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Abstract A (k, d)-list assignment L of a graph is a function that assigns to each
vertex v a list L(v) of at least k colors satisfying |L(x) ∩ L(y)| ≤ d for each edge
xy. An L-coloring is a vertex coloring π such that π(v) ∈ L(v) for each vertex v and
π(x) �= π(y) for each edge xy. A graph G is (k, d)-choosable if there exists an L-
coloring ofG for every (k, d)-list assignment L . This concept is known as choosability
with separation. In this paper, we prove that planar graphs without 4-cycles adjacent
to 4−-cycles are (3, 1)-choosable. This is a strengthening of a result which says that
planar graphs without 4-cycles are (3, 1)-choosable.

Keywords Planar graphs · Choosability with separation · List coloring · Cycles

1 Introduction

A graph G is an ordered pair (V (G), E(G)) consisting of a set V (G) of vertices and
a set E(G), disjoint from V (G), of edges, together with an incidence function ψG

that associates with each edge of G an unordered pair of (not necessarily distinct)
vertices of G. All graphs considered in this paper are finite, loopless, and without
multiple edges, unless otherwise stated. A graph G is planar if it can be drawn on the
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plane so that its edges meet only at the vertices of the graph. Given a graph G, a list
assignment L is a mapping that assigns to each vertex v ∈ V (G) a list L(v) of colors.
An L-coloring is a vertex coloring π such that π(v) ∈ L(v) for each vertex v and
π(x) �= π(y) for each edge xy. If there is an L-coloring for each list assignment L
with |L(v)| ≥ k for each vertex v, then we say G is k-choosable and the minimum
such integer k is the list chromatic number of G, denoted by χl(G).

Motivated by forcing the lists of the adjacent vertices to be somewhat separated,
the concept known as choosability with separationwas raised. A graph G is said to be
(k, d)-choosable if there is an L-coloring for each list assignment L with |L(v)| ≥ k
for each vertex v such that |L(x) ∩ L(y)| ≤ d for each edge xy. Obviously, G is
(k, k)-choosable if and only if it is k-choosable. Moreover, if G is (k, d)-choosable,
then it is (k′, d ′)-choosable for all k′ ≥ k and d ′ ≤ d. This concept was introduced by
Kratochvíl, Tuza, and Voigt [4]. They investigated this concept for complete graphs
and sparse graphs. Recently, Füredi, Kostochka, and Kumbhat [2,3] have extended
the study of dense graphs to complete bipartite graphs and multipartite graphs.

One significant theorem established in a paper by Thomassen [7] is that every planar
graph is 5-choosable. The upper bound 5 is best possible since it cannot be lowered
to 4 by an example given in [8]. It follows that every planar graph is (5, d)-choosable
for all non-negative integers d and there exists a non-(4, 4)-choosable planar graph.
Moreover, there exist non-(4, 3)-choosable planar graphs given by Mirzakhani [5].
On the other hand, Kratochvíl, Tuza, and Voigt [4] positively confirmed the (4, 1)-
choosability of planar graphs. The question of whether every planar graph is (4, 2)-
choosable seems to be a difficult open problem.

Nowwe turn our attention to (3, d)-choosability of planar graphs. It is proved in [1]
that every triangle-free planar graph is (3, 1)-choosable. This result is sharp since non-
(3, d)-choosable triangle-free planar graphs with d = 2 and d = 3 were constructed
by Škrekovski [6] and Voigt [9], respectively. In addition, Choi, Lidický, and Stolee
[1] proved that planar graphs without 4-cycles are (3, 1)-choosable and planar graphs
without 5- and 6-cycles are (3, 1)-choosable.

In this paper, we aim to study (3, 1)-choosability of planar graphs in which certain
4-cycles can be allowed. More precisely, we will prove the following theorem that is
a strengthening of a result in [1].

Theorem 1 Every planar graph without 4-cycles adjacent to 4−-cycles is (3, 1)-
choosable.

Before proving our main result, we need to introduce some notation and terminol-
ogy. Suppose that G is a planar graph embedded on the plane. We denote its vertex
set, edge set, order, and size by V (G), E(G), |G|, and |E |, respectively. Suppose that
C is a cycle in G. C is called a k−-cycle if the length of C is at most k. A triangle
is the same as a 3-cycle. Two cycles are called adjacent if they share at least one
edge. A walk of G is a non-empty alternating sequence of vertices and edges denoted
by W = v0e1v1e2 . . . ekvk , where ei = vi−1vi for each i ∈ {1, 2, . . . , k}. If all the
vertices of a walk v0e1v1e2 . . . ekvk are mutually distinct, then we call such a walk a
path, simply denoted by P = v0v1 . . . vk−1vk . If S ⊂ V (G), then G − S represents
the subgraph obtained from G by deleting the vertices in S and all the edges incident
with some vertices in S.
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Let G denote the class of planar graphs without 4-cycles adjacent to 4−-cycles. If
G ∈ G, then the following three configurations will be excluded from G:

(A1) two 3-cycles sharing an edge;
(A2) two 4-cycles sharing an edge;
(A3) a 3-cycle and a 4-cycle sharing an edge.

2 Proof of Theorem 1

In what follows, let L be a list assignment on V (G). A (∗, 1)-list assignment is a list
assignment L such that |L(v)| ≥ 1 for each vertex v and |L(x) ∩ L(y)| ≤ 1 for each
edge xy. For i ∈ {1, 2, 3}, a vertex v is called an Li -vertex if |L(v)| = i , denoted by
v ∈ Li .

