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Abstract Let G be a graph family defined on a common vertex set V and let d be
a distance defined on every graph G ∈ G. A set S ⊂ V is said to be a simultaneous
metric generator for G if for every G ∈ G and every pair of different vertices u, v ∈ V
there exists s ∈ S such that d(s, u) �= d(s, v). The simultaneous metric dimension of
G is the smallest integer k such that there is a simultaneous metric generator for G of
cardinality k. We study the simultaneous metric dimension of families composed by
corona product graphs. Specifically, we focus on the case of two particular distances
defined on every G ∈ G, namely the geodesic distance dG and the distance dG,2 :
V × V → N ∪ {0} defined as dG,2(x, y) = min{dG(x, y), 2}.

Keywords Simultaneous metric dimension · Corona product · Simultaneous
adjacency dimension

1 Introduction

A generator of a metric space (X, d) is a set S ⊂ X of points in the space with
the property that every point of X is uniquely determined by the distances from the
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elements of S. Given a simple and connected graph G = (V, E), we consider the
function dG : V × V → N ∪ {0}, where dG(x, y) is the length of a shortest path
between u and v and N is the set of positive integers. Then (V, dG) is a metric space
since dG satisfies (i) dG(x, x) = 0 for all x ∈ V ,(i i) dG(x, y) = dG(y, x) for all
x, y ∈ V and (i i i) dG(x, y) ≤ dG(x, z)+dG(z, y) for all x, y, z ∈ V . A vertex v ∈ V
is said to distinguish two vertices x and y if dG(v, x) �= dG(v, y). A set S ⊂ V is said
to be a metric generator for G if any pair of vertices of G is distinguished by some
element of S. A minimum cardinality metric generator is called a metric basis, and its
cardinality the metric dimension of G, denoted by dim(G).

The notion of metric dimension of a graph was introduced by Slater in [23], where
metric generators were called locating sets. Harary and Melter independently intro-
duced the same concept in [14], where metric generators were called resolving sets.

The concept of adjacency generator1 was introduced by Jannesari and Omoomi in
[16] as a tool to study the metric dimension of lexicographic product graphs. A set
S ⊂ V of vertices in a graph G = (V, E) is said to be an adjacency generator for G if
for every two vertices x, y ∈ V − S there exists s ∈ S such that s is adjacent to exactly
one of x and y. A minimum cardinality adjacency generator is called an adjacency
basis of G, and its cardinality the adjacency dimension of G, denoted by dimA(G).
Since any adjacency basis is a metric generator, dim(G) ≤ dimA(G). Besides, for any
connected graph G of diameter at most two, dimA(G) = dim(G). Moreover, S is an
adjacency generator forG if and only if S is an adjacency generator for its complement
G. This is justified by the fact that given an adjacency generator S for G, it holds that
for every x, y ∈ V − S there exists s ∈ S such that s is adjacent to exactly one of x
and y, and this property holds in G. Thus, dimA(G) = dimA(G).

This concept has been studied further by Fernau and Rodríguez-Velázquez in [9,10]
where they showed that the metric dimension of the corona product of a connected
non-trivial graph G of order n and some non-trivial graph H equals n times the adja-
cency dimension of H . As a consequence of this strong relation, they showed that the
problem of computing the adjacency dimension is NP-hard. Moreover, they pointed
out some relations between adjacency generators and dominating sets. Notably, they
described a number of cases where the adjacency dimension of the corona product of
G and H depends on the order of G, the adjacency dimension of H and the domina-
tion number of G or that of a third graph obtained from it. Other relations between
adjacency generators and dominating sets may be easily verified, for instance the fact
that an adjacency generator for a graph dominates all its vertices, except for at most
one. Furthermore, some strongly related concepts have been proposed, for instance
identifying codes [17] and locating-dominating sets [24]. For a vertex v of a graph
G, NG(v) will denote the set of neighbours or open neighbourhood of v in G, i.e.
NG(v) = {u ∈ V (G) : u ∼ v}. The closed neighbourhood, denoted by NG[v], equals
NG(v)∪{v}. If there is no ambiguity,wewill simplewrite N (v)or N [v]. An identifying
code (locating-dominating set) of a graph G is a subset S ⊆ V (G) such that every pair
of vertices x, y ∈ V (G) (x, y ∈ V (G) − S) satisfy ∅ �= S ∩ N [x] �= S ∩ N [y] �= ∅.
Clearly, all identifying codes and locating-dominating sets are also adjacency gen-

1 Adjacency generators were called adjacency resolving sets in [16].
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erators and dominating sets. In general, an adjacency generator is not necessarily a
dominating set, nor an identifying code, nor a locating-dominating set. Likewise, a
dominating set is not necessarily an adjacency generator, nor an identifying code, nor
a locating-dominating set. Following an analogous idea, resolving dominating sets are
defined in [3] as metric generators that are also dominating sets.

As pointed out in [9,10], any adjacency generator for a graph G = (V, E) is also
a metric generator in a suitably chosen metric space. Given a positive integer t , we
define the distance function dG,t : V × V → N ∪ {0}, where

dG,t (x, y) = min{dG(x, y), t}.

Then any metric generator for (V, dG,t ) is a metric generator for (V, dG,t+1) and, as
a consequence, the metric dimension of (V, dG,t+1) is less than or equal to the metric
dimension of (V, dG,t ). In particular, themetric dimension of (V, dG,1) equals |V |−1,
the metric dimension of (V, dG,2) equals dimA(G) and, if G has diameter D(G), then
dG,D(G) = dG and so the metric dimension of (V, dG,D(G)) equals dim(G). Notice
that when using the metric dG,t the concept of metric generator needs not be restricted
to the case of connected graphs.2

Let G = {G1,G2, ...,Gk} be a family of (not necessarily edge-disjoint) connected
graphs Gi = (V, Ei ) with common vertex set V (the union of whose edge sets
is not necessarily the complete graph). Ramírez-Cruz, Oellermann and Rodríguez-
Velázquez defined in [21,22] a simultaneous metric generator for G as a set S ⊂ V
such that S is simultaneously a metric generator for each Gi . A minimum cardinality
simultaneous metric generator for G is a simultaneous metric basis of G, and its car-
dinality, the simultaneous metric dimension of G, is denoted by Sd(G) or explicitly
by Sd(G1,G2, ...,Gk). By analogy, we defined in [20] the concept of simultaneous
adjacency generator for G, simultaneous adjacency basis of G and the simultaneous
adjacency dimension of G, denoted by SdA(G) or explicitly by SdA(G1,G2, ...,Gk).
For instance, the set {1, 3, 6, 7, 8} is a simultaneous adjacency basis of the family
G = {G1,G2,G3} shown in Fig. 1, while the set {1, 6, 7, 8} is a simultaneous metric
basis, so SdA(G) = 5 and Sd(G) = 4.

