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Abstract Let R be a semiprime ring of characteristic different from 2, C its extended
centroid, Z(R) its center, F' and G non-zero skew derivations of R with associated
automorphism « and m, n positive integers such that

[F(x), GO)]m =[x, y]" forall x, y € R.
Then R is commutative.
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1 Introduction

Let R be a prime ring of characteristic different from 2 with center Z(R), extended cen-
troid C, right Martindale quotient ring Q,, and symmetric Martindale quotient ring Q.
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An additive map d : R — R is a derivation on R if d(xy) = d(x)y + xd(y)
forall x,y € R.Leta € R be a fixed element. A map d : R — R defined by
d(x) = [a,x] = ax — xa, x € R, is a derivation on R, which is called the inner
derivation defined by a. Many results in the literature indicate how the global structure
of aring R is often tightly connected to the behavior of additive maps defined on R.
A well-known result of Posner [18], states that if d is a derivation of R such that
[d(x), x] € Z(R) for any x € R, then either d = 0 or R is commutative.

In this paper, we study the structure of prime and semiprime rings having skew
derivations satisfying strong commutativity preserving conditions. Specifically, let «
be an automorphism of aring R. An additive map D : R — R iscalled an «-derivation
(or a skew derivation) on R if D(xy) = D(x)y + a(x)D(y) for all x, y € R. In this
case, « is called an associated automorphism of D. Basic examples of «-derivations
are the usual derivations and the map o — id, where id denotes the identity map. Let
b € Q be a fixed element. Then a map D : R — R defined by D(x) = bx — a(x)b,
X € R, is an a-derivation on R and it is called an inner a-derivation (an inner skew
derivation) defined by b. If a skew derivation D is not inner, then it is called outer.

If S € R,the map F : R — R is called commutativity preserving on S if
[x, y] = 0 implies [F(x), F(y)] = 0; it is called strong commutativity preserving
(for brevity we will always say SCP) on S if [F(x), F(y)] = [x, y], forall x, y € S.

In [1], Bell and Daif proved that if R is a semiprime ring admitting a derivation
d which is SCP on the right ideal I of R, then I C Z. The natural possibility when
an additive map preserves commutativity appears in a paper by Bresar and Miers [2].
They showed that any additive map F which is SCP on a semiprime ring R is of the
form F(x) = Ax + u(x), where A € C, 22 =1, and u: R — C is an additive map
of R into C.

Later in [15], Lin and Liu extended this result to Lie ideals, in case the ring R
is prime. More precisely they proved that if L is a non-central Lie ideal of R and
F is an additive map satisfying [F(x), F(y)] — [x,y] € C for all x,y € L, then
F(x) = Ax+u(x), where A € C, )2 = 1,and & : R — C,unless when char(R) = 2
and R satisfies the standard identity s4 of degree 4.

More recently, in [16] Liu showed that if R is a semiprime ring, / a non-zero right
ideal of R, F, and G non-zero skew derivations of R, with associated automorphism
o such that [F(x), G(y)] = [x, y] forall x, y € I, then [x(x), x] = 0 forany x € I.
Moreover, if «(1) € I then o (I) € Z(R). Finally, it is proved that if R is prime then
R is commutative.

Here we continue this line of investigation and we examine what happens in case F
and G are skew derivations of R such that [F(x), G(y)],, = [x, y]" forallx,y € I,
where [ is a non-zero ideal of R and m, n > 1 are positive integers.

The results we obtained are the following:

Theorem 1 Let R be a prime ring of characteristic different from 2, C its extended
centroid, Z(R) its center, I a non-zero ideal of R, F, and G non-zero skew derivations
of R with associated automorphism o and m, n positive integers such that

[F(x), GO =[x, y]"forallx, y € 1.

Then R is commutative.
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Theorem 2 Let R be a semiprime ring of characteristic different from 2, C its extended
centroid, Z(R) its center, F and G non-zero skew derivations of R with associated
automorphism o, m, n positive integers such that

[F(x), GOY)]m =[x, y]"forall x, y € R.

Then R is commutative.

