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Abstract We give asymptotic description of strong solutions in its lifespan with
compactly supported initial momentum and investigate the persistence property in
weighted space and blow-up phenomena for a generalized Novikov equation.
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1 Introduction

We, in this paper, are interested in the following generalized Novikov equation:

ut − utxx + (a + b)u2ux = auuxuxx + bu2uxxx , (1.1)
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1860 K. Li et al.

with associated initial data u(x, t = 0) = u0(x), where a > 0 and b > 0 are the
arbitrary constants. It is obvious when a and b are fixed by 3 and 1, respectively, (1.1)
reduces to the celebrated Novikov equation

ut − utxx + 4u2ux = 3uuxuxx + u2uxxx , (1.2)

which was obtained by using the perturbative symmetry approach in a symmetry clas-
sification of nonlocal partial differential equations with quadratic or cubic nonlinearity
[24]; subsequently, Novikov found a scalar Lax pair for it, then proved that (1.2) is
integrable. Taking convolution with Green’s function G(x) = e−|x |/2, x ∈ R for the
operator (1 − ∂2x )

−1 gives the following equivalent nonlocal form:

ut + u2ux + G ∗ (3uuxuxx + 2u3x + 3u2ux ) = 0. (1.3)

By comparison with the celebrated Camassa–Holm equation [3]

ut + uux + ∂xG ∗
(
u2 + 1

2
u2x

)
= 0, (1.4)

and also the Degasperis–Procesi equation [5]

ut + uux + ∂xG ∗
(
3

2
u2

)
= 0, (1.5)

it is easy to observe that Novikov equation has nonlinear terms that are cubic rather
than quadratic. It has drawnmuch attention since it appears.Well-posedness of Cauchy
problem for (1.2) in Sobolev space on the torus was first established by Tiglay [27], the
cases of the line and the circle were done by Himonas et al. [13]. Grayshan [6] studied
the data-to-solution map in the Sobolev space. Hone et al. [15] calculated the explicit
formulas for multipeakon solutions of (1.2) using the matrix Lax pair found by Hone
and Wang. This multipeakon property is common with the Camassa–Holm equation
and Degasperis–Procesi equations [4]. Hone and Wang [16] presented a matrix Lax
pair for (1.2), and showed how it was related by a reciprocal transformation to a
negative flow in the Swasa–Kotera hierarchy. Infinitely, many conserved quantities
as well as bi-Hamiltonian structures were found. Sufficient conditions on the initial
data to guarantee finite time blow-up were established by [17,30], and the global in
time solution was obtained by assuming that (1− ∂2x )u0 does not change sign. Ni and
Zhou [25] proved that the Cauchy problem for (1.2) is locally well-posed in Besov
space Bs

2,r with the critical index s = 3/2 and in Sobolev space Hs with s > 3/2
with the aid of Kato’s semigroup theory [19]. Also Yan et al. [29] proved local well-
posedness in Besov space under certain assumptions. Global weak solution was also
shown by the authors [20,22,28]. Asymptotic profile and measure of the momentum
support are the recent works [8,12]. For some related issues, the readers are referred
to [9–11,18,21,23,32] and references therein.

It is not difficult to find that the coefficients of the Camassa–Holm equation from
the terms uux , uxuxx , and uuxxx are 3, 2, and 1, which satisfy in order that 3 =
2 + 1, similar fact happens for the Degasperis–Procesi equation, i.e., 4 = 3 + 1,
then it does from the corresponding terms of the Novikov equation. Note that it is
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formally simplemathematical relationship among the coefficients, but it actually plays
important role in the analysis of dynamical properties of both equations. As we know,
the Camassa–Holm and Degasperis–Procesi equations possess different conservation
laws, for example,

∫
R

(u2 + u2x )dx,
∫
R

(u3 + uu2x )dx,
∫
R

√
ydx

are conserved for the Camassa–Holm equation (1.4), while

∫
R

u3dx,
∫
R

yvdx,
∫
R

y1/3dx

are conserved for the Degasperis–Procesi (1.5), where v = (4 − ∂2x )u and y = (1 −
∂2x )u. Lots of research also indicated the differences between (1.4) and (1.5). One
purpose of this paper is to showhow these coefficients affect the properties of solutions.
On the other hand, we try to discover something new even for (1.2) to extend some
previous results. Precisely, in this paper, we find that the H1 -norm of strong solutions
to (1.1) is an invariant if a = 3b, which usually plays an important role in the study
of shallow water type equations (the Camassa–Holm equation, Degasperis–Procesi
equation, and Novikov equation). Note that even for Novikov equation (1.2), the
asymptotic description and persistence properties in weighted space investigated here
are completely new. Based on Kato’s semigroup theory [19], one can prove local well-
posedness for (1.1) as what was done by Zhou [25] for the Novikov equation. We
are not going to repeat it but focus on the following issues. In Sect. 2, the detailed
asymptotic profiles of strong solution are shown with compactly supported initial
momentum y0(x) rather than u0(x), which can be comparable with the work [14].
We, in Sect. 3, determine the persistence property of strong solutions in weighted
space in the sense that the solutions to (1.1 ) will retain this property as their initial
values do. In the final section, we discuss finite time blow-up phenomenon and global
in time solutions.

