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Abstract In this paper, we establish necessary and sufficient conditions for bound-
edness of weighted p-adic Hardy operators on p-adic Morrey spaces, p-adic central
Morrey spaces and p-adic A-central BMO spaces, respectively, and obtain their sharp
bounds. We also give the characterization of weight functions for which the commu-
tators generated by weighted p-adic Hardy operators and A-central BMO functions
are bounded on the p-adic central Morrey spaces. This result is different from that on
Euclidean spaces due to the special structure of p-adic integers.
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1 Introduction

Letw : [0, 1] — [0, co) be a function. The weighted Hardy operator H,, [6] is defined
by
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1
H, f(x) :=f Ftx)o(t)dt,
0

for all measurable complex-valued functions f on R"” and x € R". Xiao [32] gave
the characterization of w for which H,, is bounded on either L” (R"), 1 < p < oo, or
BMO(R"). Meanwhile, the corresponding operator norms were worked out. In[12], Fu
et al. gave the characterization of w to ensure that H,, is bounded on central Morrey
spaces and A-central BMO spaces; they also obtained the corresponding operator
norms.

It is clear that if w = 1 and n = 1, then H,, is precisely reduced to the classical
Hardy operators H defined by

1 X
Hf(X)=;/O fde, x #0,

which is one of the fundamental integral averaging operators in real analysis. A cel-
ebrated operator norm estimate states that, for | < ¢ < oo, the sharp norm of H
from L7 (R) to LY(R) is g /(g — 1), see [14]. Ifn = land w(t) = (1 — 1)*~!/ (),
0 <o < 1, then for all x > 0,

H, f(x) = x"“Io f (x),
where I, is Riemann-Liouville fractional integral defined by

1 T f@®
L) Jo (x—nl-«

Iaf(x): dr, x>0,

for all locally integrable functions f on (0, 00). For n > 2, if w(t) = nt"~! and f
is a radical function, then H,, is just reduced to the n-dimensional Hardy operator H
defined by

1
Hf(x) = / FO)dy.
Un|x|n [y|<|x|

where v, is the volume of the unit sphere §7—1. See [33] for more details. In 1993,
Christ and Grafakos [9] obtained that the precise norm of H from L7 (R") to L9 (R™)
isalsog/(g — 1), 1 < g < oco. More recently, Fu et al. [11] obtained the precise norm
of m-linear Hardy operators on weighted Lebesgue spaces and central Morrey spaces.

In recent years, the field of p-adic numbers has been widely used in theoretical and
mathematical physics (cf. [3,5,15-17,20,26-30]). And harmonic analysis on p-adic
field has been drawn more and more concern ([4,7,8,18,19,22-25] and references
therein).

For a prime number p, let Q, be the field of p-adic numbers. It is defined as the
completion of the field of rational numbers Q with respect to the non-Archimedean
p-adic norm | - |,. This norm is defined as follows: |0], = 0; if any nonzero rational

number x is represented as x = p”“, where y is an integer and integers m, n are
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indivisible by p, then |x|, = p~7.Itis easy to see that the norm satisfies the following
properties:

lxylp = 1xIplylps  1x +ylp < max{lxlp, [ylp}-

Moreover, if |x|, # |y|p, then |[x £ y|, = max{|x|,, |y|,}. It is well known that Q,
is a typical model of non-Archimedean local fields. From the standard p-adic analysis
[28], we see that any nonzero p-adic number x € Q, can be uniquely represented in
the canonical series

oo
x=p' ) aip). y=y@ el (L.D)
j=0

where a; are integers, 0 <a; < p—1,a9 # 0.
The space QZ con'sists of points x = (x1,x2,---,X,), where x; € Qp, j =
1,2, ---,n. The p-adic norm on Q’;, is

o— . n
lx|p == [max, Ixjlp, x € Q.

