BULLETIN of the

Bull. Malays. Math. Sci. Soc. (2018) 41:1681-1695 MALAYSIAN MATHENATICAL @ CrossMark

https://doi.org/10.1007/s40840-016-0404-5 O RRA—

esfjournali 40840

Some Upper Bounds for the 3-Proper Index of Graphs

Hong Chang! - Xueliang Li! - Zhongmei Qin!

Received: 29 March 2016 / Revised: 2 July 2016 / Published online: 20 July 2016
© Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2016

Abstract A tree T in an edge-colored graph is a proper tree if no two adjacent edges
of T receive the same color. Let G be a connected graph of order n and k be a
fixed integer with 2 < k < n. For a vertex subset S € V(G) with |S| > 2, a tree
containing all the vertices of S in G is called an S-tree. An edge-coloring of G is
called a k-proper coloring if for every k-subset S of V (G), there exists a proper S-tree
in G. For a connected graph G, the k-proper index of G, denoted by px;(G), is the
smallest number of colors that are needed in a k-proper coloring of G. In this paper,
we show that for every connected graph G of order n and minimum degree § > 3,
px3(G) <n mg’]l) (14 05(1)) 4+ 2. We also prove that for every connected graph G
with minimum degree at least 3, px3(G) < px3(G[D]) + 3 when D is a connected
3-way dominating set of G and px3(G) < px3(G[D]) + 1 when D is a connected
3-dominating set of G. In addition, we obtain sharp upper bounds of the 3-proper
index for two special graph classes: threshold graphs and chain graphs. Finally, we
prove that px3(G) < |5 for any 2-connected graph with at least four vertices.

Communicated by Sandi Klavzar.

This work was supported by NSFC Nos. 11371205 and 11531011, “973” Program No. 2013CB834204,
and PCSIRT.

B Xueliang Li
Ixl@nankai.edu.cn

Hong Chang
changh @mail.nankai.edu.cn

Zhongmei Qin
qinzhongmei90@ 163.com

I Center for Combinatorics and LPMC, Nankai University, Tianjin 300071,
People’s Republic of China

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s40840-016-0404-5&domain=pdf

1682 H. Chang et al.

Keywords Edge-coloring - Proper tree - 3-proper index - Dominating set -
Ear-decomposition

Mathematics Subject Classification 05C05 - 05C15 - 05C40 - 05C69

1 Introduction

We follow [2] for graph theoretical notation and terminology not described here. Let
G be a graph, we use V(G), E(G), A(G), and §(G) to denote the vertex set, edge
set, maximum degree, and minimum degree of G, respectively. For D C V(G), let
D= V(G)\D, andlet G[D] denote the subgraph of G induced from D.Forv € V(G),
let N(v) denote the set of neighbors of v in G. For two disjoint subsets X and Y of
V(G), E[X, Y] denotes the set of edges of G between X and Y. The join of two graphs
G and H, denoted by G Vv H, is the graph obtained from a disjoint union of G and H
by adding edges joining every vertex of G to every vertex of H.

Let G be a non-trivial connected graph with an associated edge-coloring c :
E(G) — {1,2,...,t},t € N, where adjacent edges may have the same color. If
adjacent edges of G are assigned different colors by ¢, then c is a proper (edge-)
coloring. For a graph G, the minimum number of colors needed in a proper coloring
of G is referred to as the chromatic number of G and denoted by x'(G). A path in an
edge-colored graph G is said to be a rainbow path if no two edges on the path have
the same color. The graph G is called rainbow connected if for any two vertices there
is a rainbow path of G connecting them. An edge-coloring of a connected graph is a
rainbow connecting coloring if it makes the graph rainbow connected. For a connected
graph G, the rainbow connection number rc(G) of G is the smallest number of colors
that are needed in order to make G rainbow connected. These concepts of rainbow
connection of graphs were introduced by Chartrand et al. [7] in 2008. The readers who
are interested in this topic can see [14, 15] for a survey.

In [8], Chartrand et al. generalized the concept of rainbow connection to rainbow
index. A tree 7 in an edge-colored graph is a rainbow tree if no two edges of T receive
the same color. Let G be a connected graph of order n and k be a fixed integer with
2 < k < n. For a vertex subset S C V(G) with |S| > 2, a tree containing all the
vertices of S in G is called an S-tree. An edge-coloring of G is called a k-rainbow
coloring if for every k-subset S of V(G), there exists a rainbow S-tree in G. For a
connected graph G, the k-rainbow index of G, denoted by rx;(G), is the minimum
number of colors that are needed in a k-rainbow coloring of G. We refer to [4,5,10,17]
for more details.

Motivated by rainbow coloring and proper coloring in graphs, Andrews et al. [1]
and Borozan et al. [3] introduced the concept of proper-path coloring. Let G be a
non-trivial connected graph with an edge-coloring. A path in G is called a proper path
if no two adjacent edges of the path are colored with the same color. An edge-coloring
of a connected graph G is a proper-path coloring if every pair of distinct vertices of
G are connected by a proper path in G. An edge-colored graph G is proper connected
if any two vertices of G are connected by a proper path. For a connected graph G, the
proper connection number of G, denoted by pc(G), is defined as the smallest number

@ Springer

Some Upper Bounds for the 3-Proper Index of Graphs 1683

of colors that are needed in order to make G proper connected. For more details, we
refer to [11,12,16] and a dynamic survey [13].

Inspired by the k-rainbow index and the proper-path coloring, Chen et al. [9]
introduced the concept of k-proper index of a connected graph G. A tree T in an
edge-colored graph is a proper tree if no two adjacent edges of T receive the same
color. Let G be a connected graph of order n and k be a fixed integer with 2 < k < n.
An edge-coloring of G is called a k-proper coloring if for every k-subset S of V(G),
there exists a proper S-tree in G. In this case, G is called k-proper connected. For
a connected graph, the k-proper index of G, denoted by pxi(G), is defined as the
minimum number of colors that are needed in a k-proper coloring of G. Clearly, when
k =2, px>(G) is exactly the proper connection number pc(G) of G. Hence, we will
study pxr(G) only for k with 3 < k < n here. Let G be a non-trivial connected graph
of order n and size m, it is easy to see that pc(G) < px3(G) < --- < px,(G) < m.

