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Abstract In this paper, we show that an L1-2-type surface M2 ⊂ S
3 is either an open

portion of a standard Riemannian product S1(a) × S
1(b), of any radii, or it has non-

constant mean curvature H , non-constant Gaussian curvature K , and non-constant
principal curvatures κ1 and κ2.
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1 Introduction

Submanifolds of finite-type M (i.e., submanifolds whose isometric immersion in the
Euclidean space is constructed by using eigenfunctions of their Laplacian) were intro-
duced by Chen during the late 1970s, and the first results on this subject were collected
in his book [5]. In subsequent papers, Chen has provided a detailed account of recent
development on problems and conjectures about finite-type submanifolds, [6,7]. It is
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well known that the Laplacian operator � can be seen as the first one of a sequence of
operators L0 = �, L1, . . . , Ln−1, n = dim(M), where Lk stands for the linearized
operator of the first variation of the (k+1)-thmean curvature arising from normal vari-
ations (see, for instance, [13]). L1 is nothing but the differential operator� introduced
by Cheng and Yau [8].

The notion of finite-type submanifold can be defined for any operator Lk , [10], and
then it is natural to try to obtain new results and compare them with the classical ones.
For example, it is well known that the only 2-type surfaces in the unit 3-sphere S3 are
open portions of the product of two circles S1(a) × S

1(b) of different radii, [4,5,9].
In the present article, we study the same problem for the operator L1, that is, we

study isometric immersions ψ : M2 → S
3 ⊂ R

4 of L1-2-type. These surfaces are
characterized by the following spectral decomposition of the position vector ψ :

ψ = a + ψ1 + ψ2, L1ψ1 = λ1ψ1, L1ψ2 = λ2ψ2, λ1 �= λ2, λi ∈ R,

where a is a constant vector in R
4, and ψ1, ψ2 are R4-valued non-constant differen-

tiable functions on M2. It is easy to see that open portions of the product of two circles
S
1(a) × S

1(b), of any radii, are surfaces of L1-2-type (see the example 2). Our main
theorem is the following local result:

Theorem Let ψ : M2 → S
3 be an orientable surface of L1-2-type. Then either M2

is an open portion of a standard Riemannian product S1(a) × S
1(b) of any radii, or

M2 has non-constant mean curvature H, non-constant Gaussian curvature K , and
non-constant principal curvatures κ1 and κ2.

2 Preliminaries

Let ψ : M2 → S
3 ⊂ R

4 be an isometric immersion in the unit 3-sphere S3 (centered
at the origin of R4) of a connected orientable surface M2, with Gauss map N . We
denote by ∇0, ∇, and ∇ the Levi-Civita connections on R4, S3, and M2, respectively.
Then the Gauss and Weingarten formulas are given by

∇0
XY = ∇XY + 〈SX,Y 〉 N − 〈X,Y 〉 ψ, (1)

SX = −∇X N = −∇0
X N , (2)

for all tangent vector fields X,Y ∈ X(M2), where S : X(M2) → X(M2) stands
for the shape operator (or Weingarten endomorphism) of M2, with respect to the
chosen orientation N . The mean curvature H and the scalar curvature H2 (also called
the extrinsic curvature) of M2 are defined by H = 1

2 (κ1 + κ2) and H2 = κ1κ2,
respectively, κ1 and κ2 being the eigenvalues of S (i.e., the principal curvatures of the
surface). From the Gauss equation, we know that the Gaussian curvature K is given
by K = 1 + det(S) = 1 + H2.
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The Newton transformation of M2 is the operator P : X(M2) → X(M2) defined
by

P = 2H I − S. (3)

Note that by the Cayley–Hamilton theorem, we have S ◦ P = H2 I . Observe also
that, at any point p ∈ M2, S(p) and P(p) can be simultaneously diagonalized:
if {e1, e2} are the eigenvectors of S(p) corresponding to the eigenvalues κ1(p) and
κ2(p), respectively, then they are also the eigenvectors of P(p) with corresponding
eigenvalues κ2(p) and κ1(p), respectively.

