),Y ) = −B(X, D(Y )) for all X, Y ∈ g,
then Dera(g) is a Lie subalgebra of Der(g).

Proposition 2.1 There exists a Lie algebra isomorphism T between Dera(g) and the
space {� ∈ ∧ 2(g∗) | {I,�} = 0}. This isomorphism induces an isomorphism from
ad(g) onto ιg(I ) = {ιX (I ) ∈ ∧ 2(g∗) | X ∈ g}.
Proof Let D ∈ Dera(g) and set � ∈ ∧ 2(g∗) by �(X,Y ) = B(D(X),Y ) for all
X, Y ∈ g. Then D is a derivation of g if and only if

�([X,Y ], Z) + �([Y, Z ], X) + �([Z , X ],Y ) = 0

for all X, Y, Z ∈ g. It means {I,�} = 0. Define the map T from Dera(g) onto
{� ∈ ∧ 2(g∗) | {I,�} = 0} by T (D) = �, then T is a one-to-one correspondence.

Now we shall show that T ([D, D′]) = {T (D), T (D′)} for all D, D′ ∈ Dera(g).
Indeed, set � = T (D), �′ = T (D′) and fix an orthonormal basis {X j }nj=1 of g. One
has

{�,�′}(X,Y ) = −
⎛

⎝
n∑

j=1

ιX j (�) ∧ ιX j (�
′)

⎞

⎠ (X,Y )

= −
n∑

j=1

(
�(X j , X)�′(X j ,Y ) − �(X j ,Y )�′(X j , X)

)

= −
n∑

j=1

B
(
B(D(X j ), X)D′(X j ) − B(D′(X j ), X)D(X j ),Y )

)

= −
n∑

j=1

B
(
D′(D(X)) − D(D′(X)),Y )

) = −B([D′, D](X),Y ).
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738 T. M. Duong

That means, T ([D, D′]) = {T (D), T (D′)}, and then, T is a Lie algebra isomorphism.
If D = ad(X0), then T (D)(X,Y ) = B([X0, X ],Y ) = I (X0,Y, Z) =

ιX0(I )(X,Y ). Therefore, T (D) = ιX0(I ). 	

Corollary 2.2 {ιX (I ), ιY (I )} = ι[X,Y ](I ).

Corollary 2.3 [4] The cohomology group H2(g,C) � Dera(g, B)/ ad(g).

Definition 2.4 A non-degenerate skew-symmetric bilinear form ω : g × g → C is
called a symplectic structure on g if it satisfies

ω([X,Y ], Z) + ω([Y, Z ], X) + ω([Z , X ],Y ) = 0

for all X, Y, Z ∈ g.

A symplectic structure ω on a quadratic Lie algebra (g, B) is corresponding to a
skew-symmetric invertible derivation D defined by ω(X,Y ) = B(D(X),Y ), for all
X, Y ∈ g. As above, a symplectic structure is exactly a non-degenerate 2-form ω

satisfying {I, ω} = 0. If g has a such ω, then we call (g, B, ω) a symplectic quadratic
Lie algebra.

For symplectic quadratic Lie algebras, the reader can refer to [2] for more details.
Here we give a following property.

Proposition 2.5 Let (g, B, ω) be a symplectic quadratic Lie algebra. Consider the
mappingD : ad(g) → ad(g) defined byD(ad(X)) = ad

(
φ−1 (ιX (ω))

)
with φ : g →

g∗, φ(X) = B(X, .), then D is an invertible derivation of ad(g).

Proof As above, we have {I, ω} = 0 and then ιX ({I, ω}) = 0 for all X ∈ g. It implies
{ιX (I ), ω} = {I, ιX (ω)} for all X ∈ g. Note that if X is nonzero, since ω is non-
degenerate, then ιX (ω) is non-trivial. Set Y = φ−1 (ιX (ω)), then {I, ιX (ω)} = ιY (I ),
and therefore, this defines an inner derivation. Let D be the derivation corresponding
to ω, then one has [ad(X), D] = ad(Y ).

Let ad(X) ∈ ad(g). Set α = φ(X). Since ω is non-degenerate, then there exists an
element Y ∈ g such that α = ιY (ω). In this case, D(ad(Y )) = ad(X). That means, D
onto and therefore it is bijective. 	