The rest of this paper is organised as follows. In Sect. 2, we list some basic definitions
and fundamental results on the k-proper index of graphs. In Sect. 3, we study the 3-
proper index by using connected 3-way dominating sets and 3-dominating sets. We first
show that for every connected graph G with minimum degree at least 3, px3(G) <
px3(G[D]) + 3 when D is a connected 3-way dominating set of G. Then, we can
easily get that for every connected graph G on n vertices with minimum degree § > 3,
px3(G) < nlng‘sTﬁl)(l 4+ 0s(1)) + 2. At last, we show that px3(G) < px3(G[D]) + 1
when D is a connected 3-dominating set of G. In addition, we obtain the sharp upper
bounds of the 3-proper index for two special graph classes: threshold graphs and chain
graphs. In Sect. 4, we prove that px3(G) < | 5] for any 2-connected graph with at
least four vertices.

2 Preliminaries

To begin with this section, we present the following basic concepts.

Definition 2.1 Given a graph G, aset D € V(G) is called a dominating set if every
vertex of D is adjacent to at least one vertex of D. Furthermore, if the subgraph
G[D] is connected, it is called a connected dominating set of G. The domination
number y (G) is the number of vertices in a minimum dominating set of G. Similarly,
the connected dominating number y.(G) is the number of vertices in a minimum
connected dominating set of G.

Definition 2.2 Let s be a positive integer. A dominating set D in a graph G is called
an s-way dominating set if every vertex of D has at least s neighbors in G. In addition,
if G[D] is connected, we call D a connected s-way dominating set.

Definition 2.3 A set D C G is called an s-dominating set of G if every vertex of D
is adjacent to at least s distinct vertices of D. Furthermore, if G[D] is connected, then
D is called a connected s-dominating set. Obviously, a (connected) s-dominating set
is also a (connected) s-way dominating set.

Definition 2.4 BFS (breadth-first search) is an algorithm for traversing or searching
tree or graph data structures. It starts at the tree root and explores the neighbor vertices

@ Springer

1684 H. Chang et al.

first, before moving to the next level neighbors. A BFS-tree (breadth-first search tree)
is a spanning rooted tree returned by BFS. Let T be a BFS-tree with root r. For a
vertex v, the level of v is the length of the unique {v, r}-path in 7'; the ancestors of
v are the vertices on the unique {v, r}-path in T'; and the parent of v is its neighbor
on the unique {v, r}-path in 7. Its other neighbors are called the children of v. The
siblings of v are the vertices in the same level as v. The left (resp. right) siblings of v
are the siblings of v visited before (resp. after) v in BFS.

Remark BFS-trees have a nice property: every edge of the graph joins vertices on the
same level or consecutive levels. It is not possible for an edge to skip a level. Thus, a
neighbor of a vertex v has three possibilities: (1) a sibling of v; (2) the parent of v or
aright sibling of the parent of v; (3) a child of v or a left sibling of the children of v.

Next, we state some fundamental results on the k-proper index of graphs which
will be used in the sequel.

Proposition 2.5 [9] If G is a non-trivial connected graph of order n > 3 and H is a
connected spanning subgraph of G, then pxi(G) < pxi(H) for each integer k with
3 <k < n. In particular, pxy(G) < pxi(T) for every spanning tree T of G.

Proposition 2.6 [9] If T is a non-trivial tree of order n > 3, then px;(T) = X/(G) =
A(G) for each integer k with 3 < k < n.

Propositions 2.5 and 2.6 provide an upper bound of the k-proper index for a graph.

Proposition 2.7 [9] Let G be a non-trivial connected graph of order n > 3. Then,
2 < px3(G) < -+ < px,(G) <min{A(T) : T is a spanning tree of G}.

A Hamiltonian path in a graph G is a path containing every vertex of G and a
graph having a Hamiltonian path is a traceable graph. The following is an immediate
consequence of Proposition 2.7.

Corollary 2.8 [9] If G is a traceable graph of order n, then for each integer k with
3<k<n, px(G)=2.

Obviously, for any integer k with 3 < k < n, pxi(P,) = pxi(Cy) = pxr(W,) =
pxi(Ky,) = pxk(Kn,n) =2.

Lemma 2.9 If G is a connected graph with order ng and H is a connected subgraph
of G with order ny, then for each integer k with 3 < k < ny, we have pxi(G)
pxr(H) + ng — ny; for each integer k with ng < k < ng, we have pxi(G)
pxny (H) +ng —np.

=
=

Proof Let G’ be a graph obtained from G by contracting H to a single vertex. Then,
G’ is a connected graph of order ng — ny + 1. Thus, by Proposition 2.7, px(G') <
ng — ny for each integer k’ with 3 < k' < ng — ny + 1. Given an edge-coloring of
G’ with ng — ny colors such that G’ is k/-proper connected (3 < k' <ng—ng+1).
Now, go back to G, and color each edge outside H with the color of the corresponding
edge in G'. For H, if 3 < k < ny, then we assign px;(H) new colors to the edges

@ Springer

Some Upper Bounds for the 3-Proper Index of Graphs 1685

of H such that H is k-proper connected; if ny < k < ng, then we assign px,, (H)
new colors to the edges of H such that H is n g -proper connected. The resulting edge-
coloring makes G k-proper connected. Therefore, for each integer k with3 < k < np,
we have pxx(G) < pxi(H) 4+ ng — ng; for each integer k with ny < k < ng, we
have pxi(G) < px,,(H) + ng — ny. This completes the proof. O

3 The 3-Proper Index and Connected Dominating Sets

In this section, we give some upper bounds of the 3-proper index for a graph G by
using connected 3-way dominating sets and 3-dominating sets.

Let G be a graph, D C V(G),and v € D. We call apath P =vpv;---v,av—D
path if vo = vand V(P) N D = {v;}. Two or more paths are called internally disjoint
if none of them contains an inner vertex of another. If P is edge-colored, then we
denote by end(P) the color of the last edge v;—jv;. Now we give our main results.

Theorem 3.1 If D is a connected 3-way dominating set of a connected graph G, then
px3(G) < px3(G[D]) + 3. Moreover, this bound is sharp.

Proof Let D be a connected 3-way dominating set of a connected graph G. Forv € D,
its neighbors in D are called the feet of v, and the corresponding edges are called the
legs of v. A set of proper v — D paths {P1, P>, ..., P} are called strong-proper if
end(P;) # end(Pj) (1 <i < j < {).Fora vertex vin D, we call it good if there are
three internally disjoint strong-proper v — D paths. Otherwise, we call v bad. Denote
by c(e) the color of an edge e. Let T be a rooted BFS-tree. Pick a vertex v in 7', and let
£(v) be the level of v, p(v) the parent of v, ch(v) the child of v, and «(v) the ancestor
of v in the first level.

