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Abstract In the literature, many of the descriptions of different classes of Leibniz
algebras (L , [·, ·]) have been made by giving the multiplication table on the elements
of a basis B = {vk}k∈K of L , in such a way that for any i, j ∈ K we have that
[vi , v j ] = λi, j [v j , vi ] ∈ Fvk for some k ∈ K , where F denotes the base field and
λi, j ∈ F. In order to give an unifying viewpoint of all these classes of algebras,
we introduce the more general category of Leibniz algebras admitting a multiplicative
basis and study its structure.We show that if a Leibniz algebra L admits amultiplicative
basis, then it is the direct sum L = ⊕

α Iα with any Iα a well-described ideal of
L admitting a multiplicative basis inherited from B. Also the B-simplicity of L is
characterized in terms of the multiplicative basis.
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680 A. J. Calderón Martín

1 Introduction and Previous Definitions

The term Leibniz algebrawas introduced in the study of a non-antisymmetric analogue
of Lie algebras by Loday [27], being so the class of Leibniz algebras an extension
of the one of Lie algebras. However, this kind of algebras was previously studied,
under the name of D-algebras, by Bloh [6–8]. Since the 1993 Loday’s work, many
researchers have been attracted by this kind of algebras being remarkable the great
activity in this field developed in the last years. This activity has been mainly focused
on the frameworks of low-dimensional algebras, nilpotence and related problems (see
[1,4,5,9,14–16,18,19,24–26,29–32]).

Definition 1.1 A Leibniz algebra L is a vector space over a base field F endowed with
a bilinear product [·, ·] satisfying the Leibniz identity

[[y, z], x] = [[y, x], z] + [y, [z, x]],

for all x, y, z ∈ L .

In the presence of anti-commutativity, Jacobi identity becomes Leibniz identity and
so Lie algebras are examples of Leibniz algebras.

Let L be a Leibniz algebra, the ideal S generated by the squares, that is, S is
generated by the set {[x, x] : x ∈ L}, plays an important role in the theory since it
determines the (possible) non-Lie character of L . From the Leibniz identity, this ideal
satisfies

[L ,S] = 0. (1)

In fact a Leibniz algebra L is called simple when [L , L] �= 0 and its only ideals are
{0},S and L .

Observe that we can write

L = S ⊕ V

where V is a linear complement of S in L (actually V is isomorphic as linear space
to L/S, the so called corresponding Lie algebra of L). Hence, by taking BS and BV

bases of S and V , respectively, we get

B = BS ∪̇BV

a basis of L .

Definition 1.2 A basis B = {vk}k∈K of L which decomposes B = BS ∪̇BV as above,
is said to be multiplicative if for any i, j ∈ K we have that [vi , v j ] ∈ Fvk for some
k ∈ K .

Remark 1.1 Observe that if we write

BS = {ei }i∈I and BV = {u j } j∈J ,
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Leibniz Algebras Admitting a Multiplicative Basis 681

the fact S is an ideal together with Eq. (1) give us that the only possible nonzero
products among the elements in B are.

(1) For any i ∈ I and j ∈ J , we have [ei , u j ] ∈ Fek for some k ∈ I .
(2) For any j, k ∈ J , we have either [u j , uk] ∈ Ful or [u j , uk] ∈ Fei for some

l ∈ J, i ∈ I .

Let us observe that if the base field F of a Leibniz algebra is of characteristic
different to 2, then S is the ideal generated by the set {[x, y] + [y, x] : x, y ∈ L}.
Lemma 1.1 Let (L , [·, ·]) be a Leibniz algebra over a base field F of characteristic
different to 2. If B = {vk}k∈K is a basis of L satisfying that for any i, j ∈ K we have
[vi , v j ] = λi, j [v j , vi ] ∈ Fvk for some k ∈ K and some λi, j ∈ F then L admits B as
multiplicative basis.

