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Abstract A tree T in an edge-colored graph is a proper tree if no two adjacent edges
of T receive the same color. Let G be a connected graph of order n and k be a
fixed integer with 2 ≤ k ≤ n. For a vertex subset S ⊆ V (G) with |S| ≥ 2, a tree
containing all the vertices of S in G is called an S-tree. An edge-coloring of G is
called a k-proper coloring if for every k-subset S of V (G), there exists a proper S-tree
in G. For a connected graph G, the k-proper index of G, denoted by pxk(G), is the
smallest number of colors that are needed in a k-proper coloring of G. In this paper,
we show that for every connected graph G of order n and minimum degree δ ≥ 3,
px3(G) ≤ n ln(δ+1)

δ+1 (1 + oδ(1)) + 2. We also prove that for every connected graph G
with minimum degree at least 3, px3(G) ≤ px3(G[D]) + 3 when D is a connected
3-way dominating set of G and px3(G) ≤ px3(G[D]) + 1 when D is a connected
3-dominating set of G. In addition, we obtain sharp upper bounds of the 3-proper
index for two special graph classes: threshold graphs and chain graphs. Finally, we
prove that px3(G) ≤ � n

2 � for any 2-connected graph with at least four vertices.
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1 Introduction

We follow [2] for graph theoretical notation and terminology not described here. Let
G be a graph, we use V (G), E(G),�(G), and δ(G) to denote the vertex set, edge
set, maximum degree, and minimum degree of G, respectively. For D ⊆ V (G), let
D = V (G)\D, and letG[D]denote the subgraph ofG induced from D. For v ∈ V (G),
let N (v) denote the set of neighbors of v in G. For two disjoint subsets X and Y of
V (G), E[X,Y ] denotes the set of edges ofG between X and Y . The join of two graphs
G and H , denoted by G ∨ H , is the graph obtained from a disjoint union of G and H
by adding edges joining every vertex of G to every vertex of H .

Let G be a non-trivial connected graph with an associated edge-coloring c :
E(G) → {1, 2, . . . , t}, t ∈ N, where adjacent edges may have the same color. If
adjacent edges of G are assigned different colors by c, then c is a proper (edge-)
coloring. For a graph G, the minimum number of colors needed in a proper coloring
of G is referred to as the chromatic number of G and denoted by χ ′(G). A path in an
edge-colored graph G is said to be a rainbow path if no two edges on the path have
the same color. The graph G is called rainbow connected if for any two vertices there
is a rainbow path of G connecting them. An edge-coloring of a connected graph is a
rainbow connecting coloring if it makes the graph rainbow connected. For a connected
graph G, the rainbow connection number rc(G) of G is the smallest number of colors
that are needed in order to make G rainbow connected. These concepts of rainbow
connection of graphs were introduced by Chartrand et al. [7] in 2008. The readers who
are interested in this topic can see [14,15] for a survey.

In [8], Chartrand et al. generalized the concept of rainbow connection to rainbow
index. A tree T in an edge-colored graph is a rainbow tree if no two edges of T receive
the same color. Let G be a connected graph of order n and k be a fixed integer with
2 ≤ k ≤ n. For a vertex subset S ⊆ V (G) with |S| ≥ 2, a tree containing all the
vertices of S in G is called an S-tree. An edge-coloring of G is called a k-rainbow
coloring if for every k-subset S of V (G), there exists a rainbow S-tree in G. For a
connected graph G, the k-rainbow index of G, denoted by r xk(G), is the minimum
number of colors that are needed in a k-rainbow coloring ofG. We refer to [4,5,10,17]
for more details.

Motivated by rainbow coloring and proper coloring in graphs, Andrews et al. [1]
and Borozan et al. [3] introduced the concept of proper-path coloring. Let G be a
non-trivial connected graph with an edge-coloring. A path in G is called a proper path
if no two adjacent edges of the path are colored with the same color. An edge-coloring
of a connected graph G is a proper-path coloring if every pair of distinct vertices of
G are connected by a proper path in G. An edge-colored graph G is proper connected
if any two vertices of G are connected by a proper path. For a connected graph G, the
proper connection number of G, denoted by pc(G), is defined as the smallest number
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of colors that are needed in order to make G proper connected. For more details, we
refer to [11,12,16] and a dynamic survey [13].

Inspired by the k-rainbow index and the proper-path coloring, Chen et al. [9]
introduced the concept of k-proper index of a connected graph G. A tree T in an
edge-colored graph is a proper tree if no two adjacent edges of T receive the same
color. Let G be a connected graph of order n and k be a fixed integer with 2 ≤ k ≤ n.
An edge-coloring of G is called a k-proper coloring if for every k-subset S of V (G),
there exists a proper S-tree in G. In this case, G is called k-proper connected. For
a connected graph, the k-proper index of G, denoted by pxk(G), is defined as the
minimum number of colors that are needed in a k-proper coloring of G. Clearly, when
k = 2, px2(G) is exactly the proper connection number pc(G) of G. Hence, we will
study pxk(G) only for k with 3 ≤ k ≤ n here. Let G be a non-trivial connected graph
of order n and size m, it is easy to see that pc(G) ≤ px3(G) ≤ · · · ≤ pxn(G) ≤ m.

The rest of this paper is organised as follows. InSect. 2,we list somebasic definitions
and fundamental results on the k-proper index of graphs. In Sect. 3, we study the 3-
proper index by using connected 3-way dominating sets and 3-dominating sets.Wefirst
show that for every connected graph G with minimum degree at least 3, px3(G) ≤
px3(G[D]) + 3 when D is a connected 3-way dominating set of G. Then, we can
easily get that for every connected graph G on n vertices with minimum degree δ ≥ 3,
px3(G) ≤ n ln(δ+1)

δ+1 (1+ oδ(1)) + 2. At last, we show that px3(G) ≤ px3(G[D]) + 1
when D is a connected 3-dominating set of G. In addition, we obtain the sharp upper
bounds of the 3-proper index for two special graph classes: threshold graphs and chain
graphs. In Sect. 4, we prove that px3(G) ≤ � n

2 � for any 2-connected graph with at
least four vertices.

2 Preliminaries

To begin with this section, we present the following basic concepts.

