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Abstract Let R be a semiprime ring of characteristic different from 2, C its extended
centroid, Z(R) its center, F and G non-zero skew derivations of R with associated
automorphism α and m, n positive integers such that

[F(x),G(y)]m = [x, y]n for all x, y ∈ R.

Then R is commutative.
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1 Introduction

Let R be a prime ring of characteristic different from2with center Z(R), extended cen-
troidC , right Martindale quotient ring Qr , and symmetricMartindale quotient ring Q.
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1820 V. De Filippis et al.

An additive map d : R → R is a derivation on R if d(xy) = d(x)y + xd(y)
for all x, y ∈ R. Let a ∈ R be a fixed element. A map d : R → R defined by
d(x) = [a, x] = ax − xa, x ∈ R, is a derivation on R, which is called the inner
derivation defined by a. Many results in the literature indicate how the global structure
of a ring R is often tightly connected to the behavior of additive maps defined on R.
A well-known result of Posner [18], states that if d is a derivation of R such that
[d(x), x] ∈ Z(R) for any x ∈ R, then either d = 0 or R is commutative.

In this paper, we study the structure of prime and semiprime rings having skew
derivations satisfying strong commutativity preserving conditions. Specifically, let α
be an automorphism of a ring R. An additivemap D : R → R is called anα-derivation
(or a skew derivation) on R if D(xy) = D(x)y + α(x)D(y) for all x, y ∈ R. In this
case, α is called an associated automorphism of D. Basic examples of α-derivations
are the usual derivations and the map α − id, where id denotes the identity map. Let
b ∈ Q be a fixed element. Then a map D : R → R defined by D(x) = bx − α(x)b,
x ∈ R, is an α-derivation on R and it is called an inner α-derivation (an inner skew
derivation) defined by b. If a skew derivation D is not inner, then it is called outer.

If S ⊆ R, the map F : R → R is called commutativity preserving on S if
[x, y] = 0 implies [F(x), F(y)] = 0; it is called strong commutativity preserving
(for brevity we will always say SCP) on S if [F(x), F(y)] = [x, y], for all x, y ∈ S.

In [1], Bell and Daif proved that if R is a semiprime ring admitting a derivation
d which is SCP on the right ideal I of R, then I ⊆ Z . The natural possibility when
an additive map preserves commutativity appears in a paper by Bresar and Miers [2].
They showed that any additive map F which is SCP on a semiprime ring R is of the
form F(x) = λx + μ(x), where λ ∈ C , λ2 = 1, and μ : R → C is an additive map
of R into C .

Later in [15], Lin and Liu extended this result to Lie ideals, in case the ring R
is prime. More precisely they proved that if L is a non-central Lie ideal of R and
F is an additive map satisfying [F(x), F(y)] − [x, y] ∈ C for all x, y ∈ L , then
F(x) = λx+μ(x), where λ ∈ C , λ2 = 1, andμ : R → C , unless when char(R) = 2
and R satisfies the standard identity s4 of degree 4.

More recently, in [16] Liu showed that if R is a semiprime ring, I a non-zero right
ideal of R, F , and G non-zero skew derivations of R, with associated automorphism
α such that [F(x),G(y)] = [x, y] for all x, y ∈ I , then [α(x), x] = 0 for any x ∈ I .
Moreover, if α(I ) ⊆ I then σ(I ) ⊆ Z(R). Finally, it is proved that if R is prime then
R is commutative.

Here we continue this line of investigation and we examine what happens in case F
and G are skew derivations of R such that [F(x),G(y)]m = [x, y]n for all x, y ∈ I ,
where I is a non-zero ideal of R and m, n ≥ 1 are positive integers.

The results we obtained are the following:

Theorem 1 Let R be a prime ring of characteristic different from 2, C its extended
centroid, Z(R) its center, I a non-zero ideal of R, F, and G non-zero skew derivations
of R with associated automorphism α and m, n positive integers such that

[F(x),G(y)]m = [x, y]n for all x, y ∈ I.

Then R is commutative.
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Theorem 2 Let R be a semiprime ring of characteristic different from 2, C its extended
centroid, Z(R) its center, F and G non-zero skew derivations of R with associated
automorphism α, m, n positive integers such that

[F(x),G(y)]m = [x, y]n for all x, y ∈ R.

Then R is commutative.

2 Preliminaries

Wedenote the set of all skewderivations on Q bySDer(Q). By a skew-derivationword,
wemean an additivemap�of the form� = d1, d2, . . . dm ,with eachdi ∈ SDer(Q).A
skew-differential polynomial is a generalized polynomial with coefficients in Q, of the
form �(� j (xi )) involving non-commutative indeterminates xi on which the deriva-
tions words � j act as unary operations. The skew-differential polynomial �(� j (xi ))
is called a skew-differential identity on a subset T of Q if it vanishes for any assignment
of values from T to its indeterminates xi .

