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Abstract Let X, be a chain with n elements, and let OP,, be the monoid of all
orientation-preserving transformations of X,,. In this paper, we investigate the nilpotent
ranks of the principal factors of the semigroup OP,,.
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1 Introduction and Preliminaries

Let X,, be a chain with n elements, say X,, = {1 < 2 < --- < n}. As usual, we
denote by 7, the monoid of all full transformations of a finite set X,,. We say that a
transformation o € 7, is order preserving if x < y implies xa < yo,forallx, y € X,.
Denote by O, the submonoid of 7, of all full order-preserving transformations of X,.

Let ¢ = (c1,¢2,...,cr) be a sequence of ¢ (¢ > 0) elements from the chain X,,.
We say that c is cyclic if there exists not more than one index i € {1, ..., ¢} such that
¢i > ci+1, where ¢;11 denotes c¢1. We say that o € 7, is orientation preserving if the
sequence of its image (la, 2, .. ., na) is cyclic. Denote by OP,, the submonoid of
T, of all full orientation-preserving transformations of X,,.
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Let S be a semigroup. Denote by S' the monoid obtained from S through the
adjoining of an identity if S has none and exactly S otherwise. Recall the definition of
Green’s equivalence relations R, £, H, and J: for all u, v € S,

uRv if and only if uS! = vS';
uLv if and only if S'u = S'v;

uXHv if and only if uRv and uLv;
udv if and only if S'uS' = Stvs!.

Associated to Green’s relation g, there is a quasi-order <g on S defined by
u<gv ifandonlyif S'us'c s'vs',

for all u, v € S. Notice that, for every u, v € S, we have u Jv if and only if u <g v
and v <g u. Denote by JuS the J-class of the element u € S. As usual, a partial order
relation <g is defined on the quotient set S/J by putting J, S < g JUS if and only if
u <g v, forall u,v € §. Given a subset A of § and u € §, we denote by E(A) set
of idempotents of S belonging to A and by L,f, Rf, and HuS the L-class, R-class, and
H-class of u, respectively. For general background on Semigroup Theory, we refer
the reader to Howie’s book [8].

Let M,, denotes any of the monoids 7,,, O,,, or OP,,. Then M,, is regular. The Green
relations £ and R of M,, can be characterized by « L8 if and only if im(«) = im(B),
for all o, B € M,, and aRB if and only if ker(«) = ker(B), for all «, 8 € M,,.
Regarding the Green relation g, we have o <g g if and only if |im(a)| < |im(B)]
and so «Jp if and only if |im(«)| = |im(B)|, for all a, B € M,,. It follows that the
partial order <4 on the quotient M,, /7 is linear. More precisely, letting

JM = {o € My [im(a)| = ),

i.e., the J-class of the transformations of image size r (called the rank of the transfor-
mations) of M,,, for 1 < r < n, we have

M8 =M <g 3 < < M

See [1,2,7,8] for more details.
Since M, /J is a chain, the sets

M(n,r):{otej\/l,,:|im(a)|Sr}:JlM”UJZM"U~-~UJrM”,

with 1 < r < n, constitute all the non-null ideals of M,, (see [4, Note of p. 181]).
Notice that M(n,r) = T (n,r) it M,, = Ty; M@, r) = O, r) if M, = Op;
Mm,r)=OP(n,r)if M,, = OP,,.

Notice that every principal factor of M,, associated with the maximum J-class
JrM” is the Rees quotient M (n, r)/M(n,r — 1) (2 < r < n), which we denote by
P;M " It is usually convenient to think of P;M " as J,M " U {0}, and the product of two
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elements of PrM " is taken to be zero if it falls in M (n, r — 1). PrM " is a completely
0-simple semigroup.

As usual, the rank of a finite semigroup S is defined by rank § = min{|A| : A C
S, (A) = S}. If S is generated by its set E of idempotents, then the idempotent rank
of S is defined by idrank S = min{|A| : A C E, (A) = S§}. If S is generated by its set
N of nilpotents, then the nilpotent rank of S is defined by nilrank § = min{|A| : A C
N, (A) = S}. Clearly, rank S < idrank § and rank S < nilrank S.