2 Preliminaries

Set y = (1− ∂2x )u, which is usually called momentum. Then u(x, t) and ux (x, t) can
be expressed by

u(x, t) = 1

2
e−x

∫ x

−∞
eξ y(ξ, t)dξ + 1

2
ex

∫ ∞

x
e−ξ y(ξ, t)dξ, (2.1)

ux (x, t) = −1

2
e−x

∫ x

−∞
eξ y(ξ, t)dξ + 1

2
ex

∫ ∞

x
e−ξ y(ξ, t)dξ. (2.2)

For convenience of later use, we have an equivalent form of (1.1)

yt + byxu
2 + ayuux = 0. (2.3)
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Let q(x, t) be the particle line evolved by the solution u(x, t):

dq(x, t)

dt
= bu2(q(x, t), t), q(x, 0) = x . (2.4)

Differentiating it with respect to x

dqt (x, t)

dx
= 2buux (q, t)qx , qx (x, 0) = 1.

Then, we have

qx (x, t) = exp

(
2b

∫ t

0
uux (q, s)ds

)

which is always positive before blow-up time. Therefore, the function q(x, t) is an
increasing diffeomorphism of the line. From (2.3 ), we can prove that

y(q(x, t), t)q
a
2b
x = y0(x). (2.5)

In fact, by straightforward computation, we have

d

dt

[
y(q(x, t), t)q

a
2b
x (x, t)

]
= (yt + yxqt )q

a
2b
x + a

2b
yq

a
2b−1
x qxt

= (yt + yxbu
2)q

a
2b
x + a

2b
yq

a
2b−1
x 2buuxqx

= (yt + byxu
2 + ayuux )q

a
2b
x = 0.

In order to investigate the blow-up phenomenon,we shall borrow a lemma fromZhou’s
work [31], which can be proved bymaking full use of comparison theorem of ordinary
differential equations.

Lemma 2.1 Suppose that �(t) ∈ C2(0,∞) satisfying

{
�′′(t) � C0�

′(t)�(t), C0 > 0,
�(0) > 0,�′(0) > 0.

Then �(t) blows up in finite time and the blow-up time can be estimated as

T � max

{
2

C0�(0)
,

�(0)

�′(0)

}
.

3 Asymptotic Description

The purpose of this section is to give a more detailed description on the corresponding
strong solution u(x, t) to (1.1) in its lifespan with initial momentum being compactly
supported and nonnegative. As a byproduct, an explicit formula for u(x, t) in space
direction is shown in the following theorem.
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Theorem 3.1 Assume that for some T > 0 and s > 5/2, u(x, t) ∈ C ([0, T ]; Hs(R))

is a nontrivial strong solution of (1.1) with associated initial value u0(x) ∈ Hs(R).
If 0 < a ≤ 6b and initial momentum y0(x) = (1 − ∂2x )u0(x) are nonnegative with
compact support in an interval [α, β]. Then we have

u(x, t) =
{

1
2 E1(t)e−x , f or x > q(β, t),
1
2 E2(t)ex , f or x < q(α, t),

(3.1)

where E1(t)and E2(t)are continuous positive functions. Furthermore, E1(t) is strictly
increasing, while E2(t) is strictly decreasing for all t ∈ [0, T ].
Remark 3.1 We remark that (3.1) gives not only exponential decay behavior of strong
solutions in space variable, but also the information that u(x, t) can be expressed by
separation of variables into a product of two single variable functions. In our case the
solution u(x, t) lies above x-axis, we conjecture it is the term u2ux whose index of u
is 2, an even number that results in it in some sense.

Proof Since y0(x) has compact support in the interval [α, β], it follows by (2.5) that
y(·, t) has its compact support in the interval [q(α, t), q(β, t)] for any t ∈ [0, T ].
Hence the following functions are well defined

E1(t) =
∫
R

eξ y(ξ, t)dξ and E2(t) =
∫
R

e−ξ y(ξ, t)dξ (3.2)

with

E1(0) =
∫
R

eξ y0(ξ)dξ > 0 and E2(0) =
∫
R

e−ξ y0(ξ)dξ > 0

by the positivity of initial momentum y0(x). The relations between u(x, t) and y(x, t)
yield

u(x, t) = 1

2
e−|x | ∗ y(x, t) = 1

2
e−x E1(t), x > q(β, t)

and

u(x, t) = 1

2
e−|x | ∗ y(x, t) = 1

2
ex E2(t), x < q(α, t).

Now it remains to show the monotonicity of E1(t) and E2(t). It follows from (3.2)
that

dE1(t)

dt
=

∫
R

eξ yt (ξ, t)dξ.