Instead of showing Theorem 1, we prove Theorem 2 which is a stronger result
inspired by the proof with clever ideas in [1]. Since any (3, 1)-list assignment for
G ∈ G satisfies all conditions of Theorem 2, we may easily derive Theorem 1 from
Theorem 2.

Theorem 2 Let G ∈ G with an outer face F and let P be a subpath of F with order
at most 3. If L is a (∗, 1)-list assignment satisfying the following six conditions, then
G is L-colorable.

(C1) |L(v)| ≥ 3 for v ∈ V (G) \ V (F);
(C2) |L(v)| ≥ 2 for v ∈ V (F) \ V (P);
(C3) |L(v)| = 1 for v ∈ V (P);
(C4) the subgraph induced by V (P) in G is L-colorable;
(C5) no L2-vertices are adjacent in G;
(C6) no L2-vertex is adjacent to at least two vertices in P.

Proof Suppose the theorem is not true. Among counterexamples with minimum |G|+
|E |, we choose G to possess the smallest

∑
v∈V (G) |L(v)|, that is, the sum of list sizes

is the smallest. Note that G is connected.
In the following, for v ∈ V (G), we use NG(v) to denote the neighborhood of v

in G. For simplicity, we use N (v) instead of NG(v) when G is clear. If v ∈ V (P),
then v is called a P-vertex. A middle P-vertex is a P-vertex which has exactly two
neighbors in P . The following claim will be used often. 
�
Claim 1 For each edge xy ∈ E(G) \ E(P), |L(x) ∩ L(y)| = 1.

Proof By definition, |L(x) ∩ L(y)| ≤ 1. If |L(x) ∩ L(y)| = 0, then it suffices to
L-color G − xy and extend this coloring to G , which is a contradiction. 
�

For our convenience, in what follows, we will use the notation (G; P, L) to denote
by a graph G with respect to the path P under the list assignment L .

Claim 2 G is 2-connected. In particular, F is a cycle.

Proof Suppose to the contrary that there exists a cut vertex v ∈ V (G), and let G1 and
G2 be two connected subgraphs such that V (G1) ∩ V (G2) = {v} and G1 ∪ G2 = G.
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Clearly, both G1 and G2 have at least two vertices. If P is fully contained in some
Gi , say G1, then G1 admits an L-coloring π1 by the minimality of G. Let L ′ be a
list assignment on V (G2) such that L ′(u) = {π1(u)} if u = v, and L ′(u) = L(u)

otherwise. Consider P ′ = v as a subpath of the outer face of G2. Since (G2; P ′, L ′)
satisfies all conditions (C1)-(C6) of Theorem 2, there is an L ′-coloring π2 of G2.
Combining π1 and π2, we get an L-coloring of G, a contradiction. Now suppose that
P = xvy with xv ∈ E(G1) and vy ∈ E(G2). Let P1 = xv and P2 = yv. Let Li∗
be the list assignment L restricted to Gi . Then (Gi ; Pi , Li∗) satisfies (C1)-(C6). By
the minimality of G, there exists an Li∗-coloring πi of Gi for each i ∈ {1, 2}. Taking
π1(v) = π2(v), we get an L-coloring π1 ∪ π2 of G, a contradiction. 
�

An edge v0v1 is called a chord of C if v0, v1 ∈ V (C) but v0v1 /∈ E(C). A 2-chord
of C is defined to be a path Q = v0v1v2 such that v0, v2 ∈ V (C) and v1 /∈ V (C).
Further, if v0v2 /∈ E(C), then we call Q a nice 2-chord. Let Vint(C) and Vext(C)

denote the sets of vertices located inside and outside C , respectively.

Claim 3 G contains no triangle T with Vint(T ) �= ∅.
Proof Assume to the contrary thatG contains a triangle T = xyzx such that int(T ) �=
∅. Let G1 = G[Vext(T ) ∪ T ] and G2 = G[Vint(T ) ∪ T ]. Clearly, P ⊆ G1. Since
|G1| < |G|, G1 has an L-coloring π . So x, y, z are colored. Let G ′ = G2 − xy,
and P ′ = xzy. Let L ′ be a list assignment on V (G ′) such that L ′(u) = {π(u)} if
u ∈ {x, y, z}, and L ′(u) = L(u) otherwise. It is easy to check that (C1)-(C6) hold for
(G ′; P ′, L ′). Thus, by the minimality of G, G ′ has an L ′-coloring π ′. Consequently,
the coloring π ∪ π ′ is an L-coloring of G, a contradiction. 
�
Claim 4 |F | �= 3.

Proof Suppose to the contrary that |F | = 3. Then Vint(F) = ∅ by Claim 3, and
thus G = F . Let F = v1v2v3v1. If |P| = 3, then G is L-colorable by (C4). If
|P| = 2, say P = v1v2, then v3 ∈ L3 by (C6). It suffices to color v3 with a color in
L(v3) \ (L(v1) ∪ L(v2)) after v1 and v2 have been colored. If |P| = 1, say P = v1,
then by (C5), we may assume that v2 ∈ L2 ∪ L3 and v3 ∈ L3. We color v1 with
a ∈ L(v1), v2 with b ∈ L(v2) \ {a}, and v3 with c ∈ L(v3) \ {a, b}. In all cases, we
reach a contradiction. 
�

A chord xy is called bad if there exists an L2-vertex z ∈ V (F) such that zx, zy ∈
E(F). Note that xyzx is a 3-cycle. Otherwise, xy is called good.

