

On the Nilpotent Ranks of the Principal Factors of Orientation-Preserving Transformation Semigroups

Ping Zhao¹

Received: 18 January 2016 / Revised: 21 September 2016 / Published online: 11 October 2016 © Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2016

Abstract Let X_n be a chain with *n* elements, and let \mathcal{OP}_n be the monoid of all orientation-preserving transformations of X_n . In this paper, we investigate the nilpotent ranks of the principal factors of the semigroup \mathcal{OP}_n .

Keywords Orientation-preserving transformation \cdot Rank \cdot Idempotent rank \cdot Nilpotent rank

Mathematics Subject Classification 20M20 · 20M10

1 Introduction and Preliminaries

Let X_n be a chain with *n* elements, say $X_n = \{1 < 2 < \dots < n\}$. As usual, we denote by \mathcal{T}_n the monoid of all full transformations of a finite set X_n . We say that a transformation $\alpha \in \mathcal{T}_n$ is order preserving if $x \leq y$ implies $x\alpha \leq y\alpha$, for all $x, y \in X_n$. Denote by \mathcal{O}_n the submonoid of \mathcal{T}_n of all full order-preserving transformations of X_n .

Let $c = (c_1, c_2, ..., c_t)$ be a sequence of t $(t \ge 0)$ elements from the chain X_n . We say that c is cyclic if there exists not more than one index $i \in \{1, ..., t\}$ such that $c_i > c_{i+1}$, where c_{t+1} denotes c_1 . We say that $\alpha \in \mathcal{T}_n$ is orientation preserving if the sequence of its image $(1\alpha, 2\alpha, ..., n\alpha)$ is cyclic. Denote by \mathcal{OP}_n the submonoid of \mathcal{T}_n of all full orientation-preserving transformations of X_n .

Communicated by Rosihan M. Ali.

[➢] Ping Zhao zhaoping731108@hotmail.com

School of Mathematical Sciences, Guizhou Normal University, Guiyang, GuiZhou Province 550001, China

Let *S* be a semigroup. Denote by S^1 the monoid obtained from *S* through the adjoining of an identity if *S* has none and exactly *S* otherwise. Recall the definition of Green's equivalence relations $\mathcal{R}, \mathcal{L}, \mathcal{H}$, and \mathcal{J} : for all $u, v \in S$,

 $u\mathcal{R}v$ if and only if $uS^1 = vS^1$; $u\mathcal{L}v$ if and only if $S^1u = S^1v$; $u\mathcal{H}v$ if and only if $u\mathcal{R}v$ and $u\mathcal{L}v$; $u\mathcal{J}v$ if and only if $S^1uS^1 = S^1vS^1$.

Associated to Green's relation \mathcal{J} , there is a quasi-order $\leq_{\mathcal{J}}$ on S defined by

$$u \leq_{\mathcal{J}} v$$
 if and only if $S^1 u S^1 \subseteq S^1 v S^1$,

for all $u, v \in S$. Notice that, for every $u, v \in S$, we have $u \mathcal{J} v$ if and only if $u \leq_{\mathcal{J}} v$ and $v \leq_{\mathcal{J}} u$. Denote by J_u^S the \mathcal{J} -class of the element $u \in S$. As usual, a partial order relation $\leq_{\mathcal{J}}$ is defined on the quotient set S/\mathcal{J} by putting $J_u^S \leq_{\mathcal{J}} J_v^S$ if and only if $u \leq_{\mathcal{J}} v$, for all $u, v \in S$. Given a subset A of S and $u \in S$, we denote by E(A) set of idempotents of S belonging to A and by L_u^S , R_u^S , and H_u^S the \mathcal{L} -class, \mathcal{R} -class, and \mathcal{H} -class of u, respectively. For general background on Semigroup Theory, we refer the reader to Howie's book [8].

