

Strong Commutativity Preserving Skew Derivations in Semiprime Rings

V. De Filippis¹ **· N.** Rehman² **· M.** A. Raza²

Received: 2 December 2015 / Revised: 22 September 2016 / Published online: 24 October 2016 © Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2016

Abstract Let *R* be a semiprime ring of characteristic different from 2, *C* its extended centroid, $Z(R)$ its center, F and G non-zero skew derivations of R with associated automorphism α and m , *n* positive integers such that

$$
[F(x), G(y)]_m = [x, y]^n \text{ for all } x, y \in R.
$$

Then *R* is commutative.

Keywords Skew derivations · Automorphism · Generalized polynomial identity (GPI) · Prime and semiprime ring · Strong commutativity preserving

Mathematics Subject Classification 16N60 · 16U80 · 16W25

1 Introduction

Let *R* be a prime ring of characteristic different from 2 with center $Z(R)$, extended centroid *C*, right Martindale quotient ring *Qr*, and symmetric Martindale quotient ring *Q*.

Communicated by Shiping Liu.

 \boxtimes V. De Filippis defilippis@unime.it N. Rehman nu.rehman.mm@amu.ac.in

> M. A. Raza arifraza03@gmail.com

¹ MIFT, University of Messina, 98166 Messina, Italy

² Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India

An additive map $d : R \rightarrow R$ is a *derivation* on R if $d(xy) = d(x)y + xd(y)$ for all $x, y \in R$. Let $a \in R$ be a fixed element. A map $d : R \rightarrow R$ defined by $d(x) = [a, x] = ax - xa, x \in R$, is a derivation on *R*, which is called *the inner derivation* defined by *a*. Many results in the literature indicate how the global structure of a ring *R* is often tightly connected to the behavior of additive maps defined on *R*. A well-known result of Posner [\[18](#page-15-0)], states that if *d* is a derivation of *R* such that $[d(x), x] \in Z(R)$ for any $x \in R$, then either $d = 0$ or R is commutative.

In this paper, we study the structure of prime and semiprime rings having skew derivations satisfying strong commutativity preserving conditions. Specifically, let α be an automorphism of a ring *R*. An additive map $D: R \to R$ is called an α -*derivation* (or a *skew derivation*) on *R* if $D(xy) = D(x)y + \alpha(x)D(y)$ for all $x, y \in R$. In this case, α is called an *associated automorphism* of *D*. Basic examples of α -derivations are the usual derivations and the map $\alpha - id$, where *id* denotes the identity map. Let $b \in Q$ be a fixed element. Then a map $D: R \to R$ defined by $D(x) = bx - \alpha(x)b$, *x* ∈ *R*, is an α-derivation on *R* and it is called an *inner* α-*derivation* (an *inner skew derivation*) defined by *b*. If a skew derivation *D* is not inner, then it is called *outer*.

If $S \subseteq \mathcal{R}$, the map $F : \mathcal{R} \to \mathcal{R}$ is called commutativity preserving on *S* if $[x, y] = 0$ implies $[F(x), F(y)] = 0$; it is called strong commutativity preserving (for brevity we will always say SCP) on *S* if $[F(x), F(y)] = [x, y]$, for all $x, y \in S$.

In [\[1\]](#page-14-0), Bell and Daif proved that if *R* is a semiprime ring admitting a derivation *d* which is SCP on the right ideal *I* of *R*, then $I \subseteq Z$. The natural possibility when an additive map preserves commutativity appears in a paper by Bresar and Miers [\[2](#page-14-1)]. They showed that any additive map *F* which is SCP on a semiprime ring *R* is of the form $F(x) = \lambda x + \mu(x)$, where $\lambda \in C$, $\lambda^2 = 1$, and $\mu : R \to C$ is an additive map of *R* into *C*.

Later in [\[15](#page-15-1)], Lin and Liu extended this result to Lie ideals, in case the ring *R* is prime. More precisely they proved that if *L* is a non-central Lie ideal of *R* and *F* is an additive map satisfying $[F(x), F(y)] - [x, y] \in C$ for all $x, y \in L$, then $F(x) = \lambda x + \mu(x)$, where $\lambda \in C$, $\lambda^2 = 1$, and $\mu : R \to C$, unless when *char*(*R*) = 2 and *R* satisfies the standard identity *s*⁴ of degree 4.

More recently, in [\[16\]](#page-15-2) Liu showed that if *R* is a semiprime ring, *I* a non-zero right ideal of *R*, *F*, and *G* non-zero skew derivations of *R*, with associated automorphism α such that $[F(x), G(y)] = [x, y]$ for all $x, y \in I$, then $[\alpha(x), x] = 0$ for any $x \in I$. Moreover, if $\alpha(I) \subseteq I$ then $\sigma(I) \subseteq Z(R)$. Finally, it is proved that if *R* is prime then *R* is commutative.

Here we continue this line of investigation and we examine what happens in case *F* and *G* are skew derivations of *R* such that $[F(x), G(y)]_m = [x, y]^n$ for all $x, y \in I$, where *I* is a non-zero ideal of *R* and $m, n \ge 1$ are positive integers.

The results we obtained are the following:

Theorem 1 *Let R be a prime ring of characteristic different from* 2*, C its extended centroid, Z*(*R*) *its center, I a non-zero ideal of R, F, and G non-zero skew derivations of R with associated automorphism* α *and m*, *n positive integers such that*

$$
[F(x), G(y)]_m = [x, y]^n
$$
 for all $x, y \in I$.

Then R is commutative.

Theorem 2 *Let R be a semiprime ring of characteristic different from* 2*, C its extended centroid, Z*(*R*) *its center, F and G non-zero skew derivations of R with associated automorphism* α*, m*, *n positive integers such that*

$$
[F(x), G(y)]_m = [x, y]^n \text{ for all } x, y \in R.
$$

Then R is commutative.

2 Preliminaries

We denote the set of all skew derivations on *Q* by SDer(*Q*). By a skew-derivation word, we mean an additive map Δ of the form $\Delta = d_1, d_2, \ldots, d_m$, with each $d_i \in SDer(Q)$. A skew-differential polynomial is a generalized polynomial with coefficients in *Q*, of the form $\Phi(\Delta_i(x_i))$ involving non-commutative indeterminates x_i on which the derivations words Δ_i act as unary operations. The skew-differential polynomial $\Phi(\Delta_i(x_i))$ is called a skew-differential identity on a subset *T* of *Q* if it vanishes for any assignment of values from *T* to its indeterminates *xi* .