2 Preliminaries

We denote the set of all skew derivations on Q by SDer(Q). By a skew-derivation word,
we mean an additive map A of the form A = dy, da, . .. d,,, witheachd; € SDer(Q). A
skew-differential polynomial is a generalized polynomial with coefficients in Q, of the
form @ (A (x;)) involving non-commutative indeterminates x; on which the deriva-
tions words A ; act as unary operations. The skew-differential polynomial ® (A ;(x;))
is called a skew-differential identity on a subset 7 of Q if it vanishes for any assignment
of values from T to its indeterminates x;.
In order to prove our result, we need to recall the following known facts:

Fact 1 In[9], Chuang and Lee investigate polynomial identities with skew derivations.
More precisely as a consequence of in [9, Theorem 1], we have that if D is an outer
skew derivation of R which satisfies the generalized polynomial identity ® (x;, D(x;)),
then ®(x;, y;) is also a generalized polynomial identity for R, where x; and y; are
distinct indeterminates.

Fact 2 Let R be aprime ring and I a two-sidedideal of R. Then I, R, and Q satisfy the
same generalized polynomial identities with coefficients in Q (see [5]). Furthermore,
I, R, and Q satisfy the same generalized polynomial identities with automorphisms
[7, Theorem 1].

Fact 3 Recall that, in case char (R) = 0, an automorphism « of Q is called Frobenius
if a(x) = x for all x € C. Moreover, in case char(R) = p > 2, an automorphism
o is Frobenius if there exists a fixed integer t such that a(x) = xP' forall x € C.
In [7, Theorem 2], Chuang proves that if ®(x;, «(x;)) is a generalized polynomial
identity for R, where R is a prime ring and « € Aut (R) an automorphism of R which
is not Frobenius, then R also satisfies the non-trivial generalized polynomial identity
® (x4, yi), where x; and y; are distinct indeterminates.

Fact4 Let R be a domain and o € Aut(R) an automorphism of R which is outer.
In [13], Kharchenko proves that if ®(x;, e (x;)) is a generalized polynomial identity
for R, then R also satisfies the non-trivial generalized polynomial identity ® (x;, y;),
where x; and y; are distinct indeterminates.

Finally, let us mention that if R is a prime ring satisfying a non-trivial generalized
polynomial identity and « an automorphism of R such that (x) = x forall x € C,
then « is an inner automorphism of R [3, Theorem 4.7.4].
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Lemma 1 Let R be a semiprime ring of characteristic different from?2, Q its symmetric
Martindale quotient ring, F and G non-zero skew derivations of R, m,n positive
integers such that n > 2 and

[F(x), G],, =[x, y]" forallx,y € R. 2.1

Then R is commutative.

Proof Assume first that R is prime. From the relation (2.1), we have both
[F(x+2), GOy =[x + 2z, 3" (2.2)

and

[F(x +2), GOy = [FX), GO)]m + [F(2), GO)m = [x, y]" + [z, y]". (2.3)
From (2.2) and (2.3), it follows that R satisfies the polynomial identity [x + z, y]" —
[x, y]I" — [z, y]*. By Posner’s theorem [11, Theorem 2 p. 57, Lemma 1 p. 89], O <
My (E), the ring of k x k matrices over a field E. Moreover, Q and My (E) satisfy the

same polynomial identities. If kK > 2 and for x = e>1, y = €11, 2 = e11 we have the
contradiction

0 = [e21 + €12, en1]" — [ea1, en1]” — [e12, en1]" = (ea1 —e12)" # 0.
Thus, k = 1 and we have that Q is commutative, as well as R.

Let now R be semiprime. Since R is a semiprime ring for which [x + z, y]" —
[x, y]I" — [z, ¥]" is a polynomial identity, R is a subdirect product of prime rings Ry,
each of which still satisfies the identity [x + z, ¥]" — [x, y]* — [z, ¥]". In this case,
by the above argument, any R, is commutative. Thus, we conclude that R must be
commutative. O

Lemma 2 Let R be a non-commutative prime ring of characteristic different from 2,
F and G non-zero skew derivations of R, m a positive integer such that

[F(x), GY)]m =[x, y]forall x, y € R.

Then char(R) = p > 0 and m is odd.