Definition 2.1 Given a graph G, a set D ⊆ V (G) is called a dominating set if every
vertex of D is adjacent to at least one vertex of D. Furthermore, if the subgraph
G[D] is connected, it is called a connected dominating set of G. The domination
number γ (G) is the number of vertices in a minimum dominating set of G. Similarly,
the connected dominating number γc(G) is the number of vertices in a minimum
connected dominating set of G.

Definition 2.2 Let s be a positive integer. A dominating set D in a graph G is called
an s-way dominating set if every vertex of D has at least s neighbors in G. In addition,
if G[D] is connected, we call D a connected s-way dominating set.

Definition 2.3 A set D ⊆ G is called an s-dominating set of G if every vertex of D
is adjacent to at least s distinct vertices of D. Furthermore, if G[D] is connected, then
D is called a connected s-dominating set. Obviously, a (connected) s-dominating set
is also a (connected) s-way dominating set.

Definition 2.4 BFS (breadth-first search) is an algorithm for traversing or searching
tree or graph data structures. It starts at the tree root and explores the neighbor vertices
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first, before moving to the next level neighbors. A BFS-tree (breadth-first search tree)
is a spanning rooted tree returned by BFS. Let T be a BFS-tree with root r . For a
vertex v, the level of v is the length of the unique {v, r}-path in T ; the ancestors of
v are the vertices on the unique {v, r}-path in T ; and the parent of v is its neighbor
on the unique {v, r}-path in T . Its other neighbors are called the children of v. The
siblings of v are the vertices in the same level as v. The left (resp. right) siblings of v

are the siblings of v visited before (resp. after) v in BFS.

Remark BFS-trees have a nice property: every edge of the graph joins vertices on the
same level or consecutive levels. It is not possible for an edge to skip a level. Thus, a
neighbor of a vertex v has three possibilities: (1) a sibling of v; (2) the parent of v or
a right sibling of the parent of v; (3) a child of v or a left sibling of the children of v.

Next, we state some fundamental results on the k-proper index of graphs which
will be used in the sequel.

Proposition 2.5 [9] If G is a non-trivial connected graph of order n ≥ 3 and H is a
connected spanning subgraph of G, then pxk(G) ≤ pxk(H) for each integer k with
3 ≤ k ≤ n. In particular, pxk(G) ≤ pxk(T ) for every spanning tree T of G.

Proposition 2.6 [9] If T is a non-trivial tree of order n ≥ 3, then pxk(T ) = χ
′
(G) =

�(G) for each integer k with 3 ≤ k ≤ n.

Propositions 2.5 and 2.6 provide an upper bound of the k-proper index for a graph.

Proposition 2.7 [9] Let G be a non-trivial connected graph of order n ≥ 3. Then,
2 ≤ px3(G) ≤ · · · ≤ pxn(G) ≤ min{�(T ) : T is a spanning tree of G}.

A Hamiltonian path in a graph G is a path containing every vertex of G and a
graph having a Hamiltonian path is a traceable graph. The following is an immediate
consequence of Proposition 2.7.

Corollary 2.8 [9] If G is a traceable graph of order n, then for each integer k with
3 ≤ k ≤ n, pxk(G) = 2.

Obviously, for any integer k with 3 ≤ k ≤ n, pxk(Pn) = pxk(Cn) = pxk(Wn) =
pxk(Kn) = pxk(Kn,n) = 2.

Lemma 2.9 If G is a connected graph with order nG and H is a connected subgraph
of G with order nH , then for each integer k with 3 ≤ k ≤ nH , we have pxk(G) ≤
pxk(H) + nG − nH ; for each integer k with nH ≤ k ≤ nG, we have pxk(G) ≤
pxnH (H) + nG − nH .

Proof Let G ′ be a graph obtained from G by contracting H to a single vertex. Then,
G ′ is a connected graph of order nG − nH + 1. Thus, by Proposition 2.7, pxk′(G ′) ≤
nG − nH for each integer k′ with 3 ≤ k′ ≤ nG − nH + 1. Given an edge-coloring of
G ′ with nG − nH colors such that G ′ is k ′

-proper connected (3 ≤ k′ ≤ nG − nH + 1).
Now, go back to G, and color each edge outside H with the color of the corresponding
edge in G ′. For H , if 3 ≤ k ≤ nH , then we assign pxk(H) new colors to the edges
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of H such that H is k-proper connected; if nH ≤ k ≤ nG , then we assign pxnH (H)

new colors to the edges of H such that H is nH -proper connected. The resulting edge-
coloring makesG k-proper connected. Therefore, for each integer k with 3 ≤ k ≤ nH ,
we have pxk(G) ≤ pxk(H) + nG − nH ; for each integer k with nH ≤ k ≤ nG , we
have pxk(G) ≤ pxnH (H) + nG − nH . This completes the proof. ��

3 The 3-Proper Index and Connected Dominating Sets

In this section, we give some upper bounds of the 3-proper index for a graph G by
using connected 3-way dominating sets and 3-dominating sets.

Let G be a graph, D ⊆ V (G), and v ∈ D. We call a path P = v0v1 · · · vt a v − D
path if v0 = v and V (P) ∩ D = {vt }. Two or more paths are called internally disjoint
if none of them contains an inner vertex of another. If P is edge-colored, then we
denote by end(P) the color of the last edge vt−1vt . Now we give our main results.

Theorem 3.1 If D is a connected 3-way dominating set of a connected graph G, then
px3(G) ≤ px3(G[D]) + 3. Moreover, this bound is sharp.

Proof Let D be a connected 3-way dominating set of a connected graphG. For v ∈ D,
its neighbors in D are called the feet of v, and the corresponding edges are called the
legs of v. A set of proper v − D paths {P1, P2, . . . , P�} are called strong-proper if
end(Pi ) �= end(Pj ) (1 ≤ i < j ≤ �). For a vertex v in D, we call it good if there are
three internally disjoint strong-proper v − D paths. Otherwise, we call v bad. Denote
by c(e) the color of an edge e. Let T be a rooted BFS-tree. Pick a vertex v in T , and let
�(v) be the level of v, p(v) the parent of v, ch(v) the child of v, and α(v) the ancestor
of v in the first level.

We now review the ideas in the proof. At first, we color the edges in E[D, D]
and E(G[D]) with three colors from {1, 2, 3} such that every vertex v of D is good.
Then, we extend the coloring to the whole graph by coloring the edges in G[D] with
px3(G[D]) fresh colors. Finally, we prove this edge-coloring is a 3-proper coloring
of G.