We now review the ideas in the proof. At first, we color the edges in E[D, D]
and E(G[D]) with three colors from {1, 2, 3} such that every vertex v of D is good.
Then, we extend the coloring to the whole graph by coloring the edges in G[D] with
px3(G[D]) fresh colors. Finally, we prove this edge-coloring is a 3-proper coloring
of G.

Assume that Ay, ..., Ay, By, ..., B;, C1, ..., C, are the connected components
of the subgraph G — D such that |V (4;)| = 1 (1 <i <), |V(B))| =21 < j <1),
and |V(Cr)| = 3 (1 < k < gq), where s, t, and g are non-negative integers, and
s =0ort = 0org = 0 means that there is no A;-component or B;-component or
Ck-component.

Foreach A; (1 <i <), let v be an isolated vertex of A;. Then, v has at least three
legs, we color one of them with 1, one of them with 2, and all the others with 3. Thus,
v is good.

For each B; (1 < j < 1), let uv be the edge of B;. Then, u has at least two legs,
we color one of them with 1, and all the others with 2. Also, v has at least two legs.
We color one of them with 2, and all the others with 3. Finally, we color uv with 2.
Thus, both # and v are good.

For each Cy (1 < k < gq), since |V (Cy)| > 3, it follows that there exists a vertex vg
in Cy having at least two neighbors in Cy. Starting from vy, we construct a BFS-tree
T of Cy. Suppose that the neighbors of v in Cy are {vy, v2, ..., vp} (p > 2), which

@ Springer

1686 H. Chang et al.

form the first level of 7. We call the subtree of T rooted atv; (1 <i < p — 1) of type
I and the subtree of T rooted at v, of fype II. There may be many subtrees of type ,
but only one subtree of type /I. For each vertex v in Cy, we denote one leg of v by
ey, the corresponding foot of v by #(v), the unique edge joining v and its parent p(v)
in T by f,. Now, we color the edges e, and f, as follows: c(ey,) = 3; c(fy;) = 2;
and c(ey,) = 1for (1 <i < p—1); c(fvp) = 1and c(evp) = 2; for each vertex v
in V(Cp) \ {vi, v2, ..., vp}, if a(v) = vp, then set c(f,) = 2 and c(ey) = 3 when
L(v) = 0 (mod 3), c(fy) = 1 and c(ey) = 2 when £(v) = 1 (mod 3), c(fy) = 3
and c(ey) = 1 when £(v) = 2 (mod 3); if a(v) = v; (1 <i < p — 1), then set
c(fy) = 1 and c(ey) = 3 when £(v) = 0 (mod 3), c¢(f,) = 2 and c(e,) = 1 when
L(v) = 1 (mod 3), c(fy) = 3 and c(ey) = 2 when £(v) = 2 (mod 3). Note that the
subtrees of the same type are colored in the same way.

Now, for any non-leaf vertex v in 7, there exist three internally disjoint strong-
proper v — D paths. As for the root vg, P;° = vot (v); P," = vovit(v1); P3U° =
VoVt (vp). As for any other non-leaf vertex vin T, P = vt (v); Py = vp(v)t(p(v));
Py = vch(v)t(ch(v)). Hence, all the non-leaf vertices of T are good.

It remains to deal with the leaves of T'. Pick a leaf w in T'. Since w has no children,
it has exactly two internally disjoint strong-proper w — D paths: P* = wt(w); Py’ =
wp(w)t(p(w)). In order to make w good, we need to provide the third path P;” which
is internally disjoint with P and P,". Since w € D, we have d(w) > 3. It follows that
w has another neighbor which is not #(w), p(w). Let W = {w = wy, wa, ..., wy}
be the children of p(w) such that w; (1 <i < a) is a leaf of T and in the subtrees
of the same type. Then, G[W] contains a spanning subgraph H which consists of
the components of the following two types: (1) a star, (2) an isolated vertex, where
the isolated vertices of H are just the isolated vertices of G[W]. For each component
of type (1), let S be the star and V(S) = {w;,, wi,, ..., w;, } (r > 2), where w;, is
the central vertex of S. Now we recolor the edge uy, and color all edges of S. If
w;, is in the subtree of type /, then recolor w;, with 1 and color all edges of § with
2 when £(w;,;) = 0 (mod 3); recolor w;, with 2 and color all edges of S with 3
when £(w;,) = 1 (mod 3); recolor ew;, with 3 and color all edges of S with 1 when
£(w;;) = 2 (mod 3). If w;, is in the subtree of type /I, then recolor uy, with 2 and
color all edges of S with 1 when £(w;,) = 0 (mod 3); recolor w;, with 1 and color all
edges of S with 3 when ¢(w;,) = 1 (mod 3); recolor u;, with 3 and color all edges of
S with 2 when £(w;,) = 2 (mod 3). Note that the recoloring of the edge w;, has no
influence on p(w) since p(w) has at least two children in this case. It is easy to check
that for the center w;, of S, there exists a required path P3wi‘ = wj, wj,t(w;,), and for
every vertex w;, € S (2 <t < r), there exists a required path P3wi’ = w;, wi, t (w;,).
Thus, every leaf in the components of type (1) is good.

For each component of type (2), let w be the isolated vertex and w’ be another neigh-
bor of w. Note thatw’ ¢ W.Ifw’ € D, then we color the edge ww’ as follows: if w is in
the subtree of type I, then we color c(ww’) = 1 when £(w) = 0 (mod 3), c(ww’) = 2
when £(w) = 1 (mod 3), c(ww’) = 3 when £(w) = 2 (mod 3); if w is in the subtree
of type I, then we color c(ww’) = 2 when £(w) = 0 (mod 3), c(ww’) = 1 when
L(w) =1 (mod 3), c(ww’) = 3 when £(w) = 2 (mod 3). Note that for any vertex w
in the component of type (2) satisfying w” € D, we have Py’ = ww'. Thus, w is good.

@ Springer

Some Upper Bounds for the 3-Proper Index of Graphs 1687

Now we suppose w’ € T. Then, w' is either a non-leaf vertex of T or a leaf vertex
of T with p(w’) # p(w). Notice that if e, is recolored, then w’ is a good leaf, and w’
has a neighbor w” such that w” is a sibling of w’. We distinguish the following four
cases:

Case 1 w and w' are in the subtree of type L.