Proof For any x, y € R we have

[F(x), Gy + W)]m =[x,y + y] =2[x, y] 2.4

and also, by computing the m-th commutator
[F(x), G2Y)m = [F(x),2G(W)m = 2"[F(x), GWm =2"[x, y].  (2.5)
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Comparing (2.4) with (2.5) it follows (2" — 2)[x, y] = O for all x, y € Q. Hence,
since R is not commutative and char(R) # 2, char(R) = p # 0 (since 2" — 2 = 0,
modulo p).

Moreover,

=[x, yI =[x, =y = [F (), G(=)]m = (=D"[F(x), G = (=D"[x, y]

which implies that m must be an odd integer. O

3 Results

Lemma 3 Let R be a non-commutative prime ring of characteristic different from 2,
which is isomorphic to a dense subring of the ring of linear transformations of a vector
space V over a division ring D, @ : R — R an automorphism of R and q,u € R
such that

[gx, a(Y)u — uyln =[x, y]
forallx,y € R. ThendimpV = 1.

Proof By Theorem 1in[7], R and Q satisfy the same generalized polynomial identities
with automorphisms and hence [¢gx, o (y)u —uy],, —[x, y] is a generalized polynomial
identity for Q. We assume that dimpV > 2 and prove that a contradiction follows.
By [12, p. 79], there exists a semilinear automorphism 7 € End (V) such that o (x) =
TxT~! forall x € Q. Hence, Q satisfies

a2, TyT ™ u—uy] =1x. 31

m

We notice that, if for any v € V there exists A, € D such that T luy = VAy,
then, by a standard argument, it follows that there exists a unique A € D such that
T luv = va, forallv e V (see for example [8, Lemma 1]). In this case,

a(x)uv = (Tfol) uv = Txvl

and

(a(x)u — ux)v =T(xvA) —uxv=T (T_luxv) —uxv =20

which implies that ((x(x)u — ux)V = (0). Thus a¢(x)u — ux = 0 for any x € R,

since V is faithful, and by our assumption 0 = [¢x, ¢ (y)u — uyl,, = [x, y] for any
X,y € R, which is a contradiction, since R is not commutative.

Therefore, there exists v € V such that {v, T~ !uv} are linearly D-independent. By
the density of Q, there exist r, s € Q such that

2
rv=20, T v = v, SvU= Tfluv, sT uv = (Tflu) V.
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Hence,
qgrv =0, (TsT_lu — us) v=0, [rslv=v

and, by the main assumption, we get the contradiction

0= ([qr, TsT 'y — us:l —[r, s])v =—v #£0.

O

Lemma 4 Let R be a non-commutative prime ring of characteristic different from 2,
C its extended centroid, Z(R) its center, I a non-zero ideal of R, F, and G non-zero
skew derivations of R with associated automorphism o, m a positive integer such that

[F(x), GOY)]m =[x,y] forall x,yel.

Then there exist p, q,u € Q, with p invertible such that F (x) = pxp~'q — qx and
G(x) = pxp~'u —ux, forall x € R.

Proof Ttis known that I, R, and Q satisfy the same generalized polynomial identities
with skew derivations and automorphisms, so that [F(x), G(¥)],, = [x, y], for all
x,y € Q. Notice that if m = 1 then the result follows by [15]. Thus we consider
m > 2.

Fix yp € R and denote zo = G(y0). Then for any x € Q we get [F(x), zolm =
[x, yo]. In case F is an outer skew derivation of R, itis known that Q satisfies [#, zo],;, —
[x, yol, and in particular for = 0, we have [x, yo] = 0, for all x € Q. This implies
yo € C. We may repeat this argument for any yp € QO and conclude that Q is
commutative, a contradiction. Therefore, in the sequel, we always assume that F' is an
inner skew derivation of R. Thus, thereexists 0 %= g € Q suchthat F(x) = a(x)q—qgx,
for all x € R.