The study of simultaneous parameters in graphs was introduced by Brigham and
Dutton in [4], where they studied simultaneous domination. This should not be con-
fused with studies on families sharing a constant value on a parameter, for instance
the study presented in [15], where several graph families such that all members have
a constant metric dimension are studied, enforcing no constraints regarding whether
all members share a metric basis or not. As we mentioned previously, the study of the
simultaneous metric dimension was introduced in [21,22], where the authors obtained
sharp bounds for this invariant for general families of graphs and gave closed formu-
lae or tight bounds for the simultaneous metric dimension of several specific graph
families. For a given graph G they described a process for obtaining a lower bound
on the maximum number of graphs in a family containing G that has simultaneous

2 For any pair of vertices x, y belonging to different connected components of G we can assume that
dG (x, y) = +∞ and so dG,t (x, y) = t for any t greater than or equal to the maximum diameter of a
connected component of G.
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Fig. 1 The set {1, 3, 6, 7, 8} is a simultaneous adjacency basis of {G1,G2,G3}, whereas {1, 6, 7, 8} is a
simultaneous metric basis

metric dimension equal to dim(G). Moreover, it was shown that the problem of finding
the simultaneous metric dimension of families of trees is NP-hard, even though the
metric dimension of individual trees can be efficiently computed. This suggests the
usefulness of finding the simultaneous metric dimension for special classes of graphs
or obtaining good bounds on this invariant. In this paper, we obtain closed formulae for
the simultaneous metric and adjacency dimensions of families composed by corona
product graphs. In particular, we show that the simultaneous adjacency dimension is
an important tool for the study of the simultaneous metric dimension of such families.

Throughout the paper, we will use the notation Kn , Cn , Nn and Pn for complete
graphs, cycle graphs, empty graphs and path graphs of order n, respectively.We use the
notation u ∼ v if u and v are adjacent and G ∼= H if G and H are isomorphic graphs.
Two vertices x, y ∈ V (G) are twins in G if NG [x] = NG [y] or NG(x) = NG(y). If
NG [x] = NG [y], they are said to be true twins, whereas if NG(x) = NG(y) they are
said to be false twins. We also define δ(v) = |N (v)| as the degree of vertex v, as well
as δ(G) = minv∈V (G){δ(v)} and �(G) = maxv∈V (G){δ(v)}. The subgraph induced
by a set S of vertices will be denoted by 〈S〉, the diameter of a graph will be denoted
by D(G) and its girth by g(G). Any other definitions will be introduced whenever a
concept is needed.

The remainder of this paper is structured as follows: Sect. 2 will briefly cover
the most important, previously existing, general results concerning the simultaneous
adjacency dimension. Then, Sect. 3 introduces the main results of this work, the
consequences of which are discussed further in Sect. 4. Finally, our conclusions are
presented in Sect. 5.

2 The Simultaneous Adjacency Dimension: Basic Bounds and Tools

We start by stating the general bounds on SdA(G).

Remark 1 For any family G = {G1,G2, ...,Gk} of connected graphs on a common
vertex set V and any subfamily H ⊆ G, the following results hold:
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(i) max
i∈{1,...,k}{dimA(Gi )} ≤ SdA(H) ≤ SdA(G) ≤ min

{
|V | − 1,

k∑
i=1

dimA(Gi )

}
.

(ii) SdA(G) ≥ Sd(G).

Proof The bound in (ii) was stated in [20], as well as max
i∈{1,...,k}{dimA(Gi )} ≤

SdA(H) ≤ SdA(G) ≤ |V | − 1. Moreover, the upper bound SdA(G) ≤
k∑

i=1

dimA(Gi )

is a direct consequence of the fact that the set S =
k⋃

i=1

Bi , where Bi is an adjacency

basis of Gi , is a simultaneous adjacency generator for G. ��
It was also shown in [20] that if G is graph family defined on a common vertex

set V , such that for every pair of different vertices u, v ∈ V there exists a graph
G ∈ G where u and v are twins, then SdA(G) = |V | − 1. In particular, any family G
containing a complete graph or an empty graph satisfies SdA(G) = |V |−1.Moreover,
since a graph and its complement have the same adjacency generators, we have that
SdA(G) = SdA(G) = SdA(G ∪ G), where G = {G : G ∈ G}.

We now describe an approach, presented in [20], for constructing large graph fami-
lies whose simultaneous adjacency dimension is bounded by the adjacency dimension
of a single graph. Let G = (V, E) be a graph and let Perm(V ) be the set of all per-
mutations of V . Given a subset X ⊆ V , the stabilizer of X is the set of permutations

S(X) = { f ∈ Perm(V ) : f (x) = x, for every x ∈ X}.

As usual, we denote by f (X) the image of a subset X under f , i.e., f (X) = { f (x) :
x ∈ X}. Let G = (V, E) be a graph and let B ⊂ V be a non-empty set. For any
permutation f ∈ S(B) of V we say that a graph G ′ = (V, E ′) belongs to the family
GB, f (G) if and only if NG ′(x) = f (NG(x)) for every x ∈ B. We define the subgraph
〈BG〉w = (NG [B], Ew) of G, weakly induced by B, where NG [B] = ∪x∈BNG [x]
and Ew is the set of all edges having at least one vertex in B. It was shown in [20]
that 〈BG〉w ∼= 〈BG ′ 〉w for any f ∈ S(B) and any graph G ′ ∈ GB, f (G). We define the
graph family GB(G), associated to B, as

GB(G) =
⋃

f ∈S(B)

GB, f (G).

The following result shows that, given a graph G and an adjacency basis B of G,
it is possible to obtain large families of graphs having B as a simultaneous adjacency
generator.