Thus, in view of (2.3) and after integration by parts, we have

dE1(t)

dt
=

∫
R

eξ yt (ξ, t)dξ = −
∫
R

eξ (bu2yx + ayuux )dξ

= −b
∫
R

eξu2dy − a
∫
R

eξ yuuxdξ

= b
∫
R

eξu2ydξ + 2b
∫
R

eξuux ydξ − a
∫
R

eξuux ydξ
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= b
∫
R

eξu2(u − uxx )dξ + (2b − a)

∫
R

eξuux ydξ

= b
∫
R

eξu3dξ − b
∫
R

eξu2uxxdξ + (2b − a)

∫
R

eξuux ydξ

= a

3

∫
R

eξu3dξ + 6b − a

2

∫
R

eξuu2xdξ + 2b − a

2

∫
R

eξu3xdξ. (3.3)

Since y(·, t) is compactly supported in [q(α, t), q(β, t)], a direct consequence of (2.1)
and (2.2) implies that u(x, t) ≥ 0 and u(x, t) + ux (x, t) > 0 for all t ∈ [0, T ] and
x ∈ R. Therefore, when 0 < a ≤ 2b,

dE1(t)

dt
= a

3

∫
R

eξu3dξ + 6b − a

2

∫
R

eξuu2xdξ + 2b − a

2

∫
R

eξu3xdξ

= a

3

∫
R

eξu3dξ + 2b
∫
R

eξuu2xdξ + 2b − a

2

∫
R

eξu2x (u + ux )dξ

> 0.

Moreover, dE1(t)/dt can also be expressed by

dE1(t)

dt
= a

3

∫
R

eξu3dξ + 6b − a

2

∫
R

eξuu2xdξ + 2b − a

2

∫
R

eξu3xdξ

= 6b − a

6

∫
R

eξuu2dξ + 6b − a

2

∫
R

eξuu2xdξ

−2b − a

2

∫
R

eξ (u3 − u3x )dξ.

Note that

u(x, t) − ux (x, t) = e−x
∫ x

−∞
eξ y(ξ, t)dξ ≥ 0,

then it follows that

u3 − u3x = (u − ux ) (u2 + uux + u2x )

= (u − ux )

[(
u + 1

2
ux

)2

+ 3

4
u2x

]
≥ 0.

Then
dE1(t)

dt
> 0, for t ∈ [0, T ]

holds when 2b < a ≤ 6b.
Similarly, for E2(t), we have after integration by parts that

dE2(t)

dt
=

∫
R

e−ξ yt (ξ, t)dξ = −b
∫
R

e−ξu2yxdξ − a
∫
R

e−ξuux ydξ

= −b
∫
R

e−ξu2ydξ + (2b − a)

∫
R

e−ξuux ydξ
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= −a

3

∫
R

e−ξu3dξ − 6b − a

2

∫
R

e−ξuu2xdξ + 2b − a

2

∫
R

e−ξu3xdξ

= −a

3

∫
R

e−ξu3dξ − 2b
∫
R

e−ξuu2xdξ

−2b − a

2

∫
R

e−ξu2x (u − ux )dξ (3.4)

= −6b − a

6

∫
R

e−ξuu2dξ − 6b − a

2

∫
R

e−ξuu2xdξ

+ 2b − a

2

∫
R

e−ξ (u3 + u3x )dξ. (3.5)

If 0 < a ≤ 6b, as above for E1(t), then (3.4) and (3.5) can lead to

dE2(t)

dt
< 0, for t ∈ [0, T ].

This completes the proof of Theorem 3.1. 	


4 Persistence Property in Weighted Space

Generally, we say persistence property of solutions to (1.1): the solution u(x, t) and
its derivatives retain this property as their initial values do. In this part, we intend to
find a class of weight functions ϕ such that

||ϕu(t)||p + ||ϕux (t)||p + ||ϕuxx (t)||p < ∞,

which can generalize some previous results, where || · ||p is the usual L p norm. We
can obtain a persistence result of solutions in the weighted space L p(R, ϕ p(x)dx).
Wewill work with moderate weight functions which have been systematically used to
lead to optimal results for the Camassa–Holm equation in [2]. To this end, let us first
recall some standard definitions and basic results in time-frequency analysis [1,7].

Definition 4.1 A nonnegative function v : R
n → R is called sub-multiplicative if

v(x + y) ≤ v(x)v(y) holds for all x, y ∈ R
n . Given a sub-multiplicative function v,

a positive function ϕ is called v-moderate if there exists a constant C > 0 such that
ϕ(x + y) ≤ Cv(x)ϕ(y) holds for all x, y ∈ R

n .

It is proved in [2] that ϕ is v-moderate if and only if the weighted Young inequality

‖( f1 ∗ f2)ϕ‖p ≤ C ‖ f1v‖1 ‖ f2ϕ‖p (4.1)

holds for any two measurable functions f1, f2 and 1 ≤ p ≤ ∞.