Assume that A1, . . . , As , B1, . . . , Bt , C1, . . . ,Cq are the connected components
of the subgraph G − D such that |V (Ai )| = 1 (1 ≤ i ≤ s),

∣
∣V (Bj )

∣
∣ = 2 (1 ≤ j ≤ t),

and |V (Ck)| ≥ 3 (1 ≤ k ≤ q), where s, t , and q are non-negative integers, and
s = 0 or t = 0 or q = 0 means that there is no Ai -component or Bj -component or
Ck-component.

For each Ai (1 ≤ i ≤ s), let v be an isolated vertex of Ai . Then, v has at least three
legs, we color one of them with 1, one of them with 2, and all the others with 3. Thus,
v is good.

For each Bj (1 ≤ j ≤ t), let uv be the edge of Bj . Then, u has at least two legs,
we color one of them with 1, and all the others with 2. Also, v has at least two legs.
We color one of them with 2, and all the others with 3. Finally, we color uv with 2.
Thus, both u and v are good.

For each Ck (1 ≤ k ≤ q), since |V (Ck)| ≥ 3, it follows that there exists a vertex v0
in Ck having at least two neighbors in Ck . Starting from v0, we construct a BFS-tree
T of Ck . Suppose that the neighbors of v0 in Ck are {v1, v2, . . . , vp} (p ≥ 2), which
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form the first level of T . We call the subtree of T rooted at vi (1 ≤ i ≤ p − 1) of type
I and the subtree of T rooted at vp of type II. There may be many subtrees of type I,
but only one subtree of type II. For each vertex v in Ck , we denote one leg of v by
ev , the corresponding foot of v by t (v), the unique edge joining v and its parent p(v)

in T by fv . Now, we color the edges ev and fv as follows: c(ev0) = 3; c( fvi ) = 2;
and c(evi ) = 1 for (1 ≤ i ≤ p − 1); c( fvp ) = 1 and c(evp ) = 2; for each vertex v

in V (Ck) \ {v1, v2, . . . , vp}, if α(v) = vp, then set c( fv) = 2 and c(ev) = 3 when
�(v) ≡ 0 (mod 3), c( fv) = 1 and c(ev) = 2 when �(v) ≡ 1 (mod 3), c( fv) = 3
and c(ev) = 1 when �(v) ≡ 2 (mod 3); if α(v) = vi (1 ≤ i ≤ p − 1), then set
c( fv) = 1 and c(ev) = 3 when �(v) ≡ 0 (mod 3), c( fv) = 2 and c(ev) = 1 when
�(v) ≡ 1 (mod 3), c( fv) = 3 and c(ev) = 2 when �(v) ≡ 2 (mod 3). Note that the
subtrees of the same type are colored in the same way.

Now, for any non-leaf vertex v in T , there exist three internally disjoint strong-
proper v − D paths. As for the root v0, P

v0
1 = v0t (v0); P

v0
2 = v0v1t (v1); P

v0
3 =

v0vpt (vp). As for any other non-leaf vertex v in T , Pv
1 = vt (v); Pv

2 = vp(v)t (p(v));
Pv
3 = vch(v)t (ch(v)). Hence, all the non-leaf vertices of T are good.
It remains to deal with the leaves of T . Pick a leaf w in T . Since w has no children,

it has exactly two internally disjoint strong-proper w − D paths: Pw
1 = wt (w); Pw

2 =
wp(w)t (p(w)). In order to makew good, we need to provide the third path Pw

3 which
is internally disjoint with Pw

1 and Pw
2 . Sincew ∈ D, we have d(w) ≥ 3. It follows that

w has another neighbor which is not t (w), p(w). Let W = {w = w1, w2, . . . , wa}
be the children of p(w) such that wi (1 ≤ i ≤ a) is a leaf of T and in the subtrees
of the same type. Then, G[W ] contains a spanning subgraph H which consists of
the components of the following two types: (1) a star, (2) an isolated vertex, where
the isolated vertices of H are just the isolated vertices of G[W ]. For each component
of type (1), let S be the star and V (S) = {wi1, wi2 , . . . , wir } (r ≥ 2), where wi1 is
the central vertex of S. Now we recolor the edge ewi1

and color all edges of S. If
wi1 is in the subtree of type I, then recolor ewi1

with 1 and color all edges of S with
2 when �(wi1) ≡ 0 (mod 3); recolor ewi1

with 2 and color all edges of S with 3
when �(wi1) ≡ 1 (mod 3); recolor ewi1

with 3 and color all edges of S with 1 when
�(wi1) ≡ 2 (mod 3). If wi1 is in the subtree of type II, then recolor ewi1

with 2 and
color all edges of S with 1 when �(wi1) ≡ 0 (mod 3); recolor ewi1

with 1 and color all
edges of S with 3 when �(wi1) ≡ 1 (mod 3); recolor ewi1

with 3 and color all edges of
S with 2 when �(wi1) ≡ 2 (mod 3). Note that the recoloring of the edge ewi1

has no
influence on p(w) since p(w) has at least two children in this case. It is easy to check
that for the center wi1 of S, there exists a required path P

wi1
3 = wi1wi2 t (wi2), and for

every vertex wit ∈ S (2 ≤ t ≤ r), there exists a required path P
wit
3 = witwi1 t (wi1).

Thus, every leaf in the components of type (1) is good.
For each component of type (2), letw be the isolated vertex andw′ be another neigh-

bor ofw. Note thatw′ /∈ W . Ifw′ ∈ D, thenwe color the edgeww′ as follows: ifw is in
the subtree of type I, then we color c(ww′) = 1 when �(w) ≡ 0 (mod 3), c(ww′) = 2
when �(w) ≡ 1 (mod 3), c(ww′) = 3 when �(w) ≡ 2 (mod 3); if w is in the subtree
of type II, then we color c(ww′) = 2 when �(w) ≡ 0 (mod 3), c(ww′) = 1 when
�(w) ≡ 1 (mod 3), c(ww′) = 3 when �(w) ≡ 2 (mod 3). Note that for any vertex w

in the component of type (2) satisfyingw′ ∈ D, we have Pw
3 = ww′. Thus,w is good.
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Now we suppose w′ ∈ T . Then, w′ is either a non-leaf vertex of T or a leaf vertex
of T with p(w′) �= p(w). Notice that if ew′ is recolored, thenw′ is a good leaf, andw′
has a neighbor w′′ such that w′′ is a sibling of w′. We distinguish the following four
cases:

Case 1 w and w′ are in the subtree of type I.