Denote by By (a) = {x € Q’l’, : |x —al, < p"} the ball with center at a € Qg and
radius p”, and by S, (a) := {x € (@’1’, ¢ |x —al, = p”} the sphere with center at
ace Q’; and radius p?, y € Z. Itis clear that S, (a) = By, (a)\B,_1(a) and

By(a) = | ] S(a). 1.2)

k<y

We set B, (0) = By, and S, (0) = S,,. Let Z, = {x € |x], < 1} be the class of all
p-adic integers in Qp, and denote Zj, = Z,\{0}

Since (@’1’, is a locally compact commutative group under addition, it follows from
the standard analysis that there exists a Haar measure dx on (@77, which is unique up
to a positive constant factor and is translation invariant. We normalize the measure dx
by the equality

/ dx = |Bo(O) s = 1,
By (0)

where |E|y denotes the Haar measure of a measurable subset E of Q’;. By simple
calculation, we can obtain that

1By @)y =p™, ISy@ln=p""d—-p™")

foranya € Q’I']. For a more complete introduction to the p-adic field, one can refer to
[25] or [28].
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On p-adic field, Rim and Lee [22] defined the weighted p-adic Hardy operator Hi
by

Hy f () = fZ a0y, (1.3)

where ¥ is a nonnegative function defined on Z*, and gave the characterization of

functions ¥ for which Hg are bounded on L" (Q%), 1 < r < oo, and on BMO(Q?).
Also, in each case, they obtained the corresponding operator norms.

Obviously, if ¥ = 1 and n = 1, then H,, is just reduced to the p-adic Hardy
operator H” on Q,, which is defined by

HP f(x) = L/ f()ydt, x #0.
ity <Ixl,

|x|p

Let0 < a < 1. We define the p-adic Riemann—Liouville fractional integral RY by

R =1 [ T

L= pt Syl <ixl, Ix = yIp®
Forn = 1, if we take ¢/ (1) = (1 — p~*) |1 — 1% xo\50 (1) /(1 — p*~ 1), then
HY, f(x) = x],“RE £ (x).

Forn > 2,if we take ¢(1) = (1 — p™™)[t|2~ /(1 — p~1), and f satisfies f(x) =
f(x], ), then

Hy f(x) = HP f(x),

where H? is the p-adic Hardy operator on Q) defined by

1
HP f(x) = f3<0| | )f(t)dt, x € Qp\{0},

- n
P

here B(0, |x|,) is a ball in Q’,’, with center at 0 € Q’;, and radius |x|,. In fact, by
definition, we have

1
g = [ pwar= [ oay
B(O0,]x[p) B(0,1)

[l

0
= “Hdy = f ~hyd
f3<o,1>f(’“'y'f’ )dy k;m S Gb1phdy

0
= > fe*opra—-p™

k=—o00
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Z/ CFey ke e
ltlp= =pk

f(tx) |t|" Lar (1.4)
Z*

Fu et al. [13] established the sharp estimates of p-adic Hardy operators on p-adic
weighted Lebesgue spaces. Wu et al. [31] obtained the sharp bounds of p-adic Hardy
operators on p-adic central Morrey spaces and p-adic A-central BMO spaces. They
also obtained the boundedness for commutators of p-adic Hardy operators on these
spaces.

The main purpose of this paper is to make clear the mapping properties of weighted
p-adic Hardy operators as well as their commutators on p-adic Morrey, central Morrey
and A-central BMO spaces.

Morrey [21] introduced the L9-* (R") spaces to study the local behavior of solutions
to second-order elliptic partial differential equations. The p-adic Morrey space is
defined as follows.

Definition 1.1 Let 1 < g < coand A > —ql. The p-adic Morrey space L(M(QZ) is
defined by

LIHQp) = | £ € L (@) 1 fllas gy < o0}

where

1

1
1 fllLargny = sup —/ | f (x)|7dx
41 @Q@) ac@yvez \|By (@)™ /B, (@)

Remark 1.2 Itis clear that L4~ 1/4(Qn) = L9(Q%), L90(@Q)) = L=(Q%).