Fix now xg € R and denote zo = F(xp). Then forany y € Q we get[z9, G(Y)]m =
[x0, ¥]. Incase G is an outer skew derivation of R, itis known that Q satisfies [zg, ], —
[x0, y], and in particular for r = 0, we have [xg, y] = O for all y € Q. This implies
xo € C. We may repeat this argument for any xo € Q and conclude that Q is
commutative, a contradiction. Therefore, in the sequel, we always assume that G is an
inner skew derivation of R. Thus, thereexists0 #= u € Q suchthatG(x) = a(x)u—ux,
for all x € R. Hence we have that

[¢(x)g —gx,a(y)u —uyl, =[x, y]forallx,y € Q. 3.1
We assume that « is not inner. In this case
[rq — gx, a(Y)u —uylm — [x, y] (3.2)

is satisfied by Q.
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If « is not Frobenius, then by (3.2) it follows that Q satisfies the generalized identity
[tq — gx, zu — uyly — [x, y] (3.3)

and in particular for x = y = 01in (3.3), [tq, zul,, =0, forall ¢z, z € Q. By applying
the result in [14], and since g # 0 and u # 0, it follows that either Qg is a non-zero
central left ideal of Q or Qu is a non-zero central left ideal of Q. In any case, Q is
commutative, a contradiction.

Thus, we consider the case when « is Frobenius. Again by (3.2), Q satisfies

[=gx, a(y)u —uylm — [x, y]. (3.4)
In case bothg € C and u € C, by (3.4) we have that

—qu"[x,a(y) = yln — [x, ] (3.5)

is satisfied by Q. Then by the main Theorem in [6] and since qu™ # 0, Q satisfies
a non-trivial generalized polynomial identity. On the other hand, if either ¢ ¢ C or
u ¢ C, then by (3.4) and again by the main Theorem in [6], Q satisfies a non-trivial
generalized polynomial identity (hence Q is a GPI-ring in any case). Therefore, by
[17, Theorem 3], Q is a primitive ring and it is a dense subring of the ring of linear
transformations of a vector space V over a division ring D. Moreover, Q contains
non-zero linear transformations of finite rank. By Lemma 3, it follows dimpV =1,
that is Q is a division algebra which is finite dimensional over C. If C is finite, then
Q is finite, so that Q is a commutative field, which is a contradiction. So, we assume
in all that follows that C is infinite and char(Q) = p > 0.
By using (3.4) in (3.2) it follows that

[1q, a(Y)u — uylm (3.6)

is satisfied by Q. Let s > 1 be such that p* > m, and k = p*, then by (3.6) we have
that Q satisfies

[tq,a(y)u - uy}

k
that is

k
|:tq, (ot(x)u — ux) i| =O0forall ¢, x, € Q. 3.7

Since « is Frobenius, a(y) = yl’h, for all y € C and some non-zero fixed integer
h. Moreover, there exists A € C such that )J’h # A, that is )J’h_l # 1.

In particular, we choose y € C such that y = AP # 0. In the relation (3.7), we
replace x by Ax and obtain that Q satisfies

k
[tq, ()J’ha(x)u - Aux) :|
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1826 V. De Filippis et al.

k
|:tq, (ya(x)u — ux) i|

Let ® and 2 be maps on Q, such that ®(x) = —ux and Q(x) = a(x)u, for any
element x of Q. Thus it follows that [tg, (®(x) + yQ@)K] = 0 for all x € Q.
Expanding (& (x) + Y QX)X we get

that is

n
DA D e =0

i=0 (i,k—i)

where the inside summations are taken over all permutations of k — i terms of the
form ®(x) and i terms of the form € (x). This means that each summation inside
has exactly k — i terms of the form ®(x) and i terms of the form €2 (x) but in some
different order. For any j = 0, ..., k, denote y; = Z(j.,kfj) ©1 - @2 @k, then we
can write

(@) +yQE =yo+yyi + ¥+ ...+ v

so that
[tq, Yo+ vt + kaki| =0.
that is
[tq, yol + yl1q, yil + v*[tq, y2l + ... + ¥ [tq, ye] = 0.
Here, we denote by z; = [tq, y;], forany i =1, ..., k, then
w+ra+ria+... +rfa=o. (3.8)
Replacing in the previous argument  successively by 1, , 42, ..., A, the equation

(3.8) gives the system of equations

20tzitz+--+z%=0
w+ya+yinto-+yia=0
wt+yia+yia+o+y*Fa =0
0+ 7+ v+ +yFu=0

(3.9)

2
w4+ v+ yHEao+ - +yFa=o0.