Let \mathcal{M}_n denotes any of the monoids \mathcal{T}_n , \mathcal{O}_n , or \mathcal{OP}_n . Then \mathcal{M}_n is regular. The Green relations \mathcal{L} and \mathcal{R} of \mathcal{M}_n can be characterized by $\alpha \mathcal{L}\beta$ if and only if $\operatorname{im}(\alpha) = \operatorname{im}(\beta)$, for all $\alpha, \beta \in \mathcal{M}_n$, and $\alpha \mathcal{R}\beta$ if and only if $\operatorname{ker}(\alpha) = \operatorname{ker}(\beta)$, for all $\alpha, \beta \in \mathcal{M}_n$. Regarding the Green relation \mathcal{J} , we have $\alpha \leq_{\mathcal{J}} \beta$ if and only if $|\operatorname{im}(\alpha)| \leq |\operatorname{im}(\beta)|$ and so $\alpha \mathcal{J}\beta$ if and only if $|\operatorname{im}(\alpha)| = |\operatorname{im}(\beta)|$, for all $\alpha, \beta \in \mathcal{M}_n$. It follows that the partial order $\leq_{\mathcal{J}}$ on the quotient $\mathcal{M}_n/\mathcal{J}$ is linear. More precisely, letting

$$J_r^{\mathcal{M}_n} = \{ \alpha \in \mathcal{M}_n : |\operatorname{im}(\alpha)| = r \},\$$

i.e., the \mathcal{J} -class of the transformations of image size r (called the *rank* of the transformations) of \mathcal{M}_n , for $1 \le r \le n$, we have

$$\mathcal{M}_n/\mathcal{J} = \{J_1^{\mathcal{M}_n} \leq_{\mathcal{J}} J_2^{\mathcal{M}_n} \leq_{\mathcal{J}} \cdots \leq_{\mathcal{J}} J_n^{\mathcal{M}_n}\}.$$

See [1,2,7,8] for more details.

Since $\mathcal{M}_n/\mathcal{J}$ is a chain, the sets

$$\mathcal{M}(n,r) = \{ \alpha \in \mathcal{M}_n : |\operatorname{im}(\alpha)| \le r \} = J_1^{\mathcal{M}_n} \cup J_2^{\mathcal{M}_n} \cup \cdots \cup J_r^{\mathcal{M}_n},$$

with $1 \leq r \leq n$, constitute all the non-null ideals of \mathcal{M}_n (see [4, Note of p. 181]). Notice that $\mathcal{M}(n,r) = \mathcal{T}(n,r)$ if $\mathcal{M}_n = \mathcal{T}_n$; $\mathcal{M}(n,r) = \mathcal{O}(n,r)$ if $\mathcal{M}_n = \mathcal{O}_n$; $\mathcal{M}(n,r) = \mathcal{OP}(n,r)$ if $\mathcal{M}_n = \mathcal{OP}_n$.

Notice that every principal factor of \mathcal{M}_n associated with the maximum \mathcal{J} -class $J_r^{\mathcal{M}_n}$ is the Rees quotient $\mathcal{M}(n, r)/\mathcal{M}(n, r-1)$ $(2 \le r \le n)$, which we denote by $\mathcal{P}_r^{\mathcal{M}_n}$. It is usually convenient to think of $\mathcal{P}_r^{\mathcal{M}_n}$ as $J_r^{\mathcal{M}_n} \cup \{0\}$, and the product of two

elements of $\mathcal{P}_r^{\mathcal{M}_n}$ is taken to be zero if it falls in $\mathcal{M}(n, r-1)$. $\mathcal{P}_r^{\mathcal{M}_n}$ is a completely 0-simple semigroup.

As usual, the rank of a finite semigroup *S* is defined by rank $S = \min\{|A| : A \subseteq S, \langle A \rangle = S\}$. If *S* is generated by its set *E* of idempotents, then the idempotent rank of *S* is defined by idrank $S = \min\{|A| : A \subseteq E, \langle A \rangle = S\}$. If *S* is generated by its set *N* of nilpotents, then the nilpotent rank of *S* is defined by nilrank $S = \min\{|A| : A \subseteq E, \langle A \rangle = S\}$. Clearly, rank $S \leq idrank S$ and rank $S \leq nilrank S$.

In [6], Gomes and Howie showed that both the rank and the idempotent rank of $\mathcal{P}_{n-1}^{\mathcal{T}_n}$ are equal to n(n-1)/2. This result was later generalized by Howie and McFadden [9] who showed that the rank and idempotent rank of $\mathcal{P}_r^{\mathcal{T}_n}$ are both equal to S(n, r), the Stirling number of the second kind, for $2 \le r \le n-1$. Yang [10] showed that the nilpotent rank of $\mathcal{P}_r^{\mathcal{T}_n}$ is also $S(n, r), 2 \le r \le n-1$.

