
Bull. Malays. Math. Sci. Soc. (2018) 41:1795–1803
https://doi.org/10.1007/s40840-016-0426-z

On the Nilpotent Ranks of the Principal Factors of
Orientation-Preserving Transformation Semigroups

Ping Zhao1

Received: 18 January 2016 / Revised: 21 September 2016 / Published online: 11 October 2016
© Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2016

Abstract Let Xn be a chain with n elements, and let OPn be the monoid of all
orientation-preserving transformations of Xn . In this paper,we investigate the nilpotent
ranks of the principal factors of the semigroup OPn .
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1 Introduction and Preliminaries

Let Xn be a chain with n elements, say Xn = {1 < 2 < · · · < n}. As usual, we
denote by Tn the monoid of all full transformations of a finite set Xn . We say that a
transformationα ∈ Tn is order preserving if x ≤ y implies xα ≤ yα, for all x, y ∈ Xn .
Denote byOn the submonoid of Tn of all full order-preserving transformations of Xn .

Let c = (c1, c2, . . . , ct ) be a sequence of t (t ≥ 0) elements from the chain Xn .
We say that c is cyclic if there exists not more than one index i ∈ {1, . . . , t} such that
ci > ci+1, where ct+1 denotes c1. We say that α ∈ Tn is orientation preserving if the
sequence of its image (1α, 2α, . . . , nα) is cyclic. Denote by OPn the submonoid of
Tn of all full orientation-preserving transformations of Xn .
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1796 P. Zhao

Let S be a semigroup. Denote by S1 the monoid obtained from S through the
adjoining of an identity if S has none and exactly S otherwise. Recall the definition of
Green’s equivalence relations R, L,H, and J: for all u, v ∈ S,

uRv if and only if uS1 = vS1;
uLv if and only if S1u = S1v;
uHv if and only if uRv and uLv;
uJv if and only if S1uS1 = S1vS1.

Associated to Green’s relation J, there is a quasi-order ≤J on S defined by

u ≤J v if and only if S1uS1 ⊆ S1vS1,

for all u, v ∈ S. Notice that, for every u, v ∈ S, we have u J v if and only if u ≤J v

and v ≤J u. Denote by J S
u the J-class of the element u ∈ S. As usual, a partial order

relation ≤J is defined on the quotient set S/J by putting J S
u ≤J J S

v if and only if
u ≤J v, for all u, v ∈ S. Given a subset A of S and u ∈ S, we denote by E(A) set
of idempotents of S belonging to A and by LS

u , R
S
u , and HS

u the L-class, R-class, and
H-class of u, respectively. For general background on Semigroup Theory, we refer
the reader to Howie’s book [8].

LetMn denotes any of themonoidsTn ,On , orOPn . ThenMn is regular. TheGreen
relations L and R ofMn can be characterized by αLβ if and only if im(α) = im(β),
for all α, β ∈ Mn , and αRβ if and only if ker(α) = ker(β), for all α, β ∈ Mn .
Regarding the Green relation J, we have α ≤J β if and only if | im(α)| ≤ | im(β)|
and so αJβ if and only if | im(α)| = | im(β)|, for all α, β ∈ Mn . It follows that the
partial order ≤J on the quotient Mn/J is linear. More precisely, letting

JMn
r = {α ∈ Mn : | im(α)| = r},

i.e., the J-class of the transformations of image size r (called the rank of the transfor-
mations) of Mn , for 1 ≤ r ≤ n, we have

Mn/J = {JMn
1 ≤J JMn

2 ≤J · · · ≤J JMn
n }.

See [1,2,7,8] for more details.
Since Mn/J is a chain, the sets

M(n, r) = {α ∈ Mn : | im(α)| ≤ r} = JMn
1 ∪ JMn

2 ∪ · · · ∪ JMn
r ,

with 1 ≤ r ≤ n, constitute all the non-null ideals of Mn (see [4, Note of p. 181]).
Notice that M(n, r) = T (n, r) if Mn = Tn ; M(n, r) = O(n, r) if Mn = On ;
M(n, r) = OP(n, r) ifMn = OPn .

Notice that every principal factor of Mn associated with the maximum J-class
JMn
r is the Rees quotient M(n, r)/M(n, r − 1) (2 ≤ r ≤ n), which we denote by

PMn
r . It is usually convenient to think of PMn

r as JMn
r ∪ {0}, and the product of two
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elements of PMn
r is taken to be zero if it falls in M(n, r − 1). PMn

r is a completely
0-simple semigroup.