In order to prove our result, we need to recall the following known facts:

Fact 1 *In [\[9](#page-14-2)], Chuang and Lee investigate polynomial identities with skew derivations. More precisely as a consequence of in* [\[9,](#page-14-2) Theorem 1]*, we have that if D is an outer skew derivation of R which satisfies the generalized polynomial identity* $\Phi(x_i, D(x_i))$, *then* $\Phi(x_i, y_i)$ *is also a generalized polynomial identity for R, where* x_i *and* y_i *are distinct indeterminates.*

Fact 2 *Let R be a prime ring and I a two-sided ideal of R. Then I , R, and Q satisfy the same generalized polynomial identities with coefficients in Q* (*see* [\[5](#page-14-3)])*. Furthermore, I , R, and Q satisfy the same generalized polynomial identities with automorphisms* [\[7](#page-14-4), *Theorem* 1]*.*

Fact 3 *Recall that, in case char* $(R) = 0$ *, an automorphism* α *of* Q *is called* Frobenius $if \alpha(x) = x$ for all $x \in C$. Moreover, in case char(R) = p ≥ 2 , an automorphism α *is* Frobenius *if there exists a fixed integer t such that* $\alpha(x) = x^{p^t}$ *for all* $x \in C$. *In* [\[7,](#page-14-4) Theorem 2]*, Chuang proves that if* $\Phi(x_i, \alpha(x_i))$ *is a generalized polynomial identity for R, where R is a prime ring and* $\alpha \in Aut(R)$ *an automorphism of R which is not Frobenius, then R also satisfies the non-trivial generalized polynomial identity* $\Phi(x_i, y_i)$, where x_i and y_i are distinct indeterminates.

Fact 4 *Let R be a domain and* $\alpha \in Aut(R)$ *an automorphism of R which is outer. In* [\[13](#page-15-3)]*, Kharchenko proves that if* $\Phi(x_i, \alpha(x_i))$ *is a generalized polynomial identity for R, then R also satisfies the non-trivial generalized polynomial identity* $\Phi(x_i, y_i)$, *where xi and yi are distinct indeterminates.*

Finally, let us mention that if *R* is a prime ring satisfying a non-trivial generalized polynomial identity and α an automorphism of *R* such that $\alpha(x) = x$ for all $x \in C$, then α is an inner automorphism of *R* [\[3,](#page-14-5) Theorem 4.7.4].

Lemma 1 *Let R be a semiprime ring of characteristic different from* 2*, Q its symmetric Martindale quotient ring, F and G non-zero skew derivations of R, m*, *n positive integers such that* $n \geq 2$ *and*

$$
[F(x), G(y)]_m = [x, y]^n \text{ for all } x, y \in R.
$$
 (2.1)

Then R is commutative.

Proof Assume first that *R* is prime. From the relation [\(2.1\)](#page-3-0), we have both

$$
[F(x+z), G(y)]_m = [x+z, y]^n
$$
 (2.2)

and

$$
[F(x+z), G(y)]_m = [F(x), G(y)]_m + [F(z), G(y)]_m = [x, y]^n + [z, y]^n.
$$
 (2.3)

From [\(2.2\)](#page-3-1) and [\(2.3\)](#page-3-2), it follows that *R* satisfies the polynomial identity $[x + z, y]^n$ − $[x, y]$ ^{*n*} − [*z*, *y*]^{*n*}. By Posner's theorem [\[11,](#page-15-4) Theorem 2 p. 57, Lemma 1 p. 89], *Q* ⊆ $M_k(E)$, the ring of $k \times k$ matrices over a field E. Moreover, Q and $M_k(E)$ satisfy the same polynomial identities. If $k \ge 2$ and for $x = e_{21}$, $y = e_{11}$, $z = e_{11}$ we have the contradiction

$$
0 = [e_{21} + e_{12}, e_{11}]^n - [e_{21}, e_{11}]^n - [e_{12}, e_{11}]^n = (e_{21} - e_{12})^n \neq 0.
$$

Thus, $k = 1$ and we have that *Q* is commutative, as well as *R*.

Let now *R* be semiprime. Since *R* is a semiprime ring for which $[x + z, y]^n$ − $[x, y]^n - [z, y]^n$ is a polynomial identity, *R* is a subdirect product of prime rings R_α , each of which still satisfies the identity $[x + z, y]^n - [x, y]^n - [z, y]^n$. In this case, by the above argument, any R_α is commutative. Thus, we conclude that *R* must be \Box commutative. \Box

Lemma 2 *Let R be a non-commutative prime ring of characteristic different from* 2*, F and G non-zero skew derivations of R, m a positive integer such that*

 $[F(x), G(y)]_m = [x, y]$ for all $x, y \in R$.

Then char(R) = p > 0 *and m is odd.*

Proof For any $x, y \in R$ we have

$$
[F(x), G(y + y)]m = [x, y + y] = 2[x, y]
$$
 (2.4)

and also, by computing the *m*-th commutator

$$
[F(x), G(2y)]_m = [F(x), 2G(y)]_m = 2^m [F(x), G(y)]_m = 2^m [x, y].
$$
 (2.5)

Comparing [\(2.4\)](#page-3-3) with [\(2.5\)](#page-3-4) it follows $(2^m - 2)[x, y] = 0$ for all $x, y \in Q$. Hence, since *R* is not commutative and $char(R) \neq 2$, $char(R) = p \neq 0$ (since $2^m - 2 \equiv 0$, modulo *p*).