Theorem 2 [20] Any adjacency basis B of a graph G is a simultaneous adjacency
generator for any family of graphs H ⊆ GB(G). Moreover, if G ∈ H, then

SdA(H) = dimA(G).
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Fig. 2 A subfamilyH of GB (C8), where B = {1, 3, 7}. For every Hi ∈ H, dimA(Hi ) = dimA(C8) = 3.
Moreover, B is a simultaneous adjacency basis of H, so SdA(H) = 3

To illustrate this, Fig. 2 shows a graph family H = {H1, H2, H3, H4} ⊆ GB(C8),
where B = {1, 3, 7} and SdA(H) = dimA(C8). In general, for a graph G of order n
and an adjacency basis B of G,

|GB(G)| = (n − dimA(G))! · 2(n−dimA(G)

2 ). (1)

3 Main Results

Let G be a graph of order n and let H be a graph. The corona product of G and H ,
denoted by G� H , was defined in [11] as the graph obtained from G and H by taking
one copy of G and n copies of H and joining by an edge each vertex of the i-th copy
of H with the i-th vertex of G. The reader is referred to [1,2,5–13,18,19,25–28] for
some known results on corona product graphs.

In order to present our results on the simultaneousmetric and adjacency dimensions
of families composed by corona product graphs, we need to introduce some additional
notation. We denote by Gnt (V )

(Gcon
nt (V )

)
the set of all (connected) non-trivial graphs

defined on a vertex set V . For two graph families G ⊆ Gcon
nt (V ) and H ⊆ Gnt (V ′), we

define the family

G � H = {G � H : G ∈ G and H ∈ H}.

In particular, if G = {G}, we will use the notation G � H, whereas if H = {H} we
will use the notation G � H .
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Fig. 3 The graph G � H , where G ∼= C4 and H ∼= K1 ∪ K2

Given G ∈ G and H ∈ H, we denote by Hi = (V ′
i , Ei ) the subgraph of G � H

corresponding to the i-th copy of H . Notice that for any i ∈ V the graph Hi , which
is isomorphic to H , does not depend on G. Hence, the graphs in G � H are defined

on the vertex set V ∪
(⋃
i∈V

V ′
i

)
. Analogously, for every i ∈ V we define the graph

family

Hi = {Hi = (V ′
i , Ei ) : H ∈ H}.

Also, given a setW ⊂ V ′ and i ∈ V , we denote byWi the subset of V ′
i corresponding

to W . To clarify this notation, Fig. 3 shows the graph C4 � (K1 ∪ K2). In the figure,
V = {1, 2, 3, 4} and V ′ = {a, b, c}, whereas V ′

i = {ai , bi , ci } for i ∈ {1, 2, 3, 4}.

3.1 The Simultaneous Metric Dimension of G � H

Wefirst introduce a useful relation between themetric generators of two corona product
graphs with a common second factor, which allows to determine the simultaneous
metric dimension of numerous families of corona product graphs through the study of
the metric dimension of a specific corona product graph.

Theorem 3 Let G1,G2 ∈ Gcon
nt (V ) and H ∈ Gnt (V ′). Then, any metric generator for

G1 � H is a metric generator for G2 � H.

Proof We claim that any metric generator B for G1 � H is a metric generator for
G2 � H . To see this, we differentiate the following three cases for two different
vertices x, y ∈ V (G2 � H) − B.

1. x, y ∈ V ′
i . Since no vertex belonging to B − V ′

i distinguishes the pair x, y in
G1 � H , there must exist u ∈ V ′

i ∩ B which distinguishes them. This vertex u also
distinguishes x and y in G2 � H .
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2. Either x ∈ V ′
i and y ∈ V ′

j or x = i and y ∈ V ′
j , where i �= j . For these two

possibilities we take u ∈ B ∩ V ′
i and we conclude that dG2�H (x, u) ≤ 2 �= 3 ≤

dG2�H (y, u).
3. x = i and y ∈ V ′

i . In this case, we take u ∈ B ∩ V ′
j , for any j �= i , and we have

that dG2�H (x, u) < dG2�H (y, u).
4. x = i and y = j . In this case, for u ∈ B ∩ V ′

i we have dG2�H (x, u) = 1 �= 2 ≤
dG2�H (y, u).

In conclusion, B is a metric generator for G2 � H . ��
The following result is a direct consequence of Theorem 3.

Corollary 4 Let G ⊆ Gcon
nt (V ) and H ⊆ Gnt (V ′). Then, for any G ∈ G,

Sd(G � H) = Sd(G � H).

A strong link between the metric dimension of the corona product of two graphs
and the adjacency dimension of the second graph involved in the product operation
was shown in [9], as any connected graph G of order n ≥ 2 and any non-trivial graph
H satisfy dim(G � H) = n · dimA(H). An analogous behaviour may be observed for
families of the form G � H.

Theorem 5 For any G ⊆ Gcon
nt (V ) and any H ⊆ Gnt (V ′),

Sd(G � H) = |V | · SdA(H).

Proof Throughout the proof we consider two arbitrary graphs G ∈ G and H ∈ H. Let
B be a simultaneous metric basis of G �H and let Bi = B ∩V ′

i . Clearly, Bi ∩ Bj = ∅
for every i �= j . Since no pair of vertices x, y ∈ Hi is distinguished by any vertex
v ∈ Bj , i �= j , we have that Bi is an adjacency generator for Hi . Hence, the set
B ′ ⊂ V ′ corresponding to Bi ⊂ V ′

i is an adjacency generator for H and, since B ′
does not depend on the choice of H , it is a simultaneous adjacency generator for H
and, as a result,

Sd(G � H) = |B| ≥
∑
i∈V

|Bi | = |V | · |B ′| ≥ |V | · SdA(H).

It was proven in [9] that, given an adjacency generatorW for H , the set S =
⋃
i∈V

Wi ,

whereWi = W ∩ V ′
i , is a metric generator for G � H . Now, letW ′ be a simultaneous

adjacency basis of H and let W ′
i = W ′ ∩ V ′

i . Clearly, the set S
′ =

⋃
i∈V

W ′
i is a metric

generator for any G � H ∈ G �H, so it is a simultaneous metric generator for G �H
and so

Sd(G � H) ≤ |S′| =
∑
i∈V

|W ′
i | = |V | · SdA(H).