Since T is a BFS-tree, we have that �(w′) = �(w) − 1 or �(w′) = �(w) or
�(w′) = �(w) + 1. Then, we consider the following three subcases.

Subcase 1.1 �(w) ≡ 0 (mod 3).

If �(w′) = �(w) − 1, then color ww′ with 1. Thus, Pw
3 = ww′ p(w′)t (p(w′)). If

w′ is bad, then Pw′
3 = w′wt (w).

If �(w′) = �(w), then color ww′ with 3. Thus, Pw
3 = ww′ p(w′)p(p(w′))t (p

(p(w′))). If w′ is bad, then Pw′
3 = w′wp(w)p(p(w))t (p(p(w))).

If �(w′) = �(w) + 1, then color ww′ with 2. If ew′ is recolored, then w′ is already
good. Thus, Pw

3 = ww′w′′t (w′′) (where w′′ is a sibling of w′). If ew′ is not recolored,
then Pw

3 = ww′t (w′). In this situation, if w′ is bad, then Pw′
3 = w′wp(w)t (p(w)).

Subcase 1.2 �(w) ≡ 1 (mod 3).

If �(w′) = �(w) − 1, then color ww′ with 2. Thus, Pw
3 = ww′ p(w′)t (p(w′)). If

w′ is bad, Pw′
3 = w′wt (w).

If �(w′) = �(w), then color ww′ with 1. If w and w′ are in the first level,
then w′ has at least one child since p(w′) = p(w) and is already good. Thus,
Pw
3 = ww′ch(w′)t (ch(w′)). Now suppose that w and w′ are not in the first

level. Then, Pw
3 = ww′ p(w′)p(p(w′))t (p(p(w′))). If w′ is bad, then Pw′

3 =
w′wp(w)p(p(w))t (p(p(w))).

If �(w′) = �(w) + 1, then color ww′ with 3. If ew′ is recolored, then w′ is already
good. Thus, Pw

3 = ww′w′′t (w′′) (where w′′ is a sibling of w′). If ew′ is not recolored,
then Pw

3 = ww′t (w′). In this case, if w′ is bad, then Pw′
3 = w′wp(w)t (p(w)).

Subcase 1.3 �(w) ≡ 2 (mod 3).

If �(w′) = �(w) − 1, then color ww′ with 3. Thus, Pw
3 = ww′ p(w′)t (p(w′)). If

w′ is bad, then Pw′
3 = w′wt (w).

If �(w′) = �(w), then color ww′ with 2. Thus, Pw
3 = ww′ p(w′)p(p(w′))t (p

(p(w′))). If w′ is bad, then Pw′
3 = w′wp(w)p(p(w))t (p(p(w))).

If �(w′) = �(w) + 1, then color ww′ with 1. If ew′ is recolored, then w′ is already
good. Thus, Pw

3 = ww′w′′t (w′′) (where w′′ is a sibling of w′). If ew′ is not recolored,
then Pw

3 = ww′t (w′). In this case, if w′ is bad, then Pw′
3 = w′wp(w)t (p(w)).

Thus, both w and w′ are good.

Case 2 w is in the subtrees of type I and w′ is in the subtree of type II.

Since T is a BFS-tree, it follows that �(w′) = �(w) − 1 or �(w′) = �(w). Then,
we consider the following three subcases.
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Subcase 2.1 �(w) ≡ 0 (mod 3).

If �(w′) = �(w) − 1, then we distinguish two situations. If ew′ is not recolored,
then color ww′ with 2. Thus, Pw

3 = ww′t (w′). In this situation, if w′ is bad, then
Pw′
3 = w′wt (w). If ew′ is recolored, then color ww′ with 3 and w′ is already good.

Thus, Pw
3 = ww′w′′t (w′′) (where w′′ is a sibling of w′).

If �(w′) = �(w), then color ww′ with 3. Thus, Pw
3 = ww′ p(w′)t (p(w′)). If w′ is

bad, then Pw′
3 = w′wp(w)t (p(w)).

Subcase 2.2 �(w) ≡ 1 (mod 3).

If �(w′) = �(w) − 1, then color ww′ with 3. Thus, Pw
3 = ww′ p(w′)p(p(w′))t (p

(p(w′))). If w′ is bad, then Pw′
3 = w′wp(w)p(p(w))t (p(p(w))).

If �(w′) = �(w), then we distinguish two situations. If ew′ is not recolored, then
color ww′ with 3. Thus, Pw

3 = ww′t (w′). In this situation, if w′ is bad, then Pw′
3 =

w′wt (w). If ew′ is recolored, then color ww′ with 2 and w′ is already good. Thus,
Pw
3 = ww′w′′t (w′′) (where w′′ is a sibling of w′).

Subcase 2.3 �(w) ≡ 2 (mod 3).

If �(w′) = �(w) − 1, then color ww′ with 2, Thus, Pw
3 = ww′ p(w′)t (p(w′)). If

w′ is bad, then Pw′
3 = w′wp(w)t (p(w)).

If �(w′) = �(w), then color ww′ with 1. Thus, Pw
3 = ww′ p(w′)p(p(w′))t (p

(p(w′))). If w′ is bad, then Pw′
3 = w′wp(w)p(p(w))t (p(p(w))).

Thus, both w and w′ are good.

Case 3 If w is in the subtrees of type II and w′ is the subtree of type I.

Since T is a BFS-tree, we have that �(w′) = �(w) or �(w′) = �(w) + 1. Then, we
consider the following three subcases.

Subcase 3.1 �(w) ≡ 0 (mod 3).

If �(w′) = �(w), then color ww′ with 3. Thus, Pw
3 = ww′ p(w′)t (p(w′)). If w′ is

bad, then Pw′
3 = w′wp(w)t (p(w)).

If �(w′) = �(w) + 1, then color ww′ with 3. Thus, Pw
3 = ww′ p(w′)p(p(w′))t (p

(p(w′))). If w′ is bad, then Pw′
3 = w′wp(w)p(p(w))t (p(p(w))).

