

On α-Tall Modules

M. Davoudian¹ \cdot N. Shirali¹

Received: 12 March 2015 / Revised: 5 May 2016 / Published online: 28 September 2016 © Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2016

Abstract In this article, we introduce and study α -tall modules. We show that an α -tall module, where $\alpha \ge 0$, is a tall module, i.e. *M* contains a submodule *N* such that *N* and $\frac{M}{N}$ are both non-Noetherian. We observe that every submodule of α -tall modules is countably generated, where α is countable. It is shown that if *M* is a β -atomic module, where $\beta = \alpha + 2$, for some ordinal α , then *M* is α -tall. It is also proved that if *M* is an α -atomic module, where α is a limit ordinal, then *M* is both an α -tall and α -short module.

Keywords α -Tall module \cdot Tall module \cdot Short module $\cdot \alpha$ -Short module \cdot Noetherian dimension

Mathematics Subject Classification Primary 16P60 · Secondary 16P20

1 Introduction

Lemonnier [20] introduced the concept of deviation and codeviation of an arbitrary poset, which in particular, when applied to the lattice of all submodules of a module M_R give the concepts of Krull dimension (in the sense of Rentschler and Gabriel, see [6,10,19]) and dual Krull dimension of M, respectively. Later, Chambless in [8] studied dual Krull dimension and called it N-dimension. Karamzadeh also extensively studied the latter dimension in his Ph.D. thesis [12] and called it Noetherian dimension.

Communicated by M. Ataharul Islam.

M. Davoudian m.davoudian@scu.ac.ir; davoudian_mm@yahoo.com

¹ Department of Mathematics, Shahid Chamran University of Ahvaz, Ahvaz, Iran

Roberts in [23] calls this dual dimension again Krull dimension. The latter dimension is also called dual Krull dimension in some other articles, see for example [1-5]. The Noetherian dimension of an *R*-module *M* is denoted by *n*-dim *M* and by *k*-dim *M*; we denote the Krull dimension of M, see [10-16, 18, 19, 21, 22] for more details. It is convenient, when we are dealing with the latter dimensions, to begin our list of ordinals with -1. If an *R*-module *M* has Noetherian dimension and α is an ordinal number, then M is called α -atomic if n-dim $M = \alpha$ and n-dim $N < \alpha$, for all proper submodule N of M. An R-module M is called atomic if it is α -atomic for some ordinal α (note, atomic modules are also called conotable, critical and N-critical in some other articles for example [3,8,20]). In [24], Sarath defines an *R*-module *M* to be tall if *M* contains a submodule N such that N and $\frac{M}{N}$ are both non-Noetherian. Bilhan and Smith [7] introduced short modules. In [9], Davoudian, Karamzadeh and Shirali introduced α short modules, (a 0-short module is just a short module, i.e. for each submodule Nof M either N or $\frac{M}{N}$ is Noetherian). They show that if M is an α -short module, then the Noetherian dimension of M is either α or $\alpha + 1$. In this article, we introduce and study α -tall modules. We show that an α -tall module where $\alpha > 0$ is tall. Our aim of studying the concept of α -tall modules, in this article, is twofold. We aim to extend the concept of tall modules and at the same time provide a dual to the concept of α -short modules. Tall modules are not necessarily Noetherian and one dose not know how far they are from being Noetherian. Although α -tall modules for $\alpha > -1$ are similarly non-Noetherian, but the ordinal α measures how these modules deviate from being Noetherian (note, it is observed that if M is α -tall, then $\alpha < n$ -dim $M \leq \alpha + 2$). This is an advantage for α -tall modules over tall modules. We observe that if M is an α -tall module, then each non-zero submodule (each non-zero factor module) of M which is not simple is β -tall for some $\beta \leq \alpha$. All modules in this paper are assumed to be unital modules over an associative ring with unit.

2 Preliminaries

In this section, we recall some useful facts on modules with Noetherian dimension [8, 10, 12, 20].