In order to prove our result, we need to recall the following known facts:

Fact 1 In [9],ChuangandLee investigate polynomial identitieswith skewderivations.
More precisely as a consequence of in [9, Theorem 1], we have that if D is an outer
skew derivation of R which satisfies the generalized polynomial identity�(xi , D(x j )),
then �(xi , y j ) is also a generalized polynomial identity for R, where xi and y j are
distinct indeterminates.

Fact 2 Let R be a prime ring and I a two-sided ideal of R. Then I , R, and Q satisfy the
same generalized polynomial identities with coefficients in Q (see [5]). Furthermore,
I , R, and Q satisfy the same generalized polynomial identities with automorphisms
[7, Theorem 1].

Fact 3 Recall that, in case char(R) = 0, an automorphism α of Q is called Frobenius
if α(x) = x for all x ∈ C. Moreover, in case char(R) = p ≥ 2, an automorphism
α is Frobenius if there exists a fixed integer t such that α(x) = x pt for all x ∈ C.
In [7, Theorem 2], Chuang proves that if �(xi , α(xi )) is a generalized polynomial
identity for R, where R is a prime ring and α ∈ Aut (R) an automorphism of R which
is not Frobenius, then R also satisfies the non-trivial generalized polynomial identity
�(xi , yi ), where xi and yi are distinct indeterminates.

Fact 4 Let R be a domain and α ∈ Aut (R) an automorphism of R which is outer.
In [13], Kharchenko proves that if �(xi , α(xi )) is a generalized polynomial identity
for R, then R also satisfies the non-trivial generalized polynomial identity �(xi , yi ),
where xi and yi are distinct indeterminates.

Finally, let us mention that if R is a prime ring satisfying a non-trivial generalized
polynomial identity and α an automorphism of R such that α(x) = x for all x ∈ C ,
then α is an inner automorphism of R [3, Theorem 4.7.4].
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Lemma 1 Let R be a semiprime ring of characteristic different from2, Q its symmetric
Martindale quotient ring, F and G non-zero skew derivations of R, m, n positive
integers such that n ≥ 2 and

[F(x),G(y)]m = [x, y]n for all x, y ∈ R. (2.1)

Then R is commutative.

Proof Assume first that R is prime. From the relation (2.1), we have both

[F(x + z),G(y)]m = [x + z, y]n (2.2)

and

[F(x + z),G(y)]m = [F(x),G(y)]m + [F(z),G(y)]m = [x, y]n + [z, y]n . (2.3)

From (2.2) and (2.3), it follows that R satisfies the polynomial identity [x + z, y]n −
[x, y]n − [z, y]n . By Posner’s theorem [11, Theorem 2 p. 57, Lemma 1 p. 89], Q ⊆
Mk(E), the ring of k × k matrices over a field E . Moreover, Q and Mk(E) satisfy the
same polynomial identities. If k ≥ 2 and for x = e21, y = e11, z = e11 we have the
contradiction

0 = [e21 + e12, e11]
n − [e21, e11]

n − [e12, e11]n = (e21 − e12)
n �= 0.

Thus, k = 1 and we have that Q is commutative, as well as R.
Let now R be semiprime. Since R is a semiprime ring for which [x + z, y]n −

[x, y]n − [z, y]n is a polynomial identity, R is a subdirect product of prime rings Rα ,
each of which still satisfies the identity [x + z, y]n − [x, y]n − [z, y]n . In this case,
by the above argument, any Rα is commutative. Thus, we conclude that R must be
commutative. ��
Lemma 2 Let R be a non-commutative prime ring of characteristic different from 2,
F and G non-zero skew derivations of R, m a positive integer such that

[F(x),G(y)]m = [x, y] for all x, y ∈ R.

Then char(R) = p > 0 and m is odd.

Proof For any x, y ∈ R we have

[F(x),G(y + y)]m = [x, y + y] = 2[x, y] (2.4)

and also, by computing the m-th commutator

[F(x),G(2y)]m = [F(x), 2G(y)]m = 2m[F(x),G(y)]m = 2m[x, y]. (2.5)
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Comparing (2.4) with (2.5) it follows (2m − 2)[x, y] = 0 for all x, y ∈ Q. Hence,
since R is not commutative and char(R) �= 2, char(R) = p �= 0 (since 2m − 2 ≡ 0,
modulo p).
Moreover,

−[x, y] = [x,−y] = [F(x),G(−y)]m = (−1)m[F(x),G(y)]m = (−1)m[x, y]
which implies that m must be an odd integer. ��

3 Results

Lemma 3 Let R be a non-commutative prime ring of characteristic different from 2,
which is isomorphic to a dense subring of the ring of linear transformations of a vector
space V over a division ring D, α : R → R an automorphism of R and q, u ∈ R
such that

[qx, α(y)u − uy]m = [x, y]
for all x, y ∈ R. Then dimDV = 1.

