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1 Introduction

In [10], Mary introduced a new generalized inverse by using Green’s preorders and
relations [6], named the inverse along an element, which unifies the classical gener-
alized inverse. Later, Zhu etc. gave the definition of the one-sided inverse along an
element. Recently, the characterizations and representations of the inverse along an
element are studied by many authors. For example, Mary [10] proved an interesting
characterization of the inverse along an element in terms of group inverses in a semi-
group, and the existence criteria for the classical generalized inverses were obtained
directly by this result. Besides that, Mary and Patrício [12] made use of the ring struc-
ture to characterize the existence of this inverse by means of a unit in a ring. Also,
Benítez andBoasso [1] obtained a new characterization of the inverse along an element
by the invertibility of certain element of the corner ring, and the set of all invertible
elements along a fixed element was fully described by this result. Zhu etc. [16] gave
the equivalent conditions for the existence of the one-sided inverse along an element.
More results on the inverse along an element can be found in [2,8,9,11,17].

In this article, wemainly give the new existence criteria for the (inner) inverse along
an element in semigroups and rings. In Sect. 2, we recall the definitions of some gen-
eralized inverses and give related notations. In Sect. 3, several new characterizations
of the inverse along an element are given. In Sect. 4, necessary and sufficient condi-
tions for the existence of the inner inverse along an element are obtained. Moreover,
the equivalent conditions for the existence of the group inverse and Moore-Penrose
inverse can be derived directly from this result. In Sect. 5, we give Cline’s formula
for the inverse along an element, which recovers well-known Cline’s formula for the
Drazin inverse. Finally, in Sect. 6, we investigate the inverse of the product along an
element and the reverse order law for this inverse. In addition, commutative inverse
along an element is characterized in a semigroup, which generalizes Theorems 7.1
and 7.3 in [1].

2 Preliminary Definitions and Notations

Throughout this paper, S is a semigroup, and R is a ring with unity 1. S1 denotes the
monoid generated by S (R1 = R). We say a is (von Neumann) regular in S if there
exists x ∈ S such that axa = a. Such x is called an inner inverse of a and denoted
by a−. The set of all inner inverses of a is denoted by a{1}. An involution ∗: S → S
is an anti-isomorphism: (a∗)∗ = a and (ab)∗ = b∗a∗, where a, b ∈ S. In a ring, an
involution ∗: R → R is also an anti-isomorphism: (a∗)∗ = a, (a + b)∗ = a∗ + b∗,
and (ab)∗ = b∗a∗ for all a, b ∈ R. We call S (resp. R) a ∗-semigroup (resp. ∗-ring)
if there exists an involution on S (resp. R).

Following Green [6], for a, b ∈ S, Green’s preorders ≤L, ≤R, and ≤H are defined
by

a ≤L b ⇐⇒ S1a ⊂ S1b ⇐⇒ ∃ x ∈ S1, a = xb.

a ≤R b ⇐⇒ aS1 ⊂ bS1 ⇐⇒ ∃ x ∈ S1, a = bx .

a ≤H b ⇐⇒ a ≤L b and a ≤R b.
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In addition, Green’s relations L, R, H are defined by

aLb ⇐⇒ S1a = S1b ⇐⇒ ∃ x, y ∈ S1, a = xb and b = ya.

aRb ⇐⇒ aS1 = bS1 ⇐⇒ ∃ x, y ∈ S1, a = bx and b = ay.

aHb ⇐⇒ aLb and aRb.

These are equivalent relations on S. We denote the L-class (R-class,H-class) of a by
La (Ra ,Ha).

For the readers’ convenience, we first recall the definitions of some generalized
inverses. An element a ∈ S is said to be Moore–Penrose invertible with respect to the
involution ∗ if the following equations

axa = a, xax = x, (ax)∗ = ax and (xa)∗ = xa

have a common solution [14]. Such solution is unique if it exists, and is usually denoted
by a†. The set of all Moore-Penrose invertible elements of S will be denoted by S†.

The Drazin inverse [4] of a ∈ S is the element x ∈ S which satisfies

ak = ak+1x, xax = x and ax = xa, for some k ≥ 1.

The element x above is unique if it exists and is denoted by aD . The least such k is
called the index of a, and denoted by ind(a). In particular, when ind(a)=1, the Drazin
inverse aD is called the group inverse of a and it is denoted by a#. The set of all Drazin
(resp. group) invertible elements of S will be denoted by SD (resp. S#).

In [10], the element a ∈ S is said to be invertible along d ∈ S if there exists b ∈ S
such that

bad = d = dab and b ≤H d.

If such b exists, then it is unique and is said to be the inverse of a along d, which
will be denoted by a‖d . This inverse generalizes the concept of invertible element, as
well as the classical generalized inverses such as group inverse, Drazin inverse, and
Moore–Penrose inverse. Moreover, if the inverse b of a along d verifies aba = a, we
say that b is an inner inverse of a along d.

Finally, an element a ∈ S is left (resp. right) invertible along d ∈ S [16] if there
exists b ∈ S such that

bad = d (resp. dab = d) and b ≤L d (resp. b ≤R d).

Given a ∈ R, the following notations will be used:

a0 = {x ∈ R : ax = 0} and 0a = {x ∈ R : xa = 0}.
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1838 H. Zou et al.

3 Existence of the Inverse Along an Element

In this section, we will give several characterizations for the (one-sided) inverse along
an element. In what follows, N denotes the set of positive integers. Let a ∈ R, by a−1

l
and a−1

r we denote a left inverse and a right inverse of a, respectively.
First, we give some useful lemmas.

Lemma 3.1 (1) [7, Theorem 1] Let a ∈ S. Then a ∈ S# if and only if aHa2.
(2) [12, Corollary 3.4] Let a ∈ R. Then a ∈ R# if and only if 1 is invertible along a.

Lemma 3.2 (1) [12, page 1132] Let a, d ∈ S. If a is invertible along d, then d is
regular.

(2) [10, Lemma 3] Let a, d ∈ S. If a is invertible along d, then a‖daa‖d = a‖d .

Lemma 3.3 Let a, d ∈ S. Then

(1) [16, Theorem 2.3] a is left invertible along d if and only if d ≤L dad.
(2) [16, Theorem 2.4] a is right invertible along d if and only if d ≤R dad.
(3) [12, Theorem 2.2] a is invertible along d if and only if d ≤H dad.
(4) a is invertible along d with inverse y if and only if a is right invertible along d

with a right inverse x and a is left invertible along d with a left inverse z. In this
case, y=x=z.

Proof (4) We only need to prove y = x = z. Suppose a is invertible along d with
inverse y, then yad = d and y ≤L d. From y ≤L d, it follows that there exists
t1 ∈ S1 such that y = t1d. Since x is a right inverse of a along d, we get dax = d and
x ≤R d, which implies x = dt2 for some t2 ∈ S1. Hence, y = t1d = t1dax = yax ,
and x = dt2 = yadt2 = yax . So, y = x . Similarly, we have y = z. �

Lemma 3.4 Let a, d ∈ R with d regular. Then

(1) [16, Corollary 3.3] a is left invertible along d if and only if u = da + 1 − dd−
is left invertible if and only if v = ad + 1 − d−d is left invertible. In this case,
u−1
l d is a left inverse of a along d.