Moreover,

$$
-[x, y] = [x, -y] = [F(x), G(-y)]_m = (-1)^m [F(x), G(y)]_m = (-1)^m [x, y]
$$

which implies that *m* must be an odd integer. \square

3 Results

Lemma 3 *Let R be a non-commutative prime ring of characteristic different from* 2*, which is isomorphic to a dense subring of the ring of linear transformations of a vector space V over a division ring D,* α : $R \rightarrow R$ *an automorphism of R and q, u* $\in R$ *such that*

$$
[qx, \alpha(y)u - uy]_m = [x, y]
$$

for all $x, y \in R$ *. Then dimp* $V = 1$ *.*

Proof By Theorem 1 in [\[7](#page-14-4)], *R* and *Q* satisfy the same generalized polynomial identities with automorphisms and hence $[qx, \alpha(y)u - uy]_m - [x, y]$ is a generalized polynomial identity for *Q*. We assume that $\dim_D V \geq 2$ and prove that a contradiction follows. By [\[12,](#page-15-5) p. 79], there exists a semilinear automorphism $T \in End(V)$ such that $\alpha(x) =$ $T x T^{-1}$ for all $x \in O$. Hence, *Q* satisfies

$$
\[qx, TyT^{-1}u - uy\]_m = [x, y].
$$

We notice that, if for any $v \in V$ there exists $\lambda_v \in D$ such that $T^{-1}uv = v\lambda_v$, then, by a standard argument, it follows that there exists a unique $\lambda \in D$ such that $T^{-1}uv = v\lambda$, for all $v \in V$ (see for example [\[8,](#page-14-6) Lemma 1]). In this case,

$$
\alpha(x)uv = \left(TxT^{-1}\right)uv = Txv\lambda
$$

and

$$
\left(\alpha(x)u - ux\right)v = T(xv\lambda) - uxv = T\left(T^{-1}uxv\right) - uxv = 0
$$

which implies that $(\alpha(x)u - ux)V = (0)$. Thus $\alpha(x)u - ux = 0$ for any $x \in R$, since *V* is faithful, and by our assumption $0 = [qx, \alpha(y)u - uy]_m = [x, y]$ for any $x, y \in R$, which is a contradiction, since *R* is not commutative.

Therefore, there exists $v \in V$ such that $\{v, T^{-1}uv\}$ are linearly *D*-independent. By the density of *Q*, there exist $r, s \in Q$ such that

$$
rv = 0
$$
, $rT^{-1}uv = v$, $sv = T^{-1}uv$, $sT^{-1}uv = (T^{-1}u)^2 v$.

Hence,

$$
qrv = 0
$$
, $(TsT^{-1}u - us) v = 0$, $[r, s]v = v$

and, by the main assumption, we get the contradiction

$$
0 = \left(\left[qr, TsT^{-1}u - us \right]_m - [r, s] \right) v = -v \neq 0.
$$

 \Box

Lemma 4 *Let R be a non-commutative prime ring of characteristic different from* 2*, C its extended centroid, Z*(*R*) *its center, I a non-zero ideal of R, F, and G non-zero skew derivations of R with associated automorphism* α*, m a positive integer such that*

$$
[F(x), G(y)]_m = [x, y] \text{ for all } x, y \in I.
$$

Then there exist p, q, u \in *Q, with p invertible such that* $F(x) = pxp^{-1}q - qx$ and $G(x) = pxp^{-1}u - ux$, for all $x \in R$.

Proof It is known that *I*, *R*, and *Q* satisfy the same generalized polynomial identities with skew derivations and automorphisms, so that $[F(x), G(y)]_m = [x, y]$, for all $x, y \in Q$. Notice that if $m = 1$ then the result follows by [\[15\]](#page-15-1). Thus we consider $m \geq 2$.

Fix $y_0 \in R$ and denote $z_0 = G(y_0)$. Then for any $x \in Q$ we get $[F(x), z_0]_m =$ [*x*, *y*₀]. In case *F* is an outer skew derivation of *R*, it is known that *Q* satisfies [*t*, *z*₀]*m*− [*x*, *y*₀], and in particular for $t = 0$, we have [*x*, *y*₀] = 0, for all $x \in Q$. This implies *y*⁰ ∈ *C*. We may repeat this argument for any *y*⁰ ∈ *Q* and conclude that *Q* is commutative, a contradiction. Therefore, in the sequel, we always assume that *F* is an inner skew derivation of *R*. Thus, there exists $0 \neq q \in Q$ such that $F(x) = \alpha(x)q - qx$, for all $x \in R$.

Fix now $x_0 \in R$ and denote $z_0 = F(x_0)$. Then for any $y \in Q$ we get $[z_0, G(y)]_m =$ [*x*₀, *y*]. In case *G* is an outer skew derivation of *R*, it is known that *Q* satisfies [*z*₀, *t*]*m*− [x_0, y], and in particular for $t = 0$, we have [x_0, y] = 0 for all $y \in Q$. This implies $x_0 \in C$. We may repeat this argument for any $x_0 \in Q$ and conclude that *Q* is commutative, a contradiction. Therefore, in the sequel, we always assume that *G* is an inner skew derivation of *R*. Thus, there exists $0 \neq u \in Q$ such that $G(x) = \alpha(x)u - ux$, for all $x \in R$. Hence we have that

$$
[\alpha(x)q - qx, \alpha(y)u - uy]_m = [x, y] \text{ for all } x, y \in Q. \tag{3.1}
$$

We assume that α is not inner. In this case

$$
[tq - qx, \alpha(y)u - uy]_m - [x, y]
$$
\n(3.2)

is satisfied by *Q*.

 $\circled{2}$ Springer

If α is not Frobenius, then by [\(3.2\)](#page-5-0) it follows that *Q* satisfies the generalized identity

$$
[tq - qx, zu - uy]_m - [x, y]
$$
 (3.3)

and in particular for $x = y = 0$ in [\(3.3\)](#page-6-0), $[tq, zu]_m = 0$, for all $t, z \in Q$. By applying the result in [\[14\]](#page-15-6), and since $q \neq 0$ and $u \neq 0$, it follows that either Qq is a non-zero central left ideal of *Q* or *Qu* is a non-zero central left ideal of *Q*. In any case, *Q* is commutative, a contradiction.

Thus, we consider the case when α is Frobenius. Again by [\(3.2\)](#page-5-0), Q satisfies

$$
[-qx, \alpha(y)u - uy]_m - [x, y]. \tag{3.4}
$$

In case both $q \in C$ and $u \in C$, by [\(3.4\)](#page-6-1) we have that

$$
-q u^{m}[x, \alpha(y) - y]_{m} - [x, y]
$$
\n(3.5)

is satisfied by Q. Then by the main Theorem in [\[6\]](#page-14-7) and since $qu^m \neq 0$, Q satisfies a non-trivial generalized polynomial identity. On the other hand, if either $q \notin C$ or $u \notin C$, then by [\(3.4\)](#page-6-1) and again by the main Theorem in [\[6](#page-14-7)], Q satisfies a non-trivial generalized polynomial identity (hence *Q* is a GPI-ring in any case). Therefore, by [\[17](#page-15-7), Theorem 3], *Q* is a primitive ring and it is a dense subring of the ring of linear transformations of a vector space *V* over a division ring *D*. Moreover, *Q* contains non-zero linear transformations of finite rank. By Lemma [3,](#page-4-0) it follows $\dim_D V = 1$, that is *Q* is a division algebra which is finite dimensional over *C*. If *C* is finite, then *Q* is finite, so that *Q* is a commutative field, which is a contradiction. So, we assume in all that follows that *C* is infinite and $char(Q) = p > 0$.