For our convenience, in the proofs of Claims 5 and 6, we always use F1 and F2 to
denote the two cycles in F ∪ {xy} that contain the chord xy. Let Gi = G[Vint(Fi ) ∪
V (Fi )] for i ∈ {1, 2}. For two vertices u, v ∈ V (Fi ), let Fi (u, v) denote the path in
Fi from u to v along the boundary of F (except u and v).

Claim 5 If xy is a good chord of F, then either x or y is a middle P-vertex.

Proof Assume that neither x nor y is a middle P-vertex. Without loss of generality,
assume that P is fully contained in F1 − xy. Moreover, xy is chosen as a good chord
such that |V (G2)| is as small as possible. It means that xy is the unique good chord
located in G2.
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Clearly,G1 admits an L-coloring π by the minimality ofG. Let P ′ = xy. Let L ′ be
a list assignment on V (G2) such that L ′(u) = {π(u)} if u ∈ {x, y}, and L ′(u) = L(u)

otherwise. One may inspect that (C1)-(C4) are valid for (G2; P ′, L ′). Since every
L ′
2-vertex in G2 is just an L2-vertex in G, (C5) holds for (G2; P ′, L ′). If (C6) is also

true, then G2 has an L ′-coloring π ′, and therefore π ∪ π ′ is an L-coloring of G, a
contradiction. Otherwise, suppose that there exists an L ′

2-vertex z ∈ F2(x, y) such
that zx, zy ∈ E(G2). Note that z ∈ L2 and xyzx is a triangle. Since xy is good, we
see that at least one of xz and yz is a chord, say zx . Then |F2(x, z)| ≥ 3 due to G ∈ G,
implying that zx is a good chord of F2 (also a good chord of F), contradicting the
choice of xy. 
�
Claim 6 Each chord of F is bad.

Proof Suppose to the contrary that F has a good chord xy. ByClaim 5,wemay assume
that P = wxv such thatw ∈ V (F1) and v ∈ V (F2).Without loss of generality, assume
that |F1(w, y)| ≤ |F2(v, y)|. Let P1 = wx . By the minimality of G, G1 admits an
L-coloring π with respect to P1. Let L ′ be a list assignment on V (G2) such that
L ′(u) = {π(u)} if u ∈ {x, y}, and L ′(u) = L(u) otherwise. Let P2 = vxy. One
may easily check that (C1), (C2), (C3), and (C5) are valid for (G2; P2, L ′) since L2-
vertices remain L ′

2-vertices. Next, we will show that (C4) and (C6) are also satisfied
for (G2; P2, L ′), implying that G2 has an L ′-coloring π ′ and therefore π ∪ π ′ is an
L-coloring of G, a contradiction.

The proof splits into the following two cases.
Case 1. 0 ≤ |F1(w, y)| ≤ 1.
Note that F1 is a 3-cycle or a 4-cycle. Since G ∈ G, we derive that vy /∈ E(G) and

therefore |F2(v, y)| ≥ 2. This implies immediately that (C4) holds for (G2; P2, L ′). If
(C6) is not true for (G2; P2, L ′), then there exists an L ′

2-vertex z ∈ F2(v, y) adjacent
to at least two vertices of P2. Since z ∈ L2, x, v ∈ V (P), and (G; P, L) satisfies (C6),
we see that zy ∈ E(G) and exactly one of x and v is adjacent to z. If zx ∈ E(G), then
xyzx is a 3-cycle. If zv ∈ E(G), then xyzvx is a 4-cycle. Both cases contradict the
assumption that G ∈ G.

Case 2. |F1(w, y)| ≥ 2.
Then |F2(v, y)| ≥ 2. Moreover, xy is chose as a chord that minimizes |V (G2)|

under the assumption |F2(v, y)| ≥ 2. It means that if there is t ∈ F2(v, y) such that
xt is a chord of F and |F2(v, t)| ≥ 2, then we select xt instead of xy.

If yv ∈ E(G), then yv /∈ E(F2) and thus yv is a chord of F2 (also a good chord
of F). Further, yv is a good chord of F since G ∈ G. However, neither v nor y is a
middle P-vertex, which contradicts Claim 5. Thus, yv /∈ E(G), implying that (C4)
holds for (G2; P2, L ′). Also if (C6) is false for (G2; P2, L ′), then there exists an L ′

2-
vertex z ∈ F2(v, y) such that zy ∈ E(G) and exactly one of x and v is adjacent to z.
If zx ∈ E(G), then |F2(v, z)| ≥ 2, hence zx is a good chord of F2 as G ∈ G. This
contradicts the choice of xy. So zv ∈ E(G), and this implies that xyzvx is a 4-cycle.
Since |F2(v, y)| ≥ 2, at least one of zv and zy is a chord of F2. If zy is a chord of
F2, then |F2(y, z)| ≥ 3. Thus, either zv or zy is a good chord of F since no L2-vertex
can be adjacent to both endpoints. However, none of v, y, and z is a middle P-vertex,
contradicting Claim 5. 
�
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Claim 7 If xy is a chord of F, then x and y are either L2-vertices or L3-vertices.