Definition 4.2 We say that ϕ: R → (0,+∞) is an admissible weight for (1.1) if it
is locally absolutely continuous such that |ϕ′(x)| ≤ A|ϕ(x)| for some A > 0 and
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a.e. x ∈ R, and that is v-moderate with a sub-multiplicative function v satisfying
infR v > 0 and ∫

R

v(x)e−|x |dx < ∞. (4.2)

Now we show the main result of this section.

Theorem 4.3 Let u0 ∈ Hs(R) with s > 5/2, 2 ≤ p ≤ ∞, and u ∈
C([0, T ); Hs(R))∩C1([0, T ); Hs−1(R)) be the strong solution to (1.1) starting from
u0 such that ϕu0, ϕu0x , ϕu0xx ∈ L p(R) for an admissible weight function ϕ of (1.1).
Then for all t ∈ [0, T ), we have the estimate

‖ϕu(·, t)‖p + ‖ϕux (·, t)‖p + ‖ϕuxx (·, t)‖p

≤ exp(CM2t)
(‖ϕu0(x)‖p + ‖ϕu0x (x)‖p + ‖ϕu0xx (x)‖p

)
,

where the constant C depending only on the weights v and ϕ and

M := sup
t∈[0,T )

(‖u(·, t)‖∞ + ‖ux (·, t)‖∞ + ‖uxx (·, t)‖∞) .

Remark 4.1 The standard examples for admissible weight functions are given by the
family of functions [7]

ϕ(x) = ϕa,b,c,d(x) = ea|x |b(1 + |x |)c log(e + |x |d),

where we require that a ≥ 0, 0 ≤ b ≤ 1, and ab < 1.

• If we take ϕ(x) = ϕ0,0,c,0(x) with c > 0 and choose p = ∞ in Theorem 4.3, then
the initial datum decays algebraically like (1 + |x |)−c, which is preserved by the
solution in its lifespan, i.e., the solution u(x, t) and its derivative also decay like
(1 + |x |)−c asymptotically. This is exactly the result of Ni and Zhou [26] for the
Camassa–Holm equation.

• If we take ϕ(x) = ϕa,1,0,0(x) if x ≥ 0 and ϕ(x) = 1 if x ≤ 0 with 0 ≤
a < 1. Such weight clearly satisfies the admissibility conditions of Definition
4.2. The result from Theorem 4.3 with p = ∞ implies that the pointwise decay
of initial values can be preserved during the evolution. Similar decay properties
were also determined by [14,25] for the Camassa–Holm and Novikov equations,
respectively. So, Theorem 4.3 is actually a generalized version of them, and can
also be viewed as an intermediate state of decay behavior.

Proof For convenience, we rewrite (1.1) as the following transport equation:

ut + bu2ux + G ∗ F(u) = 0, (4.3)

where F(u) = au2ux −(a−6b)uuxuxx +2bu3x and G(x) = e−|x |/2 is the Green’s
function of the operator

(
1 − ∂2x

)−1
. For any N ∈ N\{0}, we define the N -truncations:

ϕN (x) = min{ϕ(x), N }. Then it is easy to check that ϕN (x) : R → R is locally
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absolutely continuous function satisfying ‖ϕN (x)‖∞ ≤ N and |ϕ′
N (x)| ≤ AϕN (x)

a.e. on R.
For p ∈ [2,+∞), multiplying (4.3) by ϕN |ϕNu|p−2ϕNu and integrating both sides

on the line, one gets

‖ϕNu‖p−1
p

d

dt
‖ϕNu‖p +b

∫
R

u|ϕNu|puxdx+
∫
R

ϕNG ∗F(u)|ϕNu|p−2ϕNudx = 0.

We observe that ∣∣∣∣
∫
R

u|ϕNu|puxdx
∣∣∣∣ ≤ M2 ‖ϕNu‖p

p ,

and by Hölder’s inequality that

∣∣∣∣
∫
R

ϕNG ∗ F(u)|ϕNu|p−2ϕNudx

∣∣∣∣ ≤ ‖ϕNG ∗ F(u)‖p ‖ϕNu‖p−1
p .

Moreover, we have by using (4.1) and (4.2 ) that

‖ϕNG ∗ F(u)‖p � ‖Gv‖1 ‖ϕN F(u)‖p � ‖ϕN F(u)‖p .

Hence, we obtain

d

dt
‖ϕNu‖p � M2 ‖ϕNu‖p + ‖ϕN F(u)‖p . (4.4)

Differentiating (4.3) with respect to variable x produces the following equation:

utx + bu2uxx + 2buu2x + ∂x (G ∗ F(u)) = 0.