We recall that the Noetherian dimension of an *R*-module *M* is defined by transfinite recursion as follows: If M = 0, then *n*-dim M = -1. If α is an ordinal and *n*-dim $\neq \alpha$, then *n*-dim $M = \alpha$, provided there is no infinite ascending chain $M_1 \subseteq M_2 \subseteq \ldots$ of submodules of *M* such that *n*-dim $\frac{M_{i+1}}{M_i} \neq \alpha$ for each $i \ge 1$. It is possible that there is no ordinal α such that *n*-dim $M = \alpha$. In that case, we say *M* dose not have Noetherian dimension

Lemma 2.1 If M is an R-module and for each submodule N of M, either N or $\frac{M}{N}$ has Noetherian dimension, then so does M.

Proposition 2.2 If M is an R-module, then we have n-dim $M = \sup\{n-\dim \frac{M}{N} : N \text{ is a non-zero proper submodule of } M\}$, if either side exists.

Proposition 2.3 If M is an R-module, then we have $n-\dim M \le \sup\{n-\dim N : N \text{ is a proper submodule of } M\}+1$, if either side exists.

Lemma 2.4 If N is a submodule of an R-module M, then n-dim $M = \sup\{n-\dim \frac{M}{N}, n-\dim N\}$, if either side exists.

Remark 2.5 An *R*-module *M* is called α -short, if for each submodule *N* of *M*, either *n*-dim $N \leq \alpha$ or *n*-dim $\frac{M}{N} \leq \alpha$ and α is the least ordinal number with this property, see [9]. Clearly each 0-short module is just a short module, we recall that an *R*-module *M* is called a short module if for each submodule *N* of *M*, either *N* or $\frac{M}{N}$ is Noetherian, see [7].

We cite the following facts from [9].

Remark 2.6 If *M* is an *R*-module with *n*-dim $M = \alpha$, then *M* is β -short for some $\beta \leq \alpha$.

In view of Remark 2.5 and Lemma 2.1, the following corollary is now evident.

Corollary 2.7 Let *M* be an α -short module. Then *M* has Noetherian dimension and *n*-dim $M \ge \alpha$.

The following is also in [9, Proposition 1.12]. We give the proof for completeness.

Proposition 2.8 If M is an α -short R-module, then either n-dim $M = \alpha$ or n-dim $M = \alpha + 1$.

Proof Clearly in view of Remark 2.6 and Corollary 2.7, we have *n*-dim $M \ge \alpha$. If *n*-dim $M \ne \alpha$, then *n*-dim $M \ge \alpha + 1$. Now let $M_1 \subseteq M_2 \subseteq M_3 \subseteq \ldots$ be any ascending chain of submodules of M. If there exists some k such that *n*-dim $\frac{M}{M_k} \le \alpha$, then *n*-dim $\frac{M_{i+1}}{M_i} \le n$ -dim $\frac{M}{M_i} = n$ -dim $\frac{M/M_k}{M_i/M_k} \le n$ -dim $\frac{M}{M_k} \le \alpha$ for each $i \ge k$. Otherwise *n*-dim $M_i \le \alpha$ (note, M is α -short) for each i, hence *n*-dim $\frac{M_i}{M_{i+1}} \le \alpha$ for each i. Thus in any case, there exists an integer k such that for each $i \ge k$, *n*-dim $\frac{M_{i+1}}{M_i} \le \alpha$. This shows that *n*-dim $M \le \alpha + 1$, i.e. *n*-dim $M = \alpha + 1$.