Proof ByTheorem1 in [7], R and Q satisfy the samegeneralized polynomial identities
with automorphisms and hence [qx, α(y)u−uy]m−[x, y] is a generalized polynomial
identity for Q. We assume that dimDV ≥ 2 and prove that a contradiction follows.
By [12, p. 79], there exists a semilinear automorphism T ∈ End(V ) such that α(x) =
T xT−1 for all x ∈ Q. Hence, Q satisfies

[
qx, T yT−1u − uy

]
m

= [x, y].

We notice that, if for any v ∈ V there exists λv ∈ D such that T−1uv = vλv ,
then, by a standard argument, it follows that there exists a unique λ ∈ D such that
T−1uv = vλ, for all v ∈ V (see for example [8, Lemma 1]). In this case,

α(x)uv =
(
T xT−1

)
uv = T xvλ

and
(

α(x)u − ux

)
v = T (xvλ) − uxv = T

(
T−1uxv

)
− uxv = 0

which implies that

(
α(x)u − ux

)
V = (0). Thus α(x)u − ux = 0 for any x ∈ R,

since V is faithful, and by our assumption 0 = [qx, α(y)u − uy]m = [x, y] for any
x, y ∈ R, which is a contradiction, since R is not commutative.

Therefore, there exists v ∈ V such that {v, T−1uv} are linearly D-independent. By
the density of Q, there exist r, s ∈ Q such that

rv = 0, rT−1uv = v, sv = T−1uv, sT−1uv =
(
T−1u

)2
v.
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1824 V. De Filippis et al.

Hence,

qrv = 0,
(
T sT−1u − us

)
v = 0, [r, s]v = v

and, by the main assumption, we get the contradiction

0 =
([

qr, T sT−1u − us
]
m

− [r, s]
)

v = −v �= 0.

��
Lemma 4 Let R be a non-commutative prime ring of characteristic different from 2,
C its extended centroid, Z(R) its center, I a non-zero ideal of R, F, and G non-zero
skew derivations of R with associated automorphism α, m a positive integer such that

[F(x),G(y)]m = [x, y] for all x, y ∈ I.

Then there exist p, q, u ∈ Q, with p invertible such that F(x) = pxp−1q − qx and
G(x) = pxp−1u − ux, for all x ∈ R.

Proof It is known that I , R, and Q satisfy the same generalized polynomial identities
with skew derivations and automorphisms, so that [F(x),G(y)]m = [x, y], for all
x, y ∈ Q. Notice that if m = 1 then the result follows by [15]. Thus we consider
m ≥ 2.

Fix y0 ∈ R and denote z0 = G(y0). Then for any x ∈ Q we get [F(x), z0]m =
[x, y0]. In case F is an outer skew derivation of R, it is known that Q satisfies [t, z0]m−
[x, y0], and in particular for t = 0, we have [x, y0] = 0, for all x ∈ Q. This implies
y0 ∈ C . We may repeat this argument for any y0 ∈ Q and conclude that Q is
commutative, a contradiction. Therefore, in the sequel, we always assume that F is an
inner skewderivationof R. Thus, there exists 0 �= q ∈ Q such that F(x) = α(x)q−qx ,
for all x ∈ R.

Fix now x0 ∈ R and denote z0 = F(x0). Then for any y ∈ Q we get [z0,G(y)]m =
[x0, y]. In caseG is an outer skew derivation of R, it is known that Q satisfies [z0, t]m−
[x0, y], and in particular for t = 0, we have [x0, y] = 0 for all y ∈ Q. This implies
x0 ∈ C . We may repeat this argument for any x0 ∈ Q and conclude that Q is
commutative, a contradiction. Therefore, in the sequel, we always assume that G is an
inner skewderivation of R. Thus, there exists 0 �= u ∈ Q such thatG(x) = α(x)u−ux ,
for all x ∈ R. Hence we have that

[α(x)q − qx, α(y)u − uy]m = [x, y] for all x, y ∈ Q. (3.1)

We assume that α is not inner. In this case

[tq − qx, α(y)u − uy]m − [x, y] (3.2)

is satisfied by Q.
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If α is not Frobenius, then by (3.2) it follows that Q satisfies the generalized identity

[tq − qx, zu − uy]m − [x, y] (3.3)

and in particular for x = y = 0 in (3.3), [tq, zu]m = 0, for all t, z ∈ Q. By applying
the result in [14], and since q �= 0 and u �= 0, it follows that either Qq is a non-zero
central left ideal of Q or Qu is a non-zero central left ideal of Q. In any case, Q is
commutative, a contradiction.