According to [12, p. 86], for a tensor T , the contraction of the new covariant slot
in its covariant differential ∇T with one of its original slots is called a divergence of
T . Hence the divergence of a vector field X is the differential function defined by

div (X) = C(∇X) = 〈∇E1X, E1
〉 + 〈∇E2X, E2

〉
,

{E1, E2} being any local orthonormal frame of tangent vectors fields. For an operator
T : X(M2) → X(M2), the divergence associated to the metric contraction C12 will
be the vector field div (T ) ∈ X(M2) defined as

div (T ) = C12(∇T ) = (∇E1T )E1 + (∇E2T )E2.

We have the following properties of P . The first three claims are direct computations;
for a proof of claims (d) and (e), see e.g., [1].

Lemma 1 The Newton transformation P satisfies the following:

(a) tr (P) = 2H.
(b) tr (S ◦ P) = 2H2.
(c) tr (S2 ◦ P) = 2HH2.
(d) tr (∇X S ◦ P) = 〈∇H2, X〉, where ∇H2 stands for the gradient of H2.
(e) div (P) = 0.

Associated to the Newton transformation P , we can define a second-order linear
differential operator L1 : C∞(M2) → C∞(M2) by

L1( f ) = tr
(
P ◦ ∇2 f

)
, (4)

where ∇2 f : X(M2) → X(M2) denotes the self-adjoint linear operator metrically
equivalent to the Hessian of f , given by

〈∇2 f (X),Y
〉 = 〈∇X (∇ f ),Y 〉. An interesting

property of L1 is the following. For every couple of differentiable functions f, g ∈
C∞(M2), we have

L1( f g) = gL1( f ) + f L1(g) + 2 〈P(∇ f ),∇g〉 . (5)

The operator L1 can be extended to vector functions as follows: If F = ( f1, f2, f3,
f4) : M2 → R

4, fi ∈ C∞(M2), then L1F := (L1 f1, L1 f2, L1 f3, L1 f4).
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3 First Results

Let a ∈ R
4 be an arbitrary fixed vector. A direct computation shows that the gradient

of the function 〈ψ, a〉 is given by

∇ 〈ψ, a〉 = a� = a − 〈N , a〉 N − 〈ψ, a〉 ψ, (6)

wherea� ∈ X(M2) denotes the tangential component of a. Taking covariant derivative
in (6), and using the Gauss and Weingarten formulas, we obtain

∇X∇ 〈ψ, a〉 = ∇Xa
� = 〈N , a〉 SX − 〈ψ, a〉 X, (7)

for every vector field X ∈ X(M2). Finally, by using (4) and Lemma 1, we find that

L1 〈ψ, a〉 = 〈N , a〉 tr (S ◦ P) − 〈ψ, a〉 tr (P)

= 2H2 〈N , a〉 − 2H 〈ψ, a〉 . (8)

Then L1ψ can be computed as

L1ψ = 2H2N − 2Hψ. (9)

A straightforward computation yields

∇ 〈N , a〉 = −Sa�.

From the Weingarten formula and (7), we find that

∇X∇ 〈N , a〉 = −(∇X S)a� − S(∇Xa
�)

= −(∇a� S)X − 〈N , a〉 S2X + 〈ψ, a〉 SX,

for every tangent vector field X . This equation, jointly with (4) and Lemma 1, yields

L1 〈N , a〉 = −tr (∇a�S ◦ P) − 〈N , a〉 tr (S2 ◦ P) + 〈ψ, a〉 tr (S ◦ P)

= −〈∇H2, a〉 − 2HH2 〈N , a〉 + 2H2 〈ψ, a〉 . (10)

In other words,
L1N = −∇H2 − 2HH2N + 2H2ψ. (11)

From (9), (11), and (5), we obtain the following result.

Lemma 2 For any f ∈ C∞(M2), we have

L1( f ψ) = 2P(∇ f ) + 2 f H2N + (L1 f − 2H f )ψ,

L1( f N ) = −( f ∇H2 + 2H2∇ f ) + (L1 f − 2HH2 f )N + 2H2 f ψ.
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On the other hand, Eqs. (5), (8), and (10) lead to

L2
1 〈ψ, a〉 = 2H2L1 〈N , a〉 + 2L1(H2) 〈N , a〉 + 4

〈
P(∇H2),∇ 〈N , a〉 〉

− 2HL1 〈ψ, a〉 − 2L1(H) 〈ψ, a〉 − 4
〈
P(∇H),∇ 〈ψ, a〉 〉

,

= −2H2 〈∇H2, a〉 − 4 〈(S ◦ P)(∇H2), a〉 − 4 〈P(∇H), a〉
+ [

2L1H2 − 4HH2(H2 + 1)
] 〈N , a〉

+ [
4H2

2 + 4H2 − 2L1H
] 〈ψ, a〉 .