(2) [16, Corollary 3.5] a is right invertible along d if and only if u = da + 1− dd−
is right invertible if and only if v = ad + 1− d−d is right invertible. In this case,
dv−1

r is a right inverse of a along d.
(3) [12, Theorem 3.2] a is invertible along d if and only if u = da + 1 − dd− is

invertible if and only if v = ad + 1 − d−d is invertible. In this case, a‖d =
u−1d = dv−1.

Lemma 3.5 [16, Theorem 2.16] Let S be a ∗-semigroup and let a ∈ S. Then a ∈ S†

if and only if a is left invertible along a∗ if and only if a is right invertible along a∗.

Lemma 3.6 [4, Theorem 1] Let a, d ∈ S be such that a is Drazin invertible. If
da = ad, then daD = aDd.

Next, we present an existence criterion of the left inverse along an element and give
the expression for this inverse in a semigroup.
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Lemma 3.7 Let a, d ∈ S and k ∈ N. Then the following are equivalent:

(1) a is left invertible along d.
(2) d ≤L (ad)k and (ad)k ≤L (ad)2k .
(3) There exists n ∈ N such that d ≤L (ad)kn and (ad)k ≤L (ad)k(n+1).

In this case, w(ad)k(n−1)u(ad)k(n+1)−1 is a left inverse of a along d, where d =
w(ad)kn and (ad)k = u(ad)k(n+1).

Proof (1)⇒ (2) Since a is left invertible along d, then there exists b such that bad = d
and b ≤L d. Note that b = td for some t ∈ S1. Then, we obtain

d = bad = tdad = tbadad = tb(ad)2 = t td(ad)2 = t2bad(ad)2

= t2b(ad)3 = · · · = tk−1b(ad)k = tkb(ad)k+1,

which implies d ≤L (ad)k and ad = (atkb)(ad)k+1, where k ∈ N. Therefore

(ad)k = ad(ad)k−1 = (atkb)(ad)k+1(ad)k−1 = (atkb)(ad)2k,

then (ad)k ≤L (ad)2k .
(2) ⇒ (3) It is obvious.
(3) ⇒ (1) From the conditions d ≤L (ad)kn and (ad)k ≤L (ad)k(n+1), it fol-

lows that d = w(ad)kn and (ad)k = u(ad)k(n+1) for suitable w, u ∈ S1. Let
b = w(ad)k(n−1)u(ad)k(n+1)−1, then we have

bad = w(ad)k(n−1)u(ad)k(n+1)−1ad = w(ad)kn = d and b ≤L d,

which yield that b is a left inverse of a along d. �

Dually, we have

Lemma 3.8 Let a, d ∈ S and k ∈ N. Then the following are equivalent:

(1) a is right invertible along d.
(2) d ≤R (da)k and (da)k ≤R (da)2k .
(3) There exists n ∈ N such that d ≤R (da)kn and (ad)k ≤R (da)k(n+1).

In this case, (da)k(n+1)−1y(da)k(n−1)x is a right inverse of a along d, where
d = (da)knx and (da)k = (da)k(n+1)y.

Applying Lemmas 3.7 and 3.8, we give a new characterization of the inverse along
an element in terms of the Drazin inverse in a semigroup.

Theorem 3.9 Let a, d ∈ S and k ∈ N. Then the following are equivalent:

(1) a is invertible along d.
(2) d ≤L (ad)k , (ad)k ≤L (ad)2k and (da)k ≤R (da)2k .
(3) d ≤R (da)k , (ad)k ≤L (ad)2k and (da)k ≤R (da)2k .
(4) d ≤L (ad)k and (ad)k ∈ S#.
(5) d ≤R (da)k and (da)k ∈ S#.
(6) d ≤L (ad)kn and (ad)k ∈ SD, where n ≥ind(ad)k .
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(7) d ≤R (da)kn and (da)k ∈ SD, where n ≥ind(da)k .
In which case,

a‖d = d(ad)k−1((ad)k)# = ((da)k)#(da)k−1d,
((ad)k)# = a(a‖dd−)ka‖d and ((da)k)# = a‖d(d−a‖d)ka.

Proof (1) ⇒ (2) By Lemmas 3.3(4), 3.7 and 3.8.
(2) ⇒ (4) According to Lemma 3.1(1), we only need to prove (ad)k ≤R (ad)2k .

From the conditions d ≤L (ad)k , (ad)k ≤L (ad)2k , and (da)k ≤R (da)2k , it follows
that d = x(ad)k , (ad)k = y(ad)2k , and (da)k = (da)2k z, for suitable x , y, and z
∈ S1. Applying previous equalities, we obtain

d = x(ad)k = xy(ad)2k = xya(da)k−1(da)kd = xya(da)k−1(da)2k zd
= xy(ad)2k(ad)k−1azd = x(ad)k(ad)k−1azd = d(ad)k−1azd = (da)k zd.

Then ad = a(da)k zd = a(da)2k z2d = (ad)2kaz2d, which implies

(ad)k = (ad)k−1ad = (ad)k−1(ad)2kaz2d = (ad)2k(ad)k−1az2d.

Thus (ad)k ≤R (ad)2k .
(4) ⇒ (6) Since d ≤L (ad)k , then there exists u ∈ S1 such that d = u(ad)k .

Note that (ad)k ∈ S#, we have d = u(ad)k = u(((ad)k)#)n−1(ad)kn , which implies
d ≤L (ad)kn , where n ≥ 1.

(6)⇒ (1) Let b = d(ad)k−1((ad)k)D . We next prove a‖d = b. Since d ≤L (ad)kn ,
then we get d = s(ad)kn for some s ∈ S1. By Lemma 3.6, we have ad((ad)k)D =
((ad)k)Dad. From the assumption n ≥ind(ad)k and the definition of Drazin inverse,
it follows that

bad = d(ad)k−1((ad)k)Dad = s(ad)kn(ad)k((ad)k)D = s(ad)kn = d.

Similarly, we can get dab = d. In addition, note that b = d(ad)k−1(((ad)k)D)2(ad)k ,
which yields b ≤H d. Therefore, a‖d = b.

(1) ⇒ (3) ⇒ (5) ⇒ (7) ⇒ (1) It is analogous to the previous proof. Also, we can
get a‖d = ((da)k)D(da)k−1d.

Next, we give the expressions of ((ad)k)# and ((da)k)#. Since a is invertible along
d, then d is regular and a‖daa‖d = a‖d by Lemma 3.2. Note that a‖dad = d and
a‖d = (a‖dd−)d by the definition of a‖d . Using the same method as the proof of (1)
⇒ (2) in Lemma 3.7, we get d = (a‖dd−)k−1a‖d(ad)k . Then, we have

((ad)k)# = (ad)k
((
(ad)k

)#)2 = a
(
d(ad)k−1((ad)k)#

)(
(ad)k

)#

= aa‖d((ad)k
)# = aa‖dd−d

(
(ad)k

)#

= aa‖dd−(
a‖dd−)k−1

a‖d(ad)k
(
(ad)k

)#

= aa‖dd−(
a‖dd−)k−1

a‖da
(
d(ad)k−1((ad)k)#

)
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= a
(
a‖dd−)k

a‖daa‖d

= a
(
a‖dd−)k

a‖d .