As usual, the rank of a finite semigroup S is defined by rank S = min{|A| : A ⊆
S, 〈A〉 = S}. If S is generated by its set E of idempotents, then the idempotent rank
of S is defined by idrank S = min{|A| : A ⊆ E, 〈A〉 = S}. If S is generated by its set
N of nilpotents, then the nilpotent rank of S is defined by nilrank S = min{|A| : A ⊆
N , 〈A〉 = S}. Clearly, rank S ≤ idrank S and rank S ≤ nilrank S.

In [6], Gomes andHowie showed that both the rank and the idempotent rank ofPTn
n−1

are equal to n(n − 1)/2. This result was later generalized by Howie and McFadden
[9] who showed that the rank and idempotent rank of PTn

r are both equal to S(n, r),
the Stirling number of the second kind, for 2 ≤ r ≤ n − 1. Yang [10] showed that the
nilpotent rank of PTn

r is also S(n, r), 2 ≤ r ≤ n − 1.
The rank and idempotent rank ofPOn

n−1 were shown to be n and 2n−2, respectively,
by Gomes and Howie [7]. Garba [5] generalized this result by showing that both
the rank and the idempotent rank of the principal factor POn

r are equal to
(n
r

)
, for

2 ≤ r ≤ n − 2. Yang [11] showed that the nilpotent rank of the principal factor POn
r

are also equal to
(n
r

)
, for 3 ≤ r ≤ n − 1.

Regarding the semigroupOPn , Zhao [12] showed that both the rank and the idem-
potent rank of the principal factorPOPn

n−1 are equal to
(n
2

)
. Recently, Zhao andFernandes

[13] showed that the rank and the idempotent rank of the principal factor POPn
r are

equal to
(n
r

)
, for 2 ≤ r ≤ n − 1. In this paper, we investigate the nilpotent rank of the

principal factor POPn
r , for 2 ≤ r ≤ n − 1. In Sect. 2, we characterize the structure of

the minimal generating sets of OP(n, r). As applications, we prove that the number
of distinct minimal generating sets is rnn!. In Sect. 3, we show that the nilpotent rank
of the principal factor POPn

r is equal to
(n
r

)
, for 2 ≤ r ≤ n − 1.

Remark 1 In this paper, it will always be clear from context when additions are taken
modulo n (or modulo t where t is the number of elements of any sequence).

Throughout this paper, for simplicity, we always assume that n ≥ 3.

2 The Minimal Generating Sets of OP(n, r)

Let α ∈ Tn . As usual, we write im(α) for the image of α. The kernel of α is the
equivalence ker(α) = {(x, y) ∈ Xn × Xn : xα = yα}. The equivalence classes of Xn

with respect to ker(α) are called the kernel classes of α.
We denote by [i, k] the set {i, i + 1, . . . , k − 1, k} for i, k ∈ Xn . A set K ⊆ Xn is

convex if K has the form [i, i + t], for some i ∈ Xn and 0 ≤ t ≤ n − 1. We shall refer
to an equivalence π on Xn as convex if its classes are convex subsets of Xn , and we
shall say that π is of weight r if |Xn/π | = r .

It is known that that every kernel ker(α) of α ∈ OPn is convex (see [2]). Let
2 ≤ r ≤ n − 1. Then, given a transformation α ∈ OPn of rank r , the kernel ker(α)

is convex. Therefore, we may establish a one-to-one correspondence between the
collection of all subsets of Xn of cardinality r (which consists of all possible images

123



1798 P. Zhao

of elements of rank r of OPn) and the collection of all possible convex kernels of
elements of rank r of OPn as follows: associate to each r -set {a1, a2, . . . , ar }, with
1 ≤ a1 < a2 < · · · < ar ≤ n, the r -partition {A1, . . . , Ar } of Xn defined by

Ai = {ai , ai + 1, . . . , ai+1 − 1}, for 1 ≤ i ≤ r (1)

(notice that ar+1 = a1 by Remark 1). Thus, the J-class JOPn
r of OPn (and of

OP(n, r)) contains
(n
r

)
R-classes and

(n
r

)
L-classes. See [2] for more details.

Now, for 1 ≤ a1 < a2 < · · · < ar ≤ n, define

εa1,a2,...,ar =
(
A1 A2 · · · Ar

a1 a2 · · · ar
)

,

where {A1, . . . , Ar } is the r -partition of Xn associated to {a1, a2, . . . , ar } as in (1).
Clearly, εa1,a2,...,ar ∈ E(JOPn

r ). Moreover, the set

Er = {
εa1,a2,...,ar : 1 ≤ a1 < a2 < · · · < ar ≤ n

}

contains exactly one (idempotent) element from each R-class and from each L-class
of OPn of rank r .