Finally, we get

L2
1ψ = −4P(∇H) − 3∇H2

2

+ 2
[
L1H2 − 2HH2

(
H2 + 1

)]
N

+ 2
[
2H2

2 + 2H2 − L1H
]
ψ. (12)

3.1 L1-Biharmonic Surfaces

An isometric immersion x : Mn → R
m is said to be biharmonic if �H = 0, where

� and H are the rough Laplacian on the submanifold Mn and the mean curvature
vector field of the immersion, respectively (see e.g., [6]). From the Beltrami formula
�x = nH, we know that the submanifold Mn is biharmonic if and only if �2x = 0.
The following definition appears in a natural way (see [3] and [11]).

Definition 3 An isometric immersion ψ : M2 → R
4 is said to be L1-biharmonic

if L2
1ψ = 0. In the case L2

1ψ = 0 and L1ψ �= 0, we will say that ψ is a proper
L1-biharmonic surface.

If M2 is a totally geodesic surface of S3, then Eq. (9) implies L1ψ = 0, and hence
M2 is a (trivial) L1-biharmonic surface in R4.

Let ψ : M2 → S
3 ⊂ R

4 be an L1-biharmonic surface. Then (12) yields

4P(∇H) + 3∇H2
2 = 0, (13)

L1H2 − 2HH2(H2 + 1) = 0, (14)

L1H − 2(H2 + H2
2 ) = 0. (15)

If H is constant, then (15) yields H = H2 = 0, i.e., M2 is a totally geodesic surface
in S

3; in other words, M2 is an open portion of a unit 2-sphere S2. If K is constant
(and so H2 also is), by taking divergence in (13) we get L1H = 0. Then from (15) we
also deduce that M2 is an open portion of a unit 2-sphere S2. We have obtained the
following result.

Proposition 4 Let ψ : M2 → S
3 ⊂ R

4 be an L1-biharmonic surface. Then either
M2 is an open portion of a unit 2-sphere S2 or M2 has non-constant curvatures H
and K .
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This result can be improved as follows: If H is an L1-harmonic function (i.e.,
L1H = 0), then (15) implies again that M2 is an open portion of a unit 2-sphere S2.
The same conclusion is also reached when H2 (or K ) is an L1-harmonic function. In
this case, (14) yields

HH2(H2 + 1) = 0.

Let us assume that H is non-constant (otherwise, there is nothing to prove) and take the
non-empty set U = {p ∈ M2 | ∇H2(p) �= 0}. On this set, we have H2(H2 + 1) = 0,
and then H2 is constant on U. Hence Proposition 4 implies that U is an open portion of
a unit 2-sphere S2, but then the mean curvature H is constant. This is a contradiction.
The following result has been proved.

Proposition 5 Let ψ : M2 → S
3 ⊂ R

4 be an L1-biharmonic surface. Then either
M2 is an open portion of a unit 2-sphere S

2 or the curvatures H and K are not
L1-harmonic.

When M2 is a closed surface, we can improve that result. By taking divergence in
(13), we get

L1H = −3

4
�H2

2 .

From here and (15), and by using the divergence theorem, we obtain

0 =
∫

M
L1H dv = 2

∫

M
(H2 + H2

2 ) dv.

This implies H = H2 = 0. We have proved the following result.

Proposition 6 Let ψ : M2 → S
3 ⊂ R

4 be a closed surface. Then M2 is an L1-
biharmonic surface if and only if it is a unit 2-sphere S2.

3.2 Equations Characterizing the L1-2-Type Surfaces

Let us suppose that M2 is of L1-2-type in R
4, that is, the position vector ψ of M2 in

R
4 can be written as follows:

ψ = a + ψ1 + ψ2, L1ψ1 = λ1ψ1, L1ψ2 = λ2ψ2, λ1 �= λ2, λi ∈ R,

where a is a constant vector in R
4, and ψ1, ψ2 are R4-valued non-constant differen-

tiable functions on M2.
Since L1ψ = λ1ψ1 +λ2ψ2 and L2

1ψ = λ21ψ1 +λ22ψ2, an easy computation shows
that

L2
1ψ = (λ1 + λ2)L1ψ − λ1λ2(ψ − a),
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and by using (9), we obtain

L2
1ψ = λ1λ2a

� + [
2(λ1 + λ2)H2 + λ1λ2 〈N , a〉 ]

N

− [
2(λ1 + λ2)H + λ1λ2 − λ1λ2 〈ψ, a〉 ]

ψ.