Therefore, the equality holds. ��
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3.2 The Simultaneous Adjacency Dimension of G � H

Given two graph families G ⊆ Gcon
nt (V ) and H ⊆ Gnt (V ′), Remark 1 and Theorem 5

lead to

SdA(G � H) ≥ Sd(G � H) = |V | · SdA(H). (2)

Therefore, there exists an integer f (G,H) ≥ 0 such that

SdA(G � H) = |V | · SdA(H) + f (G,H). (3)

We will use the notation f (G,H) for the cases where G = {G}. It is easy to
check that for any simultaneous adjacency basis W of H and any i ∈ V , the set

(V − {i}) ∪
⎛
⎝⋃

j∈V
Wj

⎞
⎠ is a simultaneous adjacency generator for G � H, where Wj

is the subset of V ′
j corresponding to W ⊂ V ′. Hence,

0 ≤ f (G,H) ≤ |V | − 1. (4)

From now on, our goal will be to determine the value of f (G,H) under different
sets of conditions.We begin by pointing out a useful fact which wewill use throughout
the remainder of this section. Let B be a simultaneous adjacency basis of G � H, and
let Bi = B ∩ V ′

i . The following observation is a consequence of the fact that for any
graph G � H ∈ G � H and i ∈ V , no vertex in B − Bi is able to distinguish two
vertices in V ′

i .

Remark 6 Let G ⊆ Gcon
nt (V ) and H ⊆ Gnt (V ′). Let B be a simultaneous adjacency

basis of G � H and let Bi = B ∩ V ′
i for every i ∈ V . Then, Bi is a simultaneous

adjacency generator for Hi .

We will first characterize cases where f (G,H) = 0. To that end, recall the notion
of simultaneous domination which, as we mentioned previously, was introduced in
[4]. On a graph family G, defined on a common vertex set V , a set M ⊆ V is a
simultaneous dominating set if it is a dominating set of every graph G ∈ G.
Theorem 7 Let G ⊆ Gcon

nt (V ) and H ⊆ Gnt (V ′). If there exists a simultaneous
adjacency basis B of H which is also a simultaneous dominating set and satisfies
B � NH (v) for every H ∈ H and every v ∈ V ′, then

SdA(G � H) = |V | · SdA(H).

Proof By Eq. (2), we only need to show that SdA(G � H) ≤ |V | · SdA(H). To this
end, assume that B is a simultaneous adjacency basis of H which is a simultaneous
dominating set of H and satisfies B � NH (v) for every H ∈ H and every v ∈ V ′.
Consider an arbitrary graph G � H ∈ G � H and let Bi = B ∩ V ′

i , for every i ∈ V . It
was proven in [9] that, given an adjacency generatorW for H that is also a dominating
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set, the set S =
⋃
i∈V

Wi , where Wi = W ∩ V ′
i , is an adjacency generator for G � H . In

consequence, we have that the set S′ =
⋃
i∈V

Bi is an adjacency generator for G � H

and, since S′ does not depend on the choice ofG and H , it is a simultaneous adjacency
generator for G � H. Thus, SdA(G � H) ≤ |S′| = |V | · SdA(H), and the equality
holds.

We now address cases where f (G,H) = |V | − 1.

Theorem 8 Let G ⊆ Gcon
nt (V ) and H ⊆ Gnt (V ′). If for every simultaneous adjacency

basis B of H there exists H ∈ H of which B is not a dominating set, then

SdA(G � H) = |V | · SdA(H) + |V | − 1.

Proof By Eqs. (3) and (4), we have that SdA(G � H) ≤ |V | · SdA(H) + |V | − 1. It
remains to prove that SdA(G � H) ≥ |V | · SdA(H) + |V | − 1.

Let U be a simultaneous adjacency basis of G � H, let Ui = U ∩ V ′
i and let

U0 = U ∩V . By Remark 6,Ui is a simultaneous adjacency generator forHi for every
i ∈ V . Consider the partition {V1, V2} of V defined as

V1 = {i ∈ V : |Ui | = SdA(H)} and V2 = {i ∈ V : |Ui | ≥ SdA(H) + 1}.

For any i, j ∈ V1, i �= j , we have that there exist a graph H ∈ H and two vertices
x ∈ V ′

i −Ui and y ∈ V ′
j −Uj such thatUi ∩ NH (x) = ∅ andUj ∩ NH (y) = ∅. Thus,

i ∈ U or j ∈ U and so |U0| ≥ |V1| − 1. In conclusion,

SdA(G � H) = |U0| +
∑
i∈V1

|Ui | +
∑
i∈V2

|Ui |

≥ (|V1| − 1) + |V1| · SdA(H) + |V2| · (SdA(H) + 1)

= |V | · SdA(H) + |V | − 1.

Therefore, the result follows. ��
As usual, given a graph G, we denote its domination number as γ (G). By analogy,

we will denote as Sγ (G) the simultaneous domination number of a family G, that is,
the minimum cardinality of a simultaneous dominating set.With this notation in mind,
we present our next result.

Theorem 9 Let G ⊆ Gcon
nt (V ) and H ⊆ Gnt (V ′). If there exists a simultaneous

adjacency basis of H which is also a simultaneous dominating set, and for every
simultaneous adjacency basis B of H there exist H ∈ H and v ∈ V ′ − B such that
B ⊆ NH (v), then

SdA(G � H) = |V | · SdA(H) + Sγ (G).
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Proof We first address the proof of SdA(G � H) ≥ |V | · SdA(H) + Sγ (G). Let U be
a simultaneous adjacency basis of G � H, let Ui = U ∩ V ′

i , and let U0 = U ∩ V . By
Remark 6,Ui is a simultaneous adjacency generator for Hi for every i ∈ V . Consider
the partition {V1, V2} of V defined as

V1 = {i ∈ V : |Ui | = SdA(H)} and V2 = {i ∈ V : |Ui | ≥ SdA(H) + 1}.