Proof By the above observation, we can assert that S is generated as linear space by
{v j : j ∈ J ⊂ K }. From here, we can find a basis BS of S formed by elements of B
and a basis BV := B\BS of V which make of B a multiplicative basis. ��

Lemma 1.1 gives us the way of checking easily that the expositions of many of the
classes of Leibniz algebras which have been described in the literature have beenmade
by presenting a multiplication table of the Leibniz algebra in terms of a multiplicative
basis, becoming so examples of Leibniz algebras admitting amultiplicative basis. This
is the case for instance of the two- and three-dimensional nilpotent Leibniz algebras
(see [2,27]), of the non-LieLeibniz algebras L with L/S abelian described in [2], of the
classes of (complex) finite-dimensional naturally graded filiform Leibniz algebras and
n-dimensional filiform graded filiformLeibniz algebras of length n−1 (see [3]), of the
categories of finite-dimensional 0-filiformLeibniz algebras, of finite-dimensional non-
split graded filiform Leibniz algebras, and of different types of finite-dimensional 2-
filiform non-split Leibniz algebras (see [17]), of the class of four-dimensional solvable
Leibniz algebras with three-dimensional rigid nilradical (see [20]), of the families of
four-dimensional solvable Leibniz algebras with two-dimensional nilradical and of
certain types, with respect to its radical, of four-dimensional solvable Leibniz algebras
(see [23]), of several types of solvable Leibniz algebras with naturally graded filiform
nilradical considered in [22], of the solvable Leibniz algebras whose nilradical is NFn
(see [21]), of the family of (complex) finite-dimensional Leibniz algebras with Lie
quotient sl2 (see [28]), and so on. From here, the class of Leibniz algebras admitting
a multiplicative basis becomes a wide class of Leibniz algebras. Let us concrete one
example of the above ones from [28].

Example 1.1 Let L = S ⊕ V be the n-dimensional complex Leibniz algebra where

BS = {e11, . . . , e1t1 , e21, . . . , e2t2 , . . . , ep1 , . . . , eptp }

is a basis of S, the set

BV = {v1, v2, v3}
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682 A. J. Calderón Martín

is a basis of V and the nonzero products with respect to the elements in the basis

B = BS ∪̇BV

of L are:

[v1, v3] = 2v1, [v2, v3] = −2v2, [v1, v2] = v3,

[v3, v1] = −2v1, [v3, v2] = 2v2, [v2, v1] = −v3,

[e jk , v3] = (t j − 2k)e jk , k = 0, . . . , t j ,

[e jk , v2] = e jk+1, k = 0, . . . , t j − 1,

[e jk , v1] = −k(t j + 1 − k)e jk−1, k = 0, . . . , t j ,

1 ≤ j ≤ p.

Then, L becomes a Leibniz algebra admitting B as a multiplicative basis.

The present paper is devoted to the study of Leibniz algebras L of arbitrary dimen-
sion and over an arbitrary base field F admitting a multiplicative basis, by focusing on
its structure.

The paper is organized as follows. In §2 and by inspiring in the connections of
root techniques developed for split Leibniz algebras and superalgebras in [12,13], we
introduce connections techniques on the set of indexes of the multiplicative basis B
so as to obtain a powerful tool for the study of this class of algebras. By making use
of these techniques, we show that any Leibniz algebra L admitting a multiplicative
basis is of the form L = ⊕

α Iα with any Iα a well-described ideal of L admitting
a multiplicative basis inherited from B. In §3, the B-simplicity of these ideals is
characterized in terms of the multiplicative basis.

Finally, we would like to note that the techniques we develop in the preset paper are
far away from the ones introduced in the study of the previously mentioned classes of
Leibniz algebras having a multiplicative basis. The above references concerning these
classes of Leibniz algebras are mainly centered in the finite-dimensional setup and so
linear algebra tools are fundamental in their arguments, butmany times these argument
do not hold in the infinite-dimensional case or when the base field is not algebraically
close. Our techniques also hold in the infinite-dimensional case and over arbitrary base
fields, being adequate enough to provide us of a second Wedderburn-type theorem in
this general framework (Theorems 2.1, 3.1). Indeed, althoughwemake use of the ideal
S which is inherent to Leibniz theory, we hope these techniques can be useful in the
study of the structure of other wider categories of algebras.

Let us introduce the following infinite-dimensional Leibniz algebras which will be
considered later. We will denote by N the set of nonnegative integers.