By using (3.4) in (3.2) it follows that

$$
[tq, \alpha(y)u - uy]_m \tag{3.6}
$$

is satisfied by *Q*. Let $s \ge 1$ be such that $p^s \ge m$, and $k = p^s$, then by [\(3.6\)](#page-6-2) we have that *Q* satisfies

$$
\left[tq, \alpha(y)u - uy\right]_k
$$

that is

$$
\[tq, \left(\alpha(x)u - ux\right)^k\] = 0 \text{ for all } t, x \in Q. \tag{3.7}
$$

Since α is Frobenius, $\alpha(\gamma) = \gamma^{p^h}$, for all $\gamma \in C$ and some non-zero fixed integer *h*. Moreover, there exists $\lambda \in C$ such that $\lambda^{p^h} \neq \lambda$, that is $\lambda^{p^h-1} \neq 1$.

In particular, we choose $\gamma \in C$ such that $\gamma = \lambda^{p^h-1} \neq 0$. In the relation [\(3.7\)](#page-6-3), we replace *x* by λ*x* and obtain that *Q* satisfies

$$
\[tq,\left(\lambda^{p^h}\alpha(x)u-\lambda ux\right)^k\]
$$

 \mathcal{D} Springer

that is

$$
\bigg[tq,\bigg(\gamma\alpha(x)u-ux\bigg)^k\bigg].
$$

Let Φ and Ω be maps on *Q*, such that $\Phi(x) = -ux$ and $\Omega(x) = \alpha(x)u$, for any element *x* of *Q*. Thus it follows that $[tq, (\Phi(x) + \gamma \Omega(x))^k] = 0$ for all $x \in Q$. Expanding $(\Phi(x) + \gamma \Omega(x))^k$, we get

$$
\sum_{i=0}^n \gamma^i \left(\sum_{(i,k-i)} \varphi_1 \cdot \varphi_2 \cdots \varphi_k \right) = 0
$$

where the inside summations are taken over all permutations of $k - i$ terms of the form $\Phi(x)$ and *i* terms of the form $\Omega(x)$. This means that each summation inside has exactly $k - i$ terms of the form $\Phi(x)$ and *i* terms of the form $\Omega(x)$ but in some different order. For any $j = 0, ..., k$, denote $y_j = \sum_{(j,k-j)} \varphi_1 \cdot \varphi_2 \cdots \varphi_k$, then we can write

$$
(\Phi(x) + \gamma \Omega(x))^k = y_0 + \gamma y_1 + \gamma^2 y_2 + \ldots + \gamma^k y_k
$$

so that

$$
\[tq, y_0 + \gamma y_1 + \gamma^2 y_2 + \ldots + \gamma^k y_k\] = 0.
$$

that is

$$
[tq, y_0] + \gamma [tq, y_1] + \gamma^2 [tq, y_2] + \ldots + \gamma^k [tq, y_k] = 0.
$$

Here, we denote by $z_i = [tq, y_i]$, for any $i = 1, \ldots, k$, then

$$
z_0 + \gamma z_1 + \gamma^2 z_2 + \ldots + \gamma^k z_k = 0. \tag{3.8}
$$

Replacing in the previous argument λ successively by 1, λ , λ^2 , ..., λ^k , the equation [\(3.8\)](#page-7-0) gives the system of equations

$$
z_0 + z_1 + z_2 + \dots + z_k = 0
$$

\n
$$
z_0 + \gamma z_1 + \gamma^2 z_2 + \dots + \gamma^k z_k = 0
$$

\n
$$
z_0 + \gamma^2 z_1 + \gamma^4 z_2 + \dots + \gamma^{2k} z_k = 0
$$

\n
$$
z_0 + \gamma^3 z_1 + \gamma^6 z_2 + \dots + \gamma^{3k} z_k = 0
$$

\n
$$
\dots
$$

\n
$$
z_0 + \gamma^k z_1 + \gamma^{2k} z_2 + \dots + \gamma^{k^2} z_k = 0.
$$

\n(3.9)

Moreover, since *C* is infinite, there exist infinitely many $\lambda \in C$ such that $\lambda^{i(p^h-1)} \neq 1$ for $i = 1, \ldots, k$, that is there exist infinitely many $\gamma = \lambda^{p^h-1} \in C$ such that $\gamma^i \neq 1$ for $i = 1, \ldots, k$. Hence, the Vandermonde determinant (associated with the system (3.9)

$$
\begin{vmatrix}\n1 & 1 & \cdots & \cdots & 1 \\
1 & \gamma & \gamma^2 & \cdots & \gamma^k \\
1 & \gamma^2 & \gamma^4 & \cdots & \gamma^{2k} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
1 & \gamma^k & \gamma^{2k} & \cdots & \gamma^{k^2}\n\end{vmatrix} = \prod_{0 \le i < j \le k} (\gamma^i - \gamma^j)
$$

is not zero. Thus, we can solve the above system (3.9) and obtain $z_i = 0$ $(i = 0, \ldots, k)$. In particular $z_0 = 0$, that is O satisfies

$$
\left[tq, (-ux)^k \right]. \tag{3.10}
$$

Since $u \neq 0$ and $q \neq 0$, then, by [\(3.10\)](#page-8-0) and [\[14](#page-15-6)], either *uQ* is a non-zero central right ideal of *Q* or *Qq* is a non-zero central left ideal of *Q*. In any case, we get the contradiction that *Q* is commutative.

The previous argument shows that the automorphism α must be inner, that is there exists an invertible element *p* ∈ *Q*, such that $\alpha(x) = pxp^{-1}$, for all $x \in R$, as required. required.