Next, we give a family of symplectic quadratic Lie algebras that has been defined
in [3] as follows.

Example 2.6 Let p ∈ N \ {0}. We denote the Jordan block of size p by J1 := (0) and
for p ≥ 2,

Jp :=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 . . . 0
0 0 1 . . . 0
...

... . . .
. . .

...

0 0 . . . 0 1
0 0 0 . . . 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.
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The Betti Numbers for a Family of Solvable Lie Algebras 739

For p ≥ 2, we consider q = C
2p with a basis {Xi , Yi }, 1 ≤ i ≤ p, and equipped

with a bilinear form B satisfying B(Xi , X j ) = B(Yi ,Y j ) = 0 and B(Xi ,Y j ) = δi j .
Let C : q → q with matrix

C =
(
Jp 0
0 −t Jp

)

in the given basis. Then C ∈ o(2p).
Let h = C

2 and {X0,Y0} be a basis of h. Define on the vector space j2p = q ⊕ h
the Lie bracket [Y0, X ] = C(X), [X,Y ] = B(C(X),Y )X0 and the bilinear form
B(X0,Y0) = 1, B(X0, X0) = B(Y0,Y0) = B(X0, X) = B(Y0, X) = 0 and
B(X,Y ) = B(X,Y ) for all X, Y ∈ q. So j2p is a nilpotent Lie algebra, and it
will be called a 2p + 2-dimensional nilpotent Jordan-type Lie algebra.

Denote by {α, α1, . . . , αp, β, β1, . . . , βp} the dual basis of {X0, . . . , X p,Y0, . . . ,

Yp}, then I = β∧∑p−1
i=1 αi+1∧βi . In this case, we chooseω = α∧β+∑p

i=1 iαi ∧βi

then {I, ω} = 0 and therefore (j2p, B, ω) is a symplectic quadratic Lie algebra. Notice
that if we define D(ad(Y0)) = − ad(Y0), D(ad(Xi )) = i ad(Xi ), and D(ad(Yi )) =
−i ad(Yi ), then D is an invertible derivation of ad(j2p).

3 The Betti Numbers for a Family of Solvable Quadratic Lie Algebras

For each n ∈ N, let g2n+2 denote the Lie algebra with basis {X0, . . . , Xn,Y0, . . . , Yn}
and nonzero Lie brackets [Y0, Xi ] = Xi , [Y0,Yi ] = −Yi , [Xi ,Yi ] = X0, 1 ≤ i ≤ n.
Then g is quadratic with invariant bilinear form B given by B(Xi ,Yi ) = 1, 0 ≤ i ≤ n,
zero otherwise.

Let {α, α1, . . . , αn, β, β1, . . . , βn} be the dual basis of {X0, . . . , Xn,Y0, . . . , Yn}
and set V = span{αi },W = span{βi }, 1 ≤ i ≤ n. It is easy to check that the associated
3-form of g2n+2:

I = β ∧
n∑

i=1

αi ∧ βi .

Denote by �n := ∑n
i=1 αi ∧ βi , then one has

B2(g2n+2) = {ιX (I )| X ∈ g2n+2} = span {β ∧ αi , β ∧ βi ,�n | 1 ≤ i ≤ n} .

If n = 1, then we can directly calculate that H2(g4) = {0}. If n > 1, we have the
nonzero super Poisson brackets:

(i) {I, α ∧ αi } = αi ∧ �n − α ∧ β ∧ αi and {I, α ∧ βi } = βi ∧ �n + α ∧ β ∧ βi ,
(ii) {I, α ∧ β} = I ,
(iii) {I, αi ∧ α j } = 2β ∧ αi ∧ α j and {I, βi ∧ β j } = −2β ∧ βi ∧ β j .

It results that Z2(g2n+2)= span
{
β ∧ αi , β ∧ βi , αi ∧ β j | 1 ≤ i, j ≤ n

}
and then

the second cohomology group H2(g2n+2)= span
{[αi∧β j ]

}
/ span

{[∑n
i=1 αi∧βi

]}
,
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740 T. M. Duong

where 1 ≤ i, j ≤ n. So we recover the result of Medina and Revoy in [4] obtained by
describing the space Dera(g2n+2) that b2 = n2 − 1.