Alvarez, Guzman-Partida and Lakey [1] studied the relationship between central
BMO spaces and Morrey spaces. Furthermore, they introduced A-central BMO spaces
and central Morrey spaces, respectively. Next, we introduce their p-adic versions.

Definition 1.3 LetA € Rand 1 < ¢ < co. The p-adic central Morrey space BY *X(Q'},)
is defined by

1 q
1£1lgna g 2= sup (—M,,/ If(x)lqu> < oo, (1.5)
By} s,

where B, = B, (0).

Remark 1.4 1t is clear that
. P |
LTMQ)) € BYM(@)), BTT4(Q)) = L1(@Q)).
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640 Q. Y. Wu, Z. W. Fu

When A < —1/g, the space BZ* (Q7) reduces to {0}; therefore, we can only consider
thecase L > —1/q.If 1 < g1 < g2 < oo, by Holder’s inequality

> q A 'q JA n
B 2 (Q’;) [ B 1 (QU)
fOI’ )\. € R.

Definition 1.5 Let 1 < % and 1 < g < oo. The space CMO“ ’k(@;) is defined by the
condition

1

1 q
”f”CMO‘i-"(QZ) ‘= sup <—1+M/ |f(x) — fo|qu> < 00. (1.6)
|By | By

yEZ

Remark 1.6 When ) = 0, the space CMO?-* (Q’I;) is just CMO? (Q;’,), which is defined
in [13]. If 1 < g1 < g2 < 0o, by Holder’s inequality,

CMO**(Q") € CMO™*(Q})

for 1 € R. By the standard proof as that in R”, we can see that

vez ceC

. 1 q
1 lemos» @) ~ sup inf <—1+M/ [f(x)— CI‘fdx) .
|BV|H By

Remark 1.7 The Formulas (1.5) and (1.6) yield that B4 (Q’;,) is a Banach space
continuously included in CMO? ’)‘(@’;,).

The outline of this paper is as follows. In Sect. 2, we establish the necessary and
sufficient conditions for boundedness of p-adic Hardy operators on p-adic Morrey
spaces, p-adic central Morrey spaces and p-adic A-central BMO spaces, respectively,
and obtain their corresponding operator norms. In Sect. 3, we give the characterization
of weight functions for which the commutators generated by weighted p-adic Hardy
operators and p-adic central BMO functions are bounded on p-adic central Morrey
spaces.

Throughout this paper, the letter C will be used to denote various constants, and
the various uses of the letter do not, however, denote the same constant.

2 Sharp Estimates of Weighted p-Adic Hardy Operator

We get the following sufficient and necessary conditions of weight functions, for which
the weighted p-adic Hardy operators are bounded on p-adic Morrey, central Morrey
and A-central BMO spaces.

Theorem 2.1 Let1 < g <ooand—1/q < X <0.Then Hi is bounded on L‘“‘(Q;’,)
if and only if
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/ |t} (1)dr < oo. @2.1)
Z*

P
Moreover,
P _ A
”HI/IHLZI’}‘(Q;’;)_)L"’)‘(Q;) = /Z* |l‘|’;) Y (t)dt.
¥4
Corollary 2.2 Let 1 < g <00, —1/qg <X <0and0 < o < 1. Then
1 — p_1
||Hp||Lq~)»(Qp)_)Lq.A(Qp) = m,

IR2] _ (=p™a=-pTH
a L4 @Qp)—> L4 (], dx) — (] — pa—Ty(pl+h — )"

Moreover, write E‘f’)‘(Q’;) ={f:f € L‘“‘(Qg) and satisfies f (x) = f(|x|;1)}.
Then

P 1-p
1750 2o @y rarey) = 7= =

Theorem 2.3 Ler | < g < coand —1/q < & < 0. Then Hy is bounded on BH(@Q1)
if and only if (2.1) holds. Moreover,