Multiplying the above equation by ϕN |ϕNux |p−2ϕNux and integrating over the line,
one has

||ϕNux ||p−1
p

d

dt
||ϕNux ||p +

∫
R

ϕN ∂x (G ∗ F(u))|ϕNux |p−2ϕNuxdx

+ b
∫
R

u2uxxϕN |ϕNux |p−2ϕNuxdx + 2b
∫
R

uu2xϕN |ϕNux |p−2ϕNuxdx = 0.

We estimate that

∫
R

u2uxxϕN |ϕNux |p−2ϕNuxdx

=
∫
R

u2|ϕNux |p−2ϕNux [(uxϕN )x − ux∂xϕN ] dx

=
∫
R

u2∂x

( |ϕNux |p
p

)
dx −

∫
R

u2|ϕNux |p−2ϕNux
(
uxϕ

′
N

)
dx .
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Note that |ϕ′
N (x)| ≤ AϕN (x) a.e. on R, then it follows that

∣∣∣∣
∫
R

u2uxxϕN |ϕNux |p−2ϕNuxdx

∣∣∣∣
≤ 2p−1M2 ‖ϕNux‖p

p + A||u||2L∞ ‖ϕNux‖p
p

≤ M2(1 + A) ‖ϕNux‖p
p

and

∣∣∣∣
∫
R

uu2xϕN |ϕNux |p−2ϕNuxdx

∣∣∣∣ ≤ M2 ‖ϕNux‖p
p∣∣∣∣

∫
R

ϕN ∂x (G ∗ F(u))|ϕNux |p−2ϕNuxdx

∣∣∣∣ ≤ ‖ϕN ∂x (G ∗ F(u))‖p ‖ϕNux‖p−1
p .

By using the fact ∂xG = − 1
2 sgn(x)e

−|x | in the weak sense and using (4.1) and (4.2)
again, there holds

‖ϕN ∂x (G ∗ F(u))‖p � ‖(∂xG)v‖1 ‖ϕN F(u)‖p � ‖ϕN F(u)‖p .

Thus, we get that

d

dt
‖ϕNux‖p � C1M

2 ‖ϕNux‖p + ‖ϕN F(u)‖p . (4.5)

Differentiating (4.3) twice with respect to spatial variable x gives the following equa-
tion:

utxx + bu2uxxx + 6buuxuxx + 2bu3x + ∂2x (G ∗ F(u)) = 0.

Multiplying this equation by ϕN |ϕNuxx |p−2ϕNuxx and integrating over the line, we
have

‖ϕNuxx‖p−1
p

d

dt
‖ϕNuxx‖p + b

∫
R

u2uxxxϕN |ϕNuxx |p−2ϕNuxxdx

+
∫
R

ϕN ∂2x (G ∗ F(u))|ϕNuxx |p−2ϕNuxxdx

+ 6b
∫
R

uux |ϕNuxx |pdx + 2b
∫
R

u3xϕN |ϕNuxx |p−2ϕNuxxdx = 0.

We first estimate the second term of the above equation. For this purpose, we rewrite
it as follows:

b
∫
R

[∂x (ϕNuxx ) − ∂x (ϕN )uxx ] u
2|ϕNuxx |p−2ϕNuxxdx,
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The Cauchy Problem on a Generalized Novikov Equation 1869

then we have, in view of |∂x (ϕN )| ≤ A|ϕN |, that
∣∣∣∣
∫
R

∂x (ϕN )uxxu
2|ϕNuxx |p−2ϕNuxxdx

∣∣∣∣ ≤ AM2 ‖ϕNuxx‖p
p ,

and
∣∣∣∣
∫
R

∂x (ϕNuxx )u
2|ϕNuxx |p−2ϕNuxxdx

∣∣∣∣
≤

∣∣∣∣
∫
R

u2∂x

( |ϕNuxx |p
p

)
dx

∣∣∣∣ = 2

p

∣∣∣∣
∫
R

uux |ϕNuxx |pdx
∣∣∣∣

� M2 ‖ϕNuxx‖p
p ,

by using integration by parts in view of Sobolev’s theorem. Hence, we obtain

∣∣∣∣
∫
R

u2uxxxϕN |ϕNuxx |p−2ϕNuxxdx

∣∣∣∣ ≤ (A + 1)M2 ‖ϕNuxx‖p
p .

Moreover, for the other terms, we have

∣∣∣∣
∫
R

uux |ϕNuxx |pdx
∣∣∣∣ ≤ M2 ‖ϕNuxx‖p

p ,

∣∣∣∣
∫
R

u3xϕN |ϕNuxx |p−2ϕNuxxdx

∣∣∣∣ ≤ M2 ‖ϕNux‖p ‖ϕNuxx‖p−1
p ,

∣∣∣∣
∫
R

ϕN ∂2x (G ∗ F(u))|ϕNuxx |p−2ϕNuxxdx

∣∣∣∣ ≤
∥∥∥ϕN ∂2x (G ∗ F(u))

∥∥∥
p
‖ϕNuxx‖p−1

p .