3 α-Tall Modules

In [24], Sarath defines an *R*-module *M* to be tall if *M* contains a submodule *N* such that *N* and $\frac{M}{N}$ are both non-Noetherian. In this section, we introduce and study α -tall modules. We observe that an α -tall module, where $\alpha \ge 0$, is tall. We show that if *M* is an α -tall module, then each non-zero submodule (non-zero factor module) of *M* which is not simple is β -tall for some $\beta \le \alpha$. In particular, we show that each α -tall module has Noetherian dimension and its Noetherian dimension is either $\alpha + 1$ or $\alpha + 2$. We observe that if *M* is an α -tall module, where α is a countable ordinal, then every submodule of *M* is countably generated. If an *R*-module *M* is not tall, then it is a short module and by Davoudian et al. [9, Proposition 1.12], and *M* has Noetherian dimension and *n*-dim $M \le 1$.

Next, we give our definition of α -tall modules.

Definition 3.1 Let *M* be an *R*-module and β be an ordinal number. Put $\psi_M = \{\beta : there exists a submodule N of M such that n-dim <math>N > \beta$ and n-dim $\frac{M}{N} > \beta\}$. If $\psi_M \neq \emptyset$ and $\alpha = \sup \psi_M$, then *M* is called α -tall.

Remark 3.2 A simple module *M* is not α -tall for any ordinal number α , and every non-zero Noetherian module *M* which is not simple, is -1-tall.

The following results provide a criterion for non-simple α -tall modules.

Lemma 3.3 Let M be a non-zero R-module which is not simple. Then $\psi_M \neq \emptyset$ if and only if M has Noetherian dimension.

Proof If $\psi_M \neq \emptyset$, then there exists a proper non-zero submodule N of M such that N and $\frac{M}{N}$ both have Noetherian dimension. Thus M has Noetherian dimension, see Lemma 2.4. Conversely, since M is not simple, it has a non-zero proper submodule, N say. By our assumption M has Noetherian dimension, thus both N and $\frac{M}{N}$ have Noetherian dimension, see Lemma 2.4. This implies that $\psi_M \neq \emptyset$.

In view of Lemma 3.3, we have the following results.

Corollary 3.4 Let M be a non-zero R-module which is not simple. Then $\psi_M = \emptyset$ if and only if M does not have Noetherian dimension.

Corollary 3.5 Let *M* be a non-zero *R*-module which is not simple. Then *M* has Noetherian dimension if and only if it is α -tall for some ordinal number α .

Lemma 3.6 Let M be a non-zero R-module which is not simple. Then M is tall if and only if either $\psi_M = \emptyset$ or M is α -tall for some ordinal number $\alpha \ge 0$.

Proof If *M* is α -tall for some ordinal number $\alpha \ge 0$, then there exists a submodule *N* of *M* such that *n*-dim *N* > 0 and *n*-dim $\frac{M}{N} > 0$, therefore *N* and $\frac{M}{N}$ both are non-Noetherian and *M* is a tall module. Now let $\psi_M = \emptyset$, then by Corollary 3.4, *M* dose not have Noetherian dimension, hence *M* is a tall module (note, if *M* is not tall, then *M* is a short module and by Corollary 2.7, *M* has Noetherian dimension, which is a contradiction). Conversely, let *M* be a tall module, it is clear that *M* is not simple. We consider two cases. If *M* does not have Noetherian dimension. Since *M* is a tall module, there exists a submodule *N* of *M*, such that *N* and $\frac{M}{N}$ are both non-Noetherian. Thus *n*-dim *N* > 0 and *n*-dim $\frac{M}{N} > 0$, see Lemma 2.4. Therefore $0 \in \psi_M$ and hence $\psi_M \neq \emptyset$ and *M* is α -tall for some ordinal number $\alpha \ge 0$.

Proposition 3.7 If M is an α -tall R-module, then either n-dim $M = \alpha + 1$ or n-dim $M = \alpha + 2$.

Proof For each submodule *N* of *M*, we get either *n*-dim $N \le \alpha + 1$ or *n*-dim $\frac{M}{N} \le \alpha + 1$ (note, if there exists a submodule *N* of *M* such that *n*-dim $N > \alpha + 1$ and *n*-dim $\frac{M}{N} > \alpha + 1$, then $\alpha + 1 \in \psi_M$ and *M* is γ -tall for some $\gamma \ge \alpha + 1$, which is a contradiction). Thus *M* is $\alpha + 1$ -short and by Proposition 2.8, *M* has Noetherian dimension and *n*-dim $M = \alpha + 1$ or *n*-dim $M = \alpha + 2$.