The rank and idempotent rank of $\mathcal{P}_{n-1}^{\mathcal{O}_n}$ were shown to be *n* and 2n-2, respectively, by Gomes and Howie [7]. Garba [5] generalized this result by showing that both the rank and the idempotent rank of the principal factor $\mathcal{P}_r^{\mathcal{O}_n}$ are equal to $\binom{n}{r}$, for $2 \le r \le n-2$. Yang [11] showed that the nilpotent rank of the principal factor $\mathcal{P}_r^{\mathcal{O}_n}$ are also equal to $\binom{n}{r}$, for $3 \le r \le n-1$.

Regarding the semigroup \mathcal{OP}_n , Zhao [12] showed that both the rank and the idempotent rank of the principal factor $\mathcal{P}_{n-1}^{\mathcal{OP}_n}$ are equal to $\binom{n}{2}$. Recently, Zhao and Fernandes [13] showed that the rank and the idempotent rank of the principal factor $\mathcal{P}_r^{\mathcal{OP}_n}$ are equal to $\binom{n}{r}$, for $2 \le r \le n-1$. In this paper, we investigate the nilpotent rank of the principal factor $\mathcal{P}_r^{\mathcal{OP}_n}$, for $2 \le r \le n-1$. In Sect. 2, we characterize the structure of the minimal generating sets of $\mathcal{OP}(n, r)$. As applications, we prove that the number of distinct minimal generating sets is $r^n n!$. In Sect. 3, we show that the nilpotent rank of the principal factor $\mathcal{P}_r^{\mathcal{OP}_n}$ is equal to $\binom{n}{r}$, for $2 \le r \le n-1$.

Remark 1 In this paper, it will always be clear from context when additions are taken modulo n (or modulo t where t is the number of elements of any sequence).

Throughout this paper, for simplicity, we always assume that $n \ge 3$.

2 The Minimal Generating Sets of $\mathcal{OP}(n, r)$

Let $\alpha \in T_n$. As usual, we write $im(\alpha)$ for the image of α . The *kernel* of α is the equivalence ker(α) = { $(x, y) \in X_n \times X_n : x\alpha = y\alpha$ }. The equivalence classes of X_n with respect to ker(α) are called the *kernel classes* of α .

We denote by [i, k] the set $\{i, i + 1, ..., k - 1, k\}$ for $i, k \in X_n$. A set $K \subseteq X_n$ is *convex* if *K* has the form [i, i + t], for some $i \in X_n$ and $0 \le t \le n - 1$. We shall refer to an equivalence π on X_n as *convex* if its classes are convex subsets of X_n , and we shall say that π is of weight r if $|X_n/\pi| = r$.

It is known that that every kernel ker(α) of $\alpha \in OP_n$ is convex (see [2]). Let $2 \leq r \leq n-1$. Then, given a transformation $\alpha \in OP_n$ of rank *r*, the kernel ker(α) is convex. Therefore, we may establish a one-to-one correspondence between the collection of all subsets of X_n of cardinality *r* (which consists of all possible images

of elements of rank r of \mathcal{OP}_n) and the collection of all possible convex kernels of elements of rank r of \mathcal{OP}_n as follows: associate to each r-set $\{a_1, a_2, \ldots, a_r\}$, with $1 \le a_1 < a_2 < \cdots < a_r \le n$, the r-partition $\{A_1, \ldots, A_r\}$ of X_n defined by

$$A_i = \{a_i, a_i + 1, \dots, a_{i+1} - 1\}, \text{ for } 1 \le i \le r$$
(1)

(notice that $a_{r+1} = a_1$ by Remark 1). Thus, the \mathcal{J} -class $J_r^{\mathcal{OP}_n}$ of \mathcal{OP}_n (and of $\mathcal{OP}(n, r)$) contains $\binom{n}{r} \mathcal{R}$ -classes and $\binom{n}{r} \mathcal{L}$ -classes. See [2] for more details.