Example 1.2 Let L = S ⊕ V be the Leibniz algebra, over a base field with character-
istic different to 2, where

BS = {en : n ∈ N}
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Leibniz Algebras Admitting a Multiplicative Basis 683

is a basis of S, the set

BV = {va, vb, vc, vd}

is a basis of V and the nonzero products with respect to the elements in the basis

B = BS ∪̇BV

of L are:

[vb, vc] = va, [vc, vb] = −va, [vd , vd ] = e0,

[e0, vd ] = e1, [en, va] = en for n ≥ 2, [en, vb] = en+1 for n ≥ 2, and

[en, vc] = (n − 2)en−1 for n ≥ 3.

Then, L becomes a Leibniz algebra admitting B as a multiplicative basis.

Example 1.3 Let L = S ⊕ V be the Leibniz algebra, over a base field with character-
istic different to 2, where

BS = {en,m : (n,m) ∈ N × N}

is a basis of S, the set

BV = {vn : n ∈ N}

is a basis of V and the nonzero products with respect to the elements in the basis

B = BS ∪̇BV

of L are:

[v1, v2] = v0, [v2, v1] = −v0,

[v3, v4] = v0, [v4, v3] = −v0,

[en,m, v0] = en,m for n,m ≥ 1, [en,m, v1] = en+1,m for n,m ≥ 1,

[en,m, v2] = (n − 1)en−1,m for n ≥ 2 and m ≥ 1,

[en,m, v3] = en,m+1, for n,m ≥ 1,

[en,m, v4] = (m − 1)en,m−1 for n ≥ 1 and m ≥ 2,

[e0,0, v5] = e0,0, [en,0, v4+2n] = en,0 for n ≥ 1 and

[e0,m, v5+2m] = e0,m for m ≥ 1

Then, L becomes a Leibniz algebra admitting B as a multiplicative basis.
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2 Decomposition as Direct Sum of Ideals

In what follows L = S ⊕ V denotes a Leibniz algebra over a base field F admitting a
multiplicative basis B = BS ∪̇BV , with bases BS = {ei }i∈I and BV = {u j } j∈J of S
and V , respectively.

We begin this section by developing connection techniques among the elements in
the sets of indexes I and J as the main tool in our study.

By renaming if necessary, we can suppose I ∩ J = ∅. Now, for each k ∈ I ∪̇J , a
new assistant variable k /∈ I ∪̇J is introduced and we denote by

I := {i : i ∈ I } and J := { j : j ∈ J }

the sets consisting of all these new symbols. Also, given any k ∈ I ∪̇J we will denote

(k) := k.

Finally, we will write by P(A) the power set of a given set A.
Next, we consider the following operation which recover, in a sense, certain mul-

tiplicative relations among the elements of the basis B:

� : (I ∪̇J ) × (I ∪̇J ∪̇I ∪̇J ) → P(I ∪̇J ),

given by

• For i, k ∈ I ,

i � k = ∅

• For i ∈ I and j ∈ J ,

i � j = j � i =
{∅, if [ei , u j ] = 0

{k}, if 0 �= [ei , u j ] ∈ Fek with k ∈ I

• For i ∈ I and k ∈ I ,

i � k = { j ∈ J : 0 �= [ek, u j ] ∈ Fei }

• For i ∈ I and j ∈ J ,

i � j = {k ∈ J : 0 �= [u j , uk] ∈ Fei } ∪ {l ∈ J : 0 �= [ul , u j ] ∈ Fei }
∪{m ∈ I : 0 �= [em, u j ] ∈ Fei }

• For j, k ∈ J ,

j � k = k � j = α ∪ β
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where

α =
⎧
⎨

⎩

∅, if [u j , uk] = 0
{l}, if 0 �= [u j , uk] ∈ Ful
{i}, if 0 �= [u j , uk] ∈ Fei

and β =
⎧
⎨

⎩

∅, if [uk, u j ] = 0
{m}, if 0 �= [uk, u j ] ∈ Fum
{r}, if 0 �= [uk, u j ] ∈ Fer

• For j ∈ J and i ∈ I ,

j � i = ∅

• For j ∈ J and k ∈ J ,

j � k = {l ∈ J : 0 �= [ul , uk] ∈ Fu j } ∪ {m ∈ J : 0 �= [uk, um] ∈ Fu j }.