Similarly, we can obtain ((da)k)# = a‖d(d−a‖d)ka. �

Let k = 1 in Theorem 3.9, we have

Corollary 3.10 Let a, d ∈ S. Then the following are equivalent:

(1) a is invertible along d.
(2) d ≤L ad, ad ≤L (ad)2 and da ≤R (da)2.
(3) d ≤R da, ad ≤L (ad)2 and da ≤R (da)2.
(4) d ≤L ad and ad ∈ S#.
(5) d ≤R da and da ∈ S#.
(6) d ≤L (ad)n and ad ∈ SD, where n ≥ind(ad).
(7) d ≤R (da)n and da ∈ SD, where n ≥ind(da).

In which case,

a‖d = d(ad)# = (da)#d,

(ad)# = aa‖dd−a‖d and (da)# = a‖dd−a‖da.

In order to obtain the equivalent conditions for the existence of the inverse along an
element by using one-sided annihilator ideals in a ring, we give the following lemmas.

Lemma 3.11 Let a, d ∈ R and k ∈ N. Then the following are equivalent:

(1) a is left invertible along d.
(2) R = R(da)k +◦ d.

Proof (1)⇒ (2) Sincea is left invertible along d, byLemma3.3(1),we have d = xdad
for some x ∈ R, which implies d = x(xdad)ad = x2(da)2d = · · · = xk(da)kd.
Thus (1 − xk(da)k)d = 0, which yields 1 − xk(da)k ∈ ◦d. From the equality 1 =
xk(da)k + (1 − xk(da)k), it follows that R = R(da)k+◦d.

(2)⇒ (1) Suppose R = R(da)k+◦d, then 1 = u(da)k+v, where u ∈ R and v ∈ ◦d.
Multiplying the previous equality by d from the right side, we obtain d = u(da)kd =
u(da)k−1dad. Applying Lemma 3.3(1) again, we get that a is left invertible along d.

�

Remark 3.12 In Lemma3.11, “+” can not be replaced by “⊕” in general. For example,
denote by R = CFMN(R) the ring of column-finiteN×Nmatrices over real number
field R. Take k = 1 ∈ N, a = ∑∞

i=1 ei+1,i and d = ∑∞
i=2 ei,i , where ei, j denotes the

element of Rwith its (i, j)-entry being 1 and 0 elsewhere. By an elemental calculation,
we have dad = ∑∞

i=2 ei+1,i and d = (
∑∞

i=2 ei,i+1)dad ∈ Rdad. Thus, a is left
invertible along d byLemma 3.3(1). However, observe that e11 = e12da and e11d = 0,
which imply Rda ∩◦ d �= {0}.
Dually, we get
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Lemma 3.13 Let a, d ∈ R and k ∈ N. Then the following are equivalent:

(1) a is right invertible along d.
(2) R = (ad)k R + d◦.

Remark 3.14 In Lemmas 3.11 and 3.13, let d = a∗, we have a ∈ R† if and only if
R = R(a∗a)k +◦ (a∗) if and only if R = (aa∗)k R + (a∗)◦ by Lemma 3.5, where
k ∈ N.

According to Lemmas 3.11 and 3.13, the following result can be derived.

Theorem 3.15 Let a, d ∈ R and k ∈ N. Then the following are equivalent:

(1) a is invertible along d.
(2) R = R(da)k ⊕◦ d and R = (ad)k R ⊕ d◦.
(3) R = R(da)k +◦ d and R = (ad)k R + d◦.

Proof (1) ⇒ (2) Suppose a is invertible along d, by Lemma 3.11, we have R =
R(da)k +◦ d. Let y ∈ R(da)k ∩◦ d, then y = r(da)k for some r ∈ R and yd = 0.
Note that d = dads for some s ∈ R by Lemma 3.3(3), so d = d(ad)ksk . Then, we
have

y = rda(da)k−1 = rd(ad)kska(da)k−1 = r(da)kdska(da)k−1 = ydska(da)k−1 = 0,

which gives R = R(da)k ⊕◦ d. Similarly, R = (ad)k R ⊕ d◦ holds.
(2) ⇒ (3) It is obvious.
(3) ⇒ (1) By Lemmas 3.3(4), 3.11 and 3.13. �


Remark 3.16 InTheorem3.15, R = R(da)k⊕◦d is not equivalent to R = (ad)k R⊕d◦
in general. For example, let R be a ring which is the same as the infinite matrix ring
in Remark 3.12. Take k = 1 ∈ N, a = ∑∞

i=1 ei+1,i and d = 1 ∈ R. Note that
(
∑∞

i=1 ei,i+1)a = 1 and ◦d = {0}. Then R = Rda ⊕◦ d. However, there is no r ∈ R
such that (ad)r = 1. Thus R �= adR ⊕ d◦.

It is well known that the inverse along an element recovers the group inverse, so
we can obtain the following existence criterion for group inverse by Theorem 3.15.

Theorem 3.17 Let a ∈ R and k ∈ N. Then the following are equivalent:

(1) a ∈ R#.
(2) R = Rak ⊕◦ a.
(3) R = ak R ⊕ a◦.
(4) R = Rak +◦ a and R = ak R + a◦.

Proof (1) ⇔ (4) and (1) ⇒ (2) Applying Theorem 3.15 and Lemma 3.1(2).
(2) ⇒ (3) Suppose R = Rak ⊕◦ a, then 1 = r1ak + r2, where r1 ∈ R and r2 ∈ ◦a.

Hence a = r1ak+1, which implies (a − ar1ak)a = 0, so a − ar1ak ∈ ◦a. Note that
a − ar1ak = r1ak+1 − ar1ak ∈ Rak . Thus a − ar1ak = 0, i.e., a = ar1ak .

Next we prove ◦a ⊆ ◦(r1ak). Let x ∈ ◦a, then xa = 0. So, xr1ak+1 = 0, which
gives xr1ak ∈ ◦a. Observe that xr1ak ∈ Rak , then xr1ak = 0. Hence ◦a ⊆ ◦(r1ak).
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From the equality (a − a2r1ak−1)a = 0, it follows that (a − a2r1ak−1) ∈ ◦a
⊆ ◦(r1ak). Then (a − a2r1ak−1)(r1ak) = 0, i.e., a = ar1ak = a2r1ak−1r1ak . Let
t = r1ak−1r1ak , then a = a2t , which yields a = aa2t t = a3t2 = · · · = ak+1tk , i.e.,
a(1 − aktk) = 0. Therefore, we have 1 − aktk ∈ a◦, which implies R = ak R + a◦.