Moreover, since C is infinite, there exist infinitely many A € C such that A’ @»"'=1 # 1

fori = 1,...,k, that is there exist infinitely many y = AP"=1 ¢ C such that yi£ 1
fori = 1,..., k. Hence, the Vandermonde determinant (associated with the system
3.9))
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1 1 - ... 1

Ly y2 ot o

Lyryt = I o' -v)

0<i<j<k

1 yk p2k. ykz
is not zero. Thus, we can solve the above system (3.9) and obtainz; =0 =0, ..., k).
In particular zg = 0, that is Q satisfies

[tq, (—ux)k]. (3.10)

Since u # 0 and g # 0, then, by (3.10) and [14], either u Q is a non-zero central
right ideal of Q or Qg is a non-zero central left ideal of Q. In any case, we get the
contradiction that Q is commutative.

The previous argument shows that the automorphism o must be inner, that is there
exists an invertible element p € Q, such that a(x) = pxp_l, for all x € R, as
required. O

The following result is an easy consequence of [4, Theorem 1]. It will be useful in
the proof of our result:

Lemma 5 Let R be a prime ring of characteristic different from 2, Z (R) its center, C
its extended centroid. Let p be an invertible element of R, d the inner derivation of R,
which is induced by p, that is, d(x) = [p, x] for any x € R, and B(x) = pxp~! for
any x € R, the inner automorphism of R induced by p. Assume that F is a non-zero
skew derivation of R with associated automorphism B and O # a € R such that

aF(x) — F(x)a =d(x) forall x € R.

Thend = 0, B is the identitymap on R, F is an ordinary derivation of R anda € Z(R).

Proof Firstly we notice that, since F is a skew derivation of R, F(xy) = F(x)y +
B(x)F(y). Thus, F is both aright (1, 8)-generalized skew derivation and a left (1, 8)-
generalized skew derivation of R, in the sense of [4]. Therefore, we may apply Theorem
1 in [4], and one of the following holds:

(1) (case (i) of Theorem 1 in [4]) d(x) = apx — pxa for any x € R. Hence
d(xy) =dx)y + xd(y) = (apx — pxa)y + x(apy — pya), on the other hand
d(xy) = apxy — pxya. Comparing the previous identities, we get

— px[y,a]l — xapy + xpya = 0. (3.11)

1 1 1

In particular, for x = y = p~', it follows ap™ — p~'a = 0 which implies
ap — pa = 0. Therefore d(x) = pla, x], moreover by (3.11) we get —px[y, a]—
xpay + xpya = 0, that is [x, p][y, a] = 0. As an application of [19, Theorem
3], it follows that either p € C ora € C, in any case d = 0.
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(2) (cases (ii) and (iii) of [4, Theorem 1]) There exists ¢ € Q such that d(x) =
plg, x], forall x € R. Hence d(xy) = d(x)y + xd(y) = plg, xly + xplq, v,
on the other hand d(xy) = plq, xy] = plg, x]ly + pxlq, y]. Comparing the
previous identities, we get [p, x][g, y] = O, for any x, y € R, that is either
peCorqg e C.Inanycased = 0.

(3) (case (iv) of [4, Theorem 1 ]) There exists ¢ € Q such thatd(x) = px + plq, x]
for all x € R. Hence d(xy) = d(x)y + xd(y) = (px + plg,x]Dy + x(py +
plg. y), on the other hand d(xy) = pxy + plg,xy]l = pxy + plg, x]y +
pxlq, y]. Comparing the previous identities, we get xpy + [p, x][g, y] = O for
any x, y € R. In particular, for x = p’l, it follows the contradiction y = 0, for
ally € R.

Since in any case p € C, § is the identity map on R and F is an ordinary derivation of
R such that [a, F(x)] = 0 for any x € R. Hence, by the first Posner’s theorem in [18],
it follows a € Z(R) or F(R) € Z(R). In this last case, by second Posner’s theorem
in [18], R is commutative. In any case we obtain that a € Z(R). O

Lemma 6 Let R = M;(C) be the ring of t X t matrices over C, with char(R) =
I #0,2, m > 1 be an odd integer, p, q,u € R with p invertible such that F(x) =
pxp~lq —qx, G(x) = pxp~'u — ux and

[pxp_lq —qx, pyp~'u — uy]m —[x, y] (3.12)

forany x,y € R. Then t=1.