Proof By Claim 6, xy is bad, so there is an L2-vertex z ∈ V (F) such that zx, zy ∈
E(F) and xyzx forms a 3-cycle. By Claim 3, Vint(xyzx) = ∅. By symmetry, it suffices
to show that x ∈ L3. By (C5), x /∈ L2. Let x ∈ L1, that is, x ∈ V (P). Since |P| ≤ 3
and there are no adjacent triangles in G, we deduce that y /∈ L1, and thus y ∈ L3
by (C5). Without loss of generality, assume that L(x) = {a}, L(z) = {a, b}, and
L(y) = {a, c, d} such that b /∈ {c, d} by Claim 1. By the minimality of G, G − yz
admits an L-coloringπ . In fact,π is also an L-coloring ofG since no conflict is caused
by adding the edge yz back to G − yz, a contradiction. 
�

Recall that anice2-chordof a cycleC is a pathQ = v0v1v2 such thatv0, v2 ∈ V (C),
v1 /∈ V (C), and v0v2 /∈ E(C). In the proofs of Claims 8–10, we shall define F1
and F2 to be the two cycles in F ∪ Q that contain Q. For i ∈ {1, 2}, let Gi =
G[Vint(Fi ) ∪ V (Fi )], and for u, v ∈ V (Fi ), let Fi (u, v) denote the path in Fi from u
to v along the boundary of F (except u and v). A nice 2-chord Q = v0v1v2 of F is
called worse if v0 ∈ V (P), v2 ∈ L3 and there is an L2-vertex v∗ ∈ V (F) such that
v∗v0, v∗v2 ∈ E(F). Note that v∗v0v1v2v∗ is a 4-cycle.

Claim 8 Let Q = v0v1v2 be a nice 2-chord of F. If v2 ∈ L2, then v0 is a middle
P-vertex.

Proof Suppose to the contrary that v0 is not a middle P-vertex. Without loss of gener-
ality, assume that P ⊆ F1 ∩ F . Furthermore, choose Q so that |V (G2)| is as small as
possible. By the minimality of G, G1 has an L-coloring π . Let L ′ be a list assignment
on V (G2) such that L ′(u) = {π(u)} if u ∈ {v0, v1, v2}, and L ′(u) = L(u) otherwise.
Let P ′ = v0v1v2. It is not difficult to see that (C1)–(C3) and (C5) hold for (G2; P ′, L ′).
If (C4) fails, implying v0v2 ∈ E(G2), then the definition of a nice 2-chord asserts that
|F2(v0, v2)| ≥ 1 and hence v0v2 is a chord of F . By Claim 6, v0v2 is bad. However,
v2 is an L2-vertex, which contradicts Claim 7.

If (C6) is true, then an L ′-coloring π ′ of G2 can be established. Consequently,
combining π and π ′ constructs an L-coloring of G, a contradiction. Now assume
that (C6) is not true for (G2; P ′, L ′). Then there exists an L ′

2-vertex z ∈ F2(v0, v2)
adjacent to at least two of v0, v1, v2. Note that z ∈ L2 and v2 ∈ L2. Since (C5) holds for
(G; P, L), we know that zv2 /∈ E(G) and thus |F2(z, v2)| ≥ 1. So zv0, zv1 ∈ E(G).
It follows that zv1v2 is a nice 2-chord where |V (G2)| is smaller, which contradicts the
choice of v0v1v2. 
�
Claim 9 Let Q = v0v1v2 be a nice 2-chord of F. If v2 ∈ L3 and v0 is a non-middle
P-vertex, then Q is worse.

Proof First we note that |Fi (v0, v2)| ≥ 1 for i ∈ {1, 2}. Since v0 is not a middle
vertex, without loss of generality, we may assume that P ⊆ F1 ∩ F . Then G1 has an
L-coloring π by the minimality of G. Let L ′ be a list assignment on V (G2) such that
L ′(u) = {π(u)} if u ∈ {v0, v1, v2}, and L ′(u) = L(u) otherwise. Let P ′ = v0v1v2.

Using an argument similar toClaim8,we can show that all conditions (C1)–(C5) are
satisfied for (G2; P ′, L ′). Thus, it remains to check that (C6) holds for (G2; P ′, L ′). Let
z ∈ F2(v0, v2) be an L ′

2-vertex adjacent to at least two of v0, v1, v2. If v1z /∈ E(G2),

123



On Choosability with Separation of Planar Graphs... 1513

then z is adjacent to both v0 and v2. Moreover, by Claim 7, we see that zv0 and zv2
are both edges of F2, and thus Q is worse. So now assume that v1z ∈ E(G2). That
is, v0v1z is a 2-chord. If |F2(z, v0)| ≥ 1, then v0 is a middle P-vertex by Claim 8,
a contradiction. So |F2(z, v0)| = 0. Similarly, |F2(z, v2)| = 0 since v2 cannot be
a middle P-vertex due to v2 ∈ L3+. So v0z ∈ E(F2) and v2z ∈ E(F2). However,
adjacent triangles zv0v1z and zv1v2z are established, which is a contradiction to the
assumption that G ∈ G. 
�
Claim 10 Let Q = v0v1v2 be a nice 2-chord of F with v0 ∈ V (P) and v2 ∈ L2 ∪ L3.
Then v1 is not adjacent to any vertex in V (P) \ {v0}.
Proof Assume to the contrary that there is u ∈ V (P) \ {v0} such that v1u ∈ E(G).
Without loss of generality, assume that u ∈ V (F1∩F). Then v0v1u . . . v0 is a 4−-cycle
since |P| ≤ 3. Since G ∈ G, we have that |F1(u, v2)| ≥ 2 and |F2(v0, v2)| ≥ 2. This
implies that uv1v2 and v0v1v2 are both nice 2-chords that are not worse. If v2 ∈ L2,
then both v0 and u are middle P-vertices by Claim 8, which is impossible since there
is at most one middle P-vertex. So assume that v2 ∈ L3. Then at least one of v0 and
u, say u, is not a middle P-vertex. By Claim 9, uv1v2 is worse, a contradiction. 
�

In the rest of the paper, we let N∗(v) = N (v) ∩ Vint(F) for any v ∈ V (F).