In [6], Gomes and Howie showed that both the rank and the idempotent rank of PnTﬁ 1
are equal to n(n — 1)/2. This result was later generalized by Howie and McFadden
[9] who showed that the rank and idempotent rank of PrT" are both equal to S(n, r),
the Stirling number of the second kind, for 2 < r < n — 1. Yang [10] showed that the
nilpotent rank of P,T” isalso S(n,r),2 <r<n-—1.

The rank and idempotent rank of Pr?jl were shown to be n and 2n — 2, respectively,
by Gomes and Howie [7]. Garba [5] generalized this result by showing that both
the rank and the idempotent rank of the principal factor 73,(9 " are equal to (’r'), for

2 <r <n —2.Yang [11] showed that the nilpotent rank of the principal factor ’Pr(9 "
are also equal to (), for3 <r <n—1.

Regarding the semigroup OP,, Zhao [12] showed that both the rank and the idem-
potentrank of the principal factor 732 719” are equal to (g) .Recently, Zhao and Fernandes

[13] showed that the rank and the idempotent rank of the principal factor Pro P are
equal to ('r’ ), for 2 < r <n — 1. In this paper, we investigate the nilpotent rank of the

principal factor Pro P ,for2 <r <n—1.1In Sect. 2, we characterize the structure of
the minimal generating sets of OP(n, r). As applications, we prove that the number
of distinct minimal generating sets is 7" n!. In Sect. 3, we show that the nilpotent rank

of the principal factor Pro P is equal to (:’) for2 <r<n-—1.

Remark 1 1In this paper, it will always be clear from context when additions are taken
modulo n (or modulo ¢ where ¢ is the number of elements of any sequence).

Throughout this paper, for simplicity, we always assume that n > 3.

2 The Minimal Generating Sets of OP (n, r)

Let @ € 7,. As usual, we write im(«) for the image of «. The kernel of « is the
equivalence ker(«) = {(x, y) € X, x X, : xa = ya}. The equivalence classes of X,
with respect to ker(«) are called the kernel classes of «.

We denote by [i, k] the set {i,i + 1,...,k — 1, k}fori,k € X,,. Aset K C X, is
convex if K has the form [i, i +¢], forsomei € X,, and 0 <t < n — 1. We shall refer
to an equivalence 7 on X, as convex if its classes are convex subsets of X,,, and we
shall say that 7 is of weight r if | X, /7| =r.

It is known that that every kernel ker(«) of @« € OP,, is convex (see [2]). Let
2 <r < n — 1. Then, given a transformation @ € OP,, of rank r, the kernel ker(«)
is convex. Therefore, we may establish a one-to-one correspondence between the
collection of all subsets of X,, of cardinality » (which consists of all possible images
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of elements of rank r of OP,,) and the collection of all possible convex kernels of

elements of rank r of OP,, as follows: associate to each r-set {aj, az, ..., a,}, with
1<a; <ap <--- <a, <n,ther-partition {Ay, ..., A} of X,, defined by
Ai ={aj,ai+1,...,ai41 — 1}, forl <i <r (D

(notice that a,y; = a; by Remark 1). Thus, the J-class J,OP” of OP, (and of
OP(n, r)) contains ('rl) R-classes and (;’) L-classes. See [2] for more details.
Now, for1 <a; <ay < --- < a, < n, define

(A1 Ay A,
€ay,a,....ar = a ay--a )’

where {A1, ..., A,} is the r-partition of X,, associated to {ay, az, ..., a,} as in (1).
Clearly, €4;.4,.....ar € E (J,OP”). Moreover, the set

E,:{sal_,a2 ,,,,, ar:l§a1<a2<~-~<a,§n}

contains exactly one (idempotent) element from each R-class and from each L-class
of OP, of rank r.
The following lemma was proved by Zhao and Fernandes [13, Proposition 2.4].