Proof In (3.12) replace x, y by p~lx, p~ly, respectively, and denote a = p~lq,

b=gqp~',c=p'u,w =up~'. Therefore Q satisfies

®(x,y) =[xa —bx, yc —wy],, — [p_lx, p_ly] . (3.13)

Incasea € C, then F = 0 and (3.12) implies [x, y] = O for any x, y € R, thatis R is
commutative. On the other hand, if ¢ € C, then G = 0 and again it follows that R is
commutative. Therefore, here we may assume that + > 2 and botha ¢ C and ¢ ¢ C.
We prove that a number of contradiction follows.

Firstly, we notice that, for any inner automorphism ¢ of M;(C), we have that

[50(@) = 9(b)x, yp(e) = ¢yl = [0(p™)x. 0 (p™)y] (3.14)

is a generalized identity for R. We will make a frequent use of this fact.

As above, we denote by e;; the usual matrix unit, with 1 in the (7, j) entry and
zero elsewhere, and say a = D akex, b = D 4 buer, ¢ = Dy crew and w =
>k Wiieks, for agg, by, cxr, wi € C.

Suppose ¢ > 3. In (3.13), we make the following choices: x = ¢;, y = ek, for any
i, j, k different indices; moreover, we right multiply (3.13) by e;; and left multiply
by exr. As a consequence we get ak.,'c;;'. = 0, that is agjc;j = 0. Now, let p(x) =
(1 + exi)x(1 — eg;) and denote (alfj)txt the entries of the matrix ¢(a), and (C,/'j)txt
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the entries of the matrix ¢(c). By the above computations, we get a,’(jclf ;= 0, that is
(axj +aij)cij = 0, which means a;;c;; = 0. Thus, by Proposition 1 in [10], it follows
that either a € C or ¢ € C, in any case a contradiction.

Therefore, we finally consider the case t = 2 and R = M>(C). For x = ¢;; and
y = ej; in (3.13), with i # j, right multiply (3.13) by ¢;; and left multiply by e;;, it
follows a;j(c;j + w;;)™ = 0, that is

a;jj(cij + wij). (3.15)

Letnow x = y = ¢;; in (3.13), with i # j, and right multiply (3.13) by e;; one has
(aj,- + Cji)m =0, that is
aji +cji foralli # j (3.16)

which means that a+c is a diagonal matrix. In this case, a standard argument shows that
a + c is a central matrix, say a = A — ¢, for A € Z(R). Analogously, for x = y = ¢;;
in (3.13), and left multiply (3.13) by e;; one has (w;; 4+ b;;)™ =0, that is

wj; +bj; forall i # j

which means that w + b is a diagonal matrix and, as above, w + b is a central matrix,
say b = u — w, for u € Z(R).

In other words, p~'g = A — p~lu and gp~! =  — up~!. Therefore, if either

A=0oru=0thenq = —u, A = u =0, and F = —G. On the other hand, if both
A # 0and u # 0, it follows both ¢ = pA —u and ¢ = pu — u, thatis A = p and
easy computations show that ¥ = —G in any case.
Now, we write v = ¢ + w and let v = Zkl viiekl, for vy € C. The next step is to
prove that either v is diagonal or both a and c are diagonal matrices of R. To do this,
we assume by contradiction that v is not diagonal, for example, let vi2 # 0, and prove
that a contradiction follows. In this case, by (3.15) and (3.16) we get aj» = 0 and
c12 = 0. Moreover, if v # 0, then a and ¢ are diagonal matrices and we are done.
Thus we assume that vy; = 0.

Let p(x) = (1 + epn)x(1 —e2) and x(x) = (I — eg2)x(1 4+ e12) and denote
pla) = D ayen, ) = D ycyen. o) = D vyen, x@ = D alex,
x(©) =2 cirents x (v) = 2k Ul/&@kz/./ / . /

, ‘We notice t.hat, ifboth v}, # Oand v}, # 0,thena;, = 0,a}, = Oandalsoc}, =0,
cl, = Othatis axp —aj; —az; =0, —an + a1 —az =0,cn —ci1 —c21 =0,
—cp2 4 c11 — ¢21 = 0, implying a1 = 0 and ¢1 = 0, so that a and ¢ are diagonal
and we are done.