Here are some elementary properties of α -tall modules.

Corollary 3.8 If M is a - 1-tall module, then either n-dim M = 1 or M is a non-zero Noetherian module which is not simple.

Corollary 3.9 Every -1-tall module is a short module and if M is a non-zero short module which is not simple, then it is -1-tall.

It is well known that any module with Noetherian dimension has finite uniform dimension. In view of Proposition 3.7, the following corollary is now evident.

Corollary 3.10 *Every* α *-tall module has finite uniform dimension.*

The following corollary shows that there exists a tall module which is not α -tall.

Corollary 3.11 Let M be an R-module. If M has infinite uniform dimension, then it is tall.

Proof Since *M* has infinite uniform dimension, we infer that *M* contains an infinite direct sum such as $X = \sum_{i \in \mathbb{N}} \bigoplus M_i$. Now we put $N = \sum_{i=2k} \bigoplus M_i$. It is clear that *N* and $\frac{M}{N}$ both are non-Noetherian. Hence *M* is tall.

In view of Corollaries 3.10, 3.11 and Lemma 3.6, we have the following results.

Corollary 3.12 Let M be an R-module. If M has infinite uniform dimension, then it is a tall module which is not α -tall, i.e. $\psi_M = \emptyset$.

Corollary 3.13 If M is an α -tall module, where α is a countable ordinal number, then every submodule of M is countably generated.

Proof By Proposition 3.7, *n*-dim $M = \alpha + 1$ or *n*-dim $M = \alpha + 2$. We know that every submodule of a module with countable Noetherian dimension is countably generated, see [17, Corollary 1.8]. Hence we are through.

For the atomic modules, the following facts are important.

Lemma 3.14 Let M be an α + 2-atomic module. Then M is an α -tall module.

Proof Since *M* is $\alpha + 2$ -atomic, for each proper submodule *N* of *M*, we get *n*-dim $N \le \alpha + 1$ and *n*-dim $\frac{M}{N} = \alpha + 2$. If for each proper submodule *N* of *M* we have *n*-dim $N \le \alpha$, then *n*-dim $M \le \sup\{n-\dim N : N \subsetneq M\} + 1 \le \alpha + 1$ and this is a contradiction. This shows that there exists a proper submodule *N* of *M* such that *n*-dim $N > \alpha$. But *n*-dim $\frac{M}{N} = \alpha + 2 > \alpha$, therefore $\alpha \in \psi_M$. For each proper submodule *N* of *M*, *n*-dim $N \le \alpha + 1$, therefore $\alpha + 1 \notin \psi_M$. Hence *M* is an α -tall module.

Lemma 3.15 Let M be an α -atomic R-module, where α is a limit ordinal number. Then M is an α -tall module.

Proof Let $\beta < \alpha$ be an ordinal number. If for each proper submodule *N* of *M* we have *n*-dim $N \le \beta$, then *n*-dim $M \le \sup\{n\text{-dim } N : N \subseteq M\} + 1 \le \beta + 1 < \alpha$ and it is a contradiction. Thus there exists a proper submodule *N* of *M* such that *n*-dim $N > \beta$. Since *M* is α -atomic, we must have *n*-dim $\frac{M}{N} = \alpha > \beta$. This shows that $\beta \in \psi_M$. If $\gamma \ge \alpha$ is an ordinal number, then for each submodule *N* of *M* we have *n*-dim $N < \gamma$, thus $\gamma \notin \psi_M$. Therefore $\sup \psi_M = \alpha$, i.e. *M* is α -tall.

In view of previous Lemma and [9, Proposition 1.16], we have the following corollary.