The following result is an easy consequence of [\[4,](#page-14-8) Theorem 1]. It will be useful in the proof of our result:

Lemma 5 *Let R be a prime ring of characteristic different from* 2*, Z*(*R*) *its center, C its extended centroid. Let p be an invertible element of R, d the inner derivation of R, which is induced by p, that is,* $d(x) = [p, x]$ *<i>for any* $x \in R$ *, and* $\beta(x) = pxp^{-1}$ *for any* x ∈ *R*, the inner automorphism of *R* induced by *p*. Assume that *F* is a non-zero *skew derivation of R with associated automorphism* β *and* $0 \neq a \in R$ *such that*

$$
aF(x) - F(x)a = d(x) \text{ for all } x \in R.
$$

Then d = 0, β *is the identity map on R, F is an ordinary derivation of R and a* $\in Z(R)$ *.*

Proof Firstly we notice that, since *F* is a skew derivation of *R*, $F(xy) = F(x)y + F(y)$ $\beta(x)F(y)$. Thus, *F* is both a right (1, β)-generalized skew derivation and a left (1, β)generalized skew derivation of *R*, in the sense of [\[4](#page-14-8)]. Therefore, we may apply Theorem 1 in [\[4\]](#page-14-8), and one of the following holds:

(1) (case (i) of Theorem 1 in [\[4](#page-14-8)]) $d(x) = apx - pxa$ for any $x \in R$. Hence $d(xy) = d(x)y + xd(y) = (apx - pxa)y + x(apy - pya)$, on the other hand $d(xy) = apxy - pxya$. Comparing the previous identities, we get

$$
-px[y,a]-xapy+xpya=0.
$$
\n(3.11)

In particular, for $x = y = p^{-1}$, it follows $ap^{-1} - p^{-1}a = 0$ which implies $ap - pa = 0$. Therefore $d(x) = p[a, x]$, moreover by [\(3.11\)](#page-8-1) we get $-px[y, a]$ $xpay + xpya = 0$, that is $[x, p][y, a] = 0$. As an application of [\[19,](#page-15-8) Theorem 3], it follows that either $p \in C$ or $a \in C$, in any case $d = 0$.

- (2) (cases (ii) and (iii) of [\[4](#page-14-8), Theorem 1]) There exists $q \in O$ such that $d(x) =$ $p[q, x]$, for all $x \in R$. Hence $d(xy) = d(x)y + xd(y) = p[q, x]y + xp[q, y]$, on the other hand $d(xy) = p[q, xy] = p[q, x]y + px[q, y]$. Comparing the previous identities, we get $[p, x][q, y] = 0$, for any $x, y \in R$, that is either $p \in C$ or $q \in C$. In any case $d = 0$.
- (3) (case (iv) of [\[4](#page-14-8), Theorem 1]) There exists $q \in Q$ such that $d(x) = px + p[q, x]$ for all $x \in R$. Hence $d(xy) = d(x)y + xd(y) = (px + p[q, x])y + x(py + y)$ $p[q, y]$), on the other hand $d(xy) = pxy + p[q, xy] = pxy + p[q, x]y + p[q, x]$ $px[q, y]$. Comparing the previous identities, we get $xpy + [p, x][q, y] = 0$ for any *x*, *y* \in *R*. In particular, for *x* = p^{-1} , it follows the contradiction *y* = 0, for all $y \in R$.

Since in any case $p \in C$, β is the identity map on R and F is an ordinary derivation of *R* such that $[a, F(x)] = 0$ for any $x \in R$. Hence, by the first Posner's theorem in [\[18](#page-15-0)], it follows *a* ∈ *Z*(*R*) or *F*(*R*) ⊆ *Z*(*R*). In this last case, by second Posner's theorem in [18]. *R* is commutative. In any case we obtain that $a \in Z(R)$. in [\[18](#page-15-0)], *R* is commutative. In any case we obtain that $a \in Z(R)$.

Lemma 6 Let $R = M_t(C)$ be the ring of $t \times t$ matrices over C, with char(R) = $l \neq 0, 2, m \geq 1$ *be an odd integer, p, q, u* \in *R with p invertible such that* $F(x) =$ $pxp^{-1}q - qx$, $G(x) = pxp^{-1}u - ux$ and

$$
\[pxp^{-1}q - qx, pyp^{-1}u - uy\]_m - [x, y] \tag{3.12}
$$

for any x, $y \in R$ *. Then t=1.*

Proof In [\(3.12\)](#page-9-0) replace *x*, *y* by $p^{-1}x$, $p^{-1}y$, respectively, and denote $a = p^{-1}a$, $b = qp^{-1}$, $c = p^{-1}u$, $w = up^{-1}$. Therefore *Q* satisfies

$$
\Phi(x, y) = [xa - bx, yc - wy]_m - [p^{-1}x, p^{-1}y].
$$
\n(3.13)

In case $a \in C$, then $F = 0$ and [\(3.12\)](#page-9-0) implies [*x*, *y*] = 0 for any $x, y \in R$, that is R is commutative. On the other hand, if $c \in C$, then $G = 0$ and again it follows that *R* is commutative. Therefore, here we may assume that $t \geq 2$ and both $a \notin C$ and $c \notin C$. We prove that a number of contradiction follows.

Firstly, we notice that, for any inner automorphism φ of $M_t(C)$, we have that

$$
[x\varphi(a) - \varphi(b)x, y\varphi(c) - \varphi(w)y]_m - \left[\varphi(p^{-1})x, \varphi(p^{-1})y\right]
$$
(3.14)

is a generalized identity for *R*. We will make a frequent use of this fact.

As above, we denote by e_{ij} the usual matrix unit, with 1 in the (i, j) entry and zero elsewhere, and say $a = \sum_{kl} a_{kl} e_{kl}$, $b = \sum_{kl} b_{kl} e_{kl}$, $c = \sum_{kl} c_{kl} e_{kl}$ and $w = \sum_{kl} w_{kl} e_{kl}$, for a_{kl} , b_{kl} , c_{kl} , $w_{kl} \in C$. $\sum_{kl} w_{kl} e_{kl}$, for a_{kl} , b_{kl} , c_{kl} , $w_{kl} \in C$.

Suppose $t \ge 3$. In [\(3.13\)](#page-9-1), we make the following choices: $x = e_{ii}$, $y = e_{kk}$, for any *i*, *j*, *k* different indices; moreover, we right multiply [\(3.13\)](#page-9-1) by e_{ij} and left multiply by e_{kk} . As a consequence we get $a_{kj} c_{ij}^m = 0$, that is $a_{kj} c_{ij} = 0$. Now, let $\varphi(x) =$ $(1 + e_{ki})x(1 - e_{ki})$ and denote $(a'_{ij})_{t \times t}$ the entries of the matrix $\varphi(a)$, and $(c'_{ij})_{t \times t}$

the entries of the matrix $\varphi(c)$. By the above computations, we get $a'_{kj}c'_{ij} = 0$, that is $(a_{ki} + a_{ij})c_{ij} = 0$, which means $a_{ij}c_{ij} = 0$. Thus, by Proposition 1 in [\[10\]](#page-14-9), it follows that either $a \in C$ or $c \in C$, in any case a contradiction.