Now, for $1 \le a_1 < a_2 < \cdots < a_r \le n$, define

$$\varepsilon_{a_1,a_2,\ldots,a_r} = \begin{pmatrix} A_1 & A_2 & \cdots & A_r \\ a_1 & a_2 & \cdots & a_r \end{pmatrix},$$

where $\{A_1, \ldots, A_r\}$ is the *r*-partition of X_n associated to $\{a_1, a_2, \ldots, a_r\}$ as in (1). Clearly, $\varepsilon_{a_1, a_2, \ldots, a_r} \in E(J_r^{\mathcal{OP}_n})$. Moreover, the set

$$E_r = \{\varepsilon_{a_1, a_2, \dots, a_r} : 1 \le a_1 < a_2 < \dots < a_r \le n\}$$

contains exactly one (idempotent) element from each \mathcal{R} -class and from each \mathcal{L} -class of \mathcal{OP}_n of rank *r*.

The following lemma was proved by Zhao and Fernandes [13, Proposition 2.4].

Lemma 2.1 For $2 \le r \le n-1$, the set E_r generates OP(n, r).

Now, we record a well-known result, due to Miller and Clifford ([3, Theorem 2.17]).

Lemma 2.2 For any two elements a, b in a semigroup $S, ab \in R_a \cap L_b$ if and only if $E(R_b \cap L_a) \neq \emptyset$.

Let *U* be a subset of $J_r^{\mathcal{OP}_n}$. We say that *U* satisfies Condition ($\mathbf{R} \sim \mathbf{L}$) if *U* contains exactly one element from each \mathcal{R} -class and from each \mathcal{L} -class of $J_r^{\mathcal{OP}_n}$. Notice that the set E_r satisfies Condition ($\mathbf{R} \sim \mathbf{L}$). From Lemma 2.1, we know that E_r is a generating set of $\mathcal{OP}(n, r)$. In fact, we have the following.

Lemma 2.3 Let G be a subset of $J_r^{\mathcal{OP}_n}$. If G satisfies Condition ($\mathbf{R} \sim \mathbf{L}$), then $\mathcal{OP}(n, r) = \langle G \rangle$.

Proof We shall show that $E_r \subseteq \langle G \rangle$ and so $\mathcal{OP}(n, r) = \langle E_r \rangle$ by Lemma 2.1. Let $\varepsilon \in E_r$. Since *G* satisfies Condition ($\mathbf{R} \sim \mathbf{L}$), there exists unique $\alpha \in G$ such that $\alpha \Re \varepsilon$. If $(\alpha, \varepsilon) \in \mathcal{L}$, then $\alpha \Re \varepsilon$. Notice that each \mathcal{H} -class of $J_r^{\mathcal{OP}_n}$ that contains an idempotent is a cyclic group of order *r* (by [2, Corollary 3.6]). Thus $\varepsilon = \alpha^r \in \langle G \rangle$. If $(\alpha, \varepsilon) \notin \mathcal{L}$, then since E_r satisfies Condition ($\mathbf{R} \sim \mathbf{L}$), there exists unique $\varepsilon_1 \in E_r \setminus \{\varepsilon\}$ such that $(\alpha, \varepsilon_1) \in \mathcal{L}$. Since *G* satisfies Condition ($\mathbf{R} \sim \mathbf{L}$), there exists unique $\varepsilon_1 \in G \setminus \{\alpha\}$ such that $(\alpha_1, \varepsilon_1) \in \mathcal{R}$. Notice that $\varepsilon_1 \in E(L_\alpha \cap R_{\alpha_1})$. Then, by Lemma 2.2, $\alpha \alpha_1 \in R_\alpha \cap L_{\alpha_1} = R_\varepsilon \cap L_{\alpha_1}$. If $(\alpha_1, \varepsilon) \in \mathcal{L}$, then $(\alpha \alpha_1) \mathcal{H} \varepsilon$ and so $\varepsilon = (\alpha \alpha_1)^r \in \langle G \rangle$. If $(\alpha_1, \varepsilon) \notin \mathcal{L}$, then since E_r satisfies Condition ($\mathbf{R} \sim \mathbf{L}$), there exists unique $\varepsilon_2 \in E_r \setminus \{\varepsilon, \varepsilon_1\}$ such that $(\alpha_1, \varepsilon_2) \in \mathcal{L}$. Since *G* satisfies Condition ($\mathbf{R} \sim \mathbf{L}$), there