Corollary 3.16 Let M be an α -atomic R-module, where α is a limit ordinal number. Then M is both α -tall and α -short.

The previous corollary will rise the natural question, namely, what are α -tall modules which are also α -short, in general?

The following result is evident.

Corollary 3.17 Let M be a tall module. If M has Noetherian dimension, then n-dim $M \ge 1$.

Proof There exists a submodule *N* of *M* such that *N* and $\frac{M}{N}$ both are non-Noetherian. Therefore *n*-dim N > 0 and *n*-dim $\frac{M}{N} > 0$, see Lemma 2.4. Now by Lemma 2.4, we have *n*-dim M > 0, i.e. *n*-dim $M \ge 1$ and we are done.

Lemma 3.18 If *M* is an α -tall module, then each non-zero submodule (non-zero factor module) of *M* which is not simple is β -tall for some $\beta \leq \alpha$.

Proof By Proposition 3.7, *n*-dim $M = \alpha + 1$ or *n*-dim $M = \alpha + 2$. Thus for each submodule *N* of *M*, *N* and $\frac{M}{N}$ both have Noetherian dimension, see Lemma 2.4. Now let *N* and $\frac{M}{N}$ are non-zero *R*-modules which are not simple, therefore *N* and $\frac{M}{N}$ both are β -tall for some ordinal number β , see Corollary 3.5. Hence in view of Lemma 2.4 and Proposition 3.7, we infer that $\beta \leq \alpha + 1$. We claim that $\beta \neq \alpha + 1$. Since if $\beta = \alpha + 1$, then there exists a non-zero proper submodule N_1 of *N* (similarly there exists a non-zero proper submodule $N_1 \circ \alpha + 1$ and *n*-dim $\frac{N}{N_1} > \alpha + 1$ and *n*-dim $\frac{M}{N_1} > \alpha + 1$ and *n*-dim $\frac{M}{N_1} > \alpha + 1$ (similarly *n*-dim $\frac{M}{N_1} > \alpha + 1$ and *n*-dim $\frac{M}{N_1} > \alpha + 1$ and *n*-dim $N_1 > \alpha + 1$). Therefore *n*-dim $N_1 > \alpha + 1$ and *n*-dim $\frac{M}{N_1} > \alpha + 1$ (similarly *n*-dim $\frac{M}{N_1} > \alpha + 1$ (similarly *n*-dim $\frac{M}{N_1} > \alpha + 1$ and *n*-dim $\frac{M}{N_1} > \alpha + 1$ and *n*-dim $N_1 > \alpha + 1$). Thus *M* is γ -tall for some $\gamma \geq \alpha + 1$, which is a contradiction.

Proposition 3.19 Let N be a submodule of an R-module M such that N is α -tall and $\frac{M}{N}$ is β -tall. Let $\mu = \sup\{\alpha, \beta\}$, then M is γ -tall such that $\mu \leq \gamma \leq \mu + 1$.

Proof Since *N* is α -tall, by Proposition 3.7, *n*-dim $N = \alpha + 1$ or *n*-dim $N = \alpha + 2$. Similarly since $\frac{M}{N}$ is β -tall, either *n*-dim $\frac{M}{N} = \beta + 1$ or *n*-dim $\frac{M}{N} = \beta + 2$. We infer that *M* has Noetherian dimension and *n*-dim $M = \sup \{n\text{-dim } N, n\text{-dim } \frac{M}{N}\}$, see Lemma 2.4. Therefore $\mu + 1 \le n\text{-dim } M \le \mu + 2$. By Corollary 3.5, *M* is γ -tall for some ordinal number γ and by Proposition 3.7, $\gamma + 1 \le n\text{-dim } M \le \gamma + 2$. This shows that $\gamma = \mu$ or $\gamma = \mu + 1$ (note, by Lemma 3.18, we always have $\mu \le \gamma$) and we are done.

We also have the following two facts.