Themapping � is not still good enough for our purposes and sowe need to introduce
the following one:

φ : P(I ∪̇J ) × (I ∪̇J ∪̇I ∪̇J ) → P(I ∪̇J ),

as

• φ(∅, I ∪̇J ∪̇I ∪̇J ) = ∅,
• For any ∅ �= K ∈ P(I ∪̇J ) and a ∈ I ∪̇J ∪̇I ∪̇J ,

φ(K , a) =
⋃

k∈K
(k � a).

It is straightforward to verify that for any i, j ∈ I ∪̇J and a ∈ I ∪̇J ∪̇I ∪̇J we have
that j ∈ i � a if and only if i ∈ j � a. This fact implies that for any K ∈ P(I ∪̇J ) and
a ∈ I ∪̇J ∪̇I ∪̇J we have

i ∈ φ(K , a) if and only if φ({i}, a) ∩ K �= ∅. (2)

Definition 2.1 Let i and j be distinct elements in the set of indexes I ∪̇J . We say that
i is connected to j if there exists a subset

{i1, i2, . . . , in−1, in} ⊂ I ∪̇J ∪̇I ∪̇J

with n ≥ 2 such that the following conditions hold:

1. i1 = i.
2. φ({i1}, i2) �= ∅,

φ(φ({i1}, i2), i3) �= ∅,

φ(φ(φ({i1}, i2), i3), i4) �= ∅,

· · · · · · · · ·
φ(φ(· · · (φ({i1}, i2), · · · ), in−2), in−1) �= ∅.
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3. j ∈ φ(φ(· · · (φ({i1}, i2), · · · ), in−1), in).

The subset {i1, i2, . . . , in−1, in} is called a connection from i to j , and we accept i
to be connected to itself.

Proposition 2.1 The relation ∼ in I ∪̇J , defined by i ∼ j if and only if i is connected
to j , is an equivalence relation.

Proof By definition i ∼ i , that is, the relation ∼ is reflexive.
Let us see the symmetric character of ∼: If i ∼ j with i �= j then there exists a

connection

{i1, i2, . . . , in−1, in}

from i to j satisfying Definition 2.1. Let us show that the set

{ j, in, in−1, . . . , i3, i2}

gives rise to a connection from j to i .
Indeed, by taking K := φ(· · · (φ({i1}, i2), · · · ), in−1) we can apply the relation

given by (2) to the expression

j ∈ φ(φ(· · · (φ({i1}, i2), · · · ), in−1), in)

to get

φ({ j}, in) ∩ φ(φ(· · · (φ({i1}, i2), · · · ), in−2), in−1) �= ∅

and so

φ({ j}, in) �= ∅.

By taking

k ∈ φ({ j}, in) ∩ φ(φ(· · · (φ({i1}, i2), · · · ), in−2), in−1),

the relation given by (2) and the fact k ∈ φ(φ(· · · (φ({i1}, i2), · · · ), in−2), in−1) allow
us to assert

φ(φ({ j}, in), in−1) ∩ φ(φ(· · · (φ({i1}, i2), · · · ), in−3), in−2) �= ∅

and consequently

φ(φ({ j}, in), in−1) �= ∅.
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By iterating this process, we get

φ(φ(· · · (φ({ j}, in), · · · ), in−r+1), in−r ) ∩
φ(φ(· · · (φ({i1}, i2), · · · ), in−r−2), in−r−1) �= ∅

for 0 ≤ r ≤ n − 3. Observe that this relation in the case r = n − 3 reads as

φ(φ(· · · (φ({ j}, in), · · · ), i4), i3) ∩ φ({i1}, i2) �= ∅.