The following lemma was proved by Zhao and Fernandes [13, Proposition 2.4].

Lemma 2.1 For 2 ≤ r ≤ n − 1, the set Er generates OP(n, r).

Now,we record awell-known result, due toMiller andClifford ([3, Theorem 2.17]).

Lemma 2.2 For any two elements a, b in a semigroup S, ab ∈ Ra ∩ Lb if and only if
E(Rb ∩ La) 
= ∅.

LetU be a subset of JOPn
r .We say thatU satisfies Condition (R ∼ L) ifU contains

exactly one element from eachR-class and from eachL-class of JOPn
r . Notice that the

set Er satisfies Condition (R ∼ L). From Lemma 2.1, we know that Er is a generating
set of OP(n, r). In fact, we have the following.

Lemma 2.3 Let G be a subset of JOPn
r . If G satisfies Condition (R ∼ L), then

OP(n, r) = 〈G〉.
Proof We shall show that Er ⊆ 〈G〉 and so OP(n, r) = 〈Er 〉 by Lemma 2.1. Let
ε ∈ Er . Since G satisfies Condition (R ∼ L), there exists unique α ∈ G such that
αRε. If (α, ε) ∈ L, then αHε. Notice that each H-class of JOPn

r that contains an
idempotent is a cyclic group of order r (by [2, Corollary 3.6]). Thus ε = αr ∈
〈G〉. If (α, ε) /∈ L, then since Er satisfies Condition (R ∼ L), there exists unique
ε1 ∈ Er\{ε} such that (α, ε1) ∈ L. Since G satisfies Condition (R ∼ L), there exists
unique α1 ∈ G\{α} such that (α1, ε1) ∈ R. Notice that ε1 ∈ E(Lα ∩ Rα1). Then,
by Lemma 2.2, αα1 ∈ Rα ∩ Lα1 = Rε ∩ Lα1 . If (α1, ε) ∈ L, then (αα1)Hε and so
ε = (αα1)

r ∈ 〈G〉. If (α1, ε) /∈ L, then since Er satisfies Condition (R ∼ L), there
exists unique ε2 ∈ Er\{ε, ε1} such that (α1, ε2) ∈ L. Since G satisfies Condition
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(R ∼ L), there exists unique α2 ∈ G\{α, α1} such that (α2, ε2) ∈ R. Notice that
ε2 ∈ E(Lα1 ∩ Rα2) = E(Lαα1 ∩ Rα2). Then, by Lemma 2.2, (αα1)α2 ∈ Rαα1 ∩Lα2 =
Rε ∩Lα2 . If (α2, ε) ∈ L, then (αα1α2)Hε and so ε = (αα1α2)

r ∈ 〈G〉. If (α2, ε) /∈ L,
then since Er satisfies Condition (R ∼ L), there exists unique ε3 ∈ Er\{ε, ε1, ε2}
such that (α2, ε3) ∈ L. Since G satisfies Condition (R ∼ L), there exists unique
α3 ∈ G\{α, α1, α2} such that (α3, ε3) ∈ R. Notice that ε3 ∈ E(Lα2 ∩ Rα3) =
E(Lαα1α2 ∩ Rα3). Then, by Lemma 2.2, (αα1α2)α3 ∈ Rαα1α2 ∩ Lα3 = Rε ∩ Lα3 .
Continuing this demonstration, since G and Er satisfy Condition (R ∼ L), there must
exist k ≤ m (m = (n

r

)
) such that αk ∈ G\{α, α1, αk−1}, (α . . . αk−1)αk ∈ Rε ∩ Lαk

and αkLε. Then (αα1 . . . αk)Hε and so ε = (αα1 . . . αk)
r ∈ 〈G〉. �

SinceOP(n, r) has rank
(n
r

)
(see [13, Theorem 2.7]), a generating set ofOP(n, r)

with
(n
r

)
elements is aminimal generating set.Moreover, ifα is an element ofOP(n, r)

of rank r and β and γ are two elements ofOP(n, r) such that α = βγ , then ker(α) =
ker(β) and im(α) = im(γ ). Then any generating set of OP(n, r) with

(n
r

)
elements

be the subset having exactly one element from each R-class and from each L-class of
rank r . These observations, together with the Lemma 2.3, prove the following result:

Theorem 2.4 Let M be a subset ofOP(n, r) with
(n
r

)
elements. Then M is a minimal

generating set of OP(n, r) if and only if M be the subset having exactly one element
from each R-class and from each L-class of OPn of rank r .