Subcase 3.2 �(w) ≡ 1 (mod 3).

If �(w′) = �(w), then we distinguish two situations. If ew′ is not recolored, then
color ww′ with 3. Thus, Pw

3 = ww′t (w′). In this situation, if w′ is bad, then Pw′
3 =

w′wt (w). If ew′ is recolored, then color ww′ with 2 and w′ is already good. Thus,
Pw
3 = ww′w′′t (w′′) (where w′′ is a sibling of w′).
If �(w′) = �(w) + 1, then color ww′ with 2, Thus, Pw

3 = ww′ p(w′)t (p(w′)). If
w′ is bad, then Pw′

3 = w′wp(w)t (p(w)).

Subcase 3.3 �(w) ≡ 2 (mod 3).

If �(w′) = �(w), then color ww′ with 1. Thus, Pw
3 = ww′ p(w′)p(p(w′))t (p

(p(w′))). If w′ is bad, then Pw′
3 = w′wp(w)p(p(w))t (p(p(w))).
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If �(w′) = �(w) + 1, then we distinguish two situations. If ew′ is not recolored,
then color ww′ with 2. Thus, Pw

3 = ww′t (w′). In this situation, if w′ is bad, then
Pw′
3 = w′wt (w). If ew′ is recolored, then color ww′ with 3 and w′ is already good.

Thus, Pw
3 = ww′w′′t (w′′) (where w′′ is a sibling of w′).

Thus, both w and w′ are good.

Case 4 If w, w′ are in the subtree of type II.

Since T is a BFS-tree, it follows that �(w′) = �(w) − 1 or �(w′) = �(w) or
�(w′) = �(w) + 1. Then, we consider the following three subcases.

Subcase 4.1 �(w) ≡ 0 (mod 3).

If �(w′) = �(w) − 1, then color ww′ with 2. Thus, Pw
3 = ww′ p(w′)t (p(w′)). If

w′ is bad, then Pw′
3 = w′wt (w).

If �(w′) = �(w), then color ww′ with 3. Thus, Pw
3 = ww′ p(w′)p(p(w′))t (p

(p(w′))). If w′ is bad, then Pw′
3 = w′wp(w)p(p(w))t (p(p(w))).

If �(w′) = �(w) + 1, then color ww′ with 1. If ew′ is recolored, then w′ is already
good. Thus, Pw

3 = ww′w′′t (w′′) (where w′′ is a sibling of w′). If ew′ is not recolored,
then Pw

3 = ww′t (w′). In this case, if w′ is bad, then Pw′
3 = w′wp(w)t (p(w)).

Subcase 4.2 �(w) ≡ 1 (mod 3).

If �(w′) = �(w) − 1, then color ww′ with 1. Thus, Pw
3 = ww′ p(w′)t (p(w′)). If

w′ is bad, then Pw′
3 = w′wt (w).

If �(w′) = �(w), then color ww′ with 2. If w and w′ are in the first level,
then w′ has at least one child since p(w′) = p(w) and is already good. Thus,
Pw
3 = ww′ch(w′)t (ch(w′)). Now suppose that w and w′ are not in the first

level. Then, Pw
3 = ww′ p(w′)p(p(w′))t (p(p(w′))). If w′ is bad, then Pw′

3 =
w′wp(w)p(p(w))t (p(p(w))).

If �(w′) = �(w) + 1, then color ww′ with 3. If ew′ is recolored, then w′ is already
good. Thus, Pw

3 = ww′w′′t (w′′) (where w′′ is a sibling of w′). If ew′ is not recolored,
then Pw

3 = ww′t (w′). In this case, if w′ is bad, then Pw′
3 = w′wp(w)t (p(w)).

Subcase 4.3 �(w) ≡ 2 (mod 3).

If �(w′) = �(w) − 1, then color ww′ with 3. Thus Pw
3 = ww′ p(w′)t (p(w′)). If

w′ is bad, then Pw′
3 = w′wt (w).

If �(w′) = �(w), then color ww′ with 1. Thus, Pw
3 = ww′ p(w′)p(p(w′))t (p

(p(w′))). If w′ is bad, then Pw′
3 = w′wp(w)p(p(w))t (p(p(w))).

If �(w′) = �(w) + 1, then color ww′ with 2. If ew′ is recolored, then w′ is already
good. Thus, Pw

3 = ww′w′′t (w′′) (where w′′ is a sibling of w′). If ew′ is not recolored,
then Pw

3 = ww′t (w′). In this case, if w′ is bad, then Pw′
3 = w′wp(w)t (p(w)).

Thus, both w and w′ are good.
After the above process, w becomes good, and so does w′ if w′ is bad. Note that

all the good vertices are still good since we just color the edge ww′. As a result, every
vertex in T is good.
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If there still remain uncolored edges in E[D, D] and E(G[D]), then color them
with 1. Now we have a coloring of all the edges in E[D, D] and E(G[D]) using three
colors from {1, 2, 3} such that all the vertices in D are good. Next, we color the edges
in G[D] with px3(G[D]) fresh colors such that for each triple of vertices in D, there
is a proper tree in G[D] connecting them. Thus, we provide an edge-coloring c of G
using px3(G[D]) + 3 colors.

Now we show that this edge-coloring c is a 3-proper coloring of G, which implies
px3(G) ≤ px3(G[D])+3.We first claim that for any three vertices u, v, w in D, there
exists a proper u − D path Pu , a proper v − D path Pv , and a proper w − D path Pw

such that Pu ∪ Pv ∪ Pw is also proper. Since this edge-coloring makes every vertex of
D good, we only need to consider the situation that u, v, w are in the same component
of G − D. So, u, v, w ∈ Ck (1 ≤ k ≤ q). Note that for any vertex x �= v0 ∈ Ck ,
there are three internally disjoint strong-proper x − D paths Px

1 , Px
2 , Px

3 such that
Px
1 = xt (x) and Px

2 = xp(x)t (p(x)). For v0 ∈ Ck , the three internally disjoint strong-
proper v0 − D paths are Pv0