To show ak R ∩ a◦ = 0, let h ∈ ak R ∩ a◦, then h = akr3 for some r3 ∈ R and
ah = 0. We deduce that h = ak−1ar3 = ak−1r1ak+1r3 = ak−1r1ah = 0. Hence,
R = ak R ⊕ a◦.

(3) ⇒ (4) Assume R = ak R ⊕ a◦, then we can prove R = Rak ⊕◦ a, which is
similar to the proof of (2) ⇒ (3). Therefore, (4) holds. �


Before proving our main result, we need to prove the following result.

Proposition 3.18 Let a, d, p, p′, q, q ′ ∈ S and k ∈ N. If p′ pd = d = dqq ′, then the
following are equivalent:

(1) a is left (resp. right) invertible along pdq.
(2) (qapd)k−1qap is left (resp. right) invertible along d.

Proof (1) ⇒ (2) Suppose a is left invertible along pdq, then there exists t ∈ S1 such
that pdq = tpdqapdq by Lemma 3.3(1). Multiplying the previous equality by p′
from the left side and q ′ from the right side, we have p′ pdqq ′ = p′tpdqapdqq ′.
Note that p′ pd = d = dqq ′, thus we get

d = p′tpdqapd = p′tpp′tpdqapdqapd = (p′tp)2d(qapd)2 = · · ·
= (p′tp)kd(qapd)k,

which implies d ≤L d((qapd)k−1qap)d. By Lemma 3.3(1) again, we have that
(qapd)k−1qap is left invertible along d.

(2) ⇒ (1) Since (qapd)k−1qap is left invertible along d, using Lemma 3.3(1), we
have d = rd(qapd)k for some r ∈ S1, which yields

pdq = prd(qapd)kq = prd(qapd)k−1(qapd)q = pr(dqap)k−1d(qapd)q

= pr(dqap)k−1 p′(pdq)a(pdq).

Thus, pdq ≤L (pdq)a(pdq), i.e., a is left invertible along pdq.
The proof of the “right” case is similar to that of the “left” case. �

Next, we present an existence criterion for the left inverse along the product by

means of the idempotent and the one-sided invertibility of an element in a ring.

Theorem 3.19 Let a, d, p, p′, q, q ′ ∈ R with d regular and k ∈ N. If p′ pd = d =
dqq ′, then the following are equivalent:

(1) a is left invertible along pdq.
(2) There exists an idempotent e ∈ R such that ed = 0 and u = (dqap)k + e is left

invertible.
(3) There exists g ∈ R such that gd = 0 and v = (dqap)k + g is left invertible.

In this case, pv−1
l (dqap)k−1dq is a left inverse of a along pdq.
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Proof (1) ⇒ (2) Suppose a is left invertible along pdq, then (qapd)k−1qap is left
invertible along d by Proposition 3.18. According to Lemma 3.4(1), we have that
(dqap)k + 1 − dd− is left invertible. Let e = 1 − dd−, then we deduce that e2 = e,
ed = 0 and u = (dqap)k + e is left invertible.

(2) ⇒ (3) It is obvious.
(3) ⇒ (1) Suppose that v = (dqap)k + g is left invertible, there exists s ∈ R

such that s((dqap)k + g) = 1, which implies d = (s(dqap)k + g)d = s(dqap)kd.
Let x = ps(dqap)k−1dq, then xa(pdq) = ps(dqap)k−1dqapdq = pdq. Note that
x = ps(dqap)k−1 p′(pdq), which gives x ≤L pdq. Thus, x is a left inverse of a
along pdq. �


Let k = 1 ∈ N, and p = q = p′ = q ′ = 1 ∈ R in Theorem 3.19, then we get

Corollary 3.20 Let a, d ∈ R with d regular. Then the following are equivalent:

(1) a is left invertible along d.
(2) There exists an idempotent e ∈ R such that ed = 0 and u = da + e is left

invertible.
(3) There exists g ∈ R such that gd = 0 and v = da + g is left invertible.

In this case, v−1
l d is a left inverse of a along d.

Dually, we have the following result.

Theorem 3.21 Let a, d, p, p′, q, q ′ ∈ R with d regular and k ∈ N. If p′ pd = d =
dqq ′, then the following are equivalent:

(1) a is right invertible along pdq.
(2) There exists an idempotent f ∈ R such that d f = 0 and u = (qapd)k + f is

right invertible.
(3) There exists h ∈ R such that dh = 0 and v = (qapd)k + h is right invertible.

In this case, pd(qapd)k−1v−1
r q is a right inverse of a along pdq.

Corollary 3.22 Let a, d ∈ R with d regular. Then the following are equivalent:

(1) a is right invertible along d.
(2) There exists an idempotent f ∈ R such that d f = 0 and u = ad + f is right

invertible.
(3) There exists h ∈ R such that dh = 0 and v = ad + h is right invertible.

In this case, dv−1
r is a right inverse of a along d.

Remark 3.23 Note that the proofs of (3)⇒ (1) in Theorems 3.19 and 3.21 do not need
that d is regular.

In a ∗-ring, it is well known that if a = aa∗y = xa∗a, then a† = y∗ax∗. By Lemma
3.3, we can easily see that a ∈ R is left (resp. right) invertible along a∗ if and only if
a∗ is right (resp. left) invertible along a. Thus, we have a ∈ R† if and only if a∗ is left
invertible along a if and only if a∗ is right invertible along a by Lemma 3.5. Applying
Corollarys 3.20 and 3.22, we deduce that
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Corollary 3.24 Let R be a ∗-ring and let a ∈ R. Then the following are equivalent:

(1) a ∈ R†.
(2) There exists an idempotent e ∈ R such that ea = 0 and u = aa∗ + e is left

invertible.
(3) There exists an idempotent f ∈ R such that a f = 0 and v = a∗a + f is right

invertible.

In this case, a† = (u−1
l a)∗ = (av−1

r )∗.

Proof We only need to prove the expressions of a†. Since a = u−1
l (aa∗ + e)a =

(u−1
l a)a∗a and a = a(a∗a + f )v−1

r = aa∗(av−1
r ), then we have

a† = (av−1
r )∗a(u−1

l a)∗ = (av−1
r )∗aa∗(u−1

l )∗ = (aa∗av−1
r )∗(u−1

l )∗

= a∗(u−1
l )∗ = (u−1

l a)∗.

Similarly, we can obtain a† = (av−1
r )∗. �


Combining Theorems 3.19 and 3.21, we get the following result, which is a new
characterization of the inverse along an element on the basis of idempotents and
invertibility of certain elements in a ring.

Theorem 3.25 Let a, d, p, p′, q, q ′ ∈ R and k ∈ N. If p′ pd = d = dqq ′, then the
following are equivalent:

(1) a is invertible along pdq.
(2) There exist idempotents e, f ∈ R such that ed = d f = 0, u = (dqap)k + e and

v = (qapd)k + f are both invertible.
(3) There exist b, c ∈ R such that bd = dc = 0, s = (dqap)k+b and t = (qapd)k+c

are both invertible.
(4) There exist idempotents e, f ∈ R such that ed = d f = 0, m = (dqap)k + e is

left invertible and n = (qapd)k + f is right invertible.
(5) There exist g, h ∈ R such that gd = dh = 0, w = (dqap)k + g is left invertible

and z = (qapd)k + h is right invertible.