To get the Betti numbers bk for k ≥ 3, we need the following lemma.

Lemma 3.1 Themap {�n, .} : ∧k
(V )⊗∧m

(W ) → ∧k
(V )⊗∧m

(W )with k,m ≥ 0
is a vector space isomorphism if k �= m and {�n,

∧k
(V ) ⊗ ∧k

(W )} = {0}.
Proof We have {�n, αi1 ∧ . . . ∧ αik } = kαi1 ∧ . . . ∧ αik , {�n, βi1 ∧ . . . ∧ βim } =
−m ∧ βi1 ∧ . . . ∧ βim and {�n, αi1 ∧ . . . ∧ αik ∧ β j1 ∧ . . . ∧ β jm } = (k − m)αi1 ∧
. . . ∧ αik ∧ β j1 ∧ . . . ∧ β jm , then the result follows. 	


By a straightforward computation on super Poisson brackets, we have the following
corollary.

Corollary 3.2 The restrictions of the differential ∂ from α ∧ ∧i
(V ) ⊗ ∧ j

(W ) onto
�n ∧∧i

(V )⊗∧ j
(W )⊕α ∧β ∧∧i

(V )⊗∧ j
(W ) and from

∧i
(V )⊗∧ j

(W ) onto
β ∧ ∧i

(V ) ⊗ ∧ j
(W ) with i, j ≥ 0, i �= j are vector space isomorphisms.

Let us now give the cases for which ker(∂) can be obtained. The following lemma
is easy:

Lemma 3.3 We have ∂
(∧i

(V ) ⊗ ∧i
(W )

)
=∂

(
β ∧ ∧i

(V ) ⊗ ∧ j
(W )

)
={0} with

i, j ≥ 0. Moreover, ∂
(
α ∧ β ∧ ∧i

(V ) ⊗ ∧ j
(W )

)
⊂ ∂

(∧i+1
(V ) ⊗ ∧ j+1

(W )
)

for all i, j ≥ 0, i �= j and

(i) ∂
(
α ∧ β ∧ ∧i

(V ) ⊗ ∧i
(W )

)
= β ∧ �n ∧ ∧i

(V ) ⊗ ∧i
(W ),

(ii) ∂
(
α ∧ ∧i

(V ) ⊗ ∧i
(W )

)
= �n ∧ ∧i

(V ) ⊗ ∧i
(W ).

By the reason shown in (i) and (ii) of Lemma3.3, we set the map

φk1,k2,n :
∧

k1(α1, . . . , αn) ⊗
∧

k2(β1, . . . , βn) →
∧

k1+1(α1, . . . , αn)

⊗
∧

k2+1(β1, . . . , βn)

defined by φk1,k2,n(ω) = �n ∧ ω, then we have the following result.

Proposition 3.4 (i) If k is even, then

dim ker(∂k) =
(
n
k
2

) (
n
k
2

)

+
k−1∑

i=0

(
n
i

) (
n + 1

k − 1 − i

)

+ dim ker φ k−2
2 , k−2

2 ,n −
(

n
k−2
2

)(
n

k−2
2

)

.

(ii) If k is odd, then

dim ker(∂k) = dim ker φ k−1
2 , k−1

2 ,n +
k−1∑

i=0

(
n
i

)(
n + 1

k − 1 − i

)

.
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The Betti Numbers for a Family of Solvable Lie Algebras 741

Using the formula bk(g2n+2) = dim ker(∂k) + dim ker(∂k−1) −
(
2n + 2
k − 1

)

, the

binomial identity

(
n

k − 1

)

+
(
n
k

)

=
(
n + 1
k

)

and the formula

k∑

i=0

(
n
i

)(
n

k − i

)

=
(
2n
k

)

we obtain the following corollary.

Corollary 3.5 The kth Betti numbers of g2n+2 are given as follows:

(i) If k is even, then

bk(g2n+2) =
(
n
k
2

)(
n
k
2

)

+ 2 dim ker φ k−2
2 , k−2

2 ,n −
(

n
k−2
2

) (
n

k−2
2

)

.