Since T is a BFS-tree, we have that £(w’) = £(w) — 1 or £(w') = £(w) or
£(w’) = £(w) + 1. Then, we consider the following three subcases.

Subcase 1.1 £(w) = 0 (mod 3).

If £(w’) = £(w) — 1, then color ww’ with 1. Thus, P}’ = ww’p(w")t(p(w")). If
w’ is bad, then P3w/ = w'wt(w).

If £(w') = £(w), then color ww" with 3. Thus, Py’ = ww’'p(w’)p(p(w)t(p
(p(w"))). If w' is bad, then Pgw/ = w'wp(w) p(p(w)t (p(p(w))).

If £(w) = £(w) + 1, then color ww’ with 2. If e, is recolored, then w’ is already
good. Thus, P¥ = ww'w”r(w”) (where w” is a sibling of w’). If e,/ is not recolored,

then P}” = ww't(w’). In this situation, if w’ is bad, then P3w/ = w'wpw)t(p(w)).
Subcase 1.2 £(w) = 1 (mod 3).

If £(w") = £(w) — 1, then color ww’ with 2. Thus, P}’ = ww’p(w")t(p(w")). If
w’ is bad, P3w/ = w'wt(w).

If £(w") = £(w), then color ww’ with 1. If w and w’ are in the first level,
then w’ has at least one child since p(w’) = p(w) and is already good. Thus,
Py = wuw'ch(w')t(ch(w’)). Now suppose that w and w’ are not in the first

level. Then, Py’ = ww' pw’)p(p(w)t(p(p(w))). If w' is bad, then P3w/ =

w'wp(w) p(p(w)t (p(p(w))).
If ¢(w’) = €(w) + 1, then color ww’ with 3. If e, is recolored, then w’ is already
good. Thus, P’ = ww'w”t(w"”) (where w” is a sibling of w’). If e,/ is not recolored,

then P}’ = ww't(w’). In this case, if w’ is bad, then P3w/ = w'wp(w)t(p(w)).
Subcase 1.3 £(w) = 2 (mod 3).

If £(w’) = £(w) — 1, then color ww’ with 3. Thus, P}’ = ww’p(w")t(p(w")). If
w’ is bad, then P3w, = w'wt(w).

If £(w) = £(w), then color ww’ with 2. Thus, Py’ = ww'p(w")p(p(w))t(p
(p(w"))). If w' is bad, then P3w/ = w'wp(w) p(p(w)t(p(p(w))).

If ¢(w) = €(w) + 1, then color ww’ with 1. If e, is recolored, then w’ is already
good. Thus, P = ww'w”t(w"”) (where w” is a sibling of w’). If e, is not recolored,

then Py’ = ww't(w’). In this case, if w’ is bad, then P3w/ = w'wp(w)t(p(w)).
Thus, both w and w’ are good.

Case 2 w is in the subtrees of type / and w’ is in the subtree of type II.

Since T is a BFS-tree, it follows that £(w’) = £(w) — 1 or £(w’) = £(w). Then,
we consider the following three subcases.

@ Springer

1688 H. Chang et al.

Subcase 2.1 ¢(w) = 0 (mod 3).

If £(w') = £(w) — 1, then we distinguish two situations. If e, is not recolored,
then color ww’ with 2. Thus, P}" = ww'r(w’). In this situation, if w’ is bad, then

P3w/ = w'wt(w). If e,y is recolored, then color ww’ with 3 and w’ is already good.
Thus, P3" = ww'w”t(w") (where w” is a sibling of w’).

If £(w) = £(w), then color ww’ with 3. Thus, P} = ww'p(w)t(p(w’)). If w’ is
bad, then Py = w'wp(w)t (p(w)).

Subcase 2.2 ¢(w) = 1 (mod 3).

If £(w') = £(w) — 1, then color ww’ with 3. Thus, P;" = ww'p(w") p(p(w))t(p
(p(w')). If w’ is bad, then Py = w'wp(w) p(p(w))t (p(p(w))).

If £(w’) = £(w), then we distinguish two situations. If e,y is not recolored, then
color ww’ with 3. Thus, P;" = ww’t(w’). In this situation, if w’ is bad, then P3w/ =
w'wt(w). If e,y is recolored, then color ww’” with 2 and w’ is already good. Thus,
Py = ww'w”t(w”) (where w” is a sibling of w’).

Subcase 2.3 £(w) = 2 (mod 3).

If £(w') = £(w) — 1, then color ww’ with 2, Thus, P}" = ww’p(w")t(p(w")). If
w’ is bad, then P3w, = w'wpw)t(p(w)).
If £(w’) = £(w), then color ww’ with 1. Thus, P’ = ww'p(w')p(p(w))t(p

(p(w)). If w’ is bad, then P = w'wp(w)p(pw)t (p(p(w))).
Thus, both w and w’ are good.
Case 3 If w is in the subtrees of type II and w’ is the subtree of type I.

Since T is a BFS-tree, we have that £(w’) = £(w) or £(w") = £(w) + 1. Then, we
consider the following three subcases.

Subcase 3.1 £(w) = 0 (mod 3).

If £(w’) = £(w), then color ww’ with 3. Thus, Py’ = ww'p(w")t(p(w')). If w' is
bad, then P{*" = w'wp(w)t(p(w)).

If £(w") = £(w) + 1, then color ww’ with 3. Thus, P¥¥ = ww’p(w’) p(p(w))t(p
(p(w"))). If w' is bad, then P3w/ = w'wp(w) p(p(w)t(p(p(w))).

Subcase 3.2 ¢(w) = 1 (mod 3).

If £(w’) = £(w), then we distinguish two situations. If e,y is not recolored, ttlen
color ww" with 3. Thus, P;" = ww't (w’). In this situation, if w’ is bad, then P;" =
w'wt(w). If e,y is recolored, then color ww’” with 2 and w’ is already good. Thus,
P = ww'w"t (w”) (where w” is a sibling of w’).

If £(w’) = £(w) + 1, then color ww’ with 2, Thus, P’ = ww’ p(w’)t(p(w’)). If
w’ is bad, then P3w/ = w'wpw)t(p(w)).

Subcase 3.3 £(w) = 2 (mod 3).