Thus, we obtain

d

dt
‖ϕNuxx‖p � C2M

2 (‖ϕNux‖p + ‖ϕNuxx‖p + ‖ϕN F(u)‖p
)
, (4.6)

where we have used the fact
∥∥∥ϕN ∂2x (G ∗ F(u))

∥∥∥
p

�‖ ϕN F(u) ‖p .

Furthermore, we conclude easily by the definition of F(u) that

‖ϕN F(u)‖p � C3M
2 (‖ϕNu‖p + ‖ϕNux‖p + ‖ϕNuxx‖p

)
. (4.7)

Combining (4.4), (4.5), and (4.6), there exists a constant C such that

d

dt

(‖ϕNu‖p + ‖ϕNux‖p + ‖ϕNuxx‖p
)

≤ CM2 (‖ϕNu‖p + ‖ϕNux‖p + ‖ϕNuxx‖p
)
.
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Now by the Gronwall’s lemma, we have

‖ϕNu‖p + ‖ϕNux‖p + ‖ϕNuxx‖p

≤ exp(CM2t)
(‖ϕNu0‖p + ‖ϕNu0x‖p + ‖ϕNu0xx‖p

)
.

Since for a.e. x ∈ R, ϕN goes to ϕ as N tends to ∞, by the assumptions we arrive at

‖ϕu‖p + ‖ϕux‖p + ‖ϕuxx‖p

≤ exp(CM2t)
(‖ϕu0‖p + ‖ϕu0x‖p + ‖ϕu0xx‖p

)
. (4.8)

The remaining is to treat the case of p = ∞. We have u0, u0x , u0xx ∈ L2 ∩ L∞, and
ϕN ∈ L∞. Therefore, for all q ≥ 2, we have as before

‖ϕNu‖q + ‖ϕNux‖q + ‖ϕNuxx‖q
≤ exp(CM2t)

(‖ϕNu0‖q + ‖ϕNu0x‖q + ‖ϕNu0xx‖q
)

with the factor exp(CM2t) being independent on q. Let q → ∞ and using the fact
that the L∞-norm is the limit of Lq norm as q → ∞, it implies that

‖ϕNu‖∞ + ‖ϕNux‖∞ + ‖ϕNuxx‖∞
≤ exp(CM2t) (‖ϕNu0‖∞ + ‖ϕNu0x‖∞ + ‖ϕNu0xx‖∞) .

Note that exp(CM2t) is independent on N , the above inequality implies that (4.8)
still holds true for p = ∞ by taking the limit as N → ∞. This completes the whole
proof. 	


5 Blow-Up and Global Solutions

There exist strong solutions to (1.1) that exist globally and strong solutions that blow
up in finite time. This section is devoted to the study of blow-up condition which is
given to guarantee that an initially smooth solution develops singularity in finite time
and to looking for sufficient condition for the global existence of the solution u(x, t).
We first show a scenario to understand what really happens as the solution blows up.

Theorem 5.1 Let u0(x) ∈ Hs(R), s ≥ 2, a > b > 0, and T be themaximal existence
time of the solution u(x, t) to (1.1) arising fromu0(x). Then the corresponding solution
blows up in finite time if and only if

lim
t↑T lim inf

x∈R
(uux )(x, t) = −∞.

Proof Multiplying both sides of (2.3) by y and integrating on the line, one has

d

dt

∫
R

y2dx = −2b
∫
R

u2yyxdx − 2a
∫
R

uux y
2dx
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= 2(b − a)

∫
R

uux y
2dx .

If uux is bounded from blow on [0, T ), then there exist two constants C1,C2 > 0
such that ∫

R

y2dx ≤ C1

∫ t

0

∫
R

y2dxds + C2.

Due to Gronwall’s inequality, one has

∫
R

y2dx = ||y||2L2 ≤ C2

(
1 + C1te

C1t
)

,

which implies that the H2-norm of solution is also bounded on [0, T ) by the fact

||u||2H2 ≤ ||y||2L2 ≤ 2||u||2H2 . (5.1)

On the other hand, since u = G ∗ y and ux = Gx ∗ y, one has

‖uux‖L∞ ≤ ||G||L2 ||Gx ||L2 ||y||2L2 ≤ 2||G||L2 ||Gx ||L2 ||u||2H2 , (5.2)

where we have used (5.1). Hence, (5.2) indicates that ‖uux‖L∞ can be bounded by
||u||H2 . Note that for a = b, it is clear that the L2-norm of y is conserved with respect
to time, which means the solution u(x, t) does not blow up, and for a < b, similar
arguments as above show that blow-up occurs if and only if uux tends to +∞. We
complete the proof. 	


We now present the following condition to show the existence of blow-up solutions.