2
P
Corollary 2.4 Letl < g <00, —1/g <A <0and0 < o < 1. Then
1— p_1

P . . _—— -
1750 b0y = o @) = 7= =y

IR , _ (=pa-pH
a1 Ba2(@Qp)— B4 (xl,*Ndx) — (1 = pa—Ty(pl+h — 1)

Moreover, set B‘“(QZ) = ifif € B4*(Q") and satisfies f(x):f(|x|;1)},
Then

P, _ -
175 0 gy or@y) = 7= =ntm-

Theorem 2.5 Let 1 < g < o0 and 0 < A < 1/n. Then Hf;, is bounded on
CMO‘“‘(Q’;) if and only if (2.1) holds. Moreover,

P 2
Iy llemor @) —cmor @) = /;* |t (D)dr.
P
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642 Q. Y. Wu, Z. W. Fu

Corollary 2.6 Let 1 < g < oo.
(I). If0 < A < 1, then
1—p!
”Hp”CMO"'A(QPHCMO""\(QP) - m

IR2 _ (=p™d-p™H
a ICMO?*(Q,)—>CMO?* (x|, “dx) — (1— pa—l)(p1+)» -1’

(I1). If 0 < A < 1/n and set C/\/l(’)q’)‘(@’;,) = Hf: fe CMO‘I’)‘(Q’;) and satisfies
0 = fxl;D} then

1—p™
y4 .
175 lepmon @y —emor ey = 7= =

Proof of Theorem 2.1 Suppose that (2.1) holds. Let y € Z and denote B, (a) =
B(ta, |t|,p?). Using Minkowski’s inequality and change of variable, we have

1

_ / M Feoar)
1B, () Jg,@

1
1 / 4
< _ [f(x)|?dx | Y ()dr
[z;; (|By @™ b, @ )

H

| 7
= E ()9d 1M (1)de
/Z; <|rBy<a)|}{“" f,By(a)'fy' y) oy

A
< 1y /Z e[ o).
P
Thus, Hi is bounded on L‘M(QZ) and

||Hi||m-k(@;)%m,k(@;) = /Z* |f|?,/\1/f(t)dl‘~ (2.2)

P

On the other hand, assume that Hf;/ is bounded on L9*(Q?). Take
Jox)=1xI3, xeq).
Now we show that f € Lq’)‘((@’;,).
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(D. If |al, > pY and x € By (a), then |x|, = max{|x — al,, |la|,} > p”. Since
—é < A < 0, we have

1 [ niq 1 A
_— x| dx < ———— pYdx = 1.
1B, @) o, " 1By @) ;7 /B, @

(II). If |a], < p¥ and x € B, (a), then |x|, < max{|x —al,, |a|,} < pY; therefore,
x € By . Recall that two balls in Q) are either disjoint or one is contained in the
other (cf. P.21 in [2]). So we have B, (a) = By ; thus,

1

niq 1 niq
ﬁ/ <[y dx:ﬁ/ el dx
1By (@)™ /B, @ 1Byl B,

Y
=p—yn(l+kq) Z / pknkqu
Sk

k=—o00

1— p7n
= 1— p—n(1+kq) :

From the above discussion, we can see that fj € L‘“(Q’;). It is clear that

MY fo(x) = /Z el nde =[x /Z el nde

Y ? (2.3)
= hoto [ et
Z*
P
Therefore,
1P gy oy = fZ el 2.4)
p
Consequently,
f |ty ()dr < oo.
Z*
¥4
And (2.2) and (2.4) yield the desired result. m]

Proof of Theorem 2.3 Suppose that (2.1) holds. For any y € Z, by Minkowski’s
inequality and change of variable, we have
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644 Q.Y. Wu,Z. W. Fu

1

1 » p q 1 . %
—1+,\q/ IHy, f ()% dx S/ —1+Aq/ [ f(tx)|9dx | ¥ (t)dt
|By |y By |By | B,

1 / a N
= DIy ) ey (e
/ <|B(0 PPt Boprin) ) g

<1 o) /Z o
P

Therefore, Hﬁ is bounded on B7* (Q’;,) and

1D 0y oy < /Z e, 25)