If £(w) = £(w), then color ww’ with 1. Thus, P’ = ww'p(w’)p(p(w))t(p
(p(w"))). If w’ is bad, then P3“’/ = w'wpw) p(pw)t(p(p(w))).

@ Springer

Some Upper Bounds for the 3-Proper Index of Graphs 1689

If £(w’) = £(w) + 1, then we distinguish two situations. If e, is not recolored,
then color ww’ with 2. Thus, P;" = ww't(w’). In this situation, if w’ is bad, then

P3w/ = w'wt(w). If e,y is recolored, then color ww’ with 3 and w’ is already good.
Thus, Py’ = ww'w”t(w") (where w” is a sibling of w’).
Thus, both w and w’ are good.

Case 4 If w, w’ are in the subtree of type /1.

Since T is a BFS-tree, it follows that £(w’) = £(w) — 1 or £(w') = £(w) or
£(w”") = £(w) + 1. Then, we consider the following three subcases.

Subcase 4.1 £(w) = 0 (mod 3).

If £(w’) = £(w) — 1, then color ww’ with 2. Thus, P}’ = ww’p(w")t(p(w")). If
w’ is bad, then P = w'wr (w).

If £(w’) = £(w), then color ww’ with 3. Thus, P’ = ww'p(w')p(p(w))t(p
(p(w"))). If w' is bad, then P3w/ = w'wp(w) p(p(w)t(p(p(w))).

If £(w") = £(w) + 1, then color ww’ with 1. If e, is recolored, then w’ is already
good. Thus, Py’ = ww'w"t(w") (where w” is a sibling of w’). If e, is not recolored,
then P}’ = ww't(w’). In this case, if w’ is bad, then P3w/ = w'wp(w)t(p(w)).

Subcase 4.2 ¢(w) = 1 (mod 3).

If £(w’) = £(w) — 1, then color ww’ with 1. Thus, P;" = ww’p(w")t(p(w")). If
w'’ is bad, then P3w, = w'wt(w).

If £(w") = £(w), then color ww’ with 2. If w and w’ are in the first level,
then w’ has at least one child since p(w’) = p(w) and is already good. Thus,

Py = ww'ch(w)t(ch(w’)). Now suppose that w and w’ are not in the first
level. Then, P}’ = ww'pw’)p(p(w)t(p(p(w’))). If w' is bad, then P3w/ =
w'wp(w) p(p(w)t(p(p(w))).

If £(w) = £(w) + 1, then color ww’ with 3. If e, is recolored, then w’ is already
good. Thus, Py’ = ww'w”t(w”) (where w” is a sibling of w"). If e, is not recolored,

then P;” = ww't (w’). In this case, if w’ is bad, then P3w/ = w'wp(w)t(p(w)).
Subcase 4.3 £(w) = 2 (mod 3).

If £(w) = £(w) — 1, then color ww’ with 3. Thus P;" = ww’'p(w")r(p(w")). If
w' is bad, then P3w/ = w'wt(w).

If ¢(w') = £(w), then color ww’ with 1. Thus, P3" = ww'p(w’)p(p(w')t(p
(p(w"))). If w’ is bad, then P = w'wp(w) p(p(w))t(p(p(w))).

If £(w") = £(w) + 1, then color ww’ with 2. If e, is recolored, then w’ is already
good. Thus, Py’ = ww'w”t(w”) (where w” is a sibling of w"). If e,/ is not recolored,
then P}” = ww't(w’). In this case, if w’ is bad, then P3w/ = w'wp(w)t(p(w)).

Thus, both w and w’ are good.

After the above process, w becomes good, and so does w’ if w’ is bad. Note that
all the good vertices are still good since we just color the edge ww’. As a result, every
vertex in 7T is good.

@ Springer

1690 H. Chang et al.

If there still remain uncolored edges in E[D, D] and E(G[D]), then color them
with 1. Now we have a coloring of all the edges in E[D, D]and E(G[D]) using three
colors from {1, 2, 3} such that all the vertices in D are good. Next, we color the edges
in G[D] with px3(G[D]) fresh colors such that for each triple of vertices in D, there
is a proper tree in G[D] connecting them. Thus, we provide an edge-coloring ¢ of G
using px3(G[D]) + 3 colors.

Now we show that this edge-coloring c is a 3-proper coloring of G, which implies
px3(G) < px3(G[D])+3. We first claim that for any three vertices u, v, w in D, there
exists a proper u — D path P, a proper v — D path P?, and a proper w — D path P
such that P* U PY U PV is also proper. Since this edge-coloring makes every vertex of
D good, we only need to consider the situation that u, v, w are in the same component
of G — D. So, u,v,w € Cr (1 <k < ¢g). Note that for any vertex x # vy € Cg,
there are three internally disjoint strong-proper x — D paths P;', Py, Py such that
P =xt(x)and Py = xp(x)t(p(x)).Forvy € Cy, the three internally disjoint strong-
proper vg — D paths are P = vt (vo), P,° = vovit(v1), and P3° = voupt (vp). If
{c(ew), c(ey), c(ey)} contains three distinct colors, then P{' U PP’ U P is also proper.
If {c(ey), c(ey), c(ey)} contains two distinct colors, without loss of generality, assume
c(ey) # c(ey), then it is easy to check that either P{' U P/’ U P,” or P/' U P U Py’
is proper. Now we assume that c(e,) = c(ey) = c(ey). If u, v, w are in the subtrees
of the same type, then we distinguish the following situations. If one of {e,, e,, €,,} is
recolored, without loss of generality, assume that e, is recolored, then Py U P/’ U P’
is proper. If two of {e,, e, ey} are recolored, without loss of generality, assume e,
is not recolored, then P;' U P U P," is proper. If e, e,, and e, are simultaneously
recolored or not recolored, without loss of generality, assume v is visited before w
in T, then P U P} U P3’ is proper. Now suppose that u, v, w are in the subtrees of
different types. Without loss of generality, assume u, v are in the subtree of the same
type, and w is in the subtree of the other type. If ¢,, e,, and ¢,, are simultaneously
recolored or not recolored, then Pj' U Py U P," is proper. If e, and e, are recolored,
ey is not recolored, then P{' U Py U P;" is proper. If one of {e,, e,} is recolored, e,
is recolored, without loss of generality, assume e, is recolored, then P, U P U P}" is
proper. If one of {e,, e,} is recolored, e,, is not recolored, without loss of generality,
assume e, is recolored, then P U Py U P," is proper. If ¢, and e, are not recolored,
ey is recolored, then P{' U Py U P3’ is proper. Thus, the claim holds.