Lemma 3.20 Let N be a simple submodule of an R-module M. If $\frac{M}{N}$ is β -tall, then M is a γ -tall module for some $\beta \leq \gamma \leq \beta + 1$.

Lemma 3.21 Let N be a maximal submodule of an R-module M. If N is an α -tall module, then M is γ -tall for some $\alpha \leq \gamma \leq \alpha + 1$.

Proposition 3.22 Let M be a non-zero R-module which is not simple and α be an ordinal number. If every non-zero proper factor module of M which is not simple, is γ -tall for some ordinal number $\gamma \leq \alpha$, then M is μ -tall where $\mu \leq \alpha$.

Proof It is clear that for each simple factor module $\frac{M}{N}$ of M, n-dim $\frac{M}{N} = 0 \le \alpha + 2$. Now let $0 \ne N \subsetneq M$ be any submodule such that $\frac{M}{N}$ is γ -tall for some ordinal number γ with $\gamma \le \alpha$. We infer that n-dim $\frac{M}{N} \le \gamma + 2 \le \alpha + 2$, by Proposition 3.7. Thus we have n-dim $M = \sup\{n$ -dim $\frac{M}{N} : N \ne 0\}$, by Proposition 2.2. This shows that n-dim $M \le \alpha + 2$. If n-dim $M \le \alpha + 1$, then it is clear that M is μ -tall for some $\mu \le \alpha$. Hence we may suppose that n-dim $M = \alpha + 2$. If $0 \ne N \subsetneq M$ is a submodule of M, then we are to show that either n-dim $\frac{M}{N} \le \alpha + 1$ or n-dim $N \le \alpha + 1$ (note, this implies that $\alpha + 1 \notin \psi_M$ and hence $\sup \psi_M \le \alpha$). To this end, let us suppose that n-dim $\frac{M}{N} = \alpha + 2$ and show that n-dim $N \le \alpha + 1$. Now let $0 \ne N' \subsetneq N \subsetneq M$. Since n-dim $\frac{M/N'}{N/N'} = n$ -dim $\frac{M}{N} = \alpha + 2$, we must have n-dim $\frac{N}{N'} \le \alpha + 1$ (note, $\frac{M}{N'}$ is γ -tall for some $\gamma \le \alpha$). But n-dim $N = \sup\{n$ -dim $\frac{N}{N'} : 0 \ne N' \subseteq N\} \le \alpha + 1$ and we are through.

Proposition 3.23 Let α be an ordinal number and M be a non-zero R-module which is not simple. If every non-zero proper submodule of M which is not simple is γ -tall for some ordinal number $\gamma \leq \alpha$. Then either n-dim $M = \alpha + 2$ or M is μ -tall for some ordinal number $\mu \leq \alpha$. In particular, M is μ -tall for some ordinal number $\mu \leq \alpha + 1$.

Proof If *M* has no non-simple proper submodule, than *M* is −1-tall. Let *N* be a simple proper submodule of *M*, then *n*-dim $N = 0 \le \alpha + 2$. Now let $0 \ne N \subsetneq M$ be any non-simple submodule of *M*. Since *N* is γ -tall for some ordinal number $\gamma \le \alpha$, we infer that *n*-dim $N \le \gamma + 2 \le \alpha + 2$, by Proposition 3.7. In view of Proposition 2.3, we infer that *n*-dim $M \le \alpha + 3$. If *n*-dim $M \le \alpha + 2$, then we are through. Hence we may suppose that *n*-dim $M = \alpha + 3$ and *M* is not μ -tall for any $\mu \le \alpha$ and seek a contradiction. Since *M* is not μ -tall for any $\mu \le \alpha$, we infer that there must exists a proper submodule *K* of *M* such that *n*-dim $K \ge \alpha + 2$. But we have already observed that *n*-dim $K \le \alpha + 2$, therefore *n*-dim $K = \alpha + 2$. We now claim that *n*-dim $\frac{M}{K} \le \alpha + 2$ which trivially implies that *n*-dim $M = \alpha + 2$ and this is a contradiction (note, *n*-dim $M = \alpha + 3$). Let $K \subset N' \subset M$. Since *n*-dim $K = \alpha + 2$ and N' is γ -tall for some $\gamma \le \alpha$, we get *n*-dim $\frac{N'}{K} \le \alpha + 1$. But *n*-dim $\frac{M}{K} \le \sup \left\{n$ -dim $\frac{N'}{K} : \frac{N'}{K} \subset \frac{M}{K}\right\} + 1 \le \alpha + 2$ and we are done. The final part is now evident.