(ii) If k is odd, then

bk(g2n+2) =
(

n
k−1
2

) (
n

k−1
2

)

+ dim ker φ k−1
2 , k−1

2 ,n

+ dim ker φ k−3
2 , k−3

2 ,n −
(

n
k−3
2

)(
n

k−3
2

)

.

Hence, it remains to compute dim ker
(
φk,k,n

)
. Consider the power φm

k1,k2,n
of the

map φk1,k2,n , and let

K (m, k1, k2, n) = dim ker
(
φm
k1,k2,n

)
,

then one has:

Lemma 3.6 (i) The map

θmk1,k2,n+1 : ker
(
φm+1
k1−1,k2−1,n

)
⊕ ker

(
φm
k1−1,k2,n

) ⊕ ker
(
φm
k1,k2−1,n

)

⊕ ker
(
φm−1
k1,k2,n

)
→ ker

(
φm
k1,k2,n+1

)

defined by

θmk1,k2,n+1(ω1, ω2, ω3, ω4) = αn+1 ∧ βn+1 ∧ ω1 + αn+1 ∧ ω2 + βn+1 ∧ ω3

+ω4 − 1

m
φk1−1,k2−1,n(ω1)

is a vector space isomorphism.
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742 T. M. Duong

(ii) K (m, k1, k2, n) = K (m + 1, k1 − 1, k2 − 1, n − 1) + K (m, k1 − 1, k2, n − 1) +
K (m, k1, k2 − 1, n − 1) + K (m − 1, k1, k2, n − 1).

Proof (i) Themap θmk1,k2,n+1 is clearly injective. To prove θmk1,k2,n+1 surjective, let us

considerω ∈ ∧k1(α1, . . . , αn+1)⊗∧k2(β1, . . . , βn+1) such that�m
n+1∧ω = 0.

Observe that ω can be written in the form ω = αn+1 ∧ βn+1 ∧ ω1 + αn+1 ∧
ω2 + βn+1 ∧ ω3 + ω4 where ω1 ∈ ∧k1−1

(α1, . . . , αn) ⊗ ∧k2−1
(β1, . . . , βn),

ω2 ∈ ∧k1−1
(α1, . . . , αn) ⊗ ∧k2(β1, . . . , βn), ω3 ∈ ∧k1(α1, . . . , αn) ⊗

∧k2−1
(β1, . . . , βn) and ω4 ∈ ∧k1(α1, . . . , αn) ⊗ ∧k2(β1, . . . , βn). By �m

n+1 ∧
ω = 0, we obtain �m

n ∧ ω2 = �m
n ∧ ω3 = �m

n ∧ ω4 = 0, �m
n ∧ ω1 =

−m�m−1
n ∧ ω4. It implies �m+1

n ∧ ω1 = 0 and then ω1 ∈ ker
(
φm+1
k1−1,k2−1,n

)
.

Moreover, �n ∧ ω1 + mω4 ∈ ker
(
φm−1
k1,k2,n

)
means

θmk1,k2,n+1

(

ω1, ω2, ω3, ω4 + 1

m
φk1−1,k2−1,n(ω1)

)

= ω.

(ii) The assertion (2) follows (1).
	


To calculate K (m, k1, k2, n), we use the following boundary conditions from the
definition of φm

k1,k2,n
in which we assume φ0

k1,k2,n
is the identity map:

(1) K (0, k1, k2, n) = 0 for all k1, k2, n ≥ 0 .

(2) K (m, 0, 0, n) =
{
0, if m ≤ n,

1, if m > n.

(3) K (m, 0, 1, n) = K (m, 1, 0, n) =
{
0, if m = 0 or n > m,

n, if 1 ≤ n ≤ m.

(4) K (m, k1, k2, 0) =
{
1, if m ≥ 1, k1 = k2 = 0,

0, otherwise.

By the condition (2), we extend K (m, k1, k2, n) = 0 for negative k1 or k2, and
by the condition (1), we set the condition (5) by K (−m, k1, k2, n) = −K (m, k1 −
m, k2 − m, n).

Lemma 3.7

K (m, k, k, n) =
n∑

p=0

n∑

q=0

(
n
p

) (
n
q

)

K (m + n − p − q, k − n + p, k − n + q, 0).