Thus, we consider the case when α is Frobenius. Again by (3.2), Q satisfies

[−qx, α(y)u − uy]m − [x, y]. (3.4)

In case both q ∈ C and u ∈ C , by (3.4) we have that

− qum[x, α(y) − y]m − [x, y] (3.5)

is satisfied by Q. Then by the main Theorem in [6] and since qum �= 0, Q satisfies
a non-trivial generalized polynomial identity. On the other hand, if either q /∈ C or
u /∈ C , then by (3.4) and again by the main Theorem in [6], Q satisfies a non-trivial
generalized polynomial identity (hence Q is a GPI-ring in any case). Therefore, by
[17, Theorem 3], Q is a primitive ring and it is a dense subring of the ring of linear
transformations of a vector space V over a division ring D. Moreover, Q contains
non-zero linear transformations of finite rank. By Lemma 3, it follows dimDV = 1,
that is Q is a division algebra which is finite dimensional over C . If C is finite, then
Q is finite, so that Q is a commutative field, which is a contradiction. So, we assume
in all that follows that C is infinite and char(Q) = p > 0.

By using (3.4) in (3.2) it follows that

[tq, α(y)u − uy]m (3.6)

is satisfied by Q. Let s ≥ 1 be such that ps ≥ m, and k = ps , then by (3.6) we have
that Q satisfies [

tq, α(y)u − uy

]

k

that is [
tq,

(
α(x)u − ux

)k]
= 0 for all t, x,∈ Q. (3.7)

Since α is Frobenius, α(γ ) = γ ph , for all γ ∈ C and some non-zero fixed integer
h. Moreover, there exists λ ∈ C such that λph �= λ, that is λph−1 �= 1.

In particular, we choose γ ∈ C such that γ = λph−1 �= 0. In the relation (3.7), we
replace x by λx and obtain that Q satisfies

[
tq,

(
λphα(x)u − λux

)k]
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that is [
tq,

(
γα(x)u − ux

)k]
.

Let � and � be maps on Q, such that �(x) = −ux and �(x) = α(x)u, for any
element x of Q. Thus it follows that [tq, (�(x) + γ�(x))k] = 0 for all x ∈ Q.
Expanding (�(x) + γ�(x))k , we get

n∑
i=0

γ i

⎛
⎝ ∑

(i,k−i)

ϕ1 · ϕ2 · · · ϕk

⎞
⎠ = 0

where the inside summations are taken over all permutations of k − i terms of the
form �(x) and i terms of the form �(x). This means that each summation inside
has exactly k − i terms of the form �(x) and i terms of the form �(x) but in some
different order. For any j = 0, . . . , k, denote y j = ∑

( j,k− j) ϕ1 · ϕ2 · · · ϕk , then we
can write

(�(x) + γ�(x))k = y0 + γ y1 + γ 2y2 + . . . + γ k yk

so that [
tq, y0 + γ y1 + γ 2y2 + . . . + γ k yk

]
= 0.

that is
[tq, y0] + γ [tq, y1] + γ 2[tq, y2] + . . . + γ k[tq, yk] = 0.

Here, we denote by zi = [tq, yi ], for any i = 1, . . . , k, then

z0 + γ z1 + γ 2z2 + . . . + γ k zk = 0. (3.8)

Replacing in the previous argument λ successively by 1, λ, λ2, . . . , λk , the equation
(3.8) gives the system of equations

z0 + z1 + z2 + · · · + zk = 0

z0 + γ z1 + γ 2z2 + · · · + γ k zk = 0

z0 + γ 2z1 + γ 4z2 + · · · + γ 2k zk = 0

z0 + γ 3z1 + γ 6z2 + · · · + γ 3k zk = 0

· · · · · · · · · · · ·
z0 + γ k z1 + γ 2k z2 + · · · + γ k2 zk = 0.