Now we have the following definition.

Definition 3.24 Let *M* be an *R*-module with Noetherian dimension. For each ordinal α , we put:

$$G_{\alpha}(M) = \bigcap \left\{ N : n \text{-dim} \, \frac{M}{N} \le \alpha, N \subseteq M \right\}$$
$$H_{\alpha}(M) = \bigcap \{N : n \text{-dim} \, N > \alpha, N \subseteq M \}.$$

We recall that a submodule N of M is called α -coatomic, where α is an ordinal number, if $\frac{M}{N}$ is α atomic. An *R*-module N is called coatomic if it is α -coatomic for some ordinal α .

Remark 3.25 If *n*-dim $M > \alpha$ and *N* be a submodule of *M* such that *n*-dim $\frac{M}{N} \le \alpha$, then clearly *n*-dim $N > \alpha$. This shows that $H_{\alpha}(M) \subseteq G_{\alpha}(M)$, where *n*-dim $M > \alpha$. If *N* is an α -coatomic submodule of *M*, then *n*-dim $\frac{M}{N} = \alpha$, thus $G_{\alpha}(M) \subseteq N$.

The following lemma is now immediate.

Lemma 3.26 Let *M* be an *R*-module with Noetherian dimension and α be an ordinal number. If *n*-dim $\frac{M}{G_{\alpha}(M)} \leq \alpha$ and $H_{\alpha}(G_{\alpha}(M)) \neq G_{\alpha}(M)$, then *M* is γ -tall for some $\gamma \geq \alpha$.

Proof Since $H_{\alpha}(G_{\alpha}(M)) \neq G_{\alpha}(M)$, we infer that $G_{\alpha}(M) \neq 0$ and *n*-dim $M \neq \alpha$. Thus there exists $P \subsetneq G_{\alpha}(M)$ such that *n*-dim $P > \alpha$. Since *n*-dim $\frac{M}{G_{\alpha}(M)} \leq \alpha$, we get *n*-dim $\frac{M/P}{G_{\alpha}(M)/P} = n$ -dim $\frac{M}{G_{\alpha}(M)} \leq \alpha$. If *n*-dim $\frac{G_{\alpha}(M)}{P} \leq \alpha$, then *n*-dim $\frac{M}{P} \leq \alpha$, see Proposition 2.4. This shows that $G_{\alpha}(M) = P$ and this is a contradiction. Thus *n*-dim $\frac{G_{\alpha}(M)}{P} > \alpha$. This shows that *n*-dim $\frac{M}{P} > \alpha$, see Proposition 2.4. Hence *M* is γ -tall for some ordinal number $\gamma \geq \alpha$.

Now in view of [9, Proposition 2.21], we observe the following result.

Proposition 3.27 The following statements are equivalent for a commutative ring R:

- (1) Every Artinian R-module is Noetherian.
- (2) Every *m*-short module is both Artinian and Noetherian for all integers $m \ge -1$.
- (3) Every α -short module is both Artinian and Noetherian for all ordinal α .
- (4) Every *m*-tall module is both Artinian and Noetherian for all integers m > -1.
- (5) Every α -tall module is both Artinian and Noetherian for all ordinal α .
- (6) No homomorphic image of R can be isomorphic to a dense subring of a complete local domain of Krull dimension 1.

Proof By Proposition 3.7 and [9, Proposition 2.21], we are through.