Thus we may assume (without loss of generality) v{, = 0. We have proved that if
vi2 # Othen vy = vy —vir. Let6(x) = (14-e2)x (1 —e21) and 6 (v) = >, v)jens.
Since v} = vi2 # 0, then v} = vJ; — v{], thatis vi2 = —v2 + vy, implying again
the contradiction vip = 0.

The previous argument says that either v is diagonal or both a and ¢ are diagonal
matrices, and as above, we may conclude that either v is central or both a and c¢ are
central matrices of R.

1
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Since ifa € Z(R) and ¢ € Z(R), then F = G = 0, which is a contradiction, then

we assume in what follows that c + w = v = v € Z(R), thatis p~lg + gp~! = v.

For y = p in (3.12) it follows that

[pxz?_lq —qy,[p, u]] =[x, pl. (3.17)

m

Assume that [ p, u] is an invertible matrix in M>(C), thus 0 # [p, ul? e Z(R) and by
computations one has

o=l ((pxp_lq - qx) [p,ul™ —[p,ul (pxp_lq = qx) [p, u]m_l) =[x, pl.
Since [p, u] is an invertible matrix and m — 1 is even, then [p, u]"~! € Z(R) and
1 ((pxp—lq - qx) p, " = [p,ul" (pxp~'q - qx)) =[x, p].

Since F # 0 and 2"~ ![p, u]™ # 0, we may apply Lemma 5 and obtain the contra-
diction p € Z(R).

Therefore [ p, u] is not an invertible matrix in M>(C), i.e., [p, u]* = 0. Once again,
for y = pin (3.12) and since m > 2, we get

0= [pxp_lq —qx,[p, u]} =[x, p] (3.18)

m

and as above we conclude with the contradiction p € Z(R). m|

4 The proof of Theorem 1

In light of Lemma 1, we may assume n = 1. Since I, R, and Q satisfy the same
generalized identities with skew derivations and automorphisms, we may assume

[F(x),GY)]m — [x,y]=0forallx,y € Q. “.1)
Moreover, by Lemma 4, there exists p, g, u € Q with p invertible such that F'(x) =
pxp~'q—qx and G(x) = pxp~'u —ux forall x € R. Notice that, if either F = 0 or
G =0, then [x, y] = 0 forall x, y € Q, which means that Q is commutative, as well

as R. Thus we also assume both F' # 0 and G # 0. Hence Q satisfies the generalized
polynomial identity

[pxz?’lq —qx, pyp~'u — uy]m — [x, y]. 4.2)
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In (4.2) replace x, y by p~—!x, p~'y, respectively, and denote a = p~lq, b = gp~ !,
¢ = p~lu,w = up~'. Therefore Q satisfies

d(x,y) =[xa —bx, yc — wyl, — [p_lx, p_ly] . “4.3)

In case a € C, then FF = 0. On the other hand, if ¢ € C, then G = 0. Therefore,
we may assume that both @ ¢ C and ¢ ¢ C, in particular Q is not commutative. We
will prove that a number of contradiction follows. Since both a and ¢ are not central
elements, then (4.3) is a non-trivial generalized identity for R as well as for Q. Hence,
Q is a primitive ring dense of linear transformations over a vector space V over C.
Assume first that dimcV = ¢ is a finite integer. Thus, Q = M} (C) and by Lemma
6 it follows the contradiction that Q is commutative.
Let now dimcV = oo. Let y1, y2 € Q. By Litoff’s theorem (see Theorem 4.3.11 in
[3]) there exists an idempotent element e € Q such that

Y1, y2»a,b,C, w, p € eQe = Mt(C)

for some integer t. Of course ®(x,y) = O for all x, y € eQe. Thus by Lemma 6,
either a € Ce, or ¢ € Ce or [y1, y2] = 0. This means that either F(eQe) = 0 or
G(eQe) = 0or [y, y2] = 0. As above, if F(eQe) = 0 or G(eQe) = 0 then eQe
is commutative. Therefore, in any case we get [y1, y2] = 0. By the arbitrariness of
1, Y2 € Q, it follows that [y, y2] = 0 for any y;, y2 € Q, thatis Q is commutative,
which is a contradiction.