Claim 11 If xyz is a subpath of F with |L(y)| = 2, then L(x)∩ L(y) �= L(y)∩ L(z).

Proof Suppose to the contrary that L(y) = {a, b} and a ∈ L(x) ∩ L(y) and a ∈
L(y)∩L(z). By (C5), x, z ∈ L1∪L3. ByClaim6, there does not exist t ∈ V (F)\{x, z}
adjacent to y. Namely, N∗(y) = N (y) \ {x, z}.

Let L ′ be a list assignment on the vertices of G− y such that L ′(u) = L(u)\{b} for
u ∈ N∗(y), and L ′(u) = L(u) otherwise. Let G ′ be the graph obtained from G − y
by removing the edges between L ′

2-vertices with disjoint lists. Let P ′ = P . Now we
are going to verify that (C1)–(C6) are all valid for (G ′; P ′, L ′).

Let u ∈ V (G ′). Note that |L ′(u)| ≥ 2 if u ∈ N∗(y), and L ′(u) = L(u) if
u ∈ V (G ′)\N∗(y). So (C1)–(C4) hold automatically for (G ′; P ′, L ′). By the definition
of G ′, there are no adjacent L ′

2-vertices in N∗(y). So if (C5) is false for (G ′; P ′, L ′),
then the only possibility is that there is an edge t y∗ ∈ E(G) such that y∗ ∈ N∗(y),
t ∈ L2∩(V (F)\{x, y, z}). However, yy∗t forms a nice 2-chord such that neither of its
ends is a middle P-vertex, contradicting Claim 8. Hence (C5) holds for (G ′; P ′, L ′).

If (C6) is false for (G ′; P ′, L ′), then there must exist an L ′
2-vertex y∗ ∈ N∗(y)

adjacent to at least two vertices in P ′, say w1 and w2. If wi ∈ V (F) \ {x, y, z} for
some i ∈ {1, 2}, then yy∗wi is a nice 2-chord. By Claim 10, y∗ is not adjacent to
any P-vertex except wi , a contradiction. So assume that {w1, w2} = {x, z}. That is,
y∗x, y∗z ∈ E(G), so xyy∗x and zyy∗z are two adjacent triangles, also a contradiction.
Therefore (C6) holds for (G ′; P ′, L ′).

Now, by the minimality of G, G ′ admits an L ′-coloring π . Extend π to G by
coloring y with b to get an L-coloring of G, a contradiction. 
�
Claim 12 If F = xyzwx is a 4-cycle with x ∈ V (P) and y, w ∈ L1 ∪ L2, then
z ∈ L1 ∪ L2.
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Proof Suppose to the contrary that z ∈ L3. Obviously, there is a color c ∈ L(z) \
(L(y)∪ L(w)). Since xz, yw /∈ E(G) by G ∈ G, we see that N∗(z) = N (z) \ {y, w}.
Let L ′ be a list assignment on V (G) \ {z} such that L ′(u) = L(u) \ {c} for u ∈ N∗(z),
and L ′(u) = L(u) otherwise. Let G ′ be the graph obtained from G − z by removing
edges between L ′

2-vertices with disjoint lists. Let P ′ = P . It is easy to check that
(C1)–(C4) hold for (G ′; P ′, L ′). By the definition of G ′, no two L ′

2-vertices in N∗(z)
are adjacent inG ′. SinceG ∈ G, none of z∗ ∈ N∗(z) is adjacent to a vertex in {x, y, w}.
So (C5) and (C6) both hold for (G ′; P ′, L ′). Hence, by the minimality of G, G ′ is
L ′-colorable and we may easily obtain an L-coloring of G by further coloring z with
c, a contradiction. 
�
Claim 13 If |F | = 4, then |P| ≤ 2.

Proof Let F = xyzwx . Suppose to the contrary that |P| = 3, say P = wxy. Then
x, y, w ∈ L1. By (C6), we know that z ∈ L3, contradicting Claim 12. 
�
Claim 14 If xyz is a subpath of F with y ∈ L3, then x, z ∈ L2.

Proof Assume that the claim is not true. By Claim 4, |F | ≥ 4. So the proof can be
divided into the following two cases by symmetry.