Proof By induction on l, we prove that

K (m, k, k, n) =
l∑

p=0

l∑

q=0

(
l
p

)(
l
q

)

K (m + l − p − q, k − l + p, k − l + q, n − l).

Let l = n to get the lemma. 	
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The Betti Numbers for a Family of Solvable Lie Algebras 743

The Betti numbers of g2n+2 are in the case m = 1. By the conditions (4) and (5),
we reduce the following.

Corollary 3.8

K (1, k, k, n) =

⎧
⎪⎨

⎪⎩

0, if k < 1
2n,(

n

k

) (
n

k

)

−
(

n

k + 1

)(
n

k + 1

)

, if k ≥ 1
2n.

Finally, by applying this formula, we obtain the Betti number of g2n+2 according
to Corollary3.5.

Appendix 1: Another Way to Get the Betti Numbers of g2n+2

In this part, we shall give another way to get the Betti numbers of g2n+2. It is based
on the following result.

Proposition 3.9 [6] Let g be an extension of the one-dimensional Lie algebra 〈Z〉 by
the Heisenberg Lie algebra h2n+1, for some n,

1 −→ h2n+1 −→ g −→ 〈Z〉 −→ 0

such that g acts trivially on the center z = 〈W 〉 of h2n+1. Let f = g/z. Then

bk(g) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

bk(f) for k = 0 or k = 1,
bk(f) − bk−2(f) for 2 ≤ k ≤ n,

2
[
bn+1(f) − bn−1(f)

]
for k = n + 1,

bk−1(f) − bk+1(f) for n + 2 ≤ k ≤ 2n,

bk−1(f) for k = 2n + 1 or k = 2n + 2.

It is easy to see that g2n+2 is an extension of the one-dimensional Lie algebra 〈Y0〉
by h2n+1. To calculate the Betti numbers of g2n+2, it needs to find the Betti numbers
of the 2n + 1-dimensional Lie algebra f with a basis {Y, X1, . . . , Xn,Y1, . . . ,Yn} and
the Lie bracket

[Y, Xi ] = Xi , [Y,Yi ] = −Yi

for all 1 ≤ i ≤ n.
Let {Y ∗, X∗

1, . . . , X
∗
n,Y

∗
1 , . . . ,Y ∗

n }be thedual basis of {Y, X1, . . . , Xn,Y1, . . . ,Yn}.

Proposition 3.10 (1) One has

∂k

(
Y ∗ ∧

(∧
k−1(X∗

1, . . . , X
∗
n,Y

∗
1 , . . . ,Y ∗

n )
))

= 0.

(2) Assume j + l = k, then we have
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• if j = l, then

∂k

(∧
j (X∗

1, . . . , X
∗
n) ⊗

∧
l(Y ∗

1 , . . . ,Y ∗
n )

)
= 0,

• if j �= l, then

∂k

(∧
j (X∗

1, . . . , X
∗
n) ⊗

∧
l(Y ∗

1 , . . . ,Y ∗
n )

)
= Y ∗ ∧

(∧
j (X∗

1, . . . , X
∗
n)

⊗
∧

l(Y ∗
1 , . . . ,Y ∗

n )
)

.

Proof The assertion (1) is obvious. For (2), we use the following computation:

∂k

(
X∗
i1 ∧ . . . ∧ X∗

i j ∧ Y ∗
r1 ∧ . . . ∧ Y ∗

rl

)
= ( j − k)Y ∗

∧X∗
i1 ∧ . . . ∧ X∗

i j ∧ Y ∗
r1 ∧ . . . ∧ Yrl

for all 1 ≤ i1 < · · · < i j ≤ n and 1 ≤ r1 < · · · < rl ≤ n. 	

The following corollary results.

Corollary 3.11 The Betti numbers of f are given as follows:

bk(f) =
(

n[ k
2

]
)(

n[ k
2

]
)

where [x] denotes the integer part of x.
Applying this corollary, we have

bk (g2n+2) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 for k = 0 or k = 1,(
n[
k
2

]
)(

n[
k
2

]
)

−
(

n[
k−2
2

]
)(

n[
k−2
2

]
)

for 2 ≤ k ≤ n,

2

(
n[

n+1
2

]
) (

n[
n+1
2

]
)

− 2

(
n[

n−1
2

]
)(

n[
n−1
2

]
)

for k = n + 1,
(

n[
k−1
2

]
)(

n[
k−1
2

]
)

−
(

n[
k+1
2

]
)(

n[
k+1
2

]
)

for n + 2 ≤ k ≤ 2n,

1 for k = 2n + 1 or k = 2n + 2.

and then Theorem 2 is obtained.