Notice that each H-class of JOPn
r that contains an idempotent is a cyclic group

of order r (by [2, Corollary 3.6]). Thus, we have the following corollary from Theo-
rem 2.4:

Corollary 2.5 Let M be a minimal generating set of OP(n, r). Then the number of
distinct sets M is rnn!.

3 The Nilpotent Rank of POPn
r

Recall that Zhao [12] showed that both the rank and the idempotent rank of the principal
factorPOPn

n−1 are equal to
(n
2

)
. Recently, Zhao and Fernandes [13] showed that the rank

and the idempotent rank of the principal factor POPn
r are equal to

(n
r

)
, for 2 ≤ r ≤

n − 1. In this section, we show that the nilpotent rank of the principal factor POPn
r

are also equal to
(n
r

)
, for 2 ≤ r ≤ n − 1.

Let A be a subset of Xn of cardinality r and let π be a convex equivalence of weight
r on Xn . We may write H(π,A) for the H-class of JOPn

r , which is the intersection of

Rπ = {α ∈ JOPn
r : ker(α) = π} and L A = {α ∈ JOPn

r : im(α) = A}. The subset A
of Xn of cardinality r is said to be a transversal of the convex equivalence π of weight
r on Xn if each convex equivalence π -class contains exactly one element of A. The
following lemma is obvious:

Lemma 3.1 Letα ∈ POPn
r . Thenα is nilpotent if and only if im(α) is not a transversal

of ker(α).
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Our main result of this section is as follows:

Theorem 3.2 Let n ≥ 3 and 2 ≤ r ≤ n − 1. Then

nilrankPOPn
r =

(
n

r

)
.

The proof depends on the following lemma:

Lemma 3.3 Let A1, A2, . . . , Am (wherem = (n
r

)
) be a list of all the subsets of Xn with

cardinality r . Suppose that there exist distinct convex equivalences π1, π2, . . . , πm of
weight r on Xn with the property that Ai is not a transversal of πi , for 1 ≤ i ≤ m.
Then there exist nilpotent γi in the H-class H(πi ,Ai ) (1 ≤ i ≤ m) such that the set

{γ1, γ2, . . . , γm} is a minimal generating set of POPn
r .

Proof From Lemma 3.1, we know that theH-classes H(π1,A1), . . . , H(πm ,Am ) are non-

group H-classes, whose elements are nilpotents of POPn
r . Put

γi ∈ H(πi ,Ai ), for 1 ≤ i ≤ m.

Then the set {γ1, γ2, . . . , γm} is the subset having exactly one element from each
R-class and from each L-class of OPn of rank r . It follows immediately from Theo-
rem 2.4 that the set {γ1, γ2, . . . , γm} is a minimal generating set of POPn

r . �
It remains to prove that the listing of images and convex equivalences postulated in

the statement of Lemma 3.3 can actually be carried out. Let n ≥ 3 and 2 ≤ r ≤ n−1,
and consider the statement:
P(n, r): There is a way of listing all the subsets of Xn of cardinality r as
A1, A2, . . . , Am (with m = (n

r

)
) so that there exist distinct convex equivalences

π1, . . . , πm of weight r on Xn with the properties that Ai is not a transversal of
πi (i = 1, . . . ,m).

We shall prove this by a double induction on n and r , the key step being a kind of
Pascal’s Triangle implication

P(n − 1, r − 1) and P(n − 1, r) ⇒ P(n, r).

First, however, we anchor the induction with two lemmas:

Lemma 3.4 P(n, n − 1) holds for every n ≥ 3.

Proof Consider the list A1, A2, . . . , An of Xn of cardinality n−1,where Ai = Xn\{i}.
For 1 ≤ i ≤ n − 2, let πi be the convex equivalence with a unique non-singleton
class {i + 1, i + 2} and all other classes being singletons. Let πn−1 have classes
{2}, {3}, . . . , {n − 1}, {n, 1}; and let πn have classes {1, 2}, {3}, . . . , {n − 1}, {n}. It is
easy to verify that A1, A2, . . . , An and π1, π2, . . . , πn have the required property. �
Lemma 3.5 P(n, 2) holds for every n ≥ 3.
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Proof We prove this by the induction n. Notice first that P(3, 2) holds by Lemma 3.4.
For n = 4, we arrange the subsets and convex equivalences as follows:

{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}
12/34, 123/4, 3/412, 23/41, 1/234, 2/341.

Then, it is easy to verify that the subsets and convex equivalences as arranged above
satisfy P(4, 2).

