BULLETIN of the

Bull. Malays. Math. Sci. Soc. (2018) 41:1759-1771 MALAYSIAN MATHENATICAL @ CrossMark

https://doi.org/10.1007/s40840-016-0423-2 A RR——

Sournali 40840

Surfaces in S3 of L;-2-Type

Pascual Lucas! - H. Fabiian Ramirez-Ospina®

Received: 14 January 2016 / Revised: 19 September 2016 / Published online: 27 September 2016
© Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2016

Abstract In this paper, we show that an L1-2-type surface M> C S is either an open
portion of a standard Riemannian product S!(a) x S!(b), of any radii, or it has non-
constant mean curvature H, non-constant Gaussian curvature K, and non-constant
principal curvatures 1 and «3.
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1 Introduction

Submanifolds of finite-type M (i.e., submanifolds whose isometric immersion in the
Euclidean space is constructed by using eigenfunctions of their Laplacian) were intro-
duced by Chen during the late 1970s, and the first results on this subject were collected
in his book [5]. In subsequent papers, Chen has provided a detailed account of recent
development on problems and conjectures about finite-type submanifolds, [6,7]. It is
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well known that the Laplacian operator A can be seen as the first one of a sequence of
operators Lo = A, Ly, ..., L,—1, n = dim(M), where L stands for the linearized
operator of the first variation of the (k4 1)-th mean curvature arising from normal vari-
ations (see, for instance, [13]). L1 is nothing but the differential operator U introduced
by Cheng and Yau [8].

The notion of finite-type submanifold can be defined for any operator L, [10], and
then it is natural to try to obtain new results and compare them with the classical ones.
For example, it is well known that the only 2-type surfaces in the unit 3-sphere S* are
open portions of the product of two circles S' (a) x SY(b) of different radii, [4,5,9].

In the present article, we study the same problem for the operator L1, that is, we
study isometric immersions ¥ : M> — S3 C R* of L1-2-type. These surfaces are
characterized by the following spectral decomposition of the position vector :

v=a+vY1+v2, Livyi=My1, Liva=x v, A #Xi, A €R,

where a is a constant vector in R*, and Y1, Y are R*-valued non-constant differen-
tiable functions on M?. It is easy to see that open portions of the product of two circles
S'(a) x S'(b), of any radii, are surfaces of Li-2-type (see the example 2). Our main
theorem is the following local result:

Theorem Let v : M> — S? be an orientable surface of Ly-2-type. Then either M?*
is an open portion of a standard Riemannian product S'(a) x S'(b) of any radii, or
M? has non-constant mean curvature H, non-constant Gaussian curvature K, and
non-constant principal curvatures k1 and k.

2 Preliminaries

Let ¢ : M?> — S* ¢ R* be an isometric immersion in the unit 3-sphere S* (centered
at the origin of R*) of a connected orientable surface M2, with Gauss map N. We
denote by V0, ¥V, and V the Levi-Civita connections on R*, S3, and M2, respectively.
Then the Gauss and Weingarten formulas are given by

VY = VxY + (SX,Y)N — (X, Y) ¥, ¢))
SX = —VxN = —V§N, 2)

for all tangent vector fields X,Y € X(M?), where S : X(M?) — ¥(M?) stands
for the shape operator (or Weingarten endomorphism) of M2, with respect to the
chosen orientation N. The mean curvature H and the scalar curvature H (also called
the extrinsic curvature) of M2 are defined by H = %(/q + k) and Hy = kK2,
respectively, k1 and k7 being the eigenvalues of S (i.e., the principal curvatures of the
surface). From the Gauss equation, we know that the Gaussian curvature K is given
by K =1+ det(S) =1+ H.
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The Newton transformation of M? is the operator P : X(M 2y > X(M?) defined
by

P=2HI-S. 3)

Note that by the Cayley—Hamilton theorem, we have S o P = H>I. Observe also
that, at any point p € M2, S(p) and P(p) can be simultaneously diagonalized:
if {e1, ex} are the eigenvectors of S(p) corresponding to the eigenvalues «1(p) and
k2(p), respectively, then they are also the eigenvectors of P(p) with corresponding
eigenvalues k7 (p) and «1(p), respectively.