(3.9)

Moreover, since C is infinite, there exist infinitely many λ ∈ C such that λi(p
h−1) �= 1

for i = 1, . . . , k, that is there exist infinitely many γ = λph−1 ∈ C such that γ i �= 1
for i = 1, . . . , k. Hence, the Vandermonde determinant (associated with the system
(3.9))
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∣∣∣∣∣∣∣∣∣∣

1 1 · · · · · · 1
1 γ γ 2 · · · γ k

1 γ 2 γ 4 · · · γ 2k

· · · · · · · · · · · · · · ·
1 γ k γ 2k · · · γ k2

∣∣∣∣∣∣∣∣∣∣
=

∏
0≤i< j≤k

(γ i − γ j )

is not zero. Thus, we can solve the above system (3.9) and obtain zi = 0 (i = 0, . . . , k).
In particular z0 = 0, that is Q satisfies

[
tq, (−ux)k

]
. (3.10)

Since u �= 0 and q �= 0, then, by (3.10) and [14], either uQ is a non-zero central
right ideal of Q or Qq is a non-zero central left ideal of Q. In any case, we get the
contradiction that Q is commutative.

The previous argument shows that the automorphism α must be inner, that is there
exists an invertible element p ∈ Q, such that α(x) = pxp−1, for all x ∈ R, as
required. ��

The following result is an easy consequence of [4, Theorem 1]. It will be useful in
the proof of our result:

Lemma 5 Let R be a prime ring of characteristic different from 2, Z(R) its center, C
its extended centroid. Let p be an invertible element of R, d the inner derivation of R,
which is induced by p, that is, d(x) = [p, x] for any x ∈ R, and β(x) = pxp−1 for
any x ∈ R, the inner automorphism of R induced by p. Assume that F is a non-zero
skew derivation of R with associated automorphism β and 0 �= a ∈ R such that

aF(x) − F(x)a = d(x) for all x ∈ R.

Then d = 0,β is the identitymap on R, F is an ordinary derivation of R and a ∈ Z(R).

Proof Firstly we notice that, since F is a skew derivation of R, F(xy) = F(x)y +
β(x)F(y). Thus, F is both a right (1, β)-generalized skew derivation and a left (1, β)-
generalized skewderivation of R, in the sense of [4]. Therefore,wemay applyTheorem
1 in [4], and one of the following holds:

(1) (case (i) of Theorem 1 in [4]) d(x) = apx − pxa for any x ∈ R. Hence
d(xy) = d(x)y + xd(y) = (apx − pxa)y + x(apy − pya), on the other hand
d(xy) = apxy − pxya. Comparing the previous identities, we get

− px[y, a] − xapy + xpya = 0. (3.11)

In particular, for x = y = p−1, it follows ap−1 − p−1a = 0 which implies
ap− pa = 0. Therefore d(x) = p[a, x], moreover by (3.11) we get−px[y, a]−
xpay + xpya = 0, that is [x, p][y, a] = 0. As an application of [19, Theorem
3], it follows that either p ∈ C or a ∈ C , in any case d = 0.
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(2) (cases (ii) and (iii) of [4, Theorem 1]) There exists q ∈ Q such that d(x) =
p[q, x], for all x ∈ R. Hence d(xy) = d(x)y + xd(y) = p[q, x]y + xp[q, y],
on the other hand d(xy) = p[q, xy] = p[q, x]y + px[q, y]. Comparing the
previous identities, we get [p, x][q, y] = 0, for any x, y ∈ R, that is either
p ∈ C or q ∈ C . In any case d = 0.

(3) (case (iv) of [4, Theorem 1 ]) There exists q ∈ Q such that d(x) = px + p[q, x]
for all x ∈ R. Hence d(xy) = d(x)y + xd(y) = (px + p[q, x])y + x(py +
p[q, y]), on the other hand d(xy) = pxy + p[q, xy] = pxy + p[q, x]y +
px[q, y]. Comparing the previous identities, we get xpy + [p, x][q, y] = 0 for
any x, y ∈ R. In particular, for x = p−1, it follows the contradiction y = 0, for
all y ∈ R.

Since in any case p ∈ C , β is the identity map on R and F is an ordinary derivation of
R such that [a, F(x)] = 0 for any x ∈ R. Hence, by the first Posner’s theorem in [18],
it follows a ∈ Z(R) or F(R) ⊆ Z(R). In this last case, by second Posner’s theorem
in [18], R is commutative. In any case we obtain that a ∈ Z(R). ��
Lemma 6 Let R = Mt (C) be the ring of t × t matrices over C, with char(R) =
l �= 0, 2, m ≥ 1 be an odd integer, p, q, u ∈ R with p invertible such that F(x) =
pxp−1q − qx, G(x) = pxp−1u − ux and

[
pxp−1q − qx, pyp−1u − uy

]
m

− [x, y] (3.12)

for any x, y ∈ R. Then t=1.