P

On the other hand, suppose that H{;, is bounded on B9+* (Q’;). Take fo(x) = |x|"™*,
then

1 - Y
—— f | foC)dx = p=r T2 %" / p" 1 dx
Byl koo ¥ 5k

Y
(1 _p—n)p—ny(1+kq) Z pnk(l—i-)»q) (2.6)

k=—o00

1—p™
1 — p—n(l+)»q) ’

where the series converge due to A > —1/q. Thus, fy € Bq*((@;’,). Then by (2.3), we
can see that

f* 50 @dt < MG | gy o @y < - 2.7)

P
And (2.5) and (2.7) yield the desired result. O

Proof of Theorem 2.5 Suppose that (2.1) holds and f € CMOY ’A((@’I’]). Lety € Z
and denote B, = B(0, |t|, p?); by Fubini theorem and change of variable, we have

P
Hy s, = B, |H/ (/ f(tx)¢(t)dt> dx
:/ / F@x)dx | ¥ (@)de (2.8)
|By |0

= / fip, W (0)dr.
z
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Using Minkowski’s inequality, we get

1

1 q
<|B|—1+)‘q./ [Hy, f(x) = (HY, B, |qu)
V ) é
(|B |1+)»q/ dx)
1
1 q 4
< f T f £ x) — fip, [ dx ) oy

1 q

< IIfIICMoq.x(@;) /Z ) |t|';,*w(r>dr.

P

(tx) — fip, )W (1)dt

Therefore, Hfz is bounded on CMO?*(Q) and

||H§||CMOq.A(@$HCMOq_A(Q7)) 5/Z |t (n)dr. (2.9)

P

Conversely, if 7}, is bounded on CMO?*(Q}), take fo(x) = |x[}}'; from (2.6)
we can see that fy € Bq’*((@;ﬁ). Recall that Bq*k(Qg) is continuously embedded in
CMO‘”(Q’;). Therefore, f € CMOq’A(Q’I’,). By (2.3) and (2.8), we get

1

1 q
<|B|—1Hq/ Hy folx) — (Hifo)gqudx>

1
1 K n
= (IBI—HM /By | fo— (fo)By|qu> /%7 |l|p)”‘ﬁ(l)df-

Therefore,

p _ ni
||H]/,f0||CMoq,A(Qr;) = ||f0||CMoq,k(Q;) ,/Z* |t|p ‘ﬁ(t)dt,

P

which implies that
”Hi”CMoql(QZ)_)CMqu»(Qz) > LZ' |t|r;,)\10([)dt, (2.10)
P
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and
f |4 (1)dt < o0.
Z;

This completes the theorem. O

3 Characterizations of Weight Functions Via Commutators

Recently, commutators of operators have been paid much attention due to their impor-
tant applications. For example, some function spaces can be characterized in terms
of commutators [10]. In this section, we consider the boundedness for commutators
generated by H” and A-central BMO functions on p-adic central Morrey spaces.

Definition 3.1 The commutator between a function b that is locally integrable on Q7
and the weighted p-adic Hardy operator Hf; is defined by
b
My f = bHy f = Hy (f), 3.1
for some suitable functions f.

We establish the following sufficient and necessary condition for weight functions
to ensure that the commutators generated by weighted p-adic Hardy operators and
p-adic central BMO functions are bounded on p-adic central Morrey spaces.