According to [12, p. 86], for a tensor T, the contraction of the new covariant slot
in its covariant differential VT with one of its original slots is called a divergence of
T. Hence the divergence of a vector field X is the differential function defined by

div (X) = C(VX) = (Vg X, E1) + (VE, X, Ea),

{E1, E;} being any local orthonormal frame of tangent vectors fields. For an operator
T : X(M?) — X(M?), the divergence associated to the metric contraction Cp will
be the vector field div (T') € X(M?) defined as

div(T) = C12(VT) = (Vg, T)E| + (VE, T) Es.

We have the following properties of P. The first three claims are direct computations;
for a proof of claims (d) and (e), see e.g., [1].

Lemma 1 The Newton transformation P satisfies the following:

(a) tr(P) =2H.

(b) tr(So P)=2H,.

(c) tr(S%o P) =2HH>.

(d) tr (VxS o P) = (VH,, X), where V H; stands for the gradient of H».
(e) div(P) = 0.

Associated to the Newton transformation P, we can define a second-order linear
differential operator L| : C*°(M?) — C>®(M?) by

Li(f) =u(PoV?f), )
where V2 f : X(M?) — X(M?) denotes the self-adjoint linear operator metrically
equivalent to the Hessian of f, given by (V> f(X), Y) = (Vx(V f), Y). An interesting
property of L is the following. For every couple of differentiable functions f, g €

C®(M?), we have

Li(fg) =gLi(f/)+ fLi1(&) +2(P(V[),Vg). )

The operator L can be extended to vector functions as follows: If F = (f1, f2, f3,
fa): M? - RY, f; € C®(M?), then Ly F := (L1 fi, L1 f2, L1 f3, L1 fa).
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3 First Results

Let a € R* be an arbitrary fixed vector. A direct computation shows that the gradient
of the function (v, a) is given by

V{y,a)=a' =a—(N,a)N — (¢, a) ¥, (©6)

wherea | € X(M?) denotes the tangential component of a. Taking covariant derivative
in (6), and using the Gauss and Weingarten formulas, we obtain

VxV (¥.a) = Vxa' = (N.,a)SX — (. a) X, (7N
for every vector field X € X(M?). Finally, by using (4) and Lemma 1, we find that

Li(Y,a)=(N,a)tr(So P)— (Y, a)tr(P)
=2Hy(N,a) —2H (¥, a) . (8)

Then L1y can be computed as
LYy =2HN —2H. 9)
A straightforward computation yields
V{(N,a) = —Sa'.
From the Weingarten formula and (7), we find that

VxV (N,a) = —(VxS)a' —S(Vxa')
= —(V,7$)X — (N,a) S’X + (¢, a) SX,

for every tangent vector field X. This equation, jointly with (4) and Lemma 1, yields

Li(N,a) =—tr(V,rSo P) — (N,a)tr (S o P) + (Y, a)tr (S o P)
= — (VHs,a) —2HH> (N,a) + 2H> (¥, a) . (10)

In other words,
LN =—-VH, —2HH;N + 2H>. (11

From (9), (11), and (5), we obtain the following result.

Lemma 2 Forany f € C*°(M?), we have

Li(fy) = 2P(Vf) + 2f HoN + (L f — 2H[)Y,
Li(fN) = —=(fVHy + 2H:V f) + (L1 f —2HH> N +2Ha f .
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On the other hand, Egs. (5), (8), and (10) lead to

L} (Y, a) = 2H>,Ly (N, a) + 2L (H>) (N, a) + 4P(VH,), V (N, a))
—2HLy (,a) — 2L\(H) (Y, a) — 4P(VH), V (y, a)),
= —-2H>(VH>,a) —4((So P)(VHy),a) —4(P(VH), a)
+ [2L1Hy — 4HHy(Hy + D] (N, a)
+ [4HF +4H? — 2L H] (y, a) .

Finally, we get

L3y = —4P(VH) — 3VH}
+2[L1H, —2HH,(Hy + 1)|N
+2[2H} +2H? — L H]y. (12)

3.1 Li-Biharmonic Surfaces

An isometric immersion x : M" — R™ is said to be biharmonic if AH = 0, where
A and H are the rough Laplacian on the submanifold M" and the mean curvature
vector field of the immersion, respectively (see e.g., [6]). From the Beltrami formula
Ax = nH, we know that the submanifold M" is biharmonic if and only if A2y = 0.
The following definition appears in a natural way (see [3] and [11]).

Definition 3 An isometric immersion ¥ : M2 — R* is said to be L1-biharmonic
if L%lﬂ = 0. In the case L%w = 0 and L1y # 0, we will say that ¥ is a proper
L {-biharmonic surface.