Lemma 2.1 For?2 <r <n — 1, the set E, generates OP(n, r).
Now, we record a well-known result, due to Miller and Clifford ([3, Theorem 2.17]).

Lemma 2.2 For any two elements a, b in a semigroup S, ab € R, N Ly, if and only if
E(R,NL,) #0.

Let U be a subset of J,OP”. We say that U satisfies Condition (R ~ L) if U contains
exactly one element from each R-class and from each L-class of J,OP" . Notice that the
set E, satisfies Condition (R ~ L). From Lemma 2.1, we know that E, is a generating
set of OP(n, r). In fact, we have the following.

Lemma 2.3 Let G be a subset of JrOP”. If G satisfies Condition (R ~ L), then
OP(n,r) = (G).

Proof We shall show that E, € (G) and so OP(n,r) = (E,) by Lemma 2.1. Let
¢ € E,. Since G satisfies Condition (R ~ L), there exists unique « € G such that
aRe. If (a,e) € L, then aHe. Notice that each H-class of J,O Pn that contains an
idempotent is a cyclic group of order r (by [2, Corollary 3.6]). Thus ¢ = o" €
(G). If (o, &) ¢ L, then since E, satisfies Condition (R ~ L), there exists unique
&1 € E,\{e} such that («, £1) € L. Since G satisfies Condition (R ~ L), there exists
unique oy € G\{o} such that (a1, 1) € R. Notice that 1 € E(Ly N Ry,). Then,
by Lemma 2.2, o1 € Ry N Ly, = Re N Ly, If (@1, &) € L, then (xx1)He and so
e = (aay)" € (G). If (a1, &) ¢ L, then since E, satisfies Condition (R ~ L), there
exists unique g2 € E,\{e, &1} such that («1, &) € L. Since G satisfies Condition
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(R ~ L), there exists unique ax € G\{a, @1} such that («p, g2) € R. Notice that
&2 € E(Ly; NRy,) = E(Lga, NRy,). Then, by Lemma 2.2, (aa1)o2 € Ryoy NLo, =
R:NLy,. If (a2, &) € L, then (¢ajan)He and so & = (xajan)” € (G). If (a2, ¢) ¢ L,
then since E, satisfies Condition (R ~ L), there exists unique €3 € E,\{¢, €1, &2}
such that (a2, e3) € L. Since G satisfies Condition (R ~ L), there exists unique
a3 € G\{o, ay, o} such that (a3, e3) € R. Notice that &3 € E(Ly, N Ryy) =
E(Lgajar N Ryy). Then, by Lemma 2.2, (aajo2)asz € Rygjay N Loy = Re N Lgs;.
Continuing this demonstration, since G and E, satisfy Condition (R ~ L), there must
existk <m (m = (’;)) such that oy € G\{o, o1, ag—1}, (@ ... p—1)ax € Re N Ly,
and oxLe. Then (g ... o) He and so € = (way ... ax)" € (G). O

Since OP(n, r) has rank (’;) (see [13, Theorem 2.7]), a generating set of OP(n, r)
with (': ) elements is a minimal generating set. Moreover, if « is an element of OP (n, r)
of rank r and 8 and y are two elements of OP(n, r) such that « = By, then ker(a) =
ker(B) and im(«) = im(y). Then any generating set of OP(n, r) with ('r') elements
be the subset having exactly one element from each R-class and from each L-class of
rank r. These observations, together with the Lemma 2.3, prove the following result:

Theorem 2.4 Let M be a subset of OP (n, r) with (:’) elements. Then M is a minimal
generating set of OP(n, r) if and only if M be the subset having exactly one element
from each R-class and from each L-class of OP,, of rank r.

Notice that each H{-class of Jrop” that contains an idempotent is a cyclic group
of order r (by [2, Corollary 3.6]). Thus, we have the following corollary from Theo-
rem 2.4:

Corollary 2.5 Let M be a minimal generating set of OP(n, r). Then the number of
distinct sets M is r'n!.