($\mathbf{R} \sim \mathbf{L}$), there exists unique $\alpha_2 \in G \setminus \{\alpha, \alpha_1\}$ such that $(\alpha_2, \varepsilon_2) \in \mathcal{R}$. Notice that $\varepsilon_2 \in E(L_{\alpha_1} \cap R_{\alpha_2}) = E(L_{\alpha\alpha_1} \cap R_{\alpha_2})$. Then, by Lemma 2.2, $(\alpha\alpha_1)\alpha_2 \in R_{\alpha\alpha_1} \cap L_{\alpha_2} = R_{\varepsilon} \cap L_{\alpha_2}$. If $(\alpha_2, \varepsilon) \in \mathcal{L}$, then $(\alpha\alpha_1\alpha_2)\mathcal{H}\varepsilon$ and so $\varepsilon = (\alpha\alpha_1\alpha_2)^r \in \langle G \rangle$. If $(\alpha_2, \varepsilon) \notin \mathcal{L}$, then since E_r satisfies Condition ($\mathbf{R} \sim \mathbf{L}$), there exists unique $\varepsilon_3 \in E_r \setminus \{\varepsilon, \varepsilon_1, \varepsilon_2\}$ such that $(\alpha_2, \varepsilon_3) \in \mathcal{L}$. Since G satisfies Condition ($\mathbf{R} \sim \mathbf{L}$), there exists unique $\alpha_3 \in G \setminus \{\alpha, \alpha_1, \alpha_2\}$ such that $(\alpha_3, \varepsilon_3) \in \mathcal{R}$. Notice that $\varepsilon_3 \in E(L_{\alpha_2} \cap R_{\alpha_3}) = E(L_{\alpha\alpha_1\alpha_2} \cap R_{\alpha_3})$. Then, by Lemma 2.2, $(\alpha\alpha_1\alpha_2)\alpha_3 \in R_{\alpha\alpha_1\alpha_2} \cap L_{\alpha_3} = R_{\varepsilon} \cap L_{\alpha_3}$. Continuing this demonstration, since G and E_r satisfy Condition ($\mathbf{R} \sim \mathbf{L}$), there must exist $k \leq m$ ($m = {n \choose r}$) such that $\alpha_k \in G \setminus \{\alpha, \alpha_1, \alpha_{k-1}\}, (\alpha \dots \alpha_{k-1})\alpha_k \in R_{\varepsilon} \cap L_{\alpha_k}$ and $\alpha_k \mathcal{L}\varepsilon$. Then $(\alpha\alpha_1 \dots \alpha_k)\mathcal{H}\varepsilon$ and so $\varepsilon = (\alpha\alpha_1 \dots \alpha_k)^r \in \langle G \rangle$.

Since $\mathcal{OP}(n, r)$ has rank $\binom{n}{r}$ (see [13, Theorem 2.7]), a generating set of $\mathcal{OP}(n, r)$ with $\binom{n}{r}$ elements is a minimal generating set. Moreover, if α is an element of $\mathcal{OP}(n, r)$ of rank r and β and γ are two elements of $\mathcal{OP}(n, r)$ such that $\alpha = \beta \gamma$, then ker(α) = ker(β) and im(α) = im(γ). Then any generating set of $\mathcal{OP}(n, r)$ with $\binom{n}{r}$ elements be the subset having exactly one element from each \mathcal{R} -class and from each \mathcal{L} -class of rank r. These observations, together with the Lemma 2.3, prove the following result:

Theorem 2.4 Let M be a subset of $\mathcal{OP}(n, r)$ with $\binom{n}{r}$ elements. Then M is a minimal generating set of $\mathcal{OP}(n, r)$ if and only if M be the subset having exactly one element from each \mathbb{R} -class and from each \mathcal{L} -class of \mathcal{OP}_n of rank r.

Notice that each \mathcal{H} -class of $J_r^{\mathcal{OP}_n}$ that contains an idempotent is a cyclic group of order *r* (by [2, Corollary 3.6]). Thus, we have the following corollary from Theorem 2.4:

Corollary 2.5 Let M be a minimal generating set of OP(n, r). Then the number of distinct sets M is $r^n n!$.