In this case, a‖pdq = pw−1
l (dqap)k−1dq = pd(qapd)k−1z−1

r q.

Proof (1) ⇒ (2) Suppose that a is invertible along pdq, according to Proposition
3.18, we get that (qapd)k−1qap is invertible along d, which implies that d is regular
by Lemma 3.2(1). Applying Lemma 3.4(3), we can verify that (dqap)k + 1 − dd−
and (qapd)k +1−d−d are both invertible. Let e = 1−dd− and f = 1−d−d. Then
the item (2) holds.

(2) ⇒ (3) ⇒ (5) and (2) ⇒ (4) ⇒ (5) It is obvious.
(5) ⇒ (1) Applying Theorems 3.19 and 3.21.
Finally, the expressions of a‖pdq can be obtained by Theorems 3.19, 3.21, and

Lemma 3.3(4). �

Let k = 1 ∈ N, and p = q = p′ = q ′ = 1 ∈ R in Theorem 3.25, then we have
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Corollary 3.26 Let a, d ∈ R. Then the following are equivalent:

(1) a is invertible along d.
(2) There exist idempotents e, f ∈ R such that ed = d f = 0, u = da + e, and

v = ad + f are both invertible.
(3) There exist b, c ∈ R such that bd = dc = 0, s = da+ b and t = ad + c are both

invertible.
(4) There exist idempotents e, f ∈ R such that ed = d f = 0, m = da + e is left

invertible and n = ad + f is right invertible.
(5) There exist g, h ∈ R such that gd = dh = 0, w = da + g is left invertible and

z = ad + h is right invertible. In this case, a‖d = w−1
l d = dz−1

r .

4 Existence of the Inner Inverse Along an Element

Mary [10], as well as Benítez and Boasso [1] studied the equivalent conditions for
the existence of the inner inverse along an element. In this section, we will continue
to consider the characterization of this inverse by the use of idempotents, one-sided
principal ideals and one-sided annihilator ideals.

First, let us recall the concept of the trace product [13]: for a, b ∈ S, we say that
ab is a trace product if ab ∈ Ra ∩ Lb.

The following lemmas will be very useful.

Lemma 4.1 [10, Theorem 11] Let a ∈ S.(S is a ∗-semigroup in (3).) Then

(1) a# = a‖a.
(2) aD = a‖am for some integer m.
(3) a† = a‖a∗

.

Note that, according to Lemma 4.1 and the definition of the inner inverse along an
element, we have that a# (resp. a†) is equal to the inner inverse of a along a (resp. a∗).

Lemma 4.2 [10, Corollary 9] Let a, d ∈ S. Then a is inner invertible along d if and
only if ad and da are trace products.

Remark 4.3 From Lemma 4.2, we can see that a is inner invertible along d if and only
if d is inner invertible along a. But in general, a is invertible along d is not equivalent
to d is invertible along a. For example, let S = Z4, a = 2 and d = 0. Then a‖d = 0.
However, d is not invertible along a.

Lemma 4.4 [15, Lemma 2.9] If q1 and q2 are idempotents such that Rq1 ⊆ Rq2 and
q2R ⊆ q1R, then q1 = q2.

Lemma 4.5 [15, Lemma 2.5, Lemma 2.6] Let a, b ∈ R.

(1) If aR ⊆ bR, then ◦b ⊆ ◦a.
(2) If b is regular and ◦b ⊆ ◦a, then aR ⊆ bR.
(3) If Ra ⊆ Rb, then b◦ ⊆ a◦.
(4) If b is regular and b◦ ⊆ a◦, then Ra ⊆ Rb.
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Lemma 4.6 Let a, b ∈ R.

(1) If a is regular and aR=bR, then b is regular.
(2) If a is regular and Ra=Rb, then b is regular.

Proof (1) Since aR = bR, then a = bt1 and b = at2 for some t1, t2 ∈ R. Thus, we
have b(t1a−)b = aa−at2 = at2 = b, which implies that b is regular.

(2) It is similar to the proof of (1). �

Next, we present the main result in this section, which recovers Theorems 2.11 and

2.12 in [15].

Theorem 4.7 Let a, d ∈ R. Then the following are equivalent:

(1) a is inner invertible along d.
(2) There exist idempotents e1, e2 ∈ R such that dR = e1R, Ra = Re1, Rd = Re2,

and aR = e2R.
(3) a andd are both regular, and there exist idempotents e1, e2 ∈ R such that ◦d =◦ e1,

a◦ = e◦
1, d

◦ = e◦
2, and

◦a =◦ e2.

In this case, the pair of idempotents e1 and e2 is unique. Moreover, a‖d = e1a−e2
for one and hence all choices of a− ∈ a{1}.

Proof (1) ⇒ (2) Suppose that a is inner invertible along d with inverse x , then we
have

axa = a, xad = d = dax and x ≤H d,

which imply x = u1d = du2 for some u1, u2 ∈ R. Let e1 = xa and e2 = ax . Then
e1 = e21 and e2 = e22. From d = e1d and e1 = du2a, it follows that dR = e1R.
Also, a = ae1 and e1 = xa give Ra = Re1. Similarly, we can obtain Rd = Re2 and
aR = e2R.

(2) ⇒ (1) Suppose that (2) holds, then a and d are regular by Lemma 4.6, also we
have

d = e1d = de2, a = ae1 = e2a, e1 = dt1 = t2a and e2 = t3d = at4,

for ti ∈ R (i = 1, 4). According to the previous equalities, e1 = t2aa−a = e1a−a.
Similarly, we can obtain e2 = aa−e2.

Let b = e1a−e2, we next prove that b is the inner inverse of a along d. We can
have the following equations

aba = ae1a
−e2a = aa−e2a = e2a = a,

bad = e1a
−e2ad = e1a

−ad = e1d = d

and

dab = dae1a
−e2 = daa−e2 = de2 = d.
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In addition, b = e1a−t3d and b = dt1a−e2 give b ≤H d. Therefore, b is the inner
inverse of a along d.

(2) ⇔ (3) Applying Lemmas 4.5 and 4.6.
The uniqueness of the pair of idempotents e1 and e2 can be obtained by Lemma

4.4. �

By Theorem 4.7, we derive the following results.