3 The Nilpotent Rank of ’P,o P

Recall that Zhao [ 12] showed that both the rank and the idempotent rank of the principal
factor 735)_ 7?” are equal to (g) Recently, Zhao and Fernandes [13] showed that the rank

and the idempotent rank of the principal factor Pro Pn are equal to (':), for2 <r <

n — 1. In this section, we show that the nilpotent rank of the principal factor ’Pro Pn

are also equal to (), for2 <r <n — 1.

Let A be a subset of X, of cardinality r and let v be a convex equivalence of weight
r on X,. We may write H, 4) for the J{-class of J,Op”, which is the intersection of
Ry ={a e JOF" iker(@) = n)}and L s = {o € JOT" : im(ar) = A). The subset A
of X, of cardinality r is said to be a transversal of the convex equivalence 7 of weight
r on X, if each convex equivalence m-class contains exactly one element of A. The
following lemma is obvious:

Lemma 3.1 Leta € P,OP". Then « is nilpotent if and only ifim(«) is not a transversal
of ker ().
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Our main result of this section is as follows:

Theorem 3.2 Letn >3 and2 <r <n—1. Then
nilrank ’P,O P = (n)
r

The proof depends on the following lemma:

Lemma 3.3 Let Ay, Ao, ..., Ay (Wherem = ('r'))bea list of all the subsets of X, with
cardinality r. Suppose that there exist distinct convex equivalences 1wy, 2, . .., Ty, Of
weight r on X,, with the property that A; is not a transversal of w;, for 1 <i < m.
Then there exist nilpotent y; in the H-class Hz; ;) (1 < i < m) such that the set

{vi, 2, ..., Ym} is a minimal generating set ofPrOP".

Proof From Lemma 3.1, we know that the H{-classes H(z,,4,) - - . » Hx,,,A,,) ar€ non-

group H-classes, whose elements are nilpotents of Pro Pn_put
Vi € H(ﬂi»Ai)’ forl <i <m.

Then the set {y1, y2, ..., ¥m} is the subset having exactly one element from each

R-class and from each L-class of OP,, of rank r. It follows immediately from Theo-

rem 2.4 that the set {y1, ¥2, ..., ¥} 1S a minimal generating set of Pro P”. O
It remains to prove that the listing of images and convex equivalences postulated in

the statement of Lemma 3.3 can actually be carried out. Letn > 3and2 <r <n-—1,

and consider the statement:

P(n,r): There is a way of listing all the subsets of X, of cardinality r as

Ay, Az, ..., Ay (with m = (7)) so that there exist distinct convex equivalences
T, ..., Ty, of weight » on X, with the properties that A; is not a transversal of
i (i=1,...,m).

We shall prove this by a double induction on » and r, the key step being a kind of
Pascal’s Triangle implication

Pn—1,r—1)and Pn —1,r) = Pn,r).

First, however, we anchor the induction with two lemmas:
Lemma 3.4 P(n,n — 1) holds for every n > 3.

Proof Considerthelist Ay, Aj, ..., A, of X, of cardinality n—1, where A; = X, \{i}.
For 1 <i < n — 2, let w; be the convex equivalence with a unique non-singleton
class {i + 1,7 + 2} and all other classes being singletons. Let m,_; have classes
{2}, {3}, ..., {n— 1}, {n, 1}; and let T, have classes {1, 2}, {3}, ..., {n — 1}, {n}. Itis
easy to verify that Ay, Aj, ..., A, and 7y, 72, .. ., T, have the required property. O

Lemma 3.5 P(n, 2) holds for every n > 3.
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Proof We prove this by the induction n. Notice first that P (3, 2) holds by Lemma 3.4.
For n = 4, we arrange the subsets and convex equivalences as follows:

(1,2), (1,3}, (1,4}, {2,3), (2.4}, (3,4
12/34, 123/4, 3/412, 23/41, 1/234, 2/341.