If M? is a totally geodesic surface of S3, then Eq. (9) implies L1 = 0, and hence
M? is a (trivial) L;-biharmonic surface in R*.
Let ¥ : M?> — S3 C R* be an L1-biharmonic surface. Then (12) yields

4P(VH) +3VH} =0, (13)
L1Hy —2HH>(Hy +1) =0, (14)
L\H —2(H? + H3) = 0. (15)

If H is constant, then (15) yields H = H, = 0,i.e., M Zisa totally geodesic surface
in S3; in other words, M? is an open portion of a unit 2-sphere S”. If K is constant
(and so Hj also is), by taking divergence in (13) we get L1 H = 0. Then from (15) we
also deduce that M? is an open portion of a unit 2-sphere S>. We have obtained the
following result.

Proposition 4 Let  : M> — S* C R* be an Li-biharmonic surface. Then either
M? is an open portion of a unit 2-sphere S* or M* has non-constant curvatures H
and K.
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This result can be improved as follows: If H is an Lj-harmonic function (i.e.,
L1H = 0), then (15) implies again that M? is an open portion of a unit 2-sphere S?.
The same conclusion is also reached when H, (or K) is an L;-harmonic function. In
this case, (14) yields

HHy(Hy + 1) = 0.

Let us assume that H is non-constant (otherwise, there is nothing to prove) and take the
non-empty setid = {p € M? | VH?(p) # 0}. On this set, we have H»(H> + 1) = 0,
and then Hj is constant on /. Hence Proposition 4 implies that ¢/ is an open portion of
a unit 2-sphere S?, but then the mean curvature H is constant. This is a contradiction.
The following result has been proved.

Proposition 5 Let ¢ : M?> — S* C R* be an L1-biharmonic surface. Then either
M? is an open portion of a unit 2-sphere S* or the curvatures H and K are not
L-harmonic.

When M? is a closed surface, we can improve that result. By taking divergence in
(13), we get

LiH = —2AH2
1 = 4 2.
From here and (15), and by using the divergence theorem, we obtain

o:/ LlHdv=2/(H2+H22)dv.
M M

This implies H = H> = 0. We have proved the following result.

Proposition 6 Let v : M> — S C R* be a closed surface. Then M? is an L-
biharmonic surface if and only if it is a unit 2-sphere S2.

3.2 Equations Characterizing the L{-2-Type Surfaces

Let us suppose that M? is of L;-2-type in R*, that is, the position vector ¥ of M? in
R* can be written as follows:

Y=a+vY1+v2, Livi=My1, Livo=My, A #Xi, A €R,
where a is a constant vector in R*, and Y1, Yo are R*-valued non-constant differen-
tiable functions on M2,

Since L1y = A1 + Ao and L%lﬂ = )\.%Iﬂ] + )%wz, an easy computation shows
that

L3y = (v + ) L1y — Ada(y — a),
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and by using (9), we obtain

Ly = hidaa’ + 200 4+ A)Hy + MiAz (N, a) [N
— [200 + ) H + aiha — aida (Y. a) |0

This equation, jointly with (12), yields the following equations that characterize the
L1-2-type surfaces in S*:

Mia| = —3VH; —4P(VH), (16)
A2 (N,a) =2L1Hy —2H,(2HHy + 2H + A1 + 12), (17)
Ado (¥, a) = 4HF +4H? +2(0 + A)H + AAo — 2L H. (18)

Example 1 (Surfaces of L1-1-type) Totally umbilical surfaces in S3 are of Li-1-type.
Indeed, let M2 C S? be a totally umbilical surface, then its shape operator S is given
by S = HI. We know that H and H, are constants. By taking covariant derivative,
we get

VRN + Hy) =0,

for all X € X(M?), and then N + Hyr = b, for a constant vector b. By using this in
(9), we deduce

Ly =2Hb 4+ Ay, A= —2H(l+ Hy).

If A # 0, then we write

2H> 2H>
w=a+’¢/17 az_Tbv lel//+Tb,

with L1y = Ay, i.e., M2 is of L-1-type.
In the case A = 0, the surface M?2 is totally geodesic (H = H> = 0) and then (9)
yields L1y = 0, showing that M? is of L-1-type.

By using [2], we easily deduce the following proposition.

Proposition 7 Let ¢ : M?> — S3 C R* be an isometric immersion. Then r is of
L1-1-type if and only if M? is an open portion of a 2-sphere S*(r).