Case 1. x, z ∈ L1 ∪ L3.
Choose a ∈ L(y). Let L ′ be the list assignment on V (G) such that L ′(y) =

L(y) \ {a}, and L ′(u) = L(u) for u ∈ V (G) \ {y}. This will change y into an L ′
2-

vertex, whereas all other vertices keep their color lists unaltered. Then (C1)–(C4) hold
obviously for (G; P, L ′). If there is an L2-vertex t ∈ V (F) \ {x, y, z} adjacent to y,
that is, t y is a chord, then we see that t should be an L3-vertex by Claim 7. This shows
that (C5) holds for (G; P, L ′). Moreover, if (C6) fails for (G; P, L ′), then x and z are
both P-vertices. This leads to |F | = 4 and |P| = 3, contradicting Claim 13. Thus,
(C6) holds for (G; P, L ′). By the choice of L , G has an L ′-coloring, which is also an
L-coloring of G.

Case 2. x ∈ L2 and z ∈ L1 ∪ L3.
In this case, we select c ∈ L(x) ∩ L(y). Let G ′ = G − xy. Let L ′ be the list

assignment on the vertices of G ′ such that L ′(y) = L(y) \ {c}, and L ′(u) = L(u) for
u ∈ V (G ′) \ {y}. Let P ′ = P . Similarly, as only the vertex y has changed its color
list, (C1)–(C4) hold for (G ′; P ′, L ′). F has at most one bad chord with one end y,
and it must be bad by Claim 6. Let yy′ be the chord, if any, so that yy′xy forms a
3-cycle. This implies that N (y) = N∗(y) ∪ {x, z} or N (y) = N∗(y) ∪ {x, z, y′}. This
fact, together with Claim 7, shows that (C6) holds for (G ′; P ′, L ′). If (C5) fails for
(G ′; P ′, L ′), then the only possible case is that yy′ ∈ E(G ′) with y, y′ ∈ L ′

2. Since
y′ ∈ L2, we get a contradiction to Claim 7. Thus, (C5) holds for (G ′; P ′, L ′). By
the minimality of G, G ′ is L ′-colorable, and hence G is L-colorable which is also an
L-coloring for G, a contradiction. 
�
Claim 15 If u ∈ V (F) ∩ L3, then u is adjacent to exactly two L2-vertices in V (F).

Proof We know |F | ≥ 4 and let xuy be a subpath of F . By Claim 14, x and y are
L2-vertices. If u′ ∈ V (F) \ {x, u, y}, then u′ ∈ L3 by Claim 7. 
�
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Claim 16 |F | ≥ 5.

Proof Suppose to the contrary that |F | ≤ 4. By Claim 4, |F | = 4, say F = xyzwx .
Then |P| ≤ 2 by Claim 13. If |P| = 2, say P = xy, then at least one of z and w, say
w, belongs to L3 by (C5). However, this contradicts Claim 14. Now assume |P| = 1,
say P = x . Again, by Claim 14, we deduce that y, w ∈ L2 and thus z ∈ L3 by (C5).
However, this is impossible by Claim 12. 
�

In what follows, we assume that F = v1v2 . . . vmvm+1 . . . vtv1 such that vi ∈
V (F) \ V (P) for i = 1, . . . ,m and v j ∈ V (P) for j = m + 1, . . . , t . By Claim 16,
t ≥ 5. Since |P| ≤ 3, we have that m ≥ 2 and t ≤ m + 3. Moreover, by Claim 14,
vi ∈ L2 for odd i and v j ∈ L3 for even j , where i, j ∈ {1, . . . ,m}. It follows from
vm ∈ L2 that m is odd and thus at least 3.

The proof of Theorem 2 splits into Cases I and II. In each case, we first pick a special
subset X of vertices in G, and then color the vertices in X with distinct colors from
their corresponding color lists. Letπ denote the L-coloring of X . Second, we define L ′
to be a list assignment on the vertices ofG−X such that L ′(u) = L(u)\{π(x) | x ∈ X
and xu ∈ E(G)}, and L ′(u) = L(u) otherwise. Let G ′ be the graph obtained from
G − X by removing all edges among the vertices with disjoint L ′-lists that are not in
E(P). Let P ′ = P . If (C1)–(C6) hold for (G ′; P ′, L ′), then G ′ admits an L ′-coloring
π ′. Combining π and π ′, we get an L-coloring of G, a contradiction.

Since v1, v3 ∈ L2, and v2 ∈ L3, any chord with v2 as an end is bad and both
ends are L3-vertices by Claim 6. This consequence gives us the following important
observation.

Observation 1 N (v2) = N∗(v2) ∪ {v1, v3} or N (v2) = N∗(v2) ∪ {v1, v3, v4}.
Fromnowon, there are nomore claims and the proof of ourmain theorem is starting.

Case I v2v4 /∈ E(G).
Then N (v2) = N∗(v2) ∪ {v1, v3} by Observation 1. We select a color c ∈ L(v2) \

(L(v1)∪ L(v3)). Since G ∈ G, we know that |N∗(v2)∩ N∗(v3)| ≤ 1. So we have two
subcases to consider.

Subcase I1 There is no vertex w ∈ N∗(v2) ∩ N∗(v3) such that c ∈ L(w).
Let X = {v2}. Set π(v2) = c. Observe that only vertices in N∗(v2) have changed

their color lists to L ′ lists, while other vertices in V (G ′)\N∗(v2) have kept their color
lists unaltered. Since |L ′(u)| ≥ 2 for each u ∈ N∗(v2), (C1)–(C4) hold automatically
for (G ′; P ′, L ′). If (C6) fails for (G ′; P ′, L ′), then there must exist x ∈ N∗(v2)
adjacent to at least two P ′-vertices. This contradicts Claim 10 since P ′ = P . Now we
are going to show that (C5) holds for (G ′; P ′, L ′).