Acknowledgements The authors would like to thank well-informed referee of this article for the detailed report, corrections and several constructive suggestions for improvement.

References

- 1. Albu, T., Smith, P.F.: Localization of modular lattices, Krull dimension, and the Hopkins-Levitzki Theorem (I). Math. Proc. Camb. Philos. Soc. **120**, 87–101 (1996)
- Albu, T., Smith, P.F.: Localization of modular lattices, Krull dimension, and the Hopkins-Levitzki Theorem (II). Commun. Algebra 25, 1111–1128 (1997)
- 3. Albu, T., Smith, P.F.: Dual Krull dimension and duality. Rocky Mt. J. Math. 29, 1153–1164 (1999)
- Albu, T., Vamos, P.: Global Krull dimension and global dual Krull dimension of valuation rings, abelian groups, modules theory, and topology. In: Proceedings in Honor of Adalberto Orsatti's 60th Birthday, pp. 37–54. Marcel-Dekker, New York (1998)
- Albu, T., Rizvi, S.: Chain conditions on Quotient finite dimensional modules. Commun. Algebra 29(5), 1909–1928 (2001)

- 6. Anderson, F.W., Fuller, K.R.: Rings and Categories of Modules. Springer, New York (1973)
- 7. Bilhan, G., Smith, P.F.: Short modules and almost Artinian modules. Math. Scand. 98, 12-18 (2006)
- Chambless, L.: N-Dimension and N-critical modules. Application to Artinian modules. Commun. Algebra 8(16), 1561–1592 (1980)
- Davoudian, M., Karamzadeh, O.A.S., Shirali, N.: On α-short modules. Math. Scand. 114(1), 26–37 (2014)
- 10. Gordon, R., Robson, J.C.: Krull dimension. Mem. Am. Math. Soc. 133, 1-78 (1973)
- 11. Hashemi, J., Karamzadeh, O.A.S., Shirali, N.: Rings over which the Krull dimension and the Noetherian dimension of all modules coincide. Commun. Algebra **37**, 650–662 (2009)
- 12. Karamzadeh, O.A.S.: Noetherian dimension. Ph.D. thesis, Exeter. (1974)
- Karamzadeh, O.A.S.: When are Artinian modules countable generated? Bull. Iran. Math. Soc. 9, 171– 176 (1982)
- 14. Karamzadeh, O.A.S., Motamedi, M.: On α-Dicc modules. Commun. Algebra 22, 1933–1944 (1994)
- 15. Karamzadeh, O.A.S., Sajedinejad, A.R.: Atomic modules. Commun. Algebra 29(7), 2757–2773 (2001)
- Karamzadeh, O.A.S., Sajedinejad, A.R.: On the Loewy length and the Noetherian dimension of Artinian modules. Commun. Algebra 30(3), 1077–1084 (2002)
- 17. Karamzadeh, O.A.S., Shirali, N.: On the countablity of Noetherian dimension of modules. Commun. Algebra **32**, 4073–4083 (2004)
- 18. Kirby, D.: Dimension and length for Artinian modules. Q. J. Math. Oxf. 41(2), 419-429 (1990)
- 19. Krause, G.: On the Krull-dimension of left Noetherian rings. J. Algebra 23, 88–99 (1972)
- Lemonnier, B.: Deviation des ensembless et groupes totalement ordonnes. Bull. Sci. Math. 96, 289–303 (1972)
- Lemonnier, B.: Dimension de Krull et codeviation. Application au theorem d'Eakin. Commun. Algebra 6, 1647–1665 (1978)
- McConell, J.C., Robson, J.C.: Noncommutative Noetherian Rings. Wiley-Interscience, New York (1987)
- Roberts, R.N.: Krull dimension for Artinian modules over quasi local commutative rings. Q. J. Math. Oxf. 26, 269–273 (1975)
- 24. Sarath, B.: Krull dimension and noetherianness. Ill. J. Math. 20, 329-335 (1976)