Theorem 3.2 Let 1 < g < q1 <00, 1/g = 1/q1 + 1/q2 and —1/q; < 1 < O.
Assume that  is a positive integrable function on Z;,. Then for any b € CMO%(Q')),

the commutator Hi‘b is bounded from BN ')‘(Q'I')) to Bq*A(Q’;,) if and only if

1
/ Y (0t log, —dt < oo. (3.2)
Z;‘, |t|p

Remark 3.3 Since ¢ : Z’; — [0, +00) is integrable, andlogp ﬁ > 1forlt|, < p_l,

we have

/’wmm?m=/' wmm?m+/ Y (o)t de
zy 0<lt]p<p~! ltlp=1
P P pz

1
< / Y ()|t log, —dt + | Y (@)de
O<ltlp=<p~! Itlp i

P

1
=/ Y ()t log, —di + | y(1)dr < oo,
zy It zy

if 3.2 holds.
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Corollary 34 Let 1 < qg < q1 <00, 1/q = 1/q1 +1/q2, —1/q1 < A < 0 and
0 < a < 1. Then for any b € CMO%(Q),)
(1) the commutator HP"? is bounded from B9 ’A(Qp) to Bq’)‘((@p).

(II) the commutator Rg’b is bounded from Bql’k((@p) to Bq')‘(lxl_“qu). For any
b € CMO%2 (Q?,),

(I1I) the commutator HP'? is bounded from B ’)‘(Q’;,) to B‘”‘(Qﬁ), where B9+ (Q’;)
is defined in Corollary 2.4.

When b € CMO? ’A((@’I;) with A # 0, we have the following conclusion.

Theorem 3.5 Let 1 < g <q1 <oo, 1/g=1/q1+1/q2, —1/qg <X <0, —1/q1 <
M <0,0<r<tandr=nr 42 If

fZ YOt} dr < oo, (3.3)

then for any b € CMO?*2 (Q}), the corresponding commutator Hi’b is bounded
from BO-21(Q") to BIH(Q).

‘We have obtained the values of fz* ()|t |gkdt in Corollaries 2.2, 2.4 and 2.6, Thus
14

by Theorem 3.5, we obtain the following result.

Corollary 3.6 Let 1 < g < q1 < oo, /g = 1/q1 + 1/q2, —1/qg < A < 0,
—1/q1 <A1 <O.

() If0<iy <, A=A+ Xxand0 < a < 1, then for any b € CMO‘”')‘Z(QP),
(i) the commutator HPY s bounded from Ba1M Qp) 1o B‘M(Qp).
(ii) the commutator Rg’b is bounded from Ba1-*1 Qp) 10 B9+ (|x|~*dx).

(1) If0 < Ay < }land)» = A1+Aa, thenforanyb € CMO%2-*2 (QZ), the commutator

HPY is bounded from Bt (Q’;) to Bq’A(Q’;), where Bq")‘((@'l’,) is defined in
Corollary 2.4.

Before proving these theorems, we need the following result. One can refer to
(Lemma 15 in [31]) for another version; here, we give a more accurate estimation.

Lemma 3.7 Suppose that b € CMO?*(Q") and j, k € Z.
(I). If » > O, then

pn(l + p—lk—j\n)»)

1bs; = bp| = == Ibllemon gy max {1Bjl3 1Bil} } -

(). If » =0, then

Ibs; — b, | = p"1j — kllIblemor @y)-
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648 Q. Y. Wu, Z. W. Fu

Proof Without loss of generality, we may assume that k > j. Recall that bp, =
ﬁ /, B b(x)dx. By Holder’s inequality, we have

1
|bp,,, —bp;| < f |b(x) — bp,,|dx < f |b(x) — bp,,, |dx
+1 |B |H +1 |B |H Biny +1

1 % 1—%
< / b) — by, 190x ) 1Bist ]
|Bila \JB,

|Bis1l ™
< —CTH bl eptonr @y = P |Bisi i 1Bl epton @) -
|Bi| P P
Therefore, if A > 0, then
k—1 k—1
s, = b, | < D105, = bs | < P"Iblevonry) D 1Bisily
i=j i=j
_ P+ p b Bk
- l—p_”)‘ I ”CMO‘M(Qg)| k|1-1-
If A =0, then
k—1

bg; —bp | <Y |b., —ba| = (k= )" Ibllemor@s)-
i=j

m}

Proof of Theorem 3.2 Let y € Z and denote t B, = B(0, |t|,pY). Assume that (3.2)

holds; by definition, we have
1

1 q
(i et omer)
1 A
= wa (/ |(b(x) — b(tx))f(lx)W(l)dl) dX>

AN
- ( |<b<x>—b3y)f(rx>|w<r)dr> dx)