Let Y1 and Y2 denote the set of L ′
2-vertices in N∗(v2) and in {v5, . . . , vm}, respec-

tively. Let Y3 = {v1, v3}. So Y1 ∪ Y2 ∪ Y3 forms the set of L ′
2-vertices in V (G ′). The

definition of G ′ implies that E(G ′[Y1]) = ∅. Since each vertex in Y2 ∪ Y3 is also an
L2-vertex in G and (C5) is valid for (G; P, L), we conclude that E(G ′[Y2 ∪Y3]) = ∅.
So, if (C5) is not true for (G ′; P ′, L ′), then there must exist a vertex u ∈ Y1 adjacent
to some vertex u′ ∈ Y2 ∪ Y3. By Claim 8, u′ /∈ Y2 since v2 is not the middle P-vertex.
Thus, u′ ∈ Y3, that is, u′ = v1 or u′ = v3. If u′ = v3, then u ∈ N∗(v2)∩ N∗(v3). This
contradicts the assumption on the current subcase.
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Fig. 1 One possible case that
uv1 ∈ E(G′) of Subcase I1

So nowwe assume that uv1 ∈ E(G), see Fig. 1. Note that c ∈ L(u). Without loss of
generality, assume that L(v1) = {a, b}, L(v2) = {c, d1, d2}, and L(u) = {c, c1, c2}.
By Claim 1, we may assume that L(vt ) = {a}. By Claim 11, a /∈ L(v2), and thus
b ∈ L(v2) by Claim 1. Since c /∈ L(v1), we may assume that b = d1. Since b �= c,
Claim 1 implies that b /∈ L(u). By the minimality ofG,G ′−uv1 admits an L-coloring
π ′ and thusG−uv1 is L-colorable by combiningπ andπ ′. Therefore,G is L-colorable
after replacing the edge uv1 back since the color b is not in L(u), a contradiction.

Subcase I2 There exists a vertex w ∈ N∗(v2) ∩ N∗(v3) such that c ∈ L(w).
Let X = {v2, v3}. Set π(v2) = c and π(v3) = d ∈ L(v3) \ L(v4). Note that d �= c.

Moreover, we claim that d /∈ L(w). Otherwise, we assume that L(v3) = {d, d1},
L(w) = {c, d, f } and L(v2) = {c, c1, c2}. Observe that L(v2) ∩ L(w) = {c} and
thus d /∈ {c1, c2} by Claim 1. It follows that d1 ∈ {c1, c2} by c �= d. By Claim 11,
d1 /∈ L(v4), hence L(v3) ∩ L(v4) = ∅, contradicting Claim 1.

Since v3 ∈ L2, we have N (v3) = N∗(v3) ∪ {v2, v4}. Note that only vertices in
N∗(v2) ∪ N∗(v3) have changed their color lists, whereas other vertices in V (G ′) \
(N∗(v2) ∪ N∗(v3)) have kept their color lists to L ′ lists unchanged. The fact that
d /∈ L(w) guarantees that |L ′(u)| ≥ 2 for each u ∈ N∗(v2) ∪ N∗(v3). So (C1)–(C4)
hold for (G ′; P ′, L ′). By Claim 10, it is easy to check that (C6) holds for (G ′; P ′, L ′).
Now we are about to verify (C5) for (G ′; P ′, L ′).

Denote by Y1, Y2, and Y3 the sets of L ′
2-vertices in N∗(v2), N∗(v3), and

{v5, . . . , vm}, respectively. Let Y4 = {v1}. Then Y1 ∪ Y2 ∪ Y3 ∪ Y4 forms the set of
L ′
2-vertices in V (G ′). By the definition of G ′ and that G ′ is in G, E(G ′[Y1 ∪Y2]) = ∅.

Since each vertex in Y3 ∪ Y4 is also an L2-vertex in G and (C5) is true for (G; P, L),
we deduce that E(G ′[Y3 ∪ Y4]) = ∅. Moreover, E(G ′[Y2 ∪ Y4]) = ∅ by the absence
of adjacent triangles, and E(G ′[Y3 ∪ Yi ]) = ∅ for i ∈ {1, 2} since there does not
exist u ∈ Y3 adjacent to u′ ∈ Y1 ∪ Y2 by Claim 8. So if (C5) fails for (G ′; P ′, L ′),
then E(G ′[Y1 ∪ Y4]) �= ∅. Similarly, we may let L(v1) = {a}, L(v1) = {a, b},
L(v2) = {c, d1, d2}, and L(u) = {c, c1, c2}. By a similar discussion as the previous
Case I1, we deduce that b /∈ L(u) and thus we may obtain an L-coloring of G after
replacing the edge uv1 back, a contradiction.
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Fig. 2 Two possible cases in Subcase II1

Case II v2v4 ∈ E(G).
In this case, N (v2) = N∗(v2) ∪ {v1, v3, v4}. Note that v2v4 is a bad chord of

F . By Claim 7, v4 ∈ L3, and hence v5 ∈ L2 and v5 �= vt . It is easy to see that
N (v4) = N∗(v4) ∪ {v2, v3, v5} or N (v4) = N∗(v4) ∪ {v2, v3, v5, v6}, as shown in
Fig. 2.