3 The Nilpotent Rank of $\mathcal{P}_r^{\mathcal{OP}_n}$

Recall that Zhao [12] showed that both the rank and the idempotent rank of the principal factor $\mathcal{P}_{n-1}^{\mathcal{OP}_n}$ are equal to $\binom{n}{2}$. Recently, Zhao and Fernandes [13] showed that the rank and the idempotent rank of the principal factor $\mathcal{P}_r^{\mathcal{OP}_n}$ are equal to $\binom{n}{r}$, for $2 \le r \le n-1$. In this section, we show that the nilpotent rank of the principal factor $\mathcal{P}_r^{\mathcal{OP}_n}$ are also equal to $\binom{n}{r}$, for $2 \le r \le n-1$.

Let *A* be a subset of X_n of cardinality *r* and let π be a convex equivalence of weight *r* on X_n . We may write $H_{(\pi,A)}$ for the \mathcal{H} -class of $J_r^{\mathcal{OP}_n}$, which is the intersection of $R_{\pi} = \{\alpha \in J_r^{\mathcal{OP}_n} : \ker(\alpha) = \pi\}$ and $L_A = \{\alpha \in J_r^{\mathcal{OP}_n} : \operatorname{im}(\alpha) = A\}$. The subset *A* of X_n of cardinality *r* is said to be a *transversal* of the convex equivalence π of weight *r* on X_n if each convex equivalence π -class contains exactly one element of *A*. The following lemma is obvious:

Lemma 3.1 Let $\alpha \in \mathcal{P}_r^{\mathcal{OP}_n}$. Then α is nilpotent if and only if $\operatorname{im}(\alpha)$ is not a transversal of ker(α).

Our main result of this section is as follows:

Theorem 3.2 Let $n \ge 3$ and $2 \le r \le n - 1$. Then

nilrank
$$\mathcal{P}_r^{\mathcal{OP}_n} = \binom{n}{r}.$$

The proof depends on the following lemma:

Lemma 3.3 Let A_1, A_2, \ldots, A_m (where $m = \binom{n}{r}$) be a list of all the subsets of X_n with cardinality r. Suppose that there exist distinct convex equivalences $\pi_1, \pi_2, \ldots, \pi_m$ of weight r on X_n with the property that A_i is not a transversal of π_i , for $1 \le i \le m$. Then there exist nilpotent γ_i in the \mathcal{H} -class $H_{(\pi_i, A_i)}$ ($1 \le i \le m$) such that the set $\{\gamma_1, \gamma_2, \ldots, \gamma_m\}$ is a minimal generating set of $\mathcal{P}_r^{\mathcal{OP}_n}$.

Proof From Lemma 3.1, we know that the \mathcal{H} -classes $H_{(\pi_1,A_1)}, \ldots, H_{(\pi_m,A_m)}$ are nongroup \mathcal{H} -classes, whose elements are nilpotents of $\mathcal{P}_r^{\mathcal{OP}_n}$. Put

$$\gamma_i \in H_{(\pi_i, A_i)}$$
, for $1 \le i \le m$.

Then the set $\{\gamma_1, \gamma_2, \dots, \gamma_m\}$ is the subset having exactly one element from each \mathcal{R} -class and from each \mathcal{L} -class of \mathcal{OP}_n of rank r. It follows immediately from Theorem 2.4 that the set $\{\gamma_1, \gamma_2, \dots, \gamma_m\}$ is a minimal generating set of $\mathcal{P}_r^{\mathcal{OP}_n}$.

It remains to prove that the listing of images and convex equivalences postulated in the statement of Lemma 3.3 can actually be carried out. Let $n \ge 3$ and $2 \le r \le n-1$, and consider the statement:

P(n, r): There is a way of listing all the subsets of X_n of cardinality r as A_1, A_2, \ldots, A_m (with $m = \binom{n}{r}$) so that there exist distinct convex equivalences π_1, \ldots, π_m of weight r on X_n with the properties that A_i is not a transversal of π_i ($i = 1, \ldots, m$).