Since i1 = i , if we write K := φ(φ(· · · (φ({ j}, in), · · · ), i4), i3), the previous obser-
vation allows us to assert that φ({i}, i2) ∩ K �= ∅. Hence, the relation (2) applies to
get

i ∈ φ(φ(· · · (φ({ j}, in), · · · ), i3), i2)

and concludes ∼ is symmetric.
Finally, let us verify the transitive character of ∼. Suppose i ∼ j and j ∼ k. If

i = j or j = k it is trivial, so suppose i �= j and j �= k and write {i1, . . . , in} for
a connection from i to j and { j1, . . . , jm} for a connection from j to k. Then, we
clearly have that {i1, . . . , in, j2, . . . , jm} is a connection from j to k. We have shown
the connection relation is an equivalence relation. ��

By the above Proposition, we can consider the next quotient set on the set of indexes
I ∪̇J ,

I ∪̇J/ ∼= {[i] : i ∈ I ∪̇J },

becoming [i] the set of elements in I ∪̇J which are connected to i .
Our next goal in this section is to associate an ideal I[i] of L to any [i]. Fix i ∈ I ∪̇J ,

we start by defining the linear subspaces S[i] ⊂ S and V[i] ⊂ V as follows

S[i] :=
⊕

j∈[i]∩I

Fe j ⊂ S,

V[i] :=
⊕

k∈[i]∩J

Fuk ⊂ V

Finally, we denote by I[i] the direct sum of the two subspaces above, that is,

I[i] := S[i] ⊕ V[i].

Definition 2.2 Let L be a Leibniz algebra with a multiplicative basis B. It is said
that a subalgebra A of L admits a multiplicative basis BA inherited from B if BA is a
multiplicative basis of A satisfying BA ⊂ B.
Proposition 2.2 For any i ∈ I ∪̇J , the linear subspace I[i] is an ideal of L admitting
a multiplicative basis inherited from the one of L.
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Proof We can write

[I[i], L] =
⎡

⎣S[i] ⊕ V[i],
(

⊕

l∈I
Fel

)

⊕
⎛

⎝
⊕

j∈J

Fu j

⎞

⎠

⎤

⎦ .

In case [ek, u j ] �= 0 for some k ∈ [i]∩I and j ∈ J , we have that 0 �= [ek, u j ] ∈ Fem
with m ∈ I and so the connection {k, j} gives us k ∼ m, so m ∈ [i] and then
0 �= [ek, u j ] ∈ S[i]. Hence, we get

⎡

⎣S[i],
⊕

j∈J

Fu j

⎤

⎦ ⊂ S[i].

In a similar way, we have [V[i],
⊕

j∈J Fu j ] ⊂ I[i] and so

[I[i], L] ⊂ I[i].

On the other hand,

[L , I[i]] =
⎡

⎣

(
⊕

l∈I
Fel

)

⊕
⎛

⎝
⊕

j∈J

Fu j

⎞

⎠ ,S[i] ⊕ V[i]

⎤

⎦

and in case 0 �= [el , uk] ∈ Fem for some l ∈ I and k ∈ [i] ∩ J we have that the
connection {k, l} gives us k ∼ m and so [⊕l∈I Fel , V[i]] ⊂ S[i]. In a similar way
[⊕ j∈J Fu j , V[i]] ⊂ I[i] and then

[L , I[i]] ⊂ I[i].

Hence, I[i] is an ideal of L .
Finally, observe that the set

BI[i] := {e j : j ∈ [i] ∩ I }∪̇{uk : k ∈ [i] ∩ J }

is a multiplicative basis of I[i] satisfyingBI[i] ⊂ B. From here we have that I[i] admits
a multiplicative basis inherited from the one of L . ��
Corollary 2.1 If L is simple, then there exists a connection between any couple of
elements in the set of indexes I ∪̇J .

Proof The simplicity of L implies [L , L] �= 0 and so J �= ∅. From here, Proposi-
tion 2.2 gives us I[ j0] = L for some j0 ∈ J being then [ j0] = I ∪̇J . That is, any
couple of elements in I ∪̇J are connected. ��
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Theorem 2.1 A Leibniz algebra L with a multiplicative basis decomposes as the
direct sum

L =
⊕

[i]∈(I ∪̇J )/∼
I[i],

where any I[i] is one of the ideals, admitting a multiplicative basis inherited from the
one of L, given in Proposition 2.2.