Subcase II1 There is a vertex y ∈ N∗(v5) ∪ {v6} such that yv4 ∈ E(G).
Since G contains no adjacent triangles, the existence of y is unique. Let X =

{v2, v3, v4}. Set π(v4) = a ∈ L(v4) \ (L(y) ∪ L(v5)) and π(v2) = b ∈ L(v2) \
(L(v1) ∪ {a}). If L(v3) �= {a, b}, we set π(v3) = c ∈ L(v3) \ {a, b}. Otherwise,
L(v3) = {a, b} and thus a /∈ L(v2). We color v3 with b and recolor v2 with a color
b′ ∈ L(v2) \ (L(v1) ∪ {b}). Thus, v2, v3, v4 can always be precolored with different
colors.

It is easy to see that y ∈ L3 by Claim 7 and (C1), and yv2, yv3 /∈ E(G) by G ∈ G.
Further, since a /∈ L(y), we have y ∈ L ′

3. Since N (v2) = N∗(v2) ∪ {v1, v3, v4},
there is no other chord starting from v2 except v2v4. Hence, (C1)–(C4) all hold for
(G ′; P ′, L ′). By Claim 10, one may easily verify that (C6) is true for (G ′; P ′, L ′). It
suffices to check that (C5) holds for (G ′; P ′, L ′).

Let Y1,Y2, and Y3 denote the set of L ′
2-vertices in N∗(v2), N∗(v4), and

{v7, . . . , vm}, respectively. Let Y4 = {v1, v5}. Similar to the discussion for Subcase I2,
we know that E(G ′[Y1∪Y2]) = ∅ and E(G ′[Y3∪Y4]) = ∅. If E(G ′[Y2∪Y4]) �= ∅, in
other words, there exists t ∈ Y2 such that tv1 ∈ E(G) or tv5 ∈ E(G), then since t �= y,
we can find a 3-cycle adjacent to a 4-cycle, a contradiction. Thus, E(G ′[Y2∪Y4]) = ∅.
Moreover, by Claim 8, we confirm that there does not exist a vertex u ∈ Y3 adjacent to
some vertex u′ ∈ Y1 ∪ Y2, and thus E(G ′[Y3 ∪ Yi ]) = ∅ for i ∈ {1, 2}. So if (C5) fails
for (G ′; P ′, L ′), then E(G ′[Y1∪Y4]) �= ∅. It implies that there exists u ∈ Y1 such that
uv1 ∈ E(G) or uv5 ∈ E(G). Obviously, it must be the case that uv1 ∈ E(G) since
G ∈ G. The following discussion is the same as previous Case I1.

Subcase II2 No vertex y ∈ N∗(v5) ∪ {v6} is adjacent to v4.
It follows that N (v4) = N∗(v4)∪{v2, v3, v5}. Let X = {v2, v3, v4}. Defineπ(v4) =

a ∈ L(v4) \ L(v5), π(v2) = b ∈ L(v2) \ (L(v1) ∪ {a}), and π(v3) = c ∈ L(v3) \ {b}
such that c �= a. Reasoning as for Subcase II1, one can verify that a, b, c exist. It
remains us to check that all (C1)–(C6) hold for (G ′; P ′, L ′). Though its proof is very
similar to that of above Case II1, we like to write, for completeness, its details.

Clearly, (C1)–(C4) all hold for (G ′; P ′, L ′). Again, by Claim 10, we see that (C6)
is valid for (G ′; P ′, L ′). We only need to check that (C5) holds for (G ′; P ′, L ′).
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Fig. 3 Three structures with given (∗, 1)-list assignment

Let Y1,Y2, and Y3 denote the set of L ′
2-vertices in N∗(v2), N∗(v4), and

{v7, . . . , vm}, respectively. Let Y4 = {v1, v5}. Similarly, we know that E(G ′[Y1 ∪
Y2]) = ∅ and E(G ′[Y3 ∪ Y4]) = ∅. If E(G ′[Y2 ∪ Y4]) �= ∅, then there exists t ∈ Y2
such that tv1 ∈ E(G) or tv5 ∈ E(G). By the assumption on the current subcase,
tv5 /∈ E(G) and so tv1 ∈ E(G). However, we can find a 3-cycle v2v3v4v2 adja-
cent to a 4-cycle v1v2v4tv1, a contradiction. Thus, E(G ′[Y2 ∪ Y4]) = ∅. Moreover,
by Claim 8, we confirm that there does not exist a vertex u ∈ Y3 adjacent to some
vertex u′ ∈ Y1 ∪ Y2, and thus E(G ′[Y3 ∪ Yi ]) = ∅ for i ∈ {1, 2}. So if (C5) fails
for (G ′; P ′, L ′), then E(G ′[Y1 ∪ Y4]) �= ∅. It follows that there is u ∈ Y1 such that
uv1 ∈ E(G) or uv5 ∈ E(G). If uv5 ∈ E(G), then a 3-cycle v2v3v4v2 is adjacent to a
4-cycle v2v4v5uv2, a contradiction. So uv1 ∈ E(G). By applying a similar argument
as Case I1, we may obtain an L-coloring of G. 
�

In Fig. 3, let thick edges denote the selected subpath P . Clearly, all conditions
(C1)–(C6) are satisfied for each of these three configurations with respect to the given
(∗, 1)-list assignment L .However, noneof themare L-colorable. These examples show
that Theorem 2 is best possible in the sense that none of the forbidden configurations
(A1), (A2), and (A3), stated in Sect. 2, can be allowed.
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