Proof In (3.12) replace x, y by p−1x, p−1y, respectively, and denote a = p−1q,
b = qp−1, c = p−1u, w = up−1. Therefore Q satisfies

�(x, y) = [xa − bx, yc − wy]m −
[
p−1x, p−1y

]
. (3.13)

In case a ∈ C , then F = 0 and (3.12) implies [x, y] = 0 for any x, y ∈ R, that is R is
commutative. On the other hand, if c ∈ C , then G = 0 and again it follows that R is
commutative. Therefore, here we may assume that t ≥ 2 and both a /∈ C and c /∈ C .
We prove that a number of contradiction follows.
Firstly, we notice that, for any inner automorphism ϕ of Mt (C), we have that

[xϕ(a) − ϕ(b)x, yϕ(c) − ϕ(w)y]m −
[
ϕ(p−1)x, ϕ(p−1)y

]
(3.14)

is a generalized identity for R. We will make a frequent use of this fact.
As above, we denote by ei j the usual matrix unit, with 1 in the (i, j) entry and

zero elsewhere, and say a = ∑
kl aklekl , b = ∑

kl bklekl , c = ∑
kl cklekl and w =∑

kl wklekl , for akl , bkl , ckl , wkl ∈ C .
Suppose t ≥ 3. In (3.13), we make the following choices: x = e ji , y = ekk , for any
i, j, k different indices; moreover, we right multiply (3.13) by e j j and left multiply
by ekk . As a consequence we get akj cmi j = 0, that is akj ci j = 0. Now, let ϕ(x) =
(1 + eki )x(1 − eki ) and denote (a′

i j )t×t the entries of the matrix ϕ(a), and (c′
i j )t×t
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the entries of the matrix ϕ(c). By the above computations, we get a′
k j c

′
i j = 0, that is

(akj + ai j )ci j = 0, which means ai j ci j = 0. Thus, by Proposition 1 in [10], it follows
that either a ∈ C or c ∈ C , in any case a contradiction.

Therefore, we finally consider the case t = 2 and R = M2(C). For x = eii and
y = e ji in (3.13), with i �= j , right multiply (3.13) by e j j and left multiply by eii , it
follows ai j (ci j + wi j )

m = 0, that is

ai j (ci j + wi j ). (3.15)

Let now x = y = ei j in (3.13), with i �= j , and right multiply (3.13) by eii one has
(a ji + c ji )m = 0, that is

a ji + c ji for all i �= j (3.16)

whichmeans that a+c is a diagonalmatrix. In this case, a standard argument shows that
a + c is a central matrix, say a = λ − c, for λ ∈ Z(R). Analogously, for x = y = ei j
in (3.13), and left multiply (3.13) by e j j one has (w j i + b ji )

m = 0, that is

w j i + b ji for all i �= j

which means that w + b is a diagonal matrix and, as above, w + b is a central matrix,
say b = μ − w, for μ ∈ Z(R).

In other words, p−1q = λ − p−1u and qp−1 = μ − up−1. Therefore, if either
λ = 0 or μ = 0 then q = −u, λ = μ = 0, and F = −G. On the other hand, if both
λ �= 0 and μ �= 0, it follows both q = pλ − u and q = pμ − u, that is λ = μ and
easy computations show that F = −G in any case.
Now, we write v = c + w and let v = ∑

kl vklekl , for vkl ∈ C . The next step is to
prove that either v is diagonal or both a and c are diagonal matrices of R. To do this,
we assume by contradiction that v is not diagonal, for example, let v12 �= 0, and prove
that a contradiction follows. In this case, by (3.15) and (3.16) we get a12 = 0 and
c12 = 0. Moreover, if v21 �= 0, then a and c are diagonal matrices and we are done.
Thus we assume that v21 = 0.

Let ϕ(x) = (1 + e12)x(1 − e12) and χ(x) = (1 − e12)x(1 + e12) and denote
ϕ(a) = ∑

kl a
′
klekl , ϕ(c) = ∑

kl c
′
klekl , ϕ(v) = ∑

kl v
′
klekl , χ(a) = ∑

kl a
′′
klekl ,

χ(c) = ∑
kl c

′′
klekl , χ(v) = ∑

kl v
′′
klekl .

We notice that, if both v′
12 �= 0 and v′′

12 �= 0, then a′
12 = 0, a′′

12 = 0 and also c′
12 = 0,

c′′
12 = 0 that is a22 − a11 − a21 = 0, −a22 + a11 − a21 = 0, c22 − c11 − c21 = 0,

−c22 + c11 − c21 = 0, implying a21 = 0 and c21 = 0, so that a and c are diagonal
and we are done.
Thus we may assume (without loss of generality) v′′

12 = 0. We have proved that if
v12 �= 0 then v12 = v22 −v11. Let θ(x) = (1+e21)x(1−e21) and θ(v) = ∑

kl v
′′′
kl ekl .