For every i ∈ V1, the set Ui is a simultaneous adjacency basis of Hi , so there exist
H ∈ H and x ∈ V ′

i such thatUi ⊆ NH (x), causing i and x not to be distinguished by
any y ∈ Ui in any graph belonging to G � H . Thus, either i ∈ U0 or for every G ∈ G
there exists z ∈ U0 such that dG�H,2(i, z) = 1 �= 2 = dG�H,2(x, z). In consequence,
V2 ∪U0 must be a simultaneous dominating set of G, so |V2 ∪U0| ≥ Sγ (G). Finally,

SdA(G � H) =
∑
i∈V1

|Ui | +
∑
i∈V2

|Ui | + |U0|

≥
∑
i∈V1

SdA(H) +
∑
i∈V2

(SdA(H) + 1) + |U0|

= |V | · SdA(H) + |V2| + |U0|
≥ |V | · SdA(H) + |V2 ∪U0|
≥ |V | · SdA(H) + Sγ (G).

Let B be a simultaneous adjacency basis of H which is also a simultaneous dom-
inating set of H and let Bi = B ∩ V ′

i . Moreover, let M be a minimum simultaneous
dominating set of G. Consider an arbitrary G � H ∈ G � H. It was shown in [9] that,
given a dominating setM ′ ofG and an adjacency generatorW for H that is also a dom-

inating set of H , the set S = M ′ ⋃ (⋃
i∈V

Wi

)
, where Wi = W ∩ V ′

i , is an adjacency

generator for G � H . In consequence, the set S′ = M
⋃ (⋃

i∈V
Bi

)
is a simultaneous

adjacency generator for G � H. Thus, SdA(G � H) ≤ |S′| = |V | · SdA(H) + Sγ (G),
so the equality holds. ��

To give our next result, we need some additional definitions. For a graph G and a
vertex v ∈ V (G), let G − v be the graph obtained by removing from G the vertex
v and all its incident edges. Consider the following auxiliary domination parameter,
which was defined in [9]:

γ ′(G) = min
v∈V (G)

{γ (G − v)}.

Theorem 10 Let G be a connected graph of order n ≥ 2 and let H ⊆ Gnt (V ′) such
that some of its simultaneous adjacency bases are also simultaneous dominating sets,
and some are not. If there exists a simultaneous adjacency basis B ′ of H such that

123



1552 Y. Ramírez-Cruz et al.

B ′
� NH (v) for every H ∈ H and every v ∈ V ′ − B ′, and for every simultaneous

adjacency basis B ofHwhich is also a simultaneous dominating set there exist H ′ ∈ H
and w ∈ V ′ − B such that B ⊆ NH ′(w), then

SdA(G � H) = n · SdA(H) + γ ′(G).

Proof In the family G � H, we have that V = V (G). We first address the proof of
SdA(G � H) ≥ n · SdA(H) + γ ′(G). Let U be a simultaneous adjacency basis of
G � H, let Ui = U ∩ V ′

i , and let U0 = U ∩ V . By Remark 6, Ui is a simultaneous
adjacency generator for Hi for every i ∈ V . Consider the partition {V1, V2, V3} of V ,
where V1 contains the vertices i ∈ V such that Ui is a simultaneous adjacency basis
of Hi but is not a simultaneous dominating set, V2 contains the vertices i ∈ V such
that Ui is a simultaneous adjacency basis and a simultaneous dominating set of Hi ,
and V3 is composed by the vertices i ∈ V such thatUi is not a simultaneous adjacency
basis of Hi .

If i, j ∈ V1, then there exist a graph H ∈ H and two vertices vi ∈ V ′
i − Ui and

v j ∈ V ′
j − Uj such that Ui ∩ NH (vi ) = ∅ and Uj ∩ NH (v j ) = ∅. Thus, i ∈ U0 or

j ∈ U0, so |U0 ∩ V1| ≥ |V1| − 1. If i ∈ V2, then there exist H ∈ H and x ∈ V ′
i such

thatUi ⊆ NH (x). In consequence, the pair i, x is not distinguished by any y ∈ Ui , so
either i ∈ U0 or there exists z ∈ U0 such that dG�H,2(i, z) = 1 �= 2 = dG�H,2(x, z).
Therefore, at most one vertex ofG is not dominated byU0∪V3, so |U0∪V3| ≥ γ ′(G).
Finally,

SdA(G � H) =
∑

i∈V1∪V2
|Ui | +

∑
i∈V3

|Ui | + |U0|

≥
∑

i∈V1∪V2
SdA(H) +

∑
i∈V3

(SdA(H) + 1) + |U0|

= n · SdA(H) + |V3| + |U0|
≥ n · SdA(H) + |V3 ∪U0|
≥ n · SdA(H) + γ ′(G).

Now, let B ′ be a simultaneous adjacency basis of H such that B ′
� NH (v) for

every H ∈ H and every v ∈ V ′ − B ′, and assume that for any simultaneous adjacency
basis B of H which is also a simultaneous dominating set there exist H ′ ∈ H and
w ∈ V ′ − B such that B ⊆ NH ′(w). Let B ′′ be one of such simultaneous adjacency
bases of H. Let B ′

i = B ′ ∩ V ′
i and B ′′

i = B ′′ ∩ V ′
i . Additionally, let M be a minimum

dominating set of G − x , where x is a vertex such that γ ′(G) = γ (G − x). Consider
an arbitrary graph G � H ∈ G � H. It was proven in [9] that, given a minimum
dominating set M ′ ofG−x , an adjacency generatorW ′ for H satisfyingW ′

� NH (v)

for every v ∈ V ′ −W ′, and an adjacency generator W ′′ for H that is also dominating,

the set S = M ′ ⋃W ′
x
⋃ ⎛

⎝ ⋃
i∈V−{x}

W ′′
i

⎞
⎠ is an adjacency generator for G � H . In
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consequence, we have that the set S′ = M
⋃

B ′
x
⋃ ⎛

⎝ ⋃
i∈V−{x}

B ′′
i

⎞
⎠ is a simultaneous

adjacency generator for G � H. Thus, SdA(G � H) ≤ |S′| = n · SdA(H) + γ ′(G),
so the equality holds. ��

4 Consequences of Theorems 5, 7, 8, 9 and 10

The following result is a direct consequence of Theorems 2 and 5.

Proposition 11 Let G ⊆ Gcon
nt (V ). Let H be a non-trivial graph and let B be an

adjacency basis of H. Then, for every H ⊆ GB(H) such that H ∈ H,

Sd(G � H) = |V | · dimA(H).