Proof Since we can write

L = S ⊕ V

and

S =
⊕

[i]∈(I ∪̇J )/∼
S[i], V =

⊕

[i]∈(I ∪̇J )/∼
V[i]

we clearly have

L =
⊕

[i]∈(I ∪̇J )/∼
I[i].

��
Example 2.1 Consider the Leibniz algebra L = S ⊕ V in Example 1.2. We have

I = N and J = {a, b, c, d}.

From the multiplication table of L , it is not difficult to write the operation � in detail.
For instance, we have that given n ∈ N and j ∈ J ,

n � j = j � n =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

{1}, if n = 0 and j = d
∅, if n = 0 and j ∈ {a, b, c}
∅, if n = 1 and any j ∈ J
{n}, if n ≥ 2 and j = a
{n + 1}, if n ≥ 2 and j = b
{n − 1}, if n ≥ 3 and j = c
∅, if n = 2 and j = c

From here, we can also obtain an explicit expression of the mapping

φ : P(N ∪ J ) × (N∪J∪N∪J ) → P(N ∪ J ).

Observe that the connection {0, d} gives us 0 ∼ 1, the connection {0, d} gives us
0 ∼ d, the connection {b, c} gives us b ∼ a, the connection {b, c, b} gives us b ∼ c,
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690 A. J. Calderón Martín

the connection {b, c, n} gives us b ∼ n for n ≥ 2 and that 0 � b. Hence, (N∪ J )/ ∼=
{[0], [2]} where [0] = {0, 1, d} and [2] = {n ∈ N : n ≥ 2} ∪ {a, b, c} and so
Theorem 2.1 allows us to assert that

L = L1 ⊕ L2,

where any Li is an ideal of L and where L1 has as (multiplicative) basis {e0, e1, vd}
and L2 has as (multiplicative) basis {ei : i ≥ 2} ∪ {va, vb, vc} .
Example 2.2 Consider the Leibniz algebra L = S ⊕ V in Example 1.3. We have

I = N × N and J = N.

From the multiplication table of L , it is routine to describe � in detail. For instance,
we get that for any (n,m) ∈ N × N and p ∈ N,

(n,m) � p = p � (n,m) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(0, 0)}, if n = 0,m = 0 and p = 5
∅, if n = 0,m = 0 and p �= 5
{(n, 0)}, if n ≥ 1,m = 0 and p = 4 + 2n
∅, if n ≥ 1,m = 0 and p �= 4 + 2n
{(0,m)}, if n = 0,m ≥ 1 and p = 5 + 2m
∅, if n = 0,m ≥ 1 and p �= 5 + 2m
{(n,m)}, if n ≥ 1,m ≥ 1 and p = 0
{(n + 1,m)}, if n ≥ 1,m ≥ 1 and p = 1
{(n − 1,m)}, if n ≥ 2,m ≥ 1 and p = 2
∅, if n = 1,m ≥ 1 and p = 2
{(n,m + 1)}, if n ≥ 1,m ≥ 1 and p = 3
{(n,m − 1)}, if n ≥ 1,m ≥ 2 and p = 4
∅, if n ≥ 1,m = 1 and p = 4

As in Example 2.1, it is now straightforward to compute the equivalence classes in

((N × N) ∪ N)/ ∼ .

We obtain

((N × N) ∪ N)/ ∼= [(1, 1)] ∪ [(0, 0)] ∪ {[(n, 0)] : n ≥ 1} ∪ {[(0,m)] : m ≥ 1},

being [(1, 1)] = {(n,m) : n ≥ 1,m ≥ 1} ∪ {0, 1, 2, 3, 4}, [(0, 0)] =
{(0, 0), 5}, [(n, 0)] = {(n, 0), 4+ 2n} for any n ≥ 1 and [(0,m)] = {(0,m), 5+ 2m}
for any m ≥ 1.