Theorem 5.2 Suppose that u0 ∈ Hs(R), s ≥ 2, a = 3b > 0 and there exists an
x0 ∈ R such that u0(x0) ≥ 0, y0(x0) = 0. Furthermore, the nontrivial y0(x) satisfies
that

y0(x) ≥ 0 for x ∈ (−∞, x0) and y0(x) ≤ 0 for x ∈ (x0,+∞).

Then the corresponding solution u(x, t) blows up in finite time.

Proof In view of the initial condition and (2.5), we have y(q(x0, t), t) = 0 and

{
y(q(x, t), t) ≥ 0, x ∈ (−∞, x0)
y(q(x, t), t) ≤ 0, x ∈ (x0,+∞)

.

It is straightforward to obtain from (2.1) and (2.2) that

u + ux = ex
∫ ∞

x
e−ξ y(ξ)dξ, u − ux = e−x

∫ x

−∞
eξ y(ξ)dξ. (5.3)

In the following, we derive an equation for uux , then show it is possible to go to −∞
in finite time. Differentiating uux (q(x0, t), t) with respect to t , we have
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d

dt
(2uux (q, t) = 1

2

d

dt

[(
eq

∫ ∞

q
e−ξ y(ξ, t)dξ

)2

−
(
e−q

∫ q

−∞
eξ y(ξ, t)dξ

)2
]

= bu2
(
eq

∫ ∞

q
e−ξ y(ξ, t)dξ

)2

+ e2q
(∫ ∞

q
e−ξ y(ξ, t)dξ

) (∫ ∞

q
e−ξ yt (ξ, t)dξ

)

+ bu2
(
e−q

∫ q

−∞
eξ y(ξ, t)dξ

)2

− e−2q
(∫ q

−∞
eξ y(ξ, t)dξ

) (∫ q

−∞
eξ yt (ξ, t)dξ

)

= bu2(u − ux )
2(q, t) − (u − ux )(q(x0, t), t)e

−q
∫ q

−∞
eξ yt (ξ, t)dξ

+ bu2(u + ux )
2(q, t) + (u + ux )(q(x0, t), t)e

q
∫ ∞

q
e−ξ yt (ξ, t)dξ, (5.4)

where we used y(q(x0, t), t) = 0.Rewriting (2.3) as yt = −b(yu2)x −(a−2b)yuux ,
we estimate the following terms in the above equation as follows:

e−q(x0,t)
∫ q(x0,t)

−∞
eξ yt (ξ, t)dξ

= −e−q(x0,t)

(
b

∫ q(x0,t)

−∞
eξ (yu2)ξdξ + (a − 2b)

∫ q(x0,t)

−∞
eξ yuuξdξ

)

= e−q(x0,t)

(∫ q(x0,t)

−∞
eξ (bu3 − bu2uξξ − (a − 2b)u2uξ + (a − 2b)uuξuξξ )dξ

)

= −bu2(q(x0, t), t)ux (q(x0, t), t) + a − 2b

2
u(q(x0, t), t)u

2
x (q(x0, t), t)

+ e−q(x0,t)

(∫ q(x0,t)

−∞
eξ (bu3 + (3b − a)u2uξ + 6b − a

2
uu2ξ − a − 2b

2
u3ξ )dξ

)
.

The initial condition and (5.3) imply that

(u − ux )(x, t) ≥ 0, x ∈ (−∞, q(x0, t)),

which gives
u3 + 3uu2x − u3x ≥ 3u2ux .

Therefore, for a = 3b > 0, we have

∫ q(x0,t)

−∞
eξ (bu3 + (3b − a)u2uξ + 6b − a

2
uu2ξ − a − 2b

2
u3ξ )dξ

= b

2

∫ q(x0,t)

−∞
eξ (2u3 + 3uu2ξ − u3ξ )dξ ≥ b

2
eq(x0,t)u3(q(x0, t), t).
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Thus, it follows that

e−q(x0,t)
∫ q(x0,t)

−∞
eξ yt (ξ, t)dξ

≥
(

−bu2ux + b

2
uu2x + b

2
u3

)
.(q(x0, t), t) (5.5)

Similarly, one can get

eq(x0,t)
∫ ∞

q(x0,t)
e−ξ yt (ξ, t)dξ

�
(

−bu2ux − b

2
uu2x − b

2
u3

)
(q(x0, t), t). (5.6)

Combining (5.5), (5.6), and (5.4), we obtain

d

dt
(2uux (q(x0, t), t) ≤ bu2(u2 − u2x )(q(x0, t), t). (5.7)

Claim uux (q(x0, t) is negative and decreasing, and u2(q(x0, t), t) < u2x (q(x0, t), t)
for all t ≥ 0. We prove it by contradiction. Suppose that there exists a t0 such that
u2(q(x0, t), t) < u2x (q(x0, t), t) on [0, t0) but u2(q(x0, t0), t0) ≥ u2x (q(x0, t0), t0),
then

d

dt
(u(u − ux )(q(x0, t), t))