Next, it is sufficient to show that for any three vertices u, v, w of G, there exists a
proper tree connecting them. If all of them are in D, then there is already a proper tree
connecting them in G[D]. If one of them is in D, without loss of generality, say u € D,
then any leg of u (colored by 1, 2, or 3) together with the proper tree connecting v, w,
and the corresponding foot of # in G[D] forms a proper {u, v, w}-tree. If two of them
are in D, without loss of generality, say u, v € D, then there exists a proper u — D
path P“, a proper v — D path PV such that P* U P? is also proper. Assume that the
endvertices of P¥, P in D are u’, v, respectively. Then, the proper tree connecting
u', v/, and w together with the paths P* and PY forms a proper {u, v, w}-tree. If all
of them are in D, then there exists a proper u — D path P“, a proper v — D path P?,
and a proper w — D path P¥ such that P* U PY U PY is also proper. Assume that the
endvertices of P*, PY, and PY in D are u’, v', w’, respectively. Then, the proper tree

@ Springer

Some Upper Bounds for the 3-Proper Index of Graphs 1691

in G[D] connecting u’, v/, w’ together with the paths P*, PY, and P* forms a proper
{u, v, w}-tree.

To complete the proof of Theorem 3.1, we show the sharpness of the bound with the
graph class G. Let p be an integer with p > 3, G = {G: G is a graph obtained by taking
p complete graphs K;,, K;,, ..., K,-p with just a vertex in common, say vg fori; > 4
when 1 < j < p}. For any graph G in G, it is obvious that D = {vg} is a connected
3-way dominating set. By Theorem 3.1, we have px3(G) < px3(G[D]) +3 =3.0n
the other hand, it is easy to show that px3(G) = 3. Thus, the bound is sharp. O

Corollary 3.2 Let G be a connected graph with minimum degree 5(G) > 3. Then,
px3(G) = y.(G) + 2

Proof Since §(G) > 3, every connected dominating set of G is a connected 3-way
dominating set. Consider a minimum connected dominating set D with size y.(G).
Then, px3(G[D]) < |D|—1 = y.(G)— 1. We have that px3(G) < px3(G[D])+3 <
¥¢(G) + 2 by Theorem 3.1. m]

Caro et al. [6] showed that for every connected graph G of order n and minimum
degree §, y.(G) = nlng‘sTJ“]l) (1 4 05(1)). With the help of Corollary 3.2, we obtain the
following result.

Corollary 3.3 Let G be a connected graph with minimum degree §(G) > 3. Then,

px3(G) < n™EEL (1 + 05(1)) + 2.

Next, we will give another upper bound for the 3-proper index of graphs with respect
to the connected 3-dominating set.

Theorem 3.4 If D is a connected 3-dominating set of a connected graph G with
minimum degree §(G) > 3, then px3(G) < px3(G[D]) + 1. Moreover; the bound is
sharp.

Proof Since D is a connected 3-dominating set, every vertex in D has at least three
neighbors in D. Let t = px3(G[D]). We first color the edges in G[D] with ¢ different
colors from {2, 3, ..., ¢ 4+ 1} such that for every triple of vertices in D, there exists a
proper tree in G[D] connecting them. Then, we color the remaining edges with color
1.

Next, we will show that this edge-coloring makes G 3-proper connected. For any
triple {u, v, w} of vertices in G, if all of them are in D, then there is already a proper
tree connecting them in G[D]. If one of them is in D, without loss of generality, say
u € D, then let u1 be the neighbor of u in D. Thus, the proper tree connecting u, v, w
in G[D] together with the edge uu forms a proper {u, v, w}-tree in G. If two of them
are in D, without loss of generality, say u, v € D, then let u1, v; be the two distinct
neighbors of u, v in D, respectively. Thus, the proper tree connecting u1, vy, w in
G[D] together with two edges uu, vvy forms a proper {u, v, w}-tree in G. If all of
them are in D, then let uj, v;, w; be the three distinct neighbors of u, v, w in D,
respectively. Thus, the proper tree connecting u1, v, w; in G[D] together with three
edges uui, vvy, wwi forms a proper {u, v, w}-tree in G.

The sharpness of the bound can be seen from the following corollaries. O

@ Springer

1692 H. Chang et al.

Next, we give some sharp upper bounds for the 3-proper index of two special graph
classes: threshold graphs and chain graphs, which implies the sharpness of the bound
in Theorem 3.4. A graph G is called a threshold graph, if there exists a weight function
w: V(G) — R and areal constant ¢ such that two vertices u, v € V(G) are adjacent if
and only if w(u) +w(v) > t. We call ¢ the threshold of G. A bipartite graph G(U, V)
is called a chain graph, if the vertices of U can be ordered as U = {uy, us, ..., us}
such that N(u1) € N(up) C --- C N(uy).

Corollary 3.5 Let G be a connected threshold graph with §(G) > 3. Then, px3(G) <
3, and the bound is sharp.

Proof Suppose that V(G) = {v, va, ..., vy} where w(vy) > w(vp) > -+ > w(vy).
Since 6(G) > 3, vy, v2, v3 are adjacent to all the other vertices in G. Thus,
D = {v1, v, v3} is a connected 3-dominating set of G. Since G[D] = K3, we have
px3(G[D]) = 2. It follows that px3(G) < px3(G[D]) + 1 = 3 by Theorem 3.4.
Next, we give a class of threshold graphs which have px3(G) = 3. Consider the
graph G = rK; Vv K3, where r > 2 X 23 4+ 1. Let V(rKy) = {vi,v,...,v,} and
V(K3) = {uy, us, uz}. Obviously, it is a threshold graph (u1, us, u3 can be given a
weight 1, others a weight 0, and the threshold 1). We will show that px3(G) > 3. By
contradiction, we assume that G has a 3-proper coloring with 2 colors. For each vertex
v; € rKy, there exists a 3-tuple C; = (c1, ¢2, ¢3) so that c(vju;) =c; for1 < j < 3.
Therefore, each vertex v; € r K has 2° different ways of coloring its incident edges
using 2 colors. Since r > 2 X 23 4+ 1, there exist at least three vertices Vi, v, 0k €V
such that C; = C; = Cy. Itis easy to check that there is no proper tree connecting v;,
vj, U in G, a contradiction. O

Corollary 3.6 Let G be a connected chain graph with §(G) > 3. Then, px3(G) < 3,
and the bound is sharp.