Example 2 (Surfaces of L1-2-type) We will see that the standard Riemannian product
M? =S' (W1 —=7r2) xS'(r) € $3,0 < r < 1,is of L1-2-type in R*. Let us consider

M? = {x = (x1,%2,%3,%4) € S’ | x5 + x5 =17},
In this case, the Gauss map on M? is given by

N —r —r V1=72 JV1=r2
X) = X1, X2, X3, X4 0,
V1=1r2 JV1=1r2 r r
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and its principal curvatures are

r d —/1 =72
K] = ——— and kp = ——.

V1 —r2 r

Ifweputy; = (x1, x2,0,0)and y» = (0, 0, x3, x4), itiseasy to see thatyy = ¥+,
and by using 9, we get that

L1y =My and Ly = Agyrn, with A = and Ay = —Aj.

1
P

Therefore, M? is of L{-2-type in R*.

4 Main Results

Theorem 8 Let v : M?> — S* C R* be an orientable surface of Ly-2-type. Then
M? has constant mean curvature if and only if M? is an open portion of a standard
Riemannian product SIVT=r2) xS'(n), 0<r < 1.

Proof Let M? be a surface of L-2-type with constant mean curvature. Our goal is to
prove that the scalar curvature H, of M 2 is constant. Otherwise, let us consider the
non-empty open set

Uy = {p e M* | VH; (p) #0}.

By taking covariant derivative in (18), we have Mhia! = 4VH22. Using this in (16),
we deduce H, = 0, which is a contradiction.

Therefore, M? is an isoparametric surface in S, and then either M? is an open
portion of a 2-sphere S?(r), 0 < r < 1, or M? is an open portion of a Riemannian
product M,z, 0 < r < 1. Since the totally umbilical surfaces are of Li-1-type, the
result follows. O

Theorem 9 Let y : M?> — S3 € R* be an orientable surface of Ly-2-type. Then M*
has constant Gaussian curvature if and only if M? is an open portion of a standard
Riemannian product S'(v/1 —r2) x S'(r), 0 < r < 1.

Proof Let M? be a surface of L{-2-type with constant Gaussian curvature K, and
consider the open set

U={peM | VH*(p) #0}.
Our goal is to show that I/ is empty. Suppose it is not empty.
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By taking covariant derivative in (17), and using that H» is constant, we obtain
AA2Sa' =4H>(Hy + 1)VH.

From (16) and bearing in mind that S o P = H>I, we have MISa' = —4H,VH,
and therefore

Hy(Hy +2)VH = 0.
Consequently, on U/ we have either H = —2 or H> = 0. We will study each case
separately.
Case I: Hy = —2. By applying the operator L on both sides of (17) and using
(18) we get
AdoLi (N, a) = 4[1ha (Y, a) — 4H? =20\ + A)H — Ajhs — 16].
On the other hand, (10) leads to

MA2 (N, a) H — hiro (¥, a) = MAa {a, ) — 4H? — 201 + A2)H — Aiha — 16,

and using (17) we find that

1
A (Y, a) = —2H? +3(0; +A2)H+§(A1k2+16). 19)
Taking gradients in (19), and using (16) and (3), we obtain
[ —4H +3(11 +22)|[VH = —4P|(VH) = —8HVH +4S(VH),  (20)

that is,

4H + 3(Ax A
+ 3 + Z)VH.

S(VH) = ;

Now, by applying the operator S on both sides of the first equality of (20), and bearing
in mind that S o P = —21, we obtain

8

S(VH) = VH
—4H 4+ 3(A1 + A2)

The last two equations for S(V H) imply that H is constant on I/, which is a contra-
diction.

Case2: Hy = 0.Letus suppose k] = Oand ky = 2H # 0 (otherwise, M? would be
a totally geodesic surface and then of L{-1-type). Let {E{, E»} be a local orthonormal
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frame of principal directions of S such that SE; = «; E;. From Codazzi’s equation,
we easily obtain

Vi Ei =0, Vi By =0,
Vi, Ey = = E2, Vi, Er = 1 Ey [Ey, E2]l = g Ea,

where @ = E1(H). Now, from the definition of curvature tensor, we get
R(Ey, E2)E1 = Vg, E1E1 — VE,VE,E1 + VE, VE E|
2
=[E(5) - (5)]E

and from the Gauss equation we have R(E;, E;)E; = E». By equating the last two
equations, we deduce