Appendix 2: The Second Cohomology Group of a Family of Nilpotent Lie
Algebras

In this appendix, in the progress of our work, we give the second cohomology of a
family of nilpotent Lie algebras that are double extensions of an Abelian Lie algebra
(see [3] for more details about these Lie algebras).
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Let us denote g4n+2 a 2-nilpotent quadratic Lie algebra of dimension 4n+2 spanned
by {X, X1, . . . , X2n,Y,Y1, . . . ,Y2n}where the Lie bracket is defined by [Y,Y2i−1] =
X2i , [Y,Y2i ] = −X2i−1, [Y2i−1,Y2i ] = X and the bilinear form is given by B(X,Y ) =
B(Xi ,Yi ) = 1, zero otherwise. Let {α, αi , β, βi } be the dual basis of {X, Xi ,Y,Yi }.
We can check that the associated 3-form I of g4n+2 is I = β∧�where� = β1∧β2+
β3∧β4+· · ·+β2n−1∧β2n . Therefore, it is easy to see that ιg4n+2(I ) = span{�,β∧βi }
for all 1 ≤ i ≤ 2n. We have the following proposition.

Proposition 3.12 dim(H2(g4n+2,C)) = 8 if n = 1 and dim(H2(g4n+2,C)) = 5n2+
n if n > 1.

Proof First, we need to describe ker(∂2). Let V be the space spanned by
{β, β1, . . . , β2n}, then {I, ω} = 0 for all ω ∈ V ∧ V . By a straightforward com-
putation, we have

(1) {I, β ∧ αi } = {I, α2i−1 ∧ β2i } = {I, α2i ∧ β2i−1} = 0,
(2) {I, α ∧ β} = I ,
(3) {I, α ∧ β2i−1} = β2i−1 ∧ �, {I, α ∧ β2i } = β2i ∧ �,
(4) {I, α∧α2i−1} = α2i−1∧�+β∧β2i ∧α, {I, α∧α2i } = α2i ∧�−β∧β2i−1∧α,
(5) {I, α2i−1 ∧ α2 j } = −β ∧ β2i ∧ α2 j − β ∧ β2 j−1 ∧ α2i−1, {I, α2i ∧ α2 j } =

β ∧ β2i−1 ∧ α2 j − β ∧ β2 j−1 ∧ α2i ,
(6) {I, α2i−1 ∧ β2 j } = −{I, α2 j−1 ∧ β2i } = −β ∧ β2i ∧ β2 j , i �= j ,
(7) {I, α2i−1 ∧ β2 j−1} = {I, α2 j ∧ β2i } = −β ∧ β2i ∧ β2 j−1,
(8) {I, α2i ∧ β2 j−1} = −{I, α2 j ∧ β2i−1} = β ∧ β2i−1 ∧ β2 j−1, i �= j .

As a consequence, if n = 1, then it is direct that

ker(∂2) = V ∧ V ⊕ span{β ∧ α1, β ∧ α2, α ∧ β − α1 ∧ β1, α1 ∧ β2, α1

∧β1 − α2 ∧ β2, α2 ∧ β1}.

Therefore, we obtain dim(H2(g4n+2,C)) = 8.
In the case n > 1, then � is indecomposable. Hence,

ker(∂2) = V ∧ V ⊕ span

{

β ∧ α2i−1, β ∧ α2i , α ∧ β −
n∑

i=1

α2i−1 ∧ β2i−1,

α2i−1 ∧ β2 j + α2 j−1 ∧ β2i , α2i−1 ∧ β2 j−1 − α2 j ∧ β2i , α2i ∧ β2 j−1 + α2 j ∧ β2i−1
}

with 1 ≤ i, j ≤ n and it is easy to check that dim(H2(g4n+2,C)) = 5n2 + n. 	
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