1 = v0t (v0), P
v0
2 = v0v1t (v1), and Pv0

3 = v0vpt (vp). If
{c(eu), c(ev), c(ew)} contains three distinct colors, then Pu

1 ∪ Pv
1 ∪ Pw

1 is also proper.
If {c(eu), c(ev), c(ew)} contains two distinct colors, without loss of generality, assume
c(eu) �= c(ev), then it is easy to check that either Pu

1 ∪ Pv
1 ∪ Pw

2 or Pu
1 ∪ Pv

1 ∪ Pw
3

is proper. Now we assume that c(eu) = c(ev) = c(ew). If u, v, w are in the subtrees
of the same type, then we distinguish the following situations. If one of {eu, ev, ew} is
recolored, without loss of generality, assume that eu is recolored, then Pu

2 ∪ Pv
1 ∪ Pw

2
is proper. If two of {eu, ev, ew} are recolored, without loss of generality, assume ew

is not recolored, then Pu
2 ∪ Pv

1 ∪ Pw
2 is proper. If eu , ev , and ew are simultaneously

recolored or not recolored, without loss of generality, assume v is visited before w

in T , then Pu
1 ∪ Pv

2 ∪ Pw
3 is proper. Now suppose that u, v, w are in the subtrees of

different types. Without loss of generality, assume u, v are in the subtree of the same
type, and w is in the subtree of the other type. If eu , ev , and ew are simultaneously
recolored or not recolored, then Pu

1 ∪ Pv
2 ∪ Pw

2 is proper. If eu and ev are recolored,
ew is not recolored, then Pu

1 ∪ Pv
3 ∪ Pw

2 is proper. If one of {eu, ev} is recolored, ew

is recolored, without loss of generality, assume eu is recolored, then Pu
2 ∪ Pv

1 ∪ Pw
2 is

proper. If one of {eu, ev} is recolored, ew is not recolored, without loss of generality,
assume eu is recolored, then Pu

1 ∪ Pv
2 ∪ Pw

2 is proper. If eu and ev are not recolored,
ew is recolored, then Pu

1 ∪ Pv
2 ∪ Pw

3 is proper. Thus, the claim holds.
Next, it is sufficient to show that for any three vertices u, v, w of G, there exists a

proper tree connecting them. If all of them are in D, then there is already a proper tree
connecting them inG[D]. If one of them is in D, without loss of generality, say u ∈ D,
then any leg of u (colored by 1, 2, or 3) together with the proper tree connecting v, w,
and the corresponding foot of u in G[D] forms a proper {u, v, w}-tree. If two of them
are in D, without loss of generality, say u, v ∈ D, then there exists a proper u − D
path Pu , a proper v − D path Pv such that Pu ∪ Pv is also proper. Assume that the
endvertices of Pu , Pv in D are u′, v′, respectively. Then, the proper tree connecting
u′, v′, and w together with the paths Pu and Pv forms a proper {u, v, w}-tree. If all
of them are in D, then there exists a proper u − D path Pu , a proper v − D path Pv ,
and a proper w − D path Pw such that Pu ∪ Pv ∪ Pw is also proper. Assume that the
endvertices of Pu , Pv , and Pw in D are u′, v′, w′, respectively. Then, the proper tree
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in G[D] connecting u′, v′, w′ together with the paths Pu , Pv , and Pw forms a proper
{u, v, w}-tree.

To complete the proof of Theorem 3.1, we show the sharpness of the bound with the
graph class G. Let p be an integer with p ≥ 3, G = {G:G is a graph obtained by taking
p complete graphs Ki1 , Ki2 , . . . , Kip with just a vertex in common, say v0 for i j ≥ 4
when 1 ≤ j ≤ p}. For any graph G in G, it is obvious that D = {v0} is a connected
3-way dominating set. By Theorem 3.1, we have px3(G) ≤ px3(G[D]) + 3 = 3. On
the other hand, it is easy to show that px3(G) = 3. Thus, the bound is sharp. ��
Corollary 3.2 Let G be a connected graph with minimum degree δ(G) ≥ 3. Then,
px3(G) ≤ γc(G) + 2.

Proof Since δ(G) ≥ 3, every connected dominating set of G is a connected 3-way
dominating set. Consider a minimum connected dominating set D with size γc(G).
Then, px3(G[D]) ≤ |D|−1 = γc(G)−1.We have that px3(G) ≤ px3(G[D])+3 ≤
γc(G) + 2 by Theorem 3.1. ��

Caro et al. [6] showed that for every connected graph G of order n and minimum
degree δ, γc(G) = n ln(δ+1)

δ+1 (1+ oδ(1)). With the help of Corollary 3.2, we obtain the
following result.

Corollary 3.3 Let G be a connected graph with minimum degree δ(G) ≥ 3. Then,
px3(G) ≤ n ln(δ+1)

δ+1 (1 + oδ(1)) + 2.

Next, wewill give another upper bound for the 3-proper index of graphswith respect
to the connected 3-dominating set.

Theorem 3.4 If D is a connected 3-dominating set of a connected graph G with
minimum degree δ(G) ≥ 3, then px3(G) ≤ px3(G[D]) + 1. Moreover, the bound is
sharp.

Proof Since D is a connected 3-dominating set, every vertex in D has at least three
neighbors in D. Let t = px3(G[D]). We first color the edges in G[D] with t different
colors from {2, 3, . . . , t + 1} such that for every triple of vertices in D, there exists a
proper tree in G[D] connecting them. Then, we color the remaining edges with color
1.

Next, we will show that this edge-coloring makes G 3-proper connected. For any
triple {u, v, w} of vertices in G, if all of them are in D, then there is already a proper
tree connecting them in G[D]. If one of them is in D, without loss of generality, say
u ∈ D, then let u1 be the neighbor of u in D. Thus, the proper tree connecting u1, v, w

in G[D] together with the edge uu1 forms a proper {u, v, w}-tree in G. If two of them
are in D, without loss of generality, say u, v ∈ D, then let u1, v1 be the two distinct
neighbors of u, v in D, respectively. Thus, the proper tree connecting u1, v1, w in
G[D] together with two edges uu1, vv1 forms a proper {u, v, w}-tree in G. If all of
them are in D, then let u1, v1, w1 be the three distinct neighbors of u, v, w in D,
respectively. Thus, the proper tree connecting u1, v1, w1 in G[D] together with three
edges uu1, vv1, ww1 forms a proper {u, v, w}-tree in G.