Since v′′′
12 = v12 �= 0, then v′′′

12 = v′′′
22 − v′′′

11, that is v12 = −v22 + v11, implying again
the contradiction v12 = 0.
The previous argument says that either v is diagonal or both a and c are diagonal
matrices, and as above, we may conclude that either v is central or both a and c are
central matrices of R.
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Since if a ∈ Z(R) and c ∈ Z(R), then F = G = 0, which is a contradiction, then
we assume in what follows that c + w = v = ν ∈ Z(R), that is p−1q + qp−1 = ν.
For y = p in (3.12) it follows that

[
pxp−1q − qy, [p, u]

]

m
= [x, p]. (3.17)

Assume that [p, u] is an invertible matrix in M2(C), thus 0 �= [p, u]2 ∈ Z(R) and by
computations one has

2m−1
((

pxp−1q − qx
)

[p, u]m − [p, u]
(
pxp−1q − qx

)
[p, u]m−1

)
= [x, p].

Since [p, u] is an invertible matrix and m − 1 is even, then [p, u]m−1 ∈ Z(R) and

2m−1
((

pxp−1q − qx
)

[p, u]m − [p, u]m
(
pxp−1q − qx

))
= [x, p].

Since F �= 0 and 2m−1[p, u]m �= 0, we may apply Lemma 5 and obtain the contra-
diction p ∈ Z(R).

Therefore [p, u] is not an invertible matrix in M2(C), i.e., [p, u]2 = 0. Once again,
for y = p in (3.12) and since m ≥ 2, we get

0 =
[
pxp−1q − qx, [p, u]

]

m
= [x, p] (3.18)

and as above we conclude with the contradiction p ∈ Z(R). ��

4 The proof of Theorem 1

In light of Lemma 1, we may assume n = 1. Since I , R, and Q satisfy the same
generalized identities with skew derivations and automorphisms, we may assume

[F(x),G(y)]m − [x, y] = 0 for all x, y ∈ Q. (4.1)

Moreover, by Lemma 4, there exists p, q, u ∈ Q with p invertible such that F(x) =
pxp−1q −qx and G(x) = pxp−1u−ux for all x ∈ R. Notice that, if either F = 0 or
G = 0, then [x, y] = 0 for all x, y ∈ Q, which means that Q is commutative, as well
as R. Thus we also assume both F �= 0 and G �= 0. Hence Q satisfies the generalized
polynomial identity

[
pxp−1q − qx, pyp−1u − uy

]
m

− [x, y]. (4.2)
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In (4.2) replace x, y by p−1x, p−1y, respectively, and denote a = p−1q, b = qp−1,
c = p−1u, w = up−1. Therefore Q satisfies

�(x, y) = [xa − bx, yc − wy]m −
[
p−1x, p−1y

]
. (4.3)

In case a ∈ C , then F = 0. On the other hand, if c ∈ C , then G = 0. Therefore,
we may assume that both a /∈ C and c /∈ C , in particular Q is not commutative. We
will prove that a number of contradiction follows. Since both a and c are not central
elements, then (4.3) is a non-trivial generalized identity for R as well as for Q. Hence,
Q is a primitive ring dense of linear transformations over a vector space V over C .

Assume first that dimCV = t is a finite integer. Thus, Q ∼= Mk(C) and by Lemma
6 it follows the contradiction that Q is commutative.
Let now dimCV = ∞. Let y1, y2 ∈ Q. By Litoff’s theorem (see Theorem 4.3.11 in
[3]) there exists an idempotent element e ∈ Q such that

y1, y2, a, b, c, w, p ∈ eQe ∼= Mt (C)

for some integer t . Of course �(x, y) = 0 for all x, y ∈ eQe. Thus by Lemma 6,
either a ∈ Ce, or c ∈ Ce or [y1, y2] = 0. This means that either F(eQe) = 0 or
G(eQe) = 0 or [y1, y2] = 0. As above, if F(eQe) = 0 or G(eQe) = 0 then eQe
is commutative. Therefore, in any case we get [y1, y2] = 0. By the arbitrariness of
y1, y2 ∈ Q, it follows that [y1, y2] = 0 for any y1, y2 ∈ Q, that is Q is commutative,
which is a contradiction.