Corollary 4.8 [15, Theorem 2.11] Let a ∈ R. Then the following are equivalent:

(1) a ∈ R#.
(2) There exists an idempotent q ∈ R such that qR = aR and Rq = Ra.
(3) a is regular and there exists an idempotent q ∈ R such that ◦a = ◦q and a◦ = q◦.
In this case, the idempotent q is unique. Moreover, a# = qa−q for one and hence all
choices of a− ∈ a{1}.
Proof Let d = a in Theorem 4.7. Then a ∈ R# if and only if there exist idempotents
e1, e2 ∈ R such that aR = e1R = e2R and Ra = Re1 = Re2, which yield e1 = e2
by Lemma 4.4. Thus, (1) ⇔ (2) ⇔ (3). �

Corollary 4.9 [15, Theorem 2.12] Let R be a ∗-ring and let a ∈ R. Then the following
are equivalent:

(1) a ∈ R†.
(2) There exist self-adjoint idempotents p, r ∈ R such that pR = aR and Rr = Ra.
(3) a is regular and there exist self-adjoint idempotents p, r ∈ R such that ◦a =◦ p

and a◦ = r◦.
In this case, the pair of self-adjoint idempotents p and r is unique. Moreover, a† =
ra− p for one and hence all choices of a− ∈ a{1}.
Proof Let d = a∗ in Theorem 4.7. Then a ∈ R† if and only if there exist idempotents
e1, e2 ∈ R such that a∗R = e1R, Ra = Re1, Ra∗ = Re2, and aR = e2R. From
Ra = Re1, it follows that a∗R = e∗

1R. Thus e1R = e∗
1R, which implies e1 = e∗

1e1,
so e∗

1 = e1. Similarly, we have e∗
2 = e2. Thus, (1) ⇔ (2) ⇔ (3). �


The second characterization of the inner inverse along an element is given as fol-
lows:

Theorem 4.10 Let a, d ∈ R. Then the following are equivalent:

(1) a is inner invertible along d.
(2) R = aR ⊕ d◦, R = Ra ⊕ ◦d, R = dR ⊕ a◦ and R = Rd ⊕ ◦a.
(3) R = aR + d◦, R = Ra +◦ d, R = dR + a◦ and R = Rd +◦ a.
Proof (1)⇒ (2) Assume that a is inner invertible along d, by Theorem 4.7, there exist
idempotents e1, e2 ∈ R such that dR = e1R, Ra = Re1, Rd = Re2, and aR = e2R.
Hence, R = e2R ⊕ e◦

2 = aR ⊕ d◦ by Lemma 4.5. Similarly, we can get R = Ra ⊕
◦d, R = dR ⊕ a◦, and R = Rd ⊕ ◦a.

(2) ⇒ (3) It is obvious.
(3) ⇒ (1) Suppose R = aR + d◦ and R = Rd +◦ a, then daRd and daLa, i.e.,

da is a trace product. Similarly, we get ad is also a trace product. Applying Lemma
4.2, a is inner invertible along d. �
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5 Cline’s Formula for the Inverse Along an Element

In what follows, given a ∈ S, comm(a)={x ∈ S : ax = xa}. We begin with some
auxiliary results which we will rely on.

Lemma 5.1 [10, Theorem 7] Let a, d ∈ S. Then the following are equivalent:

(1) a is invertible along d.
(2) adLd and (ad)# exists.
(3) daRd and (da)# exists.

In this case, a‖d = d(ad)# = (da)#d.

Lemma 5.2 Let a, d ∈ S and k ∈ N.

(1) If d ∈ comm(ad), then (ad)k = akdk.
(2) If d ∈ comm(da), then (da)k = dkak.

Proof (1) It is obvious for k = 1. Assume (ad)k = akdk holds. For the k + 1 case,
we have

(ad)k+1 = ad(ad)k = a(ad)kd = aakdkd = ak+1dk+1.

(2) The proof is similar to (1).

It is well known that for a semigroup, if ab ∈ S is Drazin invertible, then ba is
Drazin invertible. In this case, (ba)D = b((ab)D)2a. This formula is called Cline’s
formula. Here, we will consider the analogous result for the inverse along an element.
Moreover, we lift the index of the product of elements b and a to any k ∈ N.

Theorem 5.3 Let a, b, d, x ∈ S with d ∈ comm(dab), d ≤L d2 and let k ∈ N. If ab
is invertible along d with inverse x, then (ba)k is invertible along bdka with inverse
bxk+1a.

Proof Since ab is invertible along d with inverse x , we have

xabd = d = dabx .

By Lemma 5.1, we get

x = d(abd)# = (dab)#d.

The condition d ∈ comm(dab), Lemmas 3.6 and 5.2 ensure that

(dab)k+1 = dk+1(ab)k+1 and (dab)#d = d(dab)#.

Since d ≤L d2, there exists u ∈ S1 such that d = ud2.
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Let y = bxk+1a. Then, by the previous equalities, we have

y(ba)k(bdka) = bxk+1a(ba)k(bdka) = b((dab)#d)k+1(ab)k+1dka
= b((dab)#)k+1dk+1(ab)k+1dka = b((dab)#)k+1(dab)k+1dka
= b((dab)#dab)k+1dka = b(dab)#dabdka
= bxabdka = bxabddk−1a = bdka

and

(bdka)(ba)k y = (bdka)(ba)kbxk+1a = bdk(ab)k+1((dab)#d)k+1a
= budk+1(ab)k+1((dab)#)k+1dk+1a = bu(dab)k+1((dab)#)k+1dk+1a
= bu(dab(dab)#))k+1dk+1a = budab(dab)#dk+1a
= bud2ab(dab)#ddk−1a = bdabxdk−1a = bdka.

Also, we can get

y = bxk+1a = b((dab)#d)k+1a = b((dab)#)k+1dk+1a
= bd((dab)#)k+1dka = bd((dab)#)k+2da(bdka)

and

y = b((dab)#)k+1dk+1a = bdk−1((dab)#)k+1d2a
= bdk−1(dab)((dab)#)k+2d2a = (bdka)b((dab)#)k+2d2a,

which imply y ≤H bdka. To sum up, y = bxk+1a is the inverse of (ba)k along bdka.
�


Note that, Theorem 5.3 is in general false without the condition d ∈ comm(dab):

Example 5.4 Let S be the algebra M2(F) of all 2 × 2 matrices over a field F. Take

a =
[
0 0
1 1

]
, b =

[
1 0
1 0

]
, d =

[
1 1
0 0

]
and x =

[ 1
2

1
2

0 0

]
.

Then, x(ab)d = d(ab)x and x = xd = dx , i.e., x is the inverse of ab along d.
Also, d ≤L d2. But (ba)k = 0, bdka = [

1 1
1 1

]
. There is no y ∈ S such that

y(ba)k(bdka) = bdka, thus (ba)k is not invertible along bdka.

Also, we can not delete the condition d ≤L d2 of Theorem 5.3.

Example 5.5 Let S be a ring which is the same as the infinite matrix ring in Remark

3.12. Take k = 1 ∈ N, a =
∞∑
i=1

ei+1,i , b = 1 ∈ S and d =
∞∑
i=1

ei,i+1. Then da = 1.

Hence, dabd = d, which implies ab is invertible along d by Lemma 3.3(3). Note that
d ∈ comm(dab). However, bda ≤R (bda)(ba)(bda) does not hold. Thus, ba is not
invertible along bda.
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Similar to Theorem 5.3, we get

Theorem 5.6 Let a, b, d, x ∈ S with d ∈ comm(abd), d ≤R d2 and let k ∈ N. If ab
is invertible along d with inverse x, then (ba)k is invertible along bdka with inverse
bxk+1a.