The sharpness of the bound can be seen from the following corollaries. ��
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Next, we give some sharp upper bounds for the 3-proper index of two special graph
classes: threshold graphs and chain graphs, which implies the sharpness of the bound
in Theorem 3.4. A graphG is called a threshold graph, if there exists a weight function
w: V (G) → R and a real constant t such that two vertices u, v ∈ V (G) are adjacent if
and only if w(u)+w(v) ≥ t . We call t the threshold of G. A bipartite graph G(U, V )

is called a chain graph, if the vertices of U can be ordered as U = {u1, u2, . . . , us}
such that N (u1) ⊆ N (u2) ⊆ · · · ⊆ N (us).

Corollary 3.5 Let G be a connected threshold graph with δ(G) ≥ 3. Then, px3(G) ≤
3, and the bound is sharp.

Proof Suppose that V (G) = {v1, v2, . . . , vn} where w(v1) ≥ w(v2) ≥ · · · ≥ w(vn).
Since δ(G) ≥ 3, v1, v2, v3 are adjacent to all the other vertices in G. Thus,
D = {v1, v2, v3} is a connected 3-dominating set of G. Since G[D] = K3, we have
px3(G[D]) = 2. It follows that px3(G) ≤ px3(G[D]) + 1 = 3 by Theorem 3.4.

Next, we give a class of threshold graphs which have px3(G) = 3. Consider the
graph G = r K1 ∨ K3, where r ≥ 2 × 23 + 1. Let V (r K1) = {v1, v2, . . . , vr } and
V (K3) = {u1, u2, u3}. Obviously, it is a threshold graph (u1, u2, u3 can be given a
weight 1, others a weight 0, and the threshold 1). We will show that px3(G) ≥ 3. By
contradiction, we assume thatG has a 3-proper coloring with 2 colors. For each vertex
vi ∈ r K1, there exists a 3-tuple Ci = (c1, c2, c3) so that c(vi u j ) = c j for 1 ≤ j ≤ 3.
Therefore, each vertex vi ∈ r K1 has 23 different ways of coloring its incident edges
using 2 colors. Since r ≥ 2 × 23 + 1, there exist at least three vertices vi , v j , vk ∈ V
such that Ci = C j = Ck . It is easy to check that there is no proper tree connecting vi ,
v j , vk in G, a contradiction. ��

Corollary 3.6 Let G be a connected chain graph with δ(G) ≥ 3. Then, px3(G) ≤ 3,
and the bound is sharp.

Proof Let G = G(U, V ) be a connected chain graph, where U = {u1, u2, . . . , us},
V = {v1, v2, . . . , vt } such that N (u1) ⊆ N (u2) ⊆ · · · ⊆ N (us). Since the mini-
mum degree of G is at least three, ui (s − 2 ≤ i ≤ s) is adjacent to all the vertices
in V , and N (u1) has at least three vertices, say {v1, v2, v3}. Clearly, v1, v2, v3 are
adjacent to all the vertices in U . Therefore, D = {v1, v2, v3, us−2, us−1, us} is a con-
nected 3-dominating set of G. Moreover, G[D] = K3,3 is a traceable graph, we have
px3(K3,3) = 2. By Theorem 3.4, we have that px3(G) ≤ px3(K3,3) + 1 ≤ 3.

Now, we give a class of chain graphs which have px3(G) = 3. Consider the chain
graph G = G[U, V ], where U = {u1, u2, . . . , us}, V = {v1, v2, . . . vt } such that
N (u1) = N (u2) = · · · = N (us−3) = {v1, v2, v3}, N (us−2) = N (us−1) = N (us) =
{v1, v2, . . . , vt }, and t ≥ 2 × 23 + 4. Next, we show that px3(G) ≥ 3. Suppose not,
we assume that G has a 3-proper coloring with 2 colors. For each vertex vi ∈ V
for 4 ≤ i ≤ t , there exists a 3-tuple Ci = (c1, c2, c3) such that c(u jvi ) = c j for
s − 2 ≤ j ≤ s. Therefore, each vertex vi ∈ V (4 ≤ i ≤ t) has 23 different ways of
coloring its incident edges using 2 colors. Since t − 3 ≥ 2 × 23 + 1, there exist at
least three vertices vi , v j , vk ∈ V \ {v1, v2, v3} such that Ci = C j = Ck . It is easy to
check that there is no proper tree connecting vi , v j , vk in G, a contradiction. ��
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4 The 3-Proper Index of 2-Connected Graphs

In this section, we give an upper bound for the 3-proper index of 2-connected graphs.
The following notation and terminology are needed in the sequel.

Definition 4.1 Let F be a subgraph of a graph G. An ear of F in G is a non-trivial
path in G whose endvertices are in F but whose internal vertices are not. A nested
sequence of graphs is a sequence (G0,G1, . . . ,Gk) of graphs such that Gi ⊂ Gi+1,
0 ≤ i < k. An ear-decomposition of a 2-connected graph G is a nested sequence
(G0,G1, . . . ,Gk) of 2-connected subgraphs of G such that (1) G0 is a cycle; (2)
Gi = Gi−1 ∪ Pi , where Pi is an ear of Gi−1 in G, 1 ≤ i ≤ k; (3) Gk = G.

From Corollary 2.8, we have that if G is a 2-connected Hamiltonian graph of order
n (n ≥ 3), then px3(G) = 2. Thus, we only need to consider the non-Hamiltonian
graphs.

Let G be a 2-connected non-Hamiltonian graph of order n (n ≥ 4). Then, G must
have an even cycle. In fact, since G is 2-connected, G must have a cycle C . If C is an
even cycle, we are done. Otherwise, C is an odd cycle, we then choose an ear P of C
such that V (C) ∩ V (P) = {a, b}. Since the lengths of the two segments between a, b
on C have different parities, P joining one of the two segments forms an even cycle.
Then, starting from an even cycle G0, there exists a non-increasing ear-decomposition
(G0,G1, . . . ,Gt ,Gt+1, . . . ,Gk) of G, such that Gi = Gi−1 ∪ Pi (1 ≤ i ≤ k) and
Pi is a longest ear of Gi−1, i.e., �(P1) ≥ �(P2) ≥ · · · ≥ �(Pk), where �(Pi ) denotes
the length of Pi . Suppose that V (Pi ) ∩ V (Gi−1) = {ai , bi } (1 ≤ i ≤ k). We call
the distinct vertices ai , bi (1 ≤ i ≤ k) the endpoints of the ear Pi , the edges incident
to the endpoints in Pi the end-edges of Pi , the other edges the internal edges of Pi .
Without loss of generality, suppose that �(Pt ) ≥ 2 and �(Pt+1) = · · · = �(Pk) = 1.
So, Gt is a 2-connected spanning subgraph of G. Since G is non-Hamiltonian graph,
we have t ≥ 2. Denote the order of Gi (0 ≤ i ≤ k) by ni .