5 The proof of Theorem 2

Also in this case, in light of Lemma 1, we may assume n = 1. Let P be a prime ideal
of R. Set R = R/P and write x = x + P ∈ R, for all x ∈ R. We start from

[
F(x),G(y)

]

m
= [x, y] for all x, y ∈ R. (5.1)

Case 1 F(P) ⊆ P , α(P) � P .
In this case α(P) is an ideal of R. Moreover, for any x ∈ R, p ∈ P , F(px) =

F(p)x + α(p)F(x) ∈ P , so that α(p)F(x) ∈ P and α(p)F(x) = 0. Since R is
prime and F(x) annihilates a non-zero ideal of R, F(x) = 0, that is F(R) ⊆ P . Thus
[F(x),G(y)]m ∈ P for any x, y ∈ R and, by (5.1), it follows [R, R] ⊆ P .

Case 2 G(P) ⊆ P , α(P) � P .
Identical computations as in CASE 1, imply [R, R] ⊆ P .

Case 3 F(P) ⊆ P , α(P) ⊆ P .
In this case F is a skew derivation of R. If G(P) ⊆ P , then also G is a skew deriva-

tion of R, and by the primeness of R and Theorem 1, we have that R is commutative,
that is [R, R] ⊆ P .
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Let now G(P) � P . Then G(P) is a non-zero ideal of R. For any x, y ∈ R and
q ∈ P , we get [

F(x),G(yq)

]

m
= [x, yq] for all x, y ∈ R

that is [
F(x),G(y)q + α(y)G(q)

]

m
= [x, yq] for all x, y ∈ R

implying that [
F(x), α(y)G(q)

]

m
∈ P for all x, y ∈ R

and [
F(x), α(y)G(q)

]

m
= 0 for all x, y ∈ R. (5.2)

In particular, let h ≥ 1 be such that ph ≥ m, then (5.2) is

[
F(x), α(y)G(q)

ph
]

= 0 for all x, y ∈ R. (5.3)

By the primeness of R and since α(R)G(P) is a non-zero ideal of R, by applying the
result in [14], it follows that either F(R) ⊆ Z(R) or α(R)G(P) ⊆ Z(R). In the first
case, by (5.1) we get [x, y] = 0. In the latter case it follows that R is commutative. In
any case [R, R] ⊆ P .

Case 4 G(P) ⊆ P , α(P) ⊆ P .
In light of previous cases, we may also assume that F(P) � P . In this case, G is a

skew derivation of R, moreover F(P) is a non-zero ideal of R. For any x, y ∈ R and
q ∈ P , we get [

F(qx),G(y)

]

m
= [qx, y], ∀ x, y ∈ R

that is [
F(q)x + α(q)F(x),G(y)

]

m
∈ P, ∀ x, y ∈ R

implying that [
F(q)x,G(y)

]

m
∈ P, ∀ x, y ∈ R

and [
F(P)R,G(R)

]

m
= 0. (5.4)

Since R is prime and F(P)R is a non-zero ideal of R, F(P)R, and R satisfy the
same generalized identities with skew derivation G and automorphism α. Therefore,
by (5.4) we get [

R,G(R)

]

m
= 0. (5.5)
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From (5.5) and (5.1) it follows again [x, y] = 0 for any x, y ∈ R, that is [R, R] ⊆ P .

Case 5 F(P) � P , G(P) � P .
For any x, y ∈ R and q, u ∈ P , by (5.1) we get

[
F(xq),G(yu)

]

m
= [xq, yu] ∈ P for all x, y ∈ R

that is
[
F(x)q + α(x)F(q),G(y)u + α(y)G(u)

]

m
∈ P for all x, y ∈ R

implying that [
α(x)F(q), α(y)G(u)

]

m
∈ P for all x, y ∈ R

and [
α(R)F(P), α(R)G(P)

]

m
= 0.

Assume first that α(P) ⊆ P , so that both F(P) and G(P) are non-zero ideals of R.
On the other hand, if α(P) � P then α(R)F(P) and α(R)G(P) are left ideals of R.
In any case, for any x ∈ α(R)F(P) and y ∈ α(R)G(P), it follows [x, y] = 0. Since
R is prime, we apply again a reduced version of main result in [14], and conclude that
either α(R)F(P) ⊆ Z(R) or α(R)G(P) ⊆ Z(R). In any case R contains a non-zero
central ideal (either left or two-sided), so that R is commutative, i.e., [x, y] = 0, for
any x, y ∈ R and [R, R] ⊆ P .

Therefore in any case [R, R] ⊆ P , for any prime ideal P of R. Then [R, R] ⊆⋂
i Pi = (0) (where Pi are all prime ideals of R), that is R is commutative.
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