Proof Let G = G(U, V) be a connected chain graph, where U = {uy, uo, ..., us},
V = {v1,v2,...,v} such that N(u;) € N(up) € --- € N(uy). Since the mini-
mum degree of G is at least three, u;(s —2 < i < s) is adjacent to all the vertices
in V, and N(u1) has at least three vertices, say {vy, vz, v3}. Clearly, vi, vz, v3 are
adjacent to all the vertices in U. Therefore, D = {v1, v, v3, us_2, us_1, s} is a con-
nected 3-dominating set of G. Moreover, G[D] = K3 3 is a traceable graph, we have
px3(K33) = 2. By Theorem 3.4, we have that px3(G) < px3(K33)+1 <3.

Now, we give a class of chain graphs which have px3(G) = 3. Consider the chain
graph G = G[U, V], where U = {uj,us,...,us}, V = {v1, v2,...v} such that
N(@1) = N(uz) = -+ = N(us—3) = {v1, v2, v3}, N(us—2) = N(us—1) = N(us) =
{vi,va,..., v },and t > 2 x 23 + 4. Next, we show that px3(G) > 3. Suppose not,
we assume that G has a 3-proper coloring with 2 colors. For each vertex v; € V
for 4 < i < t, there exists a 3-tuple C; = (c1, ¢2, ¢3) such that c(u;v;) = c; for
s —2 < j < s. Therefore, each vertex v; € V (4 <i < t) has 23 different ways of
coloring its incident edges using 2 colors. Since 1 — 3 > 2 x 23 + 1, there exist at
least three vertices v;, vj, vg € V \ {v1, v2, v3} such that C; = C; = Cy. Itis easy to
check that there is no proper tree connecting v;, v;, vt in G, a contradiction. O

@ Springer

Some Upper Bounds for the 3-Proper Index of Graphs 1693

4 The 3-Proper Index of 2-Connected Graphs

In this section, we give an upper bound for the 3-proper index of 2-connected graphs.
The following notation and terminology are needed in the sequel.

Definition 4.1 Let F be a subgraph of a graph G. An ear of F in G is a non-trivial
path in G whose endvertices are in F' but whose internal vertices are not. A nested
sequence of graphs is a sequence (Go, G1, ..., Gi) of graphs such that G; C G;+1,
0 < i < k. An ear-decomposition of a 2-connected graph G is a nested sequence
(Go, G1, ..., Gg) of 2-connected subgraphs of G such that (1) Gy is a cycle; (2)
G; =G;_1UP;,where P;isanearof G;_1inG,1 <i <k;(3) G, =G.

From Corollary 2.8, we have that if G is a 2-connected Hamiltonian graph of order
n (n > 3), then px3(G) = 2. Thus, we only need to consider the non-Hamiltonian
graphs.

Let G be a 2-connected non-Hamiltonian graph of order n (n > 4). Then, G must
have an even cycle. In fact, since G is 2-connected, G must have a cycle C. If C is an
even cycle, we are done. Otherwise, C is an odd cycle, we then choose an ear P of C
such that V(C) NV (P) = {a, b}. Since the lengths of the two segments between a, b
on C have different parities, P joining one of the two segments forms an even cycle.
Then, starting from an even cycle Gy, there exists a non-increasing ear-decomposition
(Go, Gy, ...,G,Gyy1,...,Gy) of G, such that G; = G;_1 U P; (1 <i < k) and
P; is a longest ear of G;_1, i.e., £(P1) = £(P2) > --- > £(Py), where £(P;) denotes
the length of P;. Suppose that V(P;) N V(Gi—-1) = {ai, bi} (1 <i < k). We call
the distinct vertices a;, b; (1 <i < k) the endpoints of the ear P;, the edges incident
to the endpoints in P; the end-edges of P;, the other edges the internal edges of P;.
Without loss of generality, suppose that £(P;) > 2 and £(Py41) = -+ = £(Py) = 1.
So, G, is a 2-connected spanning subgraph of G. Since G is non-Hamiltonian graph,
we have ¢ > 2. Denote the order of G; (0 <i < k) by n;.

Theorem 4.2 Let G be a 2-connected non-Hamiltonian graph of order n (n > 4).
Then, px3(G) < |5].

Proof Since G; (t > 2) in the non-increasing ear-decomposition is a 2-connected
spanning subgraph of G, it only needs to show that G, has a 3-proper coloring with
at most | 5 | colors by Proposition 2.5.

Next, we will give an edge-coloring ¢ of G; using at most L%J colors. Since G
is Hamiltonian, It follows from Corollary 2.8 that we can color the edges of G| with
two different colors from {1, 2} such that for every triple of vertices in G, there
exists a proper tree in G| connecting them. Then, we color the end-edges of P>; 4
and P,;_3 with fresh color j for 3 < j < [#], Finally, we color the internal
edges of P; (2 < i < t) with two colors from {1, 2} such that P; is a proper path if
£(P;) > 3. One can see that we color all the edges of G, with [#] colors. Since
no+>i_ (((P;)—1) = nand ng > 4, we have that [2] < | 2, the equality holds
if and only if np = 4 and £(P;) = 2.

Now we show that this edge-coloring is a 3-proper coloring of G,. We apply induc-
tion on t (t > 2). If r = 2, then let u, v, w be any three vertices of G. If all of

@ Springer

1694 H. Chang et al.

{u, v, w} are in G, then there is already a proper tree connecting them in G1. If two
of {u, v, w} are in G, without loss of generality, assume that u € V(P») \ {a2, b2},
then the proper tree connecting az, v, w in G together with the proper path u Pray
forms a proper {u, v, w}-tree in G». If one of {u, v, w} is in G, without loss of gener-
ality, assume that u, v € V(P») \ {a2, by} and v is on the proper path u P>a;, then the
proper tree connecting az, w in G together with the proper path u P>a, forms a proper
{u, v, w}-tree in G». If none of {u, v, w} is in G1, then {u, v, w} C V(P2) \ {az, b2}.
Thus, there is already a proper path connecting them in P,. Now we assume that
this edge-coloring makes G; (1 < i < t — 1) 3-proper connected. It is sufficient
to show that this edge-coloring makes G, 3-proper connected. For any three vertices
{u, v, w} of Gy, if all of them are in G;_1, then there is already a proper tree in
G_1 connecting them. If two of {u, v, w} are in G;_1, without loss of generality, say
u € V(Py)\{ay, b;}.If t is even, then the color of the end-edges of P; does not appear in
G;_1. Thus, the proper tree connecting a;, v, w in G,_; together with the proper path
u Pya; forms a proper {u, v, w}-tree in G;. If ¢ is odd, then the end-edges of P,_; and
P, have the same color which does not appear in G,_». We consider the following two
cases.