Therefore, we finally consider the case $t = 2$ and $R = M_2(C)$. For $x = e_{ii}$ and $y = e_{ji}$ in [\(3.13\)](#page-9-1), with $i \neq j$, right multiply (3.13) by e_{ij} and left multiply by e_{ii} , it follows $a_{ij}(c_{ij} + w_{ij})^m = 0$, that is

$$
a_{ij}(c_{ij} + w_{ij}). \tag{3.15}
$$

Let now $x = y = e_{ij}$ in [\(3.13\)](#page-9-1), with $i \neq j$, and right multiply (3.13) by e_{ii} one has $(a_{ii} + c_{ii})^m = 0$, that is

$$
a_{ji} + c_{ji} \text{ for all } i \neq j \tag{3.16}
$$

which means that $a+c$ is a diagonal matrix. In this case, a standard argument shows that $a + c$ is a central matrix, say $a = \lambda - c$, for $\lambda \in Z(R)$. Analogously, for $x = y = e_{ij}$ in [\(3.13\)](#page-9-1), and left multiply (3.13) by e_{ij} one has $(w_{ji} + b_{ji})^m = 0$, that is

$$
w_{ji} + b_{ji} \text{ for all } i \neq j
$$

which means that $w + b$ is a diagonal matrix and, as above, $w + b$ is a central matrix, say $b = \mu - w$, for $\mu \in Z(R)$.

In other words, $p^{-1}q = \lambda - p^{-1}u$ and $qp^{-1} = \mu - up^{-1}$. Therefore, if either $\lambda = 0$ or $\mu = 0$ then $q = -u$, $\lambda = \mu = 0$, and $F = -G$. On the other hand, if both $\lambda \neq 0$ and $\mu \neq 0$, it follows both $q = p\lambda - u$ and $q = p\mu - u$, that is $\lambda = \mu$ and easy computations show that $F = -G$ in any case.

Now, we write $v = c + w$ and let $v = \sum_{kl} v_{kl} e_{kl}$, for $v_{kl} \in C$. The next step is to prove that either v is diagonal or both *a* and *c* are diagonal matrices of *R*. To do this, we assume by contradiction that v is not diagonal, for example, let $v_{12} \neq 0$, and prove that a contradiction follows. In this case, by (3.15) and (3.16) we get $a_{12} = 0$ and $c_{12} = 0$. Moreover, if $v_{21} \neq 0$, then *a* and *c* are diagonal matrices and we are done. Thus we assume that $v_{21} = 0$.

Let $\varphi(x) = (1 + e_{12})x(1 - e_{12})$ and $\chi(x) = (1 - e_{12})x(1 + e_{12})$ and denote $\varphi(a) = \sum_{kl} a'_{kl} e_{kl}, \varphi(c) = \sum_{kl} c'_{kl} e_{kl}, \varphi(v) = \sum_{kl} v'_{kl} e_{kl}, \chi(a) = \sum_{kl} a''_{kl} e_{kl},$ $\chi(c) = \sum_{kl} c''_{kl} e_{kl}, \chi(v) = \sum_{kl} v''_{kl} e_{kl}.$

We notice that, if both $v'_{12} \neq 0$ and $v''_{12} \neq 0$, then $a'_{12} = 0$, $a''_{12} = 0$ and also $c'_{12} = 0$, $c''_{12} = 0$ that is $a_{22} - a_{11} - a_{21} = 0$, $-a_{22} + a_{11} - a_{21} = 0$, $c_{22} - c_{11} - c_{21} = 0$, $-c_{22} + c_{11} - c_{21} = 0$, implying $a_{21} = 0$ and $c_{21} = 0$, so that *a* and *c* are diagonal and we are done.

Thus we may assume (without loss of generality) $v''_{12} = 0$. We have proved that if $v_{12} \neq 0$ then $v_{12} = v_{22} - v_{11}$. Let $\theta(x) = (1 + e_{21})x(1 - e_{21})$ and $\theta(v) = \sum_{kl} v_{kl}^{"\prime\prime} e_{kl}$. Since $v_{12}''' = v_{12} \neq 0$, then $v_{12}''' = v_{22}''' - v_{11}'''$, that is $v_{12} = -v_{22} + v_{11}$, implying again the contradiction $v_{12} = 0$.

The previous argument says that either v is diagonal or both a and c are diagonal matrices, and as above, we may conclude that either v is central or both *a* and *c* are central matrices of *R*.

Since if $a \in Z(R)$ and $c \in Z(R)$, then $F = G = 0$, which is a contradiction, then we assume in what follows that $c + w = v = v \in Z(R)$, that is $p^{-1}q + qp^{-1} = v$. For $y = p$ in [\(3.12\)](#page-9-0) it follows that

$$
\[pxp^{-1}q - qy, [p, u]\]_m = [x, p]. \tag{3.17}
$$

Assume that $[p, u]$ is an invertible matrix in $M_2(C)$, thus $0 \neq [p, u]^2 \in Z(R)$ and by computations one has

$$
2^{m-1}\left(\left(pxp^{-1}q-qx\right)[p,u]^m - [p,u]\left(pxp^{-1}q-qx\right)[p,u]^{m-1}\right) = [x,p].
$$

Since $[p, u]$ is an invertible matrix and $m - 1$ is even, then $[p, u]^{m-1} \in Z(R)$ and

$$
2^{m-1}\left(\left(pxp^{-1}q-qx\right)[p,u]^m - [p,u]^m\left(pxp^{-1}q-qx\right)\right) = [x,p].
$$

Since $F \neq 0$ and $2^{m-1}[p, u]^m \neq 0$, we may apply Lemma [5](#page-8-2) and obtain the contradiction $p \in Z(R)$.

Therefore $[p, u]$ is not an invertible matrix in $M_2(C)$, i.e., $[p, u]^2 = 0$. Once again, for $y = p$ in [\(3.12\)](#page-9-0) and since $m \ge 2$, we get

$$
0 = \left[pxp^{-1}q - qx, [p, u] \right]_m = [x, p]
$$
 (3.18)

and as above we conclude with the contradiction $p \in Z(R)$.