This equation, jointly with (12), yields the following equations that characterize the
L1-2-type surfaces in S3:

λ1λ2a
� = −3∇H2

2 − 4P(∇H), (16)

λ1λ2 〈N , a〉 = 2L1H2 − 2H2
(
2HH2 + 2H + λ1 + λ2

)
, (17)

λ1λ2 〈ψ, a〉 = 4H2
2 + 4H2 + 2(λ1 + λ2)H + λ1λ2 − 2L1H. (18)

Example 1 (Surfaces ofL1-1-type) Totally umbilical surfaces in S3 are of L1-1-type.
Indeed, let M2 ⊂ S

3 be a totally umbilical surface, then its shape operator S is given
by S = H I . We know that H and H2 are constants. By taking covariant derivative,
we get

∇0
X (N + Hψ) = 0,

for all X ∈ X(M2), and then N + Hψ = b, for a constant vector b. By using this in
(9), we deduce

L1ψ = 2H2b + λψ, λ = −2H(1 + H2).

If λ �= 0, then we write

ψ = a + ψ1, a = −2H2

λ
b, ψ1 = ψ + 2H2

λ
b,

with L1ψ1 = λψ1, i.e., M2 is of L1-1-type.
In the case λ = 0, the surface M2 is totally geodesic (H = H2 = 0) and then (9)

yields L1ψ = 0, showing that M2 is of L1-1-type.

By using [2], we easily deduce the following proposition.

Proposition 7 Let ψ : M2 → S
3 ⊂ R

4 be an isometric immersion. Then ψ is of
L1-1-type if and only if M2 is an open portion of a 2-sphere S2(r).

Example 2 (Surfaces of L1-2-type)Wewill see that the standard Riemannian product
M2

r = S
1(

√
1 − r2) × S

1(r) ⊂ S
3, 0 < r < 1, is of L1-2-type in R4. Let us consider

M2 = {x = (x1, x2, x3, x4) ∈ S
3 | x23 + x24 = r2}.

In this case, the Gauss map on M2 is given by

N (x) =
(

−r√
1 − r2

x1,
−r√
1 − r2

x2,

√
1 − r2

r
x3,

√
1 − r2

r
x4

)

,
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and its principal curvatures are

κ1 = r√
1 − r2

and κ2 = −√
1 − r2

r
.

Ifwe putψ1 = (x1, x2, 0, 0) andψ2 = (0, 0, x3, x4), it is easy to see thatψ = ψ1+ψ2,
and by using 9, we get that

L1ψ1 = λ1ψ1 and L1ψ2 = λ2ψ2, with λ1 = 1

r
√
1 − r2

and λ2 = −λ1.

Therefore, M2 is of L1-2-type in R
4.

4 Main Results

Theorem 8 Let ψ : M2 → S
3 ⊂ R

4 be an orientable surface of L1-2-type. Then
M2 has constant mean curvature if and only if M2 is an open portion of a standard
Riemannian product S1(

√
1 − r2) × S

1(r), 0 < r < 1.

Proof Let M2 be a surface of L1-2-type with constant mean curvature. Our goal is to
prove that the scalar curvature H2 of M2 is constant. Otherwise, let us consider the
non-empty open set

U2 = {
p ∈ M2 | ∇H2

2 (p) �= 0
}
.

By taking covariant derivative in (18), we have λ1λ2a� = 4∇H2
2 . Using this in (16),

we deduce H2 = 0, which is a contradiction.
Therefore, M2 is an isoparametric surface in S

3, and then either M2 is an open
portion of a 2-sphere S2(r), 0 < r ≤ 1, or M2 is an open portion of a Riemannian
product M2

r , 0 < r < 1. Since the totally umbilical surfaces are of L1-1-type, the
result follows. ��

Theorem 9 Let ψ : M2 → S
3 ⊂ R

4 be an orientable surface of L1-2-type. Then M2

has constant Gaussian curvature if and only if M2 is an open portion of a standard
Riemannian product S1(

√
1 − r2) × S

1(r), 0 < r < 1.