5 The proof of Theorem 2

Also in this case, in light of Lemma 1, we may assume n = 1. Let P be a prime ideal
of R.Set R = R/P and write x = x + P € R, for all x € R. We start from

[F(x), G(y)] =[x, ylforallx,y € R. (5.1

m

Casel F(P) C P,a(P) ¢ P.

In this case a(P) is an ideal of R. Moreover, for any x € R, p € P, F(px) =
F(p)x + a(p)F(x) € P, so that a(p)F(x) € P and a(p)F(x) = 0. Since R is
prime and F (x) annihilates a non-zero ideal of R, F(x) =0, thatis F(R) C P. Thus
[F(x), G(y)]m € P forany x, y € R and, by (5.1), it follows [R, R] C P.

Case2 G(P) € P,a(P) { P.
Identical computations as in CASE 1, imply [R, R] C P.

Case3 F(P) C P,ua(P) C P.

In this case F is a skew derivation of R. If G(P) C P, thenalso G is a skew deriva-
tion of R, and by the primeness of R and Theorem 1, we have that R is commutative,
thatis [R, R] C P.
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Let now G(P) g P. Then G(P) is a non-zero ideal of R. For any x, y € R and
q € P, we get

|:F(x), G(yq)] =[x, yq]for allx,y € R

m
that is
[F(x), G(y)gq +0t(y)G(q)] =[x, yqlforallx,y € R
m
implying that
|:F(x), oz(y)G(q)] € Pforallx,y e R
m
and
|:F(x), a(y)G(q)j| =0forallXx,y €R. (5.2)
m

In particular, let 2 > 1 be such that ph > m, then (5.2) is
ok _ _
|:F(x), a(y)G(q)p :| =O0forallx,y € R. (5.3)

By the primeness of R and since «(R)G (P) is a non-zero ideal of R, by applying the
result in [14], it follows that either F(R) € Z(R) or «(R)G(P) C Z(R). In the first
case, by (5.1) we get [x, y] = 0. In the latter case it follows that R is commutative. In
any case [R, R] € P.

Cased4 G(P) C P,a(P)C P.

In light of previous cases, we may also assume that F (P) ;(_ P.In this case, G is a
skew derivation of R, moreover F(P) is a non-zero ideal of R. For any x, y € R and
q € P, we get

[F(qx),G(y)} =[gx,y]l, Vx,yeR

that is
|:F(q)x + a(g) F(x), G(y)] eP, Vx,yeR
implying that
[F(q)x, G(y)i| eP, Vx,yeR
and
[F(P)R, G(R)} =0. (5.4)

Since R is prime and F(P)R is a non-zero ideei of R, F (P)R, and R satisfy the
same generalized identities with skew derivation G and automorphism «. Therefore,
by (5.4) we get

[E, G(R)] =0. (5.5)

m
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From (5.5) and (5.1) it follows again [x, y] = 0 for any x, y € R, thatis [R, R] C P.
Case5 F(P) £ P,G(P) ¢ P.

Forany x,y € Rand g, u € P, by (5.1) we get

|:F(xq), G(yu):| = [xq, yu] € Pforallx,y € R

m

that is
[F(x)q +a(x)F(q), Gy)u + a(y)G(u)i| € Pforallx,y € R
m
implying that
|:ot(x)F(q), oz(y)G(u):| € Pforallx,y € R
m
and

|:a(R)F(P), cx(R)G(P)] =0.

m

Assume first that «(P) C P, so that both F(P) and G(P) are non-zero ideals of R.
On the other hand, if «(P) Q P then «(R)F(P) and «(R)G (P) are left ideals of R.
In any case, for any ¥ € a(R)F(P) and y € a(R)G(P), it follows [x, y] = 0. Since
R is prime, we apply again a reduced version of main result in [14], and conclude that
either (R)F(P) € Z(R) or 2(R)G(P) € Z(R). In any case R contains a non-zero
central ideal (either left or two-sided), so that R is commutative, i.e., [x, y] = 0, for
any x,y € Rand [R, R] C P.

Therefore in any case [R, R] € P, for any prime ideal P of R. Then [R, R] C

N ; Pi = (0) (where P; are all prime ideals of R), thatis R is commutative.
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