From here, Theorem 2.1 allows us to assert that L decomposes as the direct sum of
the ideals

L = L(1,1) ⊕ L(0,0) ⊕
⎛

⎝
⊕

n≥1

L(n,0)

⎞

⎠ ⊕
⎛

⎝
⊕

m≥1

⎞

⎠ L(0,m)
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where L(1,1) admits as (multiplicative) basis {v0, v1, v2, v3}∪{e(n,m) : n ≥ 1,m ≥ 1},
the ideal L(0,0) has as (multiplicative) basis {v5, e(0,0)}, any L(n,0), n ≥ 1, admits as
(multiplicative) basis {v4+2n, e(n,0)}, and any L(0,m),m ≥ 1, has as (multiplicative)
basis {v5+2m, e(0,m)}.

3 The B-Simple Components

In this section, our target is to characterize the minimality of the ideals which give rise
to the decomposition of L in Theorem 2.1, in terms of connectivity properties in the
set of indexes I ∪̇J . Since a Leibniz algebra L is called simple when its only ideals
are {0},S and L (see [2]), we introduce the next concept in a natural way.

Definition 3.1 A Leibniz algebra L admitting a multiplicative basis B is called B-
simple if its only ideals admitting a multiplicative basis inherited from B are {0},S
and L .

Observe that we can find in a Leibniz algebra admitting a multiplicative basis B
ideals which do not admit a multiplicative basis inherited fromB. Indeed, consider the
Leibniz algebra L inExample 1.2. The linear subspacewith basis {va, va+vb+vc}∪BS
is actually an ideal of L which does not admit any multiplicative basis inherited from
B. However, it is clear that any simple Leibniz algebra admitting a multiplicative basis
B is B-simple.

As in the previous section, L = S⊕V will denote aLeibniz algebra over an arbitrary
base field F and of arbitrary dimension, admitting a multiplicative basis B = BS ∪̇BV

with BS = {ei }i∈I and BV = {u j } j∈J bases of S and V , respectively.
We will have the opportunity of restricting the connectivity relation to the set I and

to the set J by just allowing that the connections are formed by elements in J ∪̇J .
Then, we will say that two indexes k, l ∈ K , where either K = I or K = J , are
J -connected.

Definition 3.2 Let k and l be two distinct elements in K with either K = I or K = J .
We say that k is J -connected to l, denoted by k ∼J l, if there exists a connection
{i1, i2, . . . , in} from k to l such that

i2, . . . , in ∈ J ∪̇J .

We will also say that the set {i1, i2, . . . , in} is a J -connection from k to l and accept
k to be J -connected to itself.

We observe that it is straightforward to verify that the arguments in Proposition 2.1
allow us to assert that the relation ∼J is an equivalence relation in I and in J .

Let us introduce the notion of �-multiplicativity in the framework of Leibniz alge-
bras with multiplicative bases, in a similar way to the ones of closed-multiplicativity
for graded Lie algebras, graded Lie superalgebras, split Leibniz algebras and split
Leibniz superalgebras (see [10–13] for these notions and examples). From now on,
for any j ∈ J we will denote u j = 0.
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Definition 3.3 We say that a Leibniz algebra L = S ⊕ V admits a �-multiplicative
basis B if it is multiplicative and the conditions below hold.

(1) Given j ∈ J and k ∈ I ∪̇J such that k ∈ j � a for some a ∈ J ∪̇J then
vk ∈ F[u j , ua + ua], where vk ∈ {ek, uk} depending on k ∈ I or k ∈ J .

(2) Given i, j ∈ I such that j ∈ i � a for some a ∈ J ∪̇J then e j ∈ F[ei , ua + ua].
Proposition 3.1 Suppose L admits a �-multiplicative basis B and I and J have,
respectively, all of their elements J -connected, then any nonzero ideal I of L with a
multiplicative basis inherited from B such that I � S satisfies I = L.

Proof Since I � S we can take some j0 ∈ J such that

0 �= u j0 ∈ I. (3)

We know that J has all of their elements J -connected. From here, given any k ∈ J ,
we can consider a J -connection

{ j0, j2, . . . , jn} ⊂ J ∪̇J (4)

from j0 to k.
We know

φ({ j0}, j2) �= ∅

and so for any k1 ∈ φ({ j0}, j2) we have k1 ∈ j0 � j2. Taking now into account Eq. (3)
and the �-multiplicativity of B we get

0 �= uk1 ∈ F[u j0 , ul2 ] ⊂ I

if k1 ∈ J or

0 �= ek1 ∈ F[u j0 , ul2 ] ⊂ I

if k1 ∈ I, for l2 = { j2, j2} ∩ J .

