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Abstract In this paper, assuming generalized Riemann hypothesis, we give an upper