= 1

2

d

dt

(
e−q

∫ q

−∞
eξ y(ξ, t)dξ

) (
e−q

∫ q

−∞
eξ y(ξ, t)dξ

)

+ 1

2

d

dt

(
eq

∫ ∞

q
e−ξ y(ξ, t)dξ

) (
e−q

∫ q

−∞
eξ y(ξ, t)dξ

)

= −
(
bu2(u − ux )

2
)

(q(x0, t), t) + (u − ux )

(
e−q

∫ q

−∞
eξ yt (ξ, t)dξ

)

+ 1

2

(
eq

∫ ∞

q
e−ξ yt (ξ, t)dξ

)
(u − ux ) + 1

2

(
e−q

∫ q

−∞
eξ yt (ξ, t)dξ

)
(u + ux )

≥ b

2
u2(u2x − u2)(q(x0, t), t) > 0, on [0, t0),

where we have used (5.5) and (5.6). Similarly,

d

dt
(u(u + ux )(q(x0, t), t)) ≤ −b

2
u2(u2x − u2)(q(x0, t0), t0) < 0

holds on [0, t0). It follows in view of the continuity property of ODEs that

u2(u2x − u2)(q(x0, t0), t0)
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= [u(u − ux )][−u(u + ux )] (q(x0, t0), t0)

≥ [u0(u0 − u0x )(x0)] [−u0(u0 + u0x )(x0)]

= −u20

(∫ x0

−∞
eξ y0(ξ)dξ

)(∫ ∞

x0
e−ξ y0(ξ)dξ

)
> 0,

where the initial conditions on y0 were used again. It is an obvious contradiction with
assumption. Hence the claim is true. Moreover, based on the above analysis, we have
the following inequality:

d

dt
u2(u2x − u2)(q(x0, t), t)

= −u(u + ux )(q(x0, t), t)
d

dt
(u(u − ux )(q(x0, t), t))

−(u(u − ux )(q(x0, t), t))
d

dt
u(u + ux )(q(x0, t), t)

≥ −b
(
uuxu

2(u2x − u2)
)

(q(x0, t), t).

It follows by integrating both sides of (5.7) from [0, t] that

d

dt
u2(u2x − u2)(q(x0, t), t)

� 1

2
bu2(u2x − u2)(q, t)

(∫ t

0
u2(u2x − u2)(q, s)ds − 2u0u0x

)
.

The proof can be completed by letting

�(t) =
∫ t

0
u2(u2x − u2)(q(x0, s), s)ds − 2u0u0x

and C0 = b/2 in Lemma 2.1. 	

Not all strong solutions develop singularities in finite time. The following result

shows that (1.1) also admits global solutions.

Theorem 5.3 If u0 ∈ Hs with s ≥ 3/2, a = 3b, and (1 − ∂2x )u0 ≥ 0, then the
corresponding solution u(x, t) to (1.1) satisfies

||ux (·, t)||L∞ ≤ ‖u‖L∞ ≤ Const,

i.e., u(x, t) can exist globally in time.

Remark 5.1 This result implies that it is the sign not the size of initial momentum
that can determine global solutions. Moreover, condition (1 − ∂2x )u0 ≥ 0 can also be
substituted by (1 − ∂2x )u0 ≤ 0.
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Proof It suffices to consider s ≥ 3 to prove this result by the standard density argument.
Since y0(x) = u0(x) − u0xx (x) ≥ 0, it follows from (2.5) that y(x, t) ≥ 0 for all
x ∈ R. Then, one has

ux (x, t) = −u(x, t) + ex
∫ ∞

x
e−ξ y(ξ, t)dξ

≥ −u(x, t). (5.8)

On the other hand, it follows from (2.2) that

ux (x, t) = u(x, t) − e−x
∫ x

−∞
eξ y(ξ, t)dξ

≤ u(x, t). (5.9)

Therefore,
||ux (·, t)||L∞ ≤ ‖u(·, t)‖L∞ .

It remains to show that ‖u‖L∞ is bounded. Multiplying both sides of (2.3) by u(x, t)
and then integrating by parts on R, we obtain

∫
R

uytdx +
∫
R

bu3yxdx +
∫
R

au2ux ydx = 0.

Hence, ∫
R

uytdx − 3b
∫
R

u2ux ydx + a
∫
R

u2ux ydx = 0,

which gives ∫
R

uytdx + (a − 3b)
∫
R

u2ux (u − uxx )dx = 0.

If a = 3b, then ∫
R

uytdx = 0,

while
1

2

d

dt
‖u(x, t)‖2H1 = 1

2

d

dt

∫
R

(u2 + u2x )dx =
∫
R

uytdx,

which implies that the H1-norm of u(x, t) is an invariant and also gives the bound of
u(x, t) by the following fact:

‖u(·, t)‖2L∞ ≤ 1

2
‖u(x, t)‖2H1 = 1

2
‖u0(x)‖2H1 .

We complete the proof by Theorem 5.1. 	
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