(o
(e
(=
iz

1
4 q
+ T+hg / < |(bp, — sty)f(tx)h/f(t)dt) dx)
4 q
+ B, |1+)\q Ly < [(b(tx) —sty)f(fx)W(l‘)dt) dx)
=1L+ L+ 1. (3.4)
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In the following, we will estimate Iy, I, and I3, respectively. For Ij, by
Minkowski’s inequality and Holder’s inequality (1/g = 1/q1 + 1/g2), we get

1

1 q
115/ (IBI—HMf I(b(X)—bBV)f(IX)I"dX) Y (r)de

_1_ é q1
< 1Byl A/Z* (/B |b<x>—bsy|q2dx> (fB If(tx)l’“dx) Y (n)dr
P Y Y

i
1 q1
< lIbliemor @) / <IBW—1+M‘/ |f(y)|‘1'dy> |f|',1,)"1ﬁ(l)df

< Ibllemor £l o1 /Z Iy, (3.5)

P

Similarly, we have

1

1 q
ne [ <|B|—1+M / |(b(tx)—szy)f(lx)|qu) v (0)dr

1
1 q2
< f ( _ / |b<y)—btgy|‘12dy)
Zy, |# )/|H tBy (36)

€

1 q1
x(w—mq, | If(y)lq‘dy> 12 (o)

< ”b”CMO‘D(QZ)”f”[gqlv)»((@g)-/Z |l|',1,x¢(l)dt-

14

For I, by Minkowski’s inequality and Holder’s inequality (1/g = 1/q1 + 1/92),
we have

1
1 q
< / <|B|—1Hq / If(tx)lqu> Ibs, — by, 1Y ()t

1
sf (IBIT”‘/ If(tx)l‘“dX> |bB, — b, [¥(1)dr

€L

1 o
:/ (W—lﬂql /ZB |f(Y)|‘11dy) |t|;k|b3y — byp, |¥r(1)dt
Y

<1/ gy /Z 113 1bs, = bus, ¥ (1)dr. 3.7)

P

Q‘,_‘
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Note that t € Z;‘,; thus, ||, < 1. By Lemma 3.7 for A = 0, we get

y—1
1
lbg, —bip,|= > |bp,, —bpl < p"lIbllemoe @n) log,, TR
k=y+log,, ||, P
Therefore,
1
n . ni
L<p ”b”CMO‘IZ(Q’;,)”f”BqlJ»(Qr;‘) /Z* v (@)ltl,)" log), Edt- (3.8)
P

By (3.2) and Remark 3.3 and then combining with the inequalities (3.5)—(3.8), we
obtain

by, .
1y N o @y e @)

Itlp

1
< C||b||CMoqz(@$) (/Z* 1ﬁ(t)|t|’;))L + /Z* Iﬁ(l)|t|2)L logp —dl‘) < 00.
I P

On the other hand, suppose that ’Hi’b is bounded from B4 *A(Q’I’,) to B4 ’A(Q’;,) and
b € CMO%2 (Q;), we will show that (3.2) holds.

In fact, take bo(x) = log, [x]p, x € Q;’?. From Lemma 2.1 in [22], we can see
that by € BMO(Q;). By Corollary 5.17 in [18], || - ||BMO(Q';) and || - ||BMO‘1(Q';,)
are equivalent. Therefore, bo(x) € BMO%2 ((@;) Cc CMO%2 (Q’;). By assumption, we
have

b

We will also take fp(x) = |x|"*, from (2.6) we can see that fy € Bq’)‘((@g), and
1—p—n