4 The proof of Theorem [1](#page-1-0)

In light of Lemma [1,](#page-2-0) we may assume $n = 1$. Since *I*, *R*, and *Q* satisfy the same generalized identities with skew derivations and automorphisms, we may assume

$$
[F(x), G(y)]_m - [x, y] = 0 \text{ for all } x, y \in Q. \tag{4.1}
$$

Moreover, by Lemma [4,](#page-5-1) there exists $p, q, u \in Q$ with p invertible such that $F(x) =$ $pxp^{-1}q - qx$ and $G(x) = pxp^{-1}u - ux$ for all $x \in R$. Notice that, if either $F = 0$ or $G = 0$, then $[x, y] = 0$ for all $x, y \in Q$, which means that Q is commutative, as well as *R*. Thus we also assume both $F \neq 0$ and $G \neq 0$. Hence *Q* satisfies the generalized polynomial identity

$$
\[pxp^{-1}q - qx, pyp^{-1}u - uy\]_m - [x, y]. \tag{4.2}
$$

In [\(4.2\)](#page-11-0) replace *x*, *y* by $p^{-1}x$, $p^{-1}y$, respectively, and denote $a = p^{-1}q$, $b = qp^{-1}$, $c = p^{-1}u$, $w = up^{-1}$. Therefore *Q* satisfies

$$
\Phi(x, y) = [xa - bx, yc - wy]_m - \left[p^{-1}x, p^{-1}y\right].
$$
\n(4.3)

In case $a \in C$, then $F = 0$. On the other hand, if $c \in C$, then $G = 0$. Therefore, we may assume that both $a \notin C$ and $c \notin C$, in particular Q is not commutative. We will prove that a number of contradiction follows. Since both *a* and *c* are not central elements, then (4.3) is a non-trivial generalized identity for *R* as well as for *Q*. Hence, *Q* is a primitive ring dense of linear transformations over a vector space *V* over *C*.

Assume first that $dim_C V = t$ is a finite integer. Thus, $Q \cong M_k(C)$ and by Lemma [6](#page-9-2) it follows the contradiction that *Q* is commutative.

Let now $dim_C V = \infty$. Let $y_1, y_2 \in Q$. By Litoff's theorem (see Theorem 4.3.11 in [\[3](#page-14-5)]) there exists an idempotent element $e \in Q$ such that

$$
y_1, y_2, a, b, c, w, p \in eQe \cong M_t(C)
$$

for some integer *t*. Of course $\Phi(x, y) = 0$ for all *x*, $y \in eQe$. Thus by Lemma [6,](#page-9-2) either $a \in Ce$, or $c \in Ce$ or $[y_1, y_2] = 0$. This means that either $F(eQe) = 0$ or $G(eQe) = 0$ or $[y_1, y_2] = 0$. As above, if $F(eQe) = 0$ or $G(eQe) = 0$ then *eQe* is commutative. Therefore, in any case we get $[y_1, y_2] = 0$. By the arbitrariness of *y*₁, *y*₂ ∈ *Q*, it follows that $[y_1, y_2] = 0$ for any *y*₁, *y*₂ ∈ *Q*, that is *Q* is commutative, which is a contradiction.

5 The proof of Theorem [2](#page-1-1)

Also in this case, in light of Lemma [1,](#page-2-0) we may assume $n = 1$. Let P be a prime ideal of *R*. Set $\overline{R} = R/P$ and write $\overline{x} = x + P \in \overline{R}$, for all $x \in R$. We start from

$$
\[\overline{F(x)}, \overline{G(y)}\]_m = \overline{[x, y]} \text{ for all } \overline{x}, \overline{y} \in \overline{R}.\tag{5.1}
$$

Case 1 $F(P) \subseteq P, \alpha(P) \nsubseteq P$.

In this case $\alpha(P)$ is an ideal of *R*. Moreover, for any $x \in R$, $p \in P$, $F(px) =$ $F(p)x + \alpha(p)F(x) \in P$, so that $\alpha(p)F(x) \in P$ and $\alpha(p)F(x) = 0$. Since *R* is prime and $\overline{F(x)}$ annihilates a non-zero ideal of \overline{R} , $\overline{F(x)} = \overline{0}$, that is $F(R) \subseteq P$. Thus $[F(x), G(y)]_m \in P$ for any $x, y \in R$ and, by [\(5.1\)](#page-12-1), it follows $[R, R] \subseteq P$.

Case 2 $G(P) \subseteq P$, $\alpha(P) \nsubseteq P$.

Identical computations as in CASE 1, imply $[R, R] \subseteq P$.

Case 3 $F(P) \subseteq P$, $\alpha(P) \subseteq P$.

In this case \overline{F} is a skew derivation of \overline{R} . If $G(P) \subseteq P$, then also \overline{G} is a skew derivation of \overline{R} , and by the primeness of \overline{R} and Theorem [1,](#page-1-0) we have that \overline{R} is commutative, that is $[R, R] \subseteq P$.

Let now $G(P) \nsubseteq P$. Then $G(P)$ is a non-zero ideal of *R*. For any $x, y \in R$ and $q \in P$, we get

$$
\[F(x), G(yq)\]_m = [x, yq] \text{ for all } x, y \in R
$$

that is

$$
\[F(x), G(y)q + \alpha(y)G(q)\]_m = [x, yq] \text{ for all } x, y \in R
$$

implying that

$$
\[F(x), \alpha(y)G(q)\]_m \in P \text{ for all } x, y \in R
$$

and

$$
\left[\overline{F(x)}, \overline{\alpha(y)G(q)}\right]_m = \overline{0} \text{ for all } \overline{x}, \overline{y} \in \overline{R}.
$$
 (5.2)

In particular, let $h \ge 1$ be such that $p^h \ge m$, then [\(5.2\)](#page-13-0) is

$$
\[\overline{F(x)}, \overline{\alpha(y)G(q)}^{p^h}\] = \overline{0} \text{ for all } \overline{x}, \overline{y} \in \overline{R}.\tag{5.3}
$$

By the primeness of \overline{R} and since $\overline{\alpha(R)G(P)}$ is a non-zero ideal of \overline{R} , by applying the result in [\[14](#page-15-6)], it follows that either $\overline{F(R)} \subseteq Z(\overline{R})$ or $\overline{\alpha(R)G(P)} \subseteq Z(\overline{R})$. In the first case, by [\(5.1\)](#page-12-1) we get $\overline{[x, y]} = \overline{0}$. In the latter case it follows that \overline{R} is commutative. In any case $[R, R] \subseteq P$.