HE;(a) = H? + 227 (1)

On the other hand, from the definition of L1, see (4), and after a little calculation, we
obtain

LiH =3 (E1, Vg, VH)+ k1 (E2, Vg, VH) = 2HE/ (). (22)
By using (21) and (22), (18) can be rewritten as
AA2 (W, a) = 2001 + A2)H 4+ A1ho — 8o, (23)
Taking covariant derivative along E; here, we have
Ei(MA2 (Y, a)) =201 + A)a — 160 Eq (). (24)
On the other hand, from (18), we get Mia' = —8HaEq, and therefore
E1Guha (¥, a)) = <A1k2aT, E1> — _8Ha.

This equation, jointly with (24), implies that (A + A2)e — 8« Ej(x) = —4Ha. Since
o # 0, see (21), we deduce

8E (o) =4H + A + . (25)

From here and using (22) we get4L | H = 4H? 4+ (A + M) H. By using this in (18),
we find

3
MA2 (Y, a) = 2H* + 31+ 220 H + 2k, (26)
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Taking gradient here, and using (16) and (3), we obtain
3
|:4H + E(M +A2)] VH = —-4P(VH) = —8HVH +4S(VH), 27)
that is,
3
S(VH) = (3H + §()‘1 +A2) ) VH.

On the other hand, by applying the operator S on both sides of the first equality of
(27), and bearing in mind that S o P = 0, we obtain

|:4H + ;(M + )»2):| S(VH) =0.

The last two equations imply that H is constant on I/, which is a contradiction.

We have proved that if M? is a L-2-type surface with constant Gaussian curvature,
then its mean curvature is constant. Then reasoning as in the proof of Theorem 8§ we
deduce that M? is an open portion of a Riemannian product Mrz, 0 < r < 1. This
finishes the proof of Theorem 9. O

A surface in S is said to have a constant principal curvature if one of its principal
curvatures is constant.

Theorem 10 Ler  : M?> — S? C R* be an orientable surface of Li-2-type. Then
M? has a constant principal curvature if and only if M?* is an open portion of a
standard Riemannian product S'(v/1 —r2) x S'(r), 0 < r < 1.

Proof Let M? be a surface of L-2-type and assume that  is a non-zero constant
(otherwise, Hy = 0 and Theorem 9 applies). Consider the open set

U={pe M | Vi3(p) #0}.

Our goal is to show that U/ is empty.
Otherwise, Egs. (16)—(18) of L1-2-type can be rewritten in terms of «; as follows:

Miga! = [—6kiiy — 2(k1 + k2)IVi2 4 28(Vica), (28)
MAz (N, a) = 2k Liky — 2k1i0[ (1 4 k2) (k12 + 1) + A1 + A2], (29)
M2 (W, a) = i + (k1 4 k2)* 4+ (A1 + A2) (k1 +Kk2) + Ara — Likz. (30)

From (29) and (30), we find

AMA2 (N, a) = =2k1h1A2 (Y, a) + 2«1

X [3K12K22 +IC12 + K162 + (M + M)kl + AAo —K1K23].
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By taking gradient here, we obtain
“ahaSaT = —2uiA Ao + 2K12[1 + 6iciir — 3K22]VK2. 31)
On the other hand, by using S o P = HyI, we get
MiaSal = —6kiKrS (Vi) — 21162 Vica. (32)
Now, from (28), (31), and (32), we deduce
Brikz 4+ 2)S (Vi) = (=3k1k3 + (1267 + iy + 31) Vica.
Since 3k1k2 4+ 2 # 0 (otherwise, k2 would be constant), we deduce

=3k1k3 + (1263 + Do + 3k

S(Via) = f(k1,k2)Vka, f(K1,k2) = Bk +2)

This equation implies that either f(k,«2) = k1 or f(k1, k2) = k2. In any case it
follows that k» is constant on ¢/, and this is a contradiction. This finishes the proof of
Theorem 10. |

As a consequence of Theorems 8, 9, and 10, we have the following characterization
of L-2-type surfaces in S°.

Theorem 11 Ler  : M?> — S? C R* be an orientable surface of Li-2-type. Then
either M? is an open portion of a standard Riemannian product S'(v/1 — r2) x S'(r),
0 < r < 1, or M?* has non-constant mean curvature H, non-constant Gaussian
curvature K, and non-constant principal curvatures k1, and k3.
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