Theorem 4.2 Let G be a 2-connected non-Hamiltonian graph of order n (n ≥ 4).
Then, px3(G) ≤ � n

2 �.
Proof Since Gt (t ≥ 2) in the non-increasing ear-decomposition is a 2-connected
spanning subgraph of G, it only needs to show that Gt has a 3-proper coloring with
at most � n

2 � colors by Proposition 2.5.
Next, we will give an edge-coloring c of Gt using at most � n

2 � colors. Since G1
is Hamiltonian, It follows from Corollary 2.8 that we can color the edges of G1 with
two different colors from {1, 2} such that for every triple of vertices in G1, there
exists a proper tree in G1 connecting them. Then, we color the end-edges of P2 j−4

and P2 j−3 with fresh color j for 3 ≤ j ≤ � t+3
2 �. Finally, we color the internal

edges of Pi (2 ≤ i ≤ t) with two colors from {1, 2} such that Pi is a proper path if
�(Pi ) ≥ 3. One can see that we color all the edges of Gt with � t+3

2 � colors. Since
n0 +∑t

i=1(�(Pi )− 1) = n and n0 ≥ 4, we have that � t+3
2 � ≤ � n

2 �, the equality holds
if and only if n0 = 4 and �(Pi ) = 2.

Now we show that this edge-coloring is a 3-proper coloring of Gt . We apply induc-
tion on t (t ≥ 2). If t = 2, then let u, v, w be any three vertices of G2. If all of
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{u, v, w} are in G1, then there is already a proper tree connecting them in G1. If two
of {u, v, w} are in G1, without loss of generality, assume that u ∈ V (P2) \ {a2, b2},
then the proper tree connecting a2, v, w in G1 together with the proper path uP2a2
forms a proper {u, v, w}-tree in G2. If one of {u, v, w} is in G1, without loss of gener-
ality, assume that u, v ∈ V (P2) \ {a2, b2} and v is on the proper path uP2a2, then the
proper tree connecting a2, w inG1 together with the proper path uP2a2 forms a proper
{u, v, w}-tree in G2. If none of {u, v, w} is in G1, then {u, v, w} ⊂ V (P2) \ {a2, b2}.
Thus, there is already a proper path connecting them in P2. Now we assume that
this edge-coloring makes Gi (1 ≤ i ≤ t − 1) 3-proper connected. It is sufficient
to show that this edge-coloring makes Gt 3-proper connected. For any three vertices
{u, v, w} of Gt , if all of them are in Gt−1, then there is already a proper tree in
Gt−1 connecting them. If two of {u, v, w} are in Gt−1, without loss of generality, say
u ∈ V (Pt )\{at , bt }. If t is even, then the color of the end-edges of Pt does not appear in
Gt−1. Thus, the proper tree connecting at , v, w in Gt−1 together with the proper path
uPtat forms a proper {u, v, w}-tree in Gt . If t is odd, then the end-edges of Pt−1 and
Pt have the same color which does not appear in Gt−2. We consider the following two
cases.

Case 1 |[V (Pt ) ∩ V (Pt−1)] \ V (Gt−2)| ≤ 1.

Without loss of generality, assume that at ∈ V (Gt−2) and at �= bt−1. If both
of v and w are in Gt−2, then the proper tree connecting at , v, w in Gt−2 together
with the proper path uPtat forms a proper {u, v, w}-tree in Gt . If v ∈ V (Gt−2)

and w ∈ V (Pt−1) \ {at−1, bt−1}, then the proper tree connecting at , v, bt−1 in Gt−2
together with the proper paths uPtat and wPt−1bt−1 forms a proper {u, v, w}-tree in
Gt . If v,w ∈ V (Pt−1) \ {at−1, bt−1}, without loss of generality, assume that v is on
the proper pathwPt−1bt−1. Thus, the proper tree connecting at , bt−1 inGt−2 together
with the proper paths uPtat and wPt−1bt−1 forms a proper {u, v, w}-tree in Gt .

Case 2 |[V (Pt ) ∩ V (Pt−1)] \ V (Gt−2)| = 2.

One can see that �(Pt−1) ≥ 3. Without loss of generality, assume that at is on the
proper path of bt Pt−1at−1 and bt is on the proper path of at Pt−1bt−1. If both of v

and w are in Gt−2, then the proper tree connecting bt−1, v, w in Gt−2 together with
the proper path uPtat Pt−1bt−1 forms a proper {u, v, w}-tree in Gt . If v ∈ V (Gt−2)

and w ∈ V (Pt−1) \ {at−1, bt−1}, without loss of generality, assume that w is on
the proper path at Pt−1bt−1, then the proper tree connecting v, bt−1 in Gt−2 together
with the proper path uPtat Pt−1bt−1 forms a proper {u, v, w}-tree in Gt . If v,w ∈
V (Pt−1) \ {at−1, bt−1}, without loss of generality, assume that v is on the proper
path at Pt−1bt−1. If w is on the proper path at Pt−1bt−1, then the path uPtat Pt−1bt−1
is a proper path connecting u, v, w in Gt . If w is on the proper path at Pt−1at−1,
then the proper tree connecting at−1, bt−1 in Gt−2 together with the proper paths
uPtat Pt−1bt−1 and wPt−1at−1 forms a proper {u, v, w}-tree in Gt .

If one of {u, v, w} is in Gt−1, then we can easily get a proper {u, v, w}-tree in Gt

in a way similar to the situation that two of {u, v, w} are in Gt−1. If none of {u, v, w}
is in Gt−1, then {u, v, w} ⊂ V (Pt ) \ {at , bt }. Thus, there is also already a proper path
in Pt connecting them. Hence, we complete the proof. ��
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