Case 1 |[V(P)NV(P-DI\V(Gi—2)| = L.

Without loss of generality, assume that a; € V(G,_») and a; # b,_;. If both
of v and w are in G,_3, then the proper tree connecting a;, v, w in G;_» together
with the proper path u P;a; forms a proper {u, v, w}-tree in G;. If v € V(G;-3)
and w € V(P;—1) \ {as—1, bs—1}, then the proper tree connecting a;, v, b;—1 in G;_»
together with the proper paths u Pya; and w P;_1b;—1 forms a proper {u, v, w}-tree in
G, Ifv,w € V(P—1) \ {ar—1, by—1}, without loss of generality, assume that v is on
the proper path w P;_1b,_1. Thus, the proper tree connecting a;, b;_1 in G,_» together
with the proper paths u P;a; and w P;_1b;_1 forms a proper {u, v, w}-tree in G;.

Case 2 |[[V(P) NV (P-DI\ V(Gi—2)| =2.

One can see that £(P;_1) > 3. Without loss of generality, assume that a; is on the
proper path of b, P,_1a,_1 and b, is on the proper path of a; P,_1b;_1. If both of v
and w are in G,_», then the proper tree connecting b;_1, v, w in G,_; together with
the proper path u Pra; Pr_1b;—1 forms a proper {u, v, w}-tree in G;. If v € V(G;-2)
and w € V(Pi—1) \ {a:—1, bs—1}, without loss of generality, assume that w is on
the proper path a; P;_1b;_1, then the proper tree connecting v, b;_; in G;_; together
with the proper path u Pya; P,_1b,_ forms a proper {u, v, w}-tree in G;. If v, w €
V(P;i—1) \ {a;—1, by—1}, without loss of generality, assume that v is on the proper
path a; P;_1b;_1. If w is on the proper path a; P;_1b;_1, then the path u Pra; Pr_1b;_1
is a proper path connecting u, v, w in G;. If w is on the proper path a; Py_1a;_1,
then the proper tree connecting a;_1, b;—1 in G,_» together with the proper paths
uPia; P_1b;—1 and w P;_1a,_1 forms a proper {u, v, w}-tree in G;.

If one of {u, v, w} is in G,_1, then we can easily get a proper {u, v, w}-tree in G,
in a way similar to the situation that two of {u, v, w} are in G;_1. If none of {u, v, w}
isin G;_1, then {u, v, w} C V(P:) \ {as, b;}. Thus, there is also already a proper path
in P; connecting them. Hence, we complete the proof. O

@ Springer

Some Upper Bounds for the 3-Proper Index of Graphs 1695

Acknowledgements The authors would like to thank the reviewers for their helpful suggestions and com-
ments.

References

11.

12.

13.

14.
15.

16.

17.

. Andrews, E., Laforge, E., Lumduanhom, C., Zhang, P.: On proper-path colorings in graphs. J. Combin.

Math. Combin. Comput. (2016, to appear)

. Bondy, J.A.: U.S.R. Murty. Graph Theory, GTM 244. Springer, Berlin (2008)
. Borozan, V., Fujita, S., Gerek, A., Magnant, C., Manoussakis, Y., Montero, L., Tuza, Zs: Proper

connection of graphs. Discrete Math. 312, 2550-2560 (2012)

. Cai, Q., Li, X., Zhao, Y.: The 3-rainbow index and connected dominating sets. J. Combin. Optim.

31(2), 1142-1159 (2016)

. Cai, Q., Li, X., Zhao, Y.: Note on the upper bound of the rainbow index of a graph. Discrete Appl.

Math. 209, 68-74 (2016)

. Caro, Y., West, D.B., Yuster, R.: Connected domination and spanning trees with many leaves. SIAM

J. Discrete Math. 13(2), 202-211 (2000)

. Chartrand, G., Johns, G.L., McKeon, K.A., Zhang, P.: Rainbow connection in graphs. Math. Bohem.

133, 85-98 (2008)

. Chartrand, G., Okamoto, F., Zhang, P.: Rainbow trees in graphs and generalized connectivity. Networks

55, 360-367 (2010)

. Chen, L., Li, X., Liu, J.: The k-proper index of graphs. arXiv:1601.06236
. Chen, L., Li, X., Yang, K., Zhao, Y.: The 3-rainbow index of a graph. Discuss. Math. Graph Theory

35, 81-94 (2015)

Gu, R, Li, X., Qin, Z.: Proper connection number of random graphs. Theor. Comput. Sci. 609(2),
336-343 (2016)

Laforge, E., Lumduanhom, C., Zhang, P.: Characterizations of graphs having large proper connection
numbers. Discuss. Math. Graph Theory 36(2), 439-453 (2016)

Li, X., Magnant, C.: Properly colored notions of connectivity—a dynamic survey. Theory Appl. Graphs
0(1), Art. 2 (2015)

Li, X., Shi, Y., Sun, Y.: Rainbow connections of graphs: a survey. Graphs Combin. 29, 1-38 (2013)
Li, X., Sun, Y.: Rainbow Connections of Graphs, Springer Briefs in Mathematics. Springer, New York
(2012)

Li, X., Wei, M., Yue, J.: Proper connection number and connected dominating sets. Theor. Comput.
Sci. 607, 480-487 (2015)

Li, X., Schiermeyer, 1., Yang, K., Zhao, Y.: Graphs with 3-rainbow index n — 1 and n — 2. Discuss.
Math. Graph Theory 35, 105-120 (2015)

@ Springer

http://arxiv.org/abs/1601.06236

	Some Upper Bounds for the 3-Proper Index of Graphs
	Abstract
	1 Introduction
	2 Preliminaries
	3 The 3-Proper Index and Connected Dominating Sets
	4 The 3-Proper Index of 2-Connected Graphs
	Acknowledgements
	References