We shall prove this by a double induction on n and r, the key step being a kind of Pascal's Triangle implication

$$\mathbf{P}(n-1, r-1)$$
 and $\mathbf{P}(n-1, r) \Rightarrow \mathbf{P}(n, r)$.

First, however, we anchor the induction with two lemmas:

Lemma 3.4 $\mathbf{P}(n, n-1)$ holds for every $n \ge 3$.

Proof Consider the list $A_1, A_2, ..., A_n$ of X_n of cardinality n-1, where $A_i = X_n \setminus \{i\}$. For $1 \le i \le n-2$, let π_i be the convex equivalence with a unique non-singleton class $\{i + 1, i + 2\}$ and all other classes being singletons. Let π_{n-1} have classes $\{2\}, \{3\}, ..., \{n-1\}, \{n, 1\}$; and let π_n have classes $\{1, 2\}, \{3\}, ..., \{n-1\}, \{n\}$. It is easy to verify that $A_1, A_2, ..., A_n$ and $\pi_1, \pi_2, ..., \pi_n$ have the required property. \Box

Lemma 3.5 P(n, 2) holds for every $n \ge 3$.

Proof We prove this by the induction *n*. Notice first that P(3, 2) holds by Lemma 3.4. For n = 4, we arrange the subsets and convex equivalences as follows:

$$\{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}$$

12/34, 123/4, 3/412, 23/41, 1/234, 2/341

Then, it is easy to verify that the subsets and convex equivalences as arranged above satisfy P(4, 2).

Suppose inductively that P(n - 1, 2) holds $(n \ge 5)$. Thus, we have a list A_1, A_2, \ldots, A_t (with $t = \binom{n-1}{2}$) of all the subsets of X_{n-1} of cardinality 2, and a list $\pi_1, \pi_2, \ldots, \pi_t$ of distinct convex equivalences of weight 2 on X_{n-1} such that A_i is not a transversal of π_i $(i = 1, 2, \ldots, t)$. Notice that $t + n - 1 = \binom{n}{2}$. All subsets of X_n of cardinality 2 are

$$B_1, B_2, \ldots, B_{n-1}; A_1, A_2, \ldots, A_t,$$

where $B_j = \{j, n\}, 1 \le j \le n-1$. Let π'_i (i = 1, 2, ..., t) be the convex equivalence on X_n obtained from π_i by adjoining *n* to the π_i -class containing n-1. Then $\pi'_1, \pi'_i, ..., \pi'_t$ are all distinct, and A_i is not a transversal of π'_i (i = 1, 2, ..., t).

Let $\sigma_1, \ldots, \sigma_{n-1}$ be the list of convex equivalences of weight 2 on X_n , where

$$\sigma_j$$
 has classes $\{n, 1, \dots, j\}, \{j + 1, \dots, n - 1\}, 1 \le j \le n - 2,$
 σ_{n-1} has classes $\{n\}, \{1, 2, \dots, n - 1\}.$

Then $\sigma_1, \ldots, \sigma_{n-1}$ are all distinct, B_j is not a transversal of σ_j , for $1 \le j \le n-2$, and each σ_j is distinct from every π'_i , since $(n-1, n) \in \pi'_i$ and $(n-1, n) \notin \sigma_j$. Notice that $t + n - 1 = \binom{n}{2}$. Hence $\{\pi'_1, \ldots, \pi'_t, \sigma_1, \ldots, \sigma_{n-1}, \}$ is a complete list of all the convex equivalences of weight 2 on X_n . Notice that A_1 is a subset of X_{n-1} and $(n, n-1) \in \pi'_1$. Then A_1 is not a transversal of σ_{n-1} and $B_{n-1} = \{n-1, n\}$ is not a transversal of π'_1 . Arrange the subsets and the convex equivalence as follows:

Then, it is easy to verify that the subsets and convex equivalences as arranged above satisfy P(n, 2).

Lemma 3.6 Let $n \ge 5$ and $3 \le r \le n-2$. Then $\mathbf{P}(n-1, r-1)$ and $\mathbf{P}(n-1, r)$ together imply $\mathbf{P}(n, r)$.