Proof Let M2 be a surface of L1-2-type with constant Gaussian curvature K , and
consider the open set

U = {
p ∈ M2 | ∇H2(p) �= 0

}
.

Our goal is to show that U is empty. Suppose it is not empty.
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By taking covariant derivative in (17), and using that H2 is constant, we obtain

λ1λ2Sa
� = 4H2(H2 + 1)∇H.

From (16) and bearing in mind that S ◦ P = H2 I , we have λ1λ2Sa� = −4H2∇H ,
and therefore

H2(H2 + 2)∇H = 0.

Consequently, on U we have either H2 = −2 or H2 = 0. We will study each case
separately.

Case 1: H2 = −2. By applying the operator L1 on both sides of (17) and using
(18) we get

λ1λ2L1 〈N , a〉 = 4
[
λ1λ2 〈ψ, a〉 − 4H2 − 2(λ1 + λ2)H − λ1λ2 − 16

]
.

On the other hand, (10) leads to

λ1λ2 〈N , a〉 H − λ1λ2 〈ψ, a〉 = λ1λ2 〈a, ψ〉 − 4H2 − 2(λ1 + λ2)H − λ1λ2 − 16,

and using (17) we find that

λ1λ2 〈ψ, a〉 = −2H2 + 3(λ1 + λ2)H + 1

2
(λ1λ2 + 16). (19)

Taking gradients in (19), and using (16) and (3), we obtain

[ − 4H + 3(λ1 + λ2)
]∇H = −4P1(∇H) = −8H∇H + 4S(∇H), (20)

that is,

S(∇H) = 4H + 3(λ1 + λ2)

4
∇H.

Now, by applying the operator S on both sides of the first equality of (20), and bearing
in mind that S ◦ P = −2I , we obtain

S(∇H) = 8

−4H + 3(λ1 + λ2)
∇H.

The last two equations for S(∇H) imply that H is constant on U, which is a contra-
diction.

Case 2: H2 = 0. Let us suppose κ1 = 0 and κ2 = 2H �= 0 (otherwise,M2 would be
a totally geodesic surface and then of L1-1-type). Let {E1, E2} be a local orthonormal

123



1768 P. Lucas, H. F. Ramírez-Ospina

frame of principal directions of S such that SEi = κi Ei . From Codazzi’s equation,
we easily obtain

∇E1E1 = 0, ∇E1E2 = 0,
∇E2E1 = − α

H E2, ∇E2E2 = α
H E1 [E1, E2] = α

H E2,

where α = E1(H). Now, from the definition of curvature tensor, we get

R(E1, E2)E1 = ∇[E1,E2]E1 − ∇E1∇E2E1 + ∇E2∇E1E1

=
[
E1

(
α
H

) − (
α
H

)2]
E2,

and from the Gauss equation we have R(E1, E2)E1 = E2. By equating the last two
equations, we deduce

HE1(α) = H2 + 2α2. (21)

On the other hand, from the definition of L1, see (4), and after a little calculation, we
obtain

L1H = κ2
〈
E1,∇E1∇H

〉 + κ1
〈
E2,∇E2∇H

〉 = 2HE1(α). (22)

By using (21) and (22), (18) can be rewritten as

λ1λ2 〈ψ, a〉 = 2(λ1 + λ2)H + λ1λ2 − 8α2. (23)

Taking covariant derivative along E1 here, we have

E1(λ1λ2 〈ψ, a〉) = 2(λ1 + λ2)α − 16αE1(α). (24)

On the other hand, from (18), we get λ1λ2a� = −8HαE1, and therefore

E1(λ1λ2 〈ψ, a〉) =
〈
λ1λ2a

�, E1

〉
= −8Hα.