Proposition 11 allows us to construct large graph families of the form G � H for
which the exact value of Sd(G�H) can be determined in terms of the adjacency dimen-
sion of a single graph. For instance, consider the families G = {G1,G2, . . . ,Gk} ⊆
Gcon
nt (V ) andH = GB(C8).3 Applying Eq. (1), we have that G �H contains 122880 ·k

graphs, yet the fact that dimA(C8) = 3 is sufficient to compute Sd(G � H) =
|V | · dimA(C8) = 3 · |V |.

In order to analyse special cases of Theorems 7, 8, 9 and 10, we will first introduce
the following classes of graph families:

• GB(Pn): For an integer n ≥ 7, let Pn be a path graph of order n and let C(Pn) be
the cycle graph obtained from Pn by joining its leaves by an edge. We say that a
graph family G belongs to GB(Pn) if and only if G ⊆ GB(Pn) ∪ GB(C(Pn)), for
some simultaneous adjacency basis B of {Pn,C(Pn)}, and Pn ∈ G or C(Pn) ∈ G.

• H: We say that a graph family G ⊆ Gcon
nt (V ) belongs to H if and only if |V | ≥ 7

and every G ∈ G is a cycle graph, or D(G) ≥ 6, or g(G) ≥ 5 and δ(G) ≥ 3.

We now state some useful properties of (the graphs composing) such families.

Lemma 12 [16] For any integer n ≥ 4, dimA(Cn) = dimA(Pn) = ⌊ 2n+2
5

⌋
.

Lemma 13 Let Pn and Cn be a path and a cycle graph of order n ≥ 7. If n ≡ 1, 3
(mod 5), then no adjacency basis of Pn or Cn is a dominating set. Otherwise, there
exist adjacency bases of Pn and Cn that are dominating sets.

Proof The proof for the cases where n ≡ 0, 2, 4 (mod 5) is given in [20]. We
now address the remaining cases. In Cn , consider an adjacency basis B and a path
vivi+1vi+2vi+3vi+4, where the subscripts are taken modulo n. If vi , vi+2 ∈ B and
vi+1 /∈ B, then {vi+1} is said to be a 1-gap of B. Likewise, if vi , vi+3 ∈ B and
vi+1, vi+2 /∈ B, then {vi+1, vi+2} is said to be a 2-gap of B and if vi , vi+4 ∈ B and
vi+1, vi+2, vi+3 /∈ B, then {vi+1, vi+2, vi+3} is said to be a 3-gap of B. Since B is an

3 Recall that a subset of this family is depicted in Fig. 2.
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adjacency basis of Cn , it has no gaps of size 4 or larger and it has at most one 3-gap.
Moreover, every 2- or 3-gap must be neighboured by two 1-gaps and the number of
gaps of either size is at most dimA(Cn). We now differentiate the following cases for
Cn :

1. n = 5k+1, k ≥ 2. In this case, dimA(Cn) = 2k, and thus n−dimA(Cn) = 3k+1.
Since any 2-gap must be neighboured by two 1-gaps, any adjacency basis B of Cn

has at most k 2-gaps. Now, assume that B has no 3-gaps. Then |V (Cn) − B| =
3k < 3k + 1 = n − |B|, which is a contradiction. Thus, any adjacency basis of
Cn has a 3-gap, i.e. it is not a dominating set.

2. n = 5k + 3, k ≥ 1. In this case, dimA(Cn) = 2k + 1, and thus n − dimA(Cn) =
3k + 2. As in the previous case, any adjacency basis B of Cn has at most k 2-gaps.
Now assume that B has no 3-gaps. Then |V (Cn)−B| = 3k+1 < 3k+2 = n−|B|,
which is a contradiction. Thus, any adjacency basis of Cn has a 3-gap, i.e. it is not
a dominating set.

By the set of cases above, the result holds for Cn .
Now, let C ′

n be the cycle obtained from Pn by joining its leaves v1 and vn by
an edge. Let V = V (Pn) = V (C ′

n) and let B be an adjacency basis of Pn . Since
for two different vertices x, y ∈ V , dC ′

n ,2(x, y) �= dPn ,2(x, y) if and only if x, y ∈
{v1, vn}, if v1, vn ∈ B or v1, vn /∈ B, then B is an adjacency basis of Cn . Moreover,
some vertex w ∈ V − B satisfies B ∩ NPn (w) = B ∩ NC ′

n
(w) = ∅, so B is not a

dominating set of Pn . We now treat the case where v1 ∈ B and vn /∈ B. If vn−1 /∈
B then B is not a dominating set of Pn . If vn−1 ∈ B and v2 /∈ B, we have that
dC ′

n ,2(v2, vn−1) = dPn ,2(v2, vn−1) = 2 �= 1 = dPn ,2(vn, vn−1) = dC ′
n ,2(vn, vn−1),

whereas for any other pair of different vertices x, y ∈ V − B there exists z ∈ B
such that dC ′

n ,2(x, z) = dPn ,2(x, z) �= dPn ,2(y, z) = dC ′
n ,2(y, z), so B is an adjacency

basis of C ′
n where {vn} is a 1-gap. In consequence, some vertex w ∈ V − (B ∪ {vn})

satisfies B ∩ NPn (w) = B ∩ NC ′
n
(w) = ∅, so B is not a dominating set of Pn . Finally,

if v2, vn−1 ∈ B, then for any pair of different vertices x, y ∈ V − B there exists
z ∈ B − {v1} such that dC ′

n ,2(x, z) = dPn ,2(x, z) �= dPn ,2(y, z) = dC ′
n ,2(y, z), so

B is an adjacency basis of C ′
n where {vn} is a 1-gap. As in the previous case, some

vertex w ∈ V − (B ∪ {vn}) satisfies B ∩ NPn (w) = B ∩ NC ′
n
(w) = ∅, so B is not a

dominating set of Pn . The proof is complete. ��
Lemma 14 [20] Let G be a connected graph. If D(G) ≥ 6, or G ∼= Cn with n ≥ 7, or
G is a graph of girth g(G)≥5 and minimum degree δ(G)≥3, then for every adjacency
generator B for G and every v ∈ V (G), B � NG(v).

Given two vertex-disjoint graphs G = (V1, E1) and H = (V2, E2), the join of G
and H , denoted by G + H , is the graph with vertex set V (G + H) = V1 ∪ V2 and
edge set E(G + H) = E1 ∪ E2 ∪ {uv : u ∈ V1, v ∈ V2}. For two graph families G
andH, defined on common vertex sets V1 and V2, respectively, such that V1 ∩V2 = ∅,
we define the family

G + H = {G + H : G ∈ G, H ∈ H}.