Proof From the assumption P(n - 1, r), we have a list A_1, \ldots, A_m (where $m = \binom{n-1}{r}$) of the subsets of X_{n-1} with cardinality r and a list $\sigma_1, \ldots, \sigma_m$ of the convex equivalences of weight r on X_{n-1} such that A_i is not a transversal of σ_i , for $1 \le i \le m$.

From the assumption P(n-1, r-1), we have a list B_1, \ldots, B_t (where $t = \binom{n-1}{r-1}$) of the subsets of X_{n-1} with cardinality r-1 and a list π_1, \ldots, π_t of the convex

equivalences of weight r - 1 on X_{n-1} such that B_i is not a transversal of π_i , for $1 \le i \le t$.

Let σ'_i be the convex equivalence obtained from σ_i by adjoining *n* to the σ_i -class containing n - 1, and define $\pi'_i = \pi_i \cup \{(n, n)\}$. Then $\sigma'_1, \ldots, \sigma'_m, \pi'_1, \ldots, \pi'_t$ are all distinct. Notice that $m + t = \binom{n}{r}$. Hence $\{\sigma'_1, \ldots, \sigma'_m, \pi'_1, \ldots, \pi'_t\}$ is a complete list of all the convex equivalences of weight *r* on X_n . Next we define

$$B'_{i} = B_{i} \cup \{n\}, \text{ for } 1 \le i \le t.$$

Then $A_1, \ldots, A_m, B'_1, B'_2, \ldots, B'_t$ are all distinct. Moreover, A_i is not a transversal of σ'_i , for $1 \le i \le m$ and B'_i is not a transversal of π'_i , for $1 \le i \le t$. Arrange the subsets and convex equivalences as follows:

$$A_1, \ldots, A_m, B'_1, B'_2, \ldots, B'_t$$

 $\sigma'_1, \ldots, \sigma'_m, \pi'_1, \pi'_2, \ldots, \pi'_t$

They satisfy all the properties necessary and the inductive step is complete. We have shown that P(n, r) holds for all $n \ge 5$ and $3 \le r \le n - 2$.

The pattern of deductions is

Acknowledgements The author would like to thank the referee for his/her valuable suggestions and comments which help to improve the presentation of this paper. This work is supported by the National Natural Science Foundation of China (No. 11461014) and the Natural Science Fund of Guizhou (No. [2013]2225).

References

- Catarino, P.M.: Monoids of orientation-preserving transformations of a finite chain and their representations. In: Howie, John M., Ruskuc, Nik (eds.) Proceedings of the Conference on Semigroups and Applications, pp. 39–46. World Scientific, St. Andrews (1997)
- Catarino, P.M., Higgins, P.M.: The Monoid of orientation-preserving Mappings on a chain. Semigroup Forum 58, 190–206 (1999)
- 3. Clifford, H., Preston, G.B.: The Algebraic Theory of Semigroups, 1. Am. Math. Soc, Providence (1961)
- Fernandes, V.H.: The monoid of all injective order-preserving partial transformations on a finite chain. Semigroup Forum 62, 178–204 (2001)
- Garba, G.U.: On the idempotent ranks of certain semigroups of order-preserving transformations. Port. Math. 51(2), 185–204 (1994)
- Gomes, G.M.S., Howie, J.M.: On the ranks of certain finite semigroups of transformations. Math. Proc. Camb. Philos. Soc. 101, 395–403 (1987)
- Gomes, G.M.S., Howie, J.M.: On the ranks of certain semigroups of order-preserving transformations. Semigroup Forum 45, 272–282 (1992)

- Howie, J.M., McFadden, R.B.: Idempotent rank in finite full transformation semigroups. Proc. R. Soc. Edinb. A 114, 161–167 (1990)
- Yang, X.L.: Non-group ranks in finite full transformation semigroups. Semigroup Forum 57, 42–47 (1998)
- Yang, X.L.: On the nilpotent ranks of the principal factors of order-preserving transformation semigroups. Semigroup Forum 57, 331–340 (1998)
- Zhao, P.: On the ranks of certain semigroups of orientation preserving transformations. Commun. Algebra 39, 4195–4205 (2011)
- Zhao, P., Fernandes, V.H.: The ranks of ideals in various transformation monoids. Commun. Algebra 43(2), 674–692 (2015)