Since k ∈ J , necessarily φ({ j0}, j2) ∩ J �= ∅ and we have

0 �=
⊕

j∈φ({ j0}, j2)∩J

Fu j ⊂ I. (5)

Since

φ(φ({ j0}, j2), j3) �= ∅.

we can argue as above, taking into account Eq. (5), to get

0 �=
⊕

j∈φ(φ({ j0}, j2), j3)∩J

Fu j ⊂ I.
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By reiterating this process with the J -connection (4), we obtain

0 �=
⊕

j∈φ(φ(···(φ( j0, j2),··· ), jn−1), jn)∩J

Fu j ⊂ I.

Since k ∈ φ(φ(· · · (φ( j0, j2), · · · ), jn−1), jn) ∩ J we conclude uk ∈ I and so

V =
⊕

j∈J

Fu j ⊂ I. (6)

Taking now into account that S ⊂ [S, V ] + [V, V ], Eq. (6) allows us to assert

S ⊂ I. (7)

Finally, since L = S ⊕ V , Eqs. (6) and (7) give us I = L . ��
Proposition 3.2 Suppose L admits a �-multiplicative basis B and I has all of its
elements J -connected, then any nonzero ideal I of L with a multiplicative basis
inherited from B such that I ⊂ S satisfies I = S.
Proof Taking into account I ⊂ S, we can fix some i0 ∈ I satisfying

0 �= ei0 ∈ S.

Since I has of its elements J -connected, we can argue from i0 with the �-
multiplicativity of B as it is done in Proposition 3.1 from j0, to get S ⊂ I and
then I = S. ��
Theorem 3.1 Suppose L admits a �-multiplicative basis B. Then L is B-simple if and
only if I and J have, respectively, all of their elements J -connected.

Proof Suppose L is B-simple. If S �= {0} and we take i ∈ I , we have that the linear
space

⊕
k∈I :k∼J i Fek is an ideal of L with a multiplicative basis inherited from B.

Indeed, we have

⎡

⎣L ,
⊕

k∈I :k∼J i

Fek

⎤

⎦ +
⎡

⎣
⊕

k∈I :k∼J i

Fek,S
⎤

⎦ ⊂ [L ,S] = 0

and
⎡

⎣
⊕

k∈I :k∼J i

Fek, u j

⎤

⎦ ⊂
⊕

k∈I :k∼J i

Fek

for any j ∈ J because given any h ∈ ⊕
k∈I :k∼J i Fek such that 0 �= [ek, u j ] = el we

have el ∈ ek � u j and so {k, j} is a J -connection from k to l. By the symmetry and
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transitivity of∼J in I we get el ∈ ⊕
k∈I :k∼J i Fek . Hence [ek, ul ] ⊂ ⊕

k∈I :k∼J i Fek as
desired. We conclude

⊕
k∈I :k∼J i Fek is an ideal of L with a multiplicative basis inher-

ited from B and so, by B-simplicity, necessarily
⊕

k∈I :k∼J i Fek = S. Consequently,
any couple of indexes in I are J -connected.

Consider now any j ∈ J and the linear subspace

S ⊕
⎛

⎝
⊕

l∈J :l∼J j

Ful

⎞

⎠ .

A similar argument to the above one gives us that this linear subspace is actually
an ideal of L which admits a multiplicative basis inherited from B. From here, S ⊕
(
⊕

l∈J :l∼J j Ful) = L which implies in particular
⊕

l∈J :l∼J j Ful = ⊕
m∈J Fum and

so we get that any couple of indexes in J are also J -connected.
Conversely, consider I a nonzero ideal of L admitting a multiplicative basis inher-

ited by the one of L . We have two possibilities for I, either I � S or I ⊂ S. In the
first one, Proposition 3.1 gives us I = L , while in the second one Proposition 3.2
shows I = S. We have proved L is B-simple. ��
Acknowledgements The author would like to thank the referees for their exhaustive reviews of the paper
as well as for many suggestions which have helped to improve the work.
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