. — P :
”fO”B‘IJ‘(Qz) = m. Since

" folw) = /Z (Box) = bo(x) fo(tx) ¥ (1)di
- /Z (log,, |x|, —log,, [tx|p)ex| 4y (r)dr

n 1
= /o) /Z O og, -
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Using Holder’s inequality (1 = ¢g/q1 + q/q2), we have

b
1M foll g

1

1 b d
sup —/ IHD™ fo(x)|9
yez <|B |1+M B v

Y

! q ni 1
sup o 1+Ag / [ fo(x)| / w‘(l‘)|t| logp Wdt
veZ \|Byly »

]_

- m[ Y0l log, |

1 — p—n(+rqn) 1 — N
= 1 — p—n(+29) X 1—p n(1+kq1)/ vt log, — z |

= Cq.qu Il foll gorr ) / YOl log, ——dr
P )z |t|p
P
Therefore,

b 1
||Hi 0||Bq,A(Qr;,)_)Bq,A(Q;:’) = Cq,fh/Z W(I)VV;)" log, |t_|dt'
b p
P

Then by (3.9), we obtain
/ V()] log idt < 0.
Z’;, b P |t|p

The proof is complete. O

Proof of Corollary 3.4 (1) When = 1 and n = 1, we have Hy, f = H? f. Since

/ |t|)‘I log, — B | Z/ |t|k1 log, —dt
z
p

=1-ph ka_k““‘) < 00.
k=0

We can get Corollary 3.4 (I) directly from Theorem 3.2.

(2) Forn = 1, if we take ¥ (1) = (1 — p~*)[1 — 1|9 xp\s5, (1) /(1 — p*~ "), then
Hy f(x) = |x],Rg f (x). At this time
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1 1—p™@ 1
/ Y0l log,, —dr=—”_1/ 151 — 1% log,, —dr
Z, 0<|t],<1 ],

It p I —p“
1—p™@ 1
- —p_I/ 115 log,, ——d
L—p*=" Jo<yr|,<1 71y
- p
_a _l; a)(l -r) Zk —k(1H2) _ o
B k=1

Then Corollary 3.4 (II) follows from Theorem 3.2.
(3) Forn > 2, if we take y(t) = (1 — p~™)e|’"'/(1 — p~1), and f satisfies

f@) = flxl, D), then Hy f (x) = HP f (x), and

f 1//(t)|t|;;l logp Ldt — %/ |t|§)1+kl)n—l logp Ldt
z; It l1—-p : I71p

o
— (1 _ p—n) ka—k(l-‘r)»])n < 00.
k=0

Therefore, Corollary 3.4 (IIT) holds. O

Proof of Theorem 3.5 As in the proof of Theorem 3.2, we can write

1
1 q
<|B|—1+Aq/ |Hi’bf(x)|qu) =hL+ 5L+,
V

where I, I, I3 are the ones in (3.4).
By the similar estimates to (3.5) and (3.6), we have

It = 1Bllcston s I o fZ 141 (1)dr,
P

I3 < ||b||CMoq2JAz(Q2)||f||qu|~l1(@77)/Z MZMKZf(t)dL
p
For I, like (3.7), we have

L <

1
a £ Nl gar. 2@ / |t |77)L1 |bBV - sty [Y (r)dr.
| V|H p

By Lemma 3.7 and the fact that if r € Z;‘, then log, |7[, is a nonnegative integer, we
get
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P+ pnkzlogp |z\p)

_ A2
|bBV - stV| - |bBV - bB;/+10gp ars | =< 1— p*nkz ”b”CMoqz,Az(Q;ﬂBﬂH

2pn A2
= 101l cpvioa2 22 @) |By 5

IA

Consequently,

2p"

- . niy
L < 1= i ||b||CMoq2</\2(Ql;7)||f||34bh(@»;}) /%* v @)l dr.
P

The estimates of 11, I», I3 imply that

b . 3 ni
Iy, f||Bq.k(Qr;7) = C”b”(jMoqz»/\z(QZ)||f||Bq|-M(Q;) /Z* Y (0)|e]), e
P

Theorem 3.5 is proved. O
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