This equation, jointly with (24), implies that (λ1 + λ2)α − 8αE1(α) = −4Hα. Since
α �= 0, see (21), we deduce

8E1(α) = 4H + λ1 + λ2. (25)

From here and using (22) we get 4L1H = 4H2 + (λ1 + λ2)H . By using this in (18),
we find

λ1λ2 〈ψ, a〉 = 2H2 + 3

2
(λ1 + λ2)H + λ1λ2. (26)
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Taking gradient here, and using (16) and (3), we obtain

[
4H + 3

2
(λ1 + λ2)

]
∇H = −4P(∇H) = −8H∇H + 4S(∇H), (27)

that is,

S(∇H) =
(
3H + 3

8
(λ1 + λ2)

)
∇H.

On the other hand, by applying the operator S on both sides of the first equality of
(27), and bearing in mind that S ◦ P = 0, we obtain

[
4H + 3

2
(λ1 + λ2)

]
S(∇H) = 0.

The last two equations imply that H is constant on U, which is a contradiction.
We have proved that if M2 is a L1-2-type surface with constant Gaussian curvature,

then its mean curvature is constant. Then reasoning as in the proof of Theorem 8 we
deduce that M2 is an open portion of a Riemannian product M2

r , 0 < r < 1. This
finishes the proof of Theorem 9. ��

A surface in S3 is said to have a constant principal curvature if one of its principal
curvatures is constant.

Theorem 10 Let ψ : M2 → S
3 ⊂ R

4 be an orientable surface of L1-2-type. Then
M2 has a constant principal curvature if and only if M2 is an open portion of a
standard Riemannian product S1(

√
1 − r2) × S

1(r), 0 < r < 1.

Proof Let M2 be a surface of L1-2-type and assume that κ1 is a non-zero constant
(otherwise, H2 = 0 and Theorem 9 applies). Consider the open set

U = {
p ∈ M2 | ∇κ2

2 (p) �= 0
}
.

Our goal is to show that U is empty.
Otherwise, Eqs. (16)–(18) of L1-2-type can be rewritten in terms of κ2 as follows:

λ1λ2a
� = [−6κ2

1κ2 − 2(κ1 + κ2)]∇κ2 + 2S(∇κ2), (28)

λ1λ2 〈N , a〉 = 2κ1L1κ2 − 2κ1κ2
[
(κ1 + κ2)(κ1κ2 + 1) + λ1 + λ2

]
, (29)

λ1λ2 〈ψ, a〉 = 4κ2
1κ2

2 + (κ1 + κ2)
2 + (λ1 + λ2)(κ1 + κ2) + λ1λ2 − L1κ2. (30)

From (29) and (30), we find

λ1λ2 〈N , a〉 = −2κ1λ1λ2 〈ψ, a〉 + 2κ1

×
[
3κ2

1κ2
2 + κ2

1 + κ1κ2 + (λ1 + λ2)κ1 + λ1λ2 − κ1κ
3
2

]
.

123



1770 P. Lucas, H. F. Ramírez-Ospina

By taking gradient here, we obtain

−λ1λ2Sa
� = −2κ1λ1λ2a

� + 2κ2
1

[
1 + 6κ1κ2 − 3κ2

2

]
∇κ2. (31)

On the other hand, by using S ◦ P = H2 I , we get

λ1λ2Sa
� = −6κ2

1κ2S(∇κ2) − 2κ1κ2∇κ2. (32)

Now, from (28), (31), and (32), we deduce

(3κ1κ2 + 2)S(∇κ2) = (−3κ1κ
2
2 + (12κ2

1 + 1)κ2 + 3κ1)∇κ2.

Since 3κ1κ2 + 2 �= 0 (otherwise, κ2 would be constant), we deduce

S(∇κ2) = f (κ1, κ2)∇κ2, f (κ1, κ2) = −3κ1κ2
2 + (12κ2

1 + 1)κ2 + 3κ1
(3κ1κ2 + 2)

.

This equation implies that either f (κ1, κ2) = κ1 or f (κ1, κ2) = κ2. In any case it
follows that κ2 is constant on U, and this is a contradiction. This finishes the proof of
Theorem 10. ��

As a consequence of Theorems 8, 9, and 10, we have the following characterization
of L1-2-type surfaces in S

3.

Theorem 11 Let ψ : M2 → S
3 ⊂ R

4 be an orientable surface of L1-2-type. Then
either M2 is an open portion of a standard Riemannian product S1(

√
1 − r2)×S

1(r),
0 < r < 1, or M2 has non-constant mean curvature H, non-constant Gaussian
curvature K , and non-constant principal curvatures κ1, and κ2.
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