Using Theorem 5.3, we can prove the following result:

Theorem 5.7 Let a, b, d, x ∈ S with d ∈ comm(dab) and d ∈ comm(abd), and let
k ∈ N. If ab is invertible along d with inverse x, then (ba)k is invertible along bdka
with inverse bxk+1a.

Proof Since ab is invertible along d, then d ≤L dabd by Lemma 3.3(3). From the
assumption d ∈ comm(abd), then d ≤L abd2, which implies d ≤L d2. According to
Theorem 5.3, we have (ba)k is invertible along bdka with inverse bxk+1a. �


Let k = 1 in Theorem 5.7, we have

Corollary 5.8 Let a, b, d, x ∈ S with d ∈ comm(dab) and d ∈ comm(abd). If ab is
invertible along d with inverse x, then ba is invertible along bda with inverse bx2a.

It is clear that d ∈ comm(ab) can imply d ∈ comm(abd) and d ∈ comm(dab), so
if we replace the conditions d ∈ comm(dab) and d ∈ comm(abd) with the condition
d ∈ comm(ab) in Corollary 5.8, then we have the following result:

Corollary 5.9 Let a, b, d, x ∈ S with d ∈ comm(ab). If ab is invertible along d with
inverse x, then ba is invertible along bda with inverse bx2a.

Remark 5.10 Corollary 5.9 can also be obtained from [5, Theorem 3.1]. Indeed,
Kantún-Montiel [8] showed that (d, d)-inverse of a coincides with the inverse of a
along d. In addition, take b=c=d in [5, Theorem 3.1], then we have Corollary 5.9.
However, the following example shows that the conditions d ∈ comm(dab) and d ∈
comm(abd) of Corollary 5.8 are weaker than d ∈ comm(ab).

Example 5.11 Let S = M2(C). Take

a =
[
0 1
0 2

]
, b =

[
0 1
0 1

]
and d =

[
0 1
0 0

]
.

Then, we can see that d ∈ comm(dab) and d ∈ comm(abd). But d /∈ comm(ab).

Using Corollary 5.9, we can get the following result, which is Cline’s formula for
the Drazin inverse (see [3]).

Corollary 5.12 Let a, b ∈ S. If ab is Drazin invertible, then ba is Drazin invertible
and (ba)D = b((ab)D)2a.

Proof Since ab is Drazin invertible, according to Lemma 4.1(2), we have (ab)D =
(ab)‖(ab)m for some integer m. In Corollary 5.9, let d = (ab)m , then d ∈ comm(ab).
Thus, we can get ba is invertible along (ba)m+1 with inverse b((ab)D)2a, which
implies ba is Drazin invertible and (ba)D = b((ab)D)2a. �
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The following result can be proved by the definition of the inverse along an element
directly.

Proposition 5.13 Let a, b, d, x ∈ S and k ∈ N. If (ab)k+1 is invertible along dk+1

with inverse x, then (ba)k is invertible along bdk+1a with inverse bxa.

Proof Suppose that (ab)k+1 is invertible along dk+1 with inverse x , then we have

x(ab)k+1dk+1 = dk+1 = dk+1(ab)k+1x and

x = dk+1((ab)k+1dk+1)# = (dk+1(ab)k+1)#dk+1.

Let y = bxa, using previous equalities, we can easily obtain

y(ba)kbdk+1a = bxa(ba)kbdk+1a = bx(ab)k+1dk+1a = bdk+1a

and

bdk+1a(ba)k y = bdk+1a(ba)kbxa = bdk+1(ab)k+1xa = bdk+1a.

Also,

y = bxa = bdk+1((ab)k+1dk+1)#a = (bdk+1a)b(ab)kdk+1(((ab)k+1dk+1)#)2a

and

y = bxa = b(dk+1(ab)k+1)#dk+1a = b((dk+1(ab)k+1)#)2dk+1(ab)ka(bdk+1a),

which give y ≤H bdk+1a. Therefore, (ba)k is invertible along bdk+1a with inverse
y.

Applying Proposition 5.13 to the Drazin inverse, we can get the following result,
which generalizes Cline’s formula to the case of the Drazin invertibility of the powers
of the products of elements b and a. �


Corollary 5.14 Let a, b ∈ S and k ∈ N. If (ab)k+1 is Drazin invertible, then (ba)k is
Drazin invertible and ((ba)k)D = b((ab)k+1)Da.

Proof Since (ab)k+1 is Drazin invertible, by Lemma 4.1(2), it follows that ((ab)k+1)D

= ((ab)k+1)‖((ab)k+1)t , where t = nk − 1 ≥ ind(ab)k+1 and n ∈ N. In Proposition
5.13, let d = (ab)t , we have bdk+1a = b((ab)t )k+1a = ((ba)k)nk+n−1. Hence, (ba)k

is Drazin invertible and ((ba)k)D = b((ab)k+1)Da. �


Note that, in Corollary 5.14, if S is a monoid, let b = 1, then we can get a well-
known result for Drazin inverse, that is to say if an is Drazin invertible for some n ∈ N,
then a is Drazin invertible.
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6 The Inverse of the Product Along an Element

In this section, wemainly consider the inverse of the product along an element. Benítez
andBoasso [1] studied the reverse order law for the inverse along an element ((ab)‖d =
b‖da‖d ) and the commutative inverse along an element (aa‖d = a‖da) in a ring.
Motivated by them, we will investigate these subjects in a semigroup.

We first derive the representation for the inverse of the product along an element,
which recovers the corresponding results of the classical generalized inverses.

Theorem 6.1 Let a, b, d1, d2 ∈ S with d1 ∈ comm(bd2), d2 ∈ comm(d1a). If a is
invertible along d1 and b is invertible along d2, then ab is invertible along d2d1 and
(ab)‖d2d1 = b‖d2a‖d1 .

Proof Since a is invertible along d1 and b is invertible along d2, we have

a‖d1ad1 = d1 = d1aa
‖d1 and b‖d2bd2 = d2 = d2bb

‖d2 . (1)

By Lemma 5.1,

a‖d1 = d1(ad1)
# = (d1a)

#d1 and b‖d2 = d2(bd2)
# = (d2b)

#d2. (2)

Let y = b‖d2a‖d1 . Next, we will prove y is the inverse of ab along d2d1. According
to the conditions d1 ∈ comm(bd2), d2 ∈ comm(d1a) and Lemma 3.6, it follows that

d1bd2 = bd2d1, d2d1a = d1ad2, d1(bd2)
# = (bd2)

#d1 and d2(d1a)
# = (d1a)

#d2.
(3)

From (1), (2), and (3), we have

y(ab)(d2d1) = b‖d2a‖d1(ab)(d2d1)
(3)= b‖d2a‖d1ad1bd2

(1)= b‖d2d1bd2
(3)= b‖d2bd2d1

(1)= d2d1

and dually

(d2d1)(ab)y = (d2d1)(ab)b
‖d2a‖d1 (3)= d1ad2bb

‖d2a‖d1 (1)= d1ad2a
‖d1 (3)= d2d1aa

‖d1 (1)= d2d1.