Then, it is easy to verify that the subsets and convex equivalences as arranged above
satisfy P (4, 2).

Suppose inductively that P(n — 1,2) holds (n > 5). Thus, we have a list
Ay, As, ..., A, (with t = ("51)) of all the subsets of X,_; of cardinality 2, and a
list 7y, w2, ..., 7y of distinct convex equivalences of weight 2 on X,,_ such that A;
is not a transversal of 7; (i = 1,2, ..., 1). Notice that # +n — 1 = (5). All subsets of
X, of cardinality 2 are

Bl,B2a~--an71§AI,A2,~~~7Ata

where B; = {j,n},1 < j <n—1. Let nl./ (i =1,2,...,t) be the convex equiva-
lence on X,, obtained from 7r; by adjoining n to the m;-class containing n — 1. Then
my, 7w/, ..., m are all distinct, and A; is not a transversal of 7/ (i =1,2,...,1).

Let oy, ..., 0,1 be the list of convex equivalences of weight 2 on X,,, where

ojhasclasses {n,1,...,j},{j+1,....,.n—1},1<j<n-2,

0,1 has classes {n}, {1,2,...,n — 1}.

Then o1, ..., 0,1 are all distinct, B; is not a transversal of o, for 1 < j <n —2,
and each o; is distinct from every nl.’, since (n — 1,n) € ni’ and (n — 1,n) ¢ oj.
Notice thatt +n — 1 = (g) Hence {7{,..., 7/, 01,...,0,_1, } is a complete list of
all the convex equivalences of weight 2 on X,,. Notice that A is a subset of X,,_; and
(n,n—1) ¢ 71{. Then A is not a transversal of 0,1 and B,_1 = {n — 1, n}isnota
transversal of 77{. Arrange the subsets and the convex equivalence as follows:

A2a ) Ata B19 B27 cees Bn—27 Alv Bi‘l—lv

’ . ’
Ty, .., T O1, 02, ..., Op-2, Op—1, 7.

Then, it is easy to verify that the subsets and convex equivalences as arranged above
satisfy P(n, 2). O

Lemma 3.6 Letn > 5and3 <r <n—2. ThenP(n — 1,r — 1) and P(n — 1,r)
together imply P(n, r).

Proof From the assumption P(n — 1,r), we have a list Ay, ..., A, (where m =
(":1)) of the subsets of X,_; with cardinality » and a list o7, . .., o, of the convex
equivalences of weight r on X, such that A; isnot a transversal of o;, for 1 <i <m.

From the assumption P(n — 1, — 1), we have alist By, ..., B; (where t = ('r':}))
of the subsets of X,_; with cardinality r — 1 and a list 7y, ..., 7, of the convex
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equivalences of weight r — 1 on X,,—1 such that B; is not a transversal of m;, for
1<i<t.

Let o/ be the convex equivalence obtained from o; by adjoining n to the o;-class
containing n — 1, and define 7 = 7; U {(n, n)}. Theno{, ..., 0,7, ..., 7/ are all
distinct. Notice that m 4+t = (). Hence {0, ..., 0,,, 7|, ..., 7/} is a complete list
of all the convex equivalences of weight » on X,,. Next we define

B/ =B;U{n}, forl <i <t.

Then Ay, ..., Ay, B}, B, ..., B/ are all distinct. Moreover, A; is not a transversal of

o/,for 1 <i <mand B is not a transversal of 77/, for 1 <i < t. Arrange the subsets
and convex equivalences as follows:

Al.....Aw. B, B, ....B

/ / !/ / /!
O, ++vs Oy, T[l, 7-[2""’7[1‘

They satisfy all the properties necessary and the inductive step is complete. We have
shown that P(n,r) holds foralln > 5and3 <r <n — 2. O

The pattern of deductions is

P4,2) P4,3)

P(6,5)

)
o N N N
P(7,2) P(7,3) P(7,4) P(7,5) P(7,6)
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