In particular, if G = {G} we will use the notation G + H.
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Lemma 15 Let G ⊆ Gnt (V1) and H ⊆ Gnt (V2). Then, every simultaneous adjacency
basis of G + H is a simultaneous dominating set of G + H.

Proof Let B be a simultaneous adjacency basis of G + H, let W1 = B ∩ V1 and
W2 = B ∩ V2. Since no pair of different vertices u, v ∈ V2 − W2 is distinguished
in any G + H ∈ G + H by any vertex from W1, we have that W2 is a simultaneous
adjacency generator for H and, in consequence, W2 �= ∅. By an analogous reasoning
we can see that W1 is a simultaneous adjacency generator for G and, in consequence,
W1 �= ∅. Moreover, every vertex in V1 is dominated by every vertex in W2, whereas
every vertex in V2 is dominated by every vertex in W1, so B is a dominating set for
every G + H ∈ G + H. ��

The following result, presented in [20], characterizes a large number of families
of the form G + H whose simultaneous adjacency bases are formed by the union of
simultaneous adjacency bases of G and H.

Lemma 16 [20] Let G ⊆ Gnt (V1) and H ⊆ Gnt (V2). If there exists a simultaneous
adjacency basis B of G such that for every G ∈ G and every v ∈ V1, B � NG(v),
then

SdA(G + H) = SdA(G) + SdA(H).

Using Lemmas 12, 13, 14, 15 and 16, we will give several results obtained as
particular cases of Theorems 7, 8, 9 and 10. First, we will show particular cases of
Theorem 7.

Proposition 17 For every G ⊆ Gcon
nt (V ) and everyH ∈ GB(Pn) such that n ≡ 0, 2, 4

(mod 5) and B is a dominating set of Pn,

SdA(G � H) = |V | ·
⌊
2n + 2

5

⌋
.

Proof The existence of B is a consequence of Lemma 13. Since Pn ∈ H or C(Pn) ∈
H, by Theorem 2 we deduce that B is a simultaneous adjacency basis of H. Let
V ′ = V (Pn) = V (C(Pn)). By the definition of GB , we have that

⋃
v∈B

NH (v) =
⋃
v∈B

NPn (v) = V ′ or
⋃
v∈B

NH (v) =
⋃
v∈B

NC(Pn)(v) = V ′ for every H ∈ H, so B is a

dominating set of every H ∈ H. Moreover, by Lemma 14, we have that B � NPn (v)

and B � NC(Pn)(v) for every v ∈ V ′. Furthermore, by the definition of GB , we have
that B ∩ NH (v) = B ∩ NPn (v) or B ∩ NH (v) = B ∩ NC(Pn)(v) for every H ∈ H and
every v ∈ V ′, so B � NH (v) for every H ∈ H and every v ∈ V ′. In consequence,
the result follows from Theorems 2 and 7, as well as Lemma 12. ��

It was shown in [20] that every simultaneous adjacency basis of a family G + H
satisfying the assumptions of Lemma 16 is the union of a simultaneous adjacency
basis of H and a simultaneous adjacency basis B of G such that B � NG(v) for every
G ∈ G and every v ∈ V1.
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Proposition 18 Let G ⊆ Gcon
nt (V ), H ⊆ Gnt (V ′

1) and H′ ⊆ Gnt (V ′
2). If there exist a

simultaneous adjacency basis B of H that satisfies B � NH (v) for every H ∈ H and
every v ∈ V ′

1, and a simultaneous adjacency basis B
′ ofH′ that satisfies B ′

� NH ′(v′)
for every H ′ ∈ H′ and every v′ ∈ V ′

2, then

SdA(G � (H + H′)) = |V | · SdA(H) + |V | · SdA(H′).

Proof Let B and B ′ be simultaneous adjacency bases of H and H′, respectively, that
satisfy the premises of the theorem, and let S = B ∪ B ′. As shown in [20], S is
a simultaneous adjacency basis of H + H′. Moreover, since B � NH (v) for every
H ∈ H and every v ∈ V ′

1, and B ′
� NH ′(v′) for every H ′ ∈ H′ and every v′ ∈ V ′

2,
we have that S � NH+H ′(x) for every H + H ′ ∈ H + H′ and every x ∈ V ′

1 ∪ V ′
2.

Finally, by Lemma 15, we have that S is a simultaneous dominating set of H + H′,
so SdA(G � (H + H′)) = |V | · SdA(H + H′) = |V | · SdA(H) + |V | · SdA(H′) by
Theorem 7 and Lemma 16. ��

The following result is a direct consequence of Lemma 14 and Proposition 18.

Proposition 19 For every G ⊆ Gcon
nt (V ) and H,H′ ∈ H,

SdA(G � (H + H′)) = |V | · SdA(H) + |V | · SdA(H′).

In addition, following a reasoning analogous to that of the proof of Proposition 17,
we obtain the following result as a consequence of Theorem 2, Lemma 14 and Propo-
sition 18.

Proposition 20 Let G ⊆ Gcon
nt (V ) and let {H}, {H ′} ∈ H. Let B and B ′ be adjacency

bases of H and H ′, respectively. Then, for any pair of families H ⊆ GB(H) and
H′ ⊆ GB′(H ′) such that H ∈ H and H ′ ∈ H′,

SdA(G � (H + H′)) = |V | · dimA(H) + |V | · dimA(H ′).

In what follows, we give particular cases of Theorem 8.

Proposition 21 For every G ⊆ Gcon
nt (V ) and every H ∈ GB(Pn) such that n ≡ 1, 3

(mod 5),

SdA(G � H) = |V | ·
(⌊

2n + 2

5

⌋
+ 1

)
− 1.

Proof Note that B is an adjacency basis of both Pn and C(Pn), so by Lemma 13 it
is not a dominating set of neither. Let x be the vertex not dominated by B in Pn and
C(Pn). Then, by the definition ofGB , in any H ∈ H, there exists y = f (x), f ∈ S(B),
that is not dominated by B, so the result follows from Theorems 2 and 8, as well as
Lemma 12. ��
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Proposition 22 Let G ⊆ Gcon
nt (V ) and let H = {Nt ∪ H1, Nt ∪ H2, . . . , Nt ∪ Hk},

where Nt is an empty graph of order t ≥ 1 and {H1, H2, . . . , Hk} ⊆ Gcon
nt (V ′′). Then,

SdA(G � H) = |V | · SdA(H) + |V | − 1.