Also, we have

y = b‖d2a‖d1 (2)= (d2b)
#d2(d1a)

#d1
(3)= (d2b)

#(d1a)
#d2d1

and

y = b‖d2a‖d1 (2)= d2(bd2)
#d1(ad1)

# (3)= d2d1(bd2)
#(ad1)

#,

which imply y ≤H d2d1. Hence, y is the inverse of ab along d2d1. �
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ByLemma4.1, the following results involving classical inverses are straightforward
consequences of Theorem 6.1.

Corollary 6.2 Let a, b ∈ S. (S is a ∗-semigroup in (3).)

(1) If a, b ∈ S# and ab = ba, then ab ∈ S# and (ab)# = b#a#.
(2) If a, b ∈ SD and ab = ba, then ab ∈ SD and (ab)D = bDaD.
(3) If a, b ∈ S†, a∗ab = ba∗a and bb∗a = abb∗, then ab ∈ S† and (ab)† = b†a†.

Remark 6.3 We have known that if a, b ∈ S†, ab = ba and ab∗ = b∗a, then ab ∈ S†

and (ab)† = b†a†. Here, it is clear that ab = ba and ab∗ = b∗a imply a∗ab = ba∗a
and bb∗a = abb∗. But the converse is not true. For example, let S = M2(C) and the
involution be the conjugate transpose. Take a = [

i 0
1 0

]
, b = [

1 0
0 −1

]
. Then, by an

elemental computation, we have a∗ab = ba∗a and bb∗a = abb∗. However, ab �= ba
and ab∗ �= b∗a.

Next, we consider the inverse of ak (k ∈ N) along an element in a semigroup, which
also recovers the results of the classical generalized inverses.

Theorem 6.4 Let a, d ∈ S with d ∈ comm(ad) (or d ∈ comm(da)) and k ∈ N. If a
is invertible along d, then ak is invertible along dk and (ak)‖dk = (a‖d)k .

Proof Suppose that d ∈ comm(ad), by Lemma 5.2, we have (ad)k = akdk , where
k ∈ N. Since a is invertible along d, then a‖dad = d = daa‖d and a‖d = d(ad)#.
Let y = (a‖d)k . Then we have the following equalities

yakdk = (a‖d)kakdk = (d(ad)#)k(ad)k = dk((ad)#)k(ad)k = dkad(ad)#

= dkaa‖d = dk

and

dkak y=dkak(a‖d)k = dkak(d(ad)#)k = dkakdk((ad)#)k = dk(ad)k((ad)#)k = dk .

In addition, note that

y = (a‖d)k = (d(ad)#)k = dk((ad)#)k = ((ad)#)kdk,

which implies y ≤H dk . Therefore, ak is invertible along dk with inverse y.
The proof of the case d ∈ comm(da) is analogous. �

Combining Theorem 6.4 and Lemma 4.1, we deduce the following results.

Corollary 6.5 Let a ∈ S and k ≥ 1. (S is a ∗-semigroup in (3).)

(1) If a ∈ S# , then ak ∈ S# and (ak)# = (a#)k .
(2) [4, Theorem 2] If a ∈ SD, then ak ∈ SD and (ak)D = (aD)k .
(3) If a ∈ S† and aa∗a = a2a∗ (or a∗a2 = aa∗a), then ak ∈ S† and (ak)† = (a†)k .
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Remark 6.6 It is well known that if a ∈ S† and aa∗ = a∗a, then ak ∈ S† and
(ak)† = (a†)k . Here, it is clear that aa∗ = a∗a can imply aa∗a = a2a∗. But the
converse is not true. For instance, let S = RCFMN(R), which denotes the ring of both
row-finite and column-finite N×N matrices over real number field R. Let involution
∗ be the transpose. Take a = ∑∞

i=1 ei,i+1, where ei, j is the same as the infinite matrix
in Remark 3.12. Then aa∗ = 1. Hence, we have a† = a∗ and aa∗a = a2a∗. However,
a∗a = ∑∞

i=2 ei,i �= aa∗.

The reverse order law for the inverse along an element is given as follows.

Theorem 6.7 Let a, b, d ∈ S with d ∈ comm(da) and d ∈ comm(ad). If both a and b
are invertible along d, then ab is invertible along d and (ab)‖d = b‖da‖d .

Proof Since a is invertible along d, by Lemma 3.3(3), we have d ≤H dad, which
implies d = dadu and d = vdad for some u, v ∈ S1. Since d ∈ comm(da) and
d ∈ comm(ad), then d = d2au and d = vad2. Thus d ∈ S# by Lemma 3.1(1). In
addition, we have

a‖dad = d = daa‖d and a‖d = d(ad)# = (da)#d

and

b‖dbd = d = dbb‖d and b‖d = d(bd)# = (db)#d.

Then, using previous equalities, we deduce that

(b‖da‖d)(ab)d = (db)#d(da)#dabd = (db)#(da)#dadbd

= (db)#a‖dadbd = (db)#dbd = b‖dbd = d

and

d(ab)(b‖da‖d) = d#d2abb‖da‖d = d#dadbb‖da‖d = d#dada‖d = d#ddaa‖d

= d#d2 = d.

In addition, we can easily see that b‖da‖d ≤H d. Hence, we get ab is invertible along
d and (ab)‖d = b‖da‖d . �


Finally, thanks to the characterizations of commutative inverses along an element
in a ring (see [1, Theorem 7.1 and Theorem 7.3]), next we consider the corresponding
results in a semigroup.

Theorem 6.8 Let a, d ∈ S. If a is invertible along d, then the following are equivalent:

(1) aa‖d = a‖da.
(2) d ∈ S# and add# = dd#a.
(3) da ≤L d and ad ≤R d.
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Proof Since a is invertible along d, then we have

a‖dad = d = daa‖d and a‖d = d(ad)# = (da)#d.

(1) ⇒ (2) From the previous equalities, it follows that d = a‖dad = aa‖dd =
a(da)#d2. Similarly, d = d2(ad)#a. Thus, d ∈ S# by Lemma 3.1(1).

In addition, we deduce that

dd# = a‖dadd# = aa‖dd#d = a(da)#dd#d = a(da)#d = aa‖d ,

which implies add# = aaa‖d = aa‖da = dd#a.
(2) ⇒ (3) Note that

da = daa‖da = da(da)#da = da(da)#ddd#a = da(da)#dad#d,

which yields da ≤L d. Similarly, ad ≤R d holds.
(3) ⇒ (1) By Lemma 3.3(3), we get d ≤H dad, i.e., d = rdad and d = dads

for suitable r, s ∈ S1. According to the assumptions da ≤L d and ad ≤R d, there
exist x, y ∈ S1 such that da = xd and ad = dy. Thus, d = rdad = r xd2 and
d = dads = d2ys, which imply d ∈ S#. Also, we have dad#d = xdd#d = xd = da
and dd#ad = dd#dy = dy = ad. Then, we have

a‖da = (da)#da = (da)#dad#d = a‖dad#d = a‖dadd# = dd#.

Similarly, we can get aa‖d = d#d. Therefore, aa‖d = a‖da. �
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