Case 4 $G(P) \subseteq P$, $\alpha(P) \subseteq P$.

In light of previous cases, we may also assume that $F(P) \nsubseteq P$. In this case, G is a skew derivation of \overline{R} , moreover $\overline{F(P)}$ is a non-zero ideal of \overline{R} . For any $x, y \in R$ and $q \in P$, we get

$$
\[F(qx), G(y)\]_m = [qx, y], \quad \forall x, y \in R
$$

that is

$$
\[F(q)x + \alpha(q)F(x), G(y)\]_m \in P, \quad \forall x, y \in R
$$

implying that

$$
\[F(q)x, G(y)\]_m \in P, \quad \forall x, y \in R
$$

and

$$
\left[\overline{F(P)R}, \overline{G(R)}\right]_m = \overline{0}.\tag{5.4}
$$

Since \overline{R} is prime and $\overline{F(P)R}$ is a non-zero ideal of \overline{R} , $\overline{F(P)R}$, and \overline{R} satisfy the same generalized identities with skew derivation \overline{G} and automorphism $\overline{\alpha}$. Therefore, by (5.4) we get

$$
\left[\overline{R}, \overline{G(R)}\right]_m = \overline{0}.\tag{5.5}
$$

From [\(5.5\)](#page-13-2) and [\(5.1\)](#page-12-1) it follows again $\overline{[x, y]} = \overline{0}$ for any $x, y \in R$, that is $[R, R] \subseteq P$.

Case 5 $F(P) \nsubseteq P$, $G(P) \nsubseteq P$. For any $x, y \in R$ and $q, u \in P$, by [\(5.1\)](#page-12-1) we get

$$
\[F(xq), G(yu)\]_m = [xq, yu] \in P \text{ for all } x, y \in R
$$

that is

$$
\[F(x)q + \alpha(x)F(q), G(y)u + \alpha(y)G(u)\]_m \in P \text{ for all } x, y \in R
$$

implying that

$$
\left[\alpha(x)F(q), \alpha(y)G(u)\right]_m \in P \text{ for all } x, y \in R
$$

and

$$
\left[\overline{\alpha(R)F(P)}, \overline{\alpha(R)G(P)}\right]_m = \overline{0}.
$$

Assume first that $\alpha(P) \subseteq P$, so that both $\overline{F(P)}$ and $\overline{G(P)}$ are non-zero ideals of \overline{R} . On the other hand, if $\alpha(P) \nsubseteq P$ then $\alpha(R)F(P)$ and $\alpha(R)G(P)$ are left ideals of R. In any case, for any $\overline{x} \in \overline{\alpha(R)F(P)}$ and $\overline{y} \in \overline{\alpha(R)G(P)}$, it follows $[\overline{x}, \overline{y}] = \overline{0}$. Since \overline{R} is prime, we apply again a reduced version of main result in [\[14](#page-15-6)], and conclude that either $\overline{\alpha(R)F(P)} \subseteq Z(\overline{R})$ or $\overline{\alpha(R)G(P)} \subseteq Z(\overline{R})$. In any case \overline{R} contains a non-zero central ideal (either left or two-sided), so that \overline{R} is commutative, i.e., $\overline{[x, y]} = \overline{0}$, for any $x, y \in R$ and $[R, R] \subseteq P$.

 $\bigcap_i P_i = (0)$ (where P_i are all prime ideals of *R*), that is *R* is commutative. Therefore in any case $[R, R] \subseteq P$, for any prime ideal P of R. Then $[R, R] \subseteq$

References

- 1. Bell, H.E., Daif, M.N.: On commutativity and strong commutativity-preserving maps. Canad. Math. Bull. **37**(4), 443–447 (1994)
- 2. Bresar, M., Miers, C.R.: Strong commutativity preserving maps of semiprime rings. Canad. Math. Bull. **37**(4), 457–460 (1994)
- 3. Beidar, K.I., Martindale III, W.S., Mikhalev, A.V.: Rings with generalized identities. Pure and applied mathematics. Dekker, Newyork (1996)
- 4. Chang, J.C.: On the identity $h(x) = af(x) + g(x)b$. Taiw. J. Math. 7, 103–113 (2003)
- 5. Chuang, C.L.: GPIs having coefficients in Utumi quotient rings. Proc. Amer. Mat. Soc. **103**, 723–728 (1988)
- 6. Chuang, C.L.: Differential identities with automorphisms and antiautomorphisms I. J. Algebra **149**, 371–404 (1992)
- 7. Chuang, C.L.: Differential identities with automorphisms and antiautomorphisms II. J. Algebra **160**, 130–171 (1993)
- 8. Chuang, C.L., Chou, M.C., Liu, C.K.: Skew derivations with annihilating Engel conditions. J. Publ. Math. Debrecen **68**(1–2), 161–170 (2006)
- 9. Chuang, C.L., Lee, T.K.: Identities with a single skew derivation. J. Algebra **288**, 59–77 (2005)
- 10. De Filippis, V., Scudo, G.: Strong commutativity and Engel condition preserving maps in prime and semiprime rings. Linear Multilinear Algebra **61**(7), 917–938 (2013)
- 11. Jacobson, N.: PI-Algebras. Lecture notes in Mathematics 441. Springer-Verlag, New York (1975)
- 12. Jacobson, N.: Structure of rings. American Mathematical Society, Providence (1964)
- 13. Kharchenko, V.K.: Generalized identities with automorphisms. Algebra Log. **14**, 132–148 (1975)
- 14. Lee, T.K.: Semiprime rings with hypercentral derivations. Canad. Math. Bull. **38**(4), 445–449 (1995)
- 15. Lin, J.S., Liu, C.K.: Strong commutativity preserving maps on Lie ideals. Linear Algebra Appl. **428**, 1601–1609 (2008)
- 16. Liu, C.K.: On skew derivations in semiprime rings. Algebras Represent. Theory. **16**(6), 1561–1576 (2013)
- 17. Martindale III, W.S.: Prime rings satisfying a generalized polynomial identity. J. Algebra **12**, 576–584 (1969)
- 18. Posner, E.C.: Derivations in prime rings. Proc. Amer. Math. Soc. **8**, 1093–1100 (1957)
- 19. Vukman, J.: On α-derivations of prime and semiprime rings. Demonstratio Math. **38**(2), 283–290 (2005)