Proof Consider that the common vertex set of H has the form V ′ = V (Nt ) ∪ V ′′,
where V (Nt ) and V ′′ are disjoint. Let B be a simultaneous adjacency basis of H, and
let B ′′ = B ∩ V ′′. Consider an arbitrary graph Nt ∪ H ∈ H. Either |V (Nt )| = 1 or
every pair of different vertices u, v ∈ V (Nt ) are false twins, so V (Nt ) ⊆ B if and only
if there exists v ∈ V ′′ such that B ∩ NH (v) = ∅. If such v exists, it is not dominated
by B; otherwise, V (Nt ) − B = {v′} and B ∩ NH (v′) = ∅. In either case, the result
follows from Theorem 8. ��

We now discuss particular cases of Theorem 9.

Proposition 23 Let G ⊆ Gcon
nt (V ), H ⊆ Gnt (V ′

1) and H′ ⊆ Gnt (V ′
2). If there exists a

simultaneous adjacency basis B of H that satisfies B � NH (v) for every H ∈ H and
every v ∈ V ′

1, and for every simultaneous adjacency basis B
′ ofH′ there exist H ′ ∈ H

and v′ ∈ V ′
2 such that B ′ ⊆ NH ′(v′), then

SdA(G � (H + H′)) = |V | · SdA(H) + |V | · SdA(H′) + Sγ (G).

Proof Let S be a simultaneous adjacency basis of H + H′, let W = S ∩ V ′
1 and let

W ′ = S∩V ′
2. As discussed in [20],W andW ′ are simultaneous adjacency bases of H

and H′, respectively. Since there exist H ′ ∈ H and v′ ∈ V ′
2 such that W ′ ⊆ NH ′(v′),

we have that S ⊆ NH+H ′(v′) for any H ∈ H by the definition of the join operation.
Moreover, by Lemma 15, S is a simultaneous dominating set of H + H′, so SdA(G �
(H + H′)) = |V | · SdA(H + H′) + Sγ (G) = |V | · SdA(H) + |V | · SdA(H′) + Sγ (G)

by Theorem 9 and Lemma 16. ��
The following results are particular cases of Proposition 23.

Proposition 24 Let G ⊆ Gcon
nt (V ), H ∈ H and Kt a complete graph of order t ≥ 2.

Then,

SdA(G � (Kt + H)) = |V | · SdA(H) + |V | · (t − 1) + Sγ (G).

Proof By Lemma 16, SdA(Kt + H) = SdA(H) + t − 1. Let V ′ be the common
vertex set of H. By Lemma 14, every simultaneous adjacency basis B of H satisfies
B � NH (v) for every H ∈ H and every v ∈ V ′. Furthermore, every adjacency basis
of Kt has the form B ′ = V (Kt ) − {v}, where v is an arbitrary vertex of Kt . Clearly,
B ′ ⊆ NKt (v), so the result follows from Proposition 23. ��

Following a reasoning analogous to that of the proofs of Propositions 17, 21 and 24,
we obtain the following result as a consequence of Theorem 2, Lemmas 14 and 16,
and Proposition 23.
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Proposition 25 Let G ⊆ Gcon
nt (V ), {H} ∈ H, B an adjacency basis of H and Kt a

complete graph of order t ≥ 2. Then, for any family H ⊆ GB(H) such that H ∈ H,

SdA(G � (Kt + H)) = |V | · dimA(H) + |V | · (t − 1) + Sγ (G).

As an example of the previous result, consider two families G ⊆ Gcon
nt (V ) and

H ∈ GB(Pn), and a complete graph Kt of order t ≥ 2. We have that

SdA(G � (Kt + H)) = |V | ·
(⌊

2n + 2

5

⌋
+ t − 1

)
+ Sγ (G).

To conclude our exposition, we will give some examples which are particular
cases of Theorem 10. Consider the family {P5,C5}, where V (P5) = V (C5) =
{v1, v2, v3, v4, v5}, E(P5) = {v1v2, v2v3, v3v4, v4v5} and E(C5) = E(P5) ∪ {v1v5}.
We have that the set {v2, v4} is the sole simultaneous adjacency basis which is also
a simultaneous dominating set and v3 satisfies {v2, v4} ⊆ NP5(v3) and {v2, v4} ⊆
NC5(v3). Moreover, the set {v1, v5} (as well as {v2, v3} and {v3, v4}) is a simulta-
neous adjacency basis such that every vertex vx satisfies NP5(vx ) � {v1, v5} and
NC5(vx ) � {v1, v5}. Now, consider any connected graph G of order n ≥ 2. We have
that SdA(G � {P5,C5}) = 2n + γ ′(G).

5 Concluding Remarks

In this paper, we have studied the behaviour of the simultaneous metric and adjacency
dimensions in families composed by corona product graphs. The most important con-
clusion we extract from this study is the possibility of expressing both parameters for
families composed by product graphs in terms of the simultaneous adjacency dimen-
sion of the family composed by the second factors, which is a smaller family and
is defined on a smaller vertex set. Furthermore, we were able to verify that in some
cases, both parameters may even be defined in terms of the adjacency dimension of a
single graph. These results are particularly relevant in light of the circumstance that
the computation of these parameters is in general NP-hard.

This sort of “interchangeability” of the first factors observed in several cases, aswell
as the possibility of characterizing one family using one adjacency basis of one graph,
may be interpreted as a “fault-tolerant” behaviour. In this sense, it may be interesting to
explore to what extent this may be expanded. For instance, under some circumstances,
the metric and adjacency dimensions of a relaxed corona product G �′ H , where each
vertex of G is joined by an edge only to a subset of the vertices of its corresponding
copy of H , still behave in the same manner as in G�H , and this behaviour extends to
the simultaneous scenario.4 Likewise, for a graph G and an adjacency basis B of G, it
is interesting to explore the construction of families having a set B ′, slightly different
from B, as a simultaneous adjacency generator, and the degree of variability on G that
such families would allow.

4 We have already described analogous situations in families composed by relaxed lexicographic product
graphs in [20].
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