Suppose inductively that P(n − 1, 2) holds (n ≥ 5). Thus, we have a list
A1, A2, . . . , At (with t = (n−1

2

)
) of all the subsets of Xn−1 of cardinality 2, and a

list π1, π2, . . . , πt of distinct convex equivalences of weight 2 on Xn−1 such that Ai

is not a transversal of πi (i = 1, 2, . . . , t). Notice that t + n − 1 = (n
2

)
. All subsets of

Xn of cardinality 2 are

B1, B2, . . . , Bn−1; A1, A2, . . . , At ,

where Bj = { j, n}, 1 ≤ j ≤ n − 1. Let π ′
i (i = 1, 2, . . . , t) be the convex equiva-

lence on Xn obtained from πi by adjoining n to the πi -class containing n − 1. Then
π ′
1, π

′
i , . . . , π

′
t are all distinct, and Ai is not a transversal of π ′

i (i = 1, 2, . . . , t).
Let σ1, . . . , σn−1 be the list of convex equivalences of weight 2 on Xn , where

σ j has classes {n, 1, . . . , j}, { j + 1, . . . , n − 1}, 1 ≤ j ≤ n − 2,

σn−1 has classes {n}, {1, 2, . . . , n − 1}.

Then σ1, . . . , σn−1 are all distinct, Bj is not a transversal of σ j , for 1 ≤ j ≤ n − 2,
and each σ j is distinct from every π ′

i , since (n − 1, n) ∈ π ′
i and (n − 1, n) /∈ σ j .

Notice that t + n − 1 = (n
2

)
. Hence {π ′

1, . . . , π
′
t , σ1, . . . , σn−1, } is a complete list of

all the convex equivalences of weight 2 on Xn . Notice that A1 is a subset of Xn−1 and
(n, n − 1) ∈ π ′

1. Then A1 is not a transversal of σn−1 and Bn−1 = {n − 1, n} is not a
transversal of π ′

1. Arrange the subsets and the convex equivalence as follows:

A2, . . . , At ; B1, B2, . . . , Bn−2, A1, Bn−1,

π ′
2, . . . , π ′

t ; σ1, σ2, . . . , σn−2, σn−1, π ′
1.

Then, it is easy to verify that the subsets and convex equivalences as arranged above
satisfy P(n, 2). �
Lemma 3.6 Let n ≥ 5 and 3 ≤ r ≤ n − 2. Then P(n − 1, r − 1) and P(n − 1, r)
together imply P(n, r).

Proof From the assumption P(n − 1, r), we have a list A1, . . . , Am (where m =(n−1
r

)
) of the subsets of Xn−1 with cardinality r and a list σ1, . . . , σm of the convex

equivalences of weight r on Xn−1 such that Ai is not a transversal of σi , for 1 ≤ i ≤ m.
From the assumption P(n− 1, r − 1), we have a list B1, . . . , Bt (where t = (n−1

r−1

)
)

of the subsets of Xn−1 with cardinality r − 1 and a list π1, . . . , πt of the convex
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1802 P. Zhao

equivalences of weight r − 1 on Xn−1 such that Bi is not a transversal of πi , for
1 ≤ i ≤ t .

Let σ ′
i be the convex equivalence obtained from σi by adjoining n to the σi -class

containing n − 1, and define π ′
i = πi ∪ {(n, n)}. Then σ ′

1, . . . , σ
′
m, π ′

1, . . . , π
′
t are all

distinct. Notice that m + t = (n
r

)
. Hence {σ ′

1, . . . , σ
′
m, π ′

1, . . . , π
′
t } is a complete list

of all the convex equivalences of weight r on Xn . Next we define

B ′
i = Bi ∪ {n}, for 1 ≤ i ≤ t.

Then A1, . . . , Am, B ′
1, B

′
2, . . . , B

′
t are all distinct. Moreover, Ai is not a transversal of

σ ′
i , for 1 ≤ i ≤ m and B ′

i is not a transversal of π ′
i , for 1 ≤ i ≤ t . Arrange the subsets

and convex equivalences as follows:

A1, . . . , Am, B ′
1, B ′

2, . . . , B
′
t

σ ′
1, . . . , σ ′

m, π ′
1, π ′

2, . . . , π
′
t

They satisfy all the properties necessary and the inductive step is complete. We have
shown that P(n, r) holds for all n ≥ 5 and 3 ≤ r ≤ n − 2. �

The pattern of deductions is

P(4, 2) P(4, 3)
↙ ↘ ↙

P(5, 2) P(5, 3) P(5, 4)
↙ ↘ ↙ ↘ ↙

P(6, 2) P(6, 3) P(6, 4) P(6, 5)
↙ ↘ ↙ ↘ ↙ ↘ ↙

P(7, 2) P(7, 3) P(7, 4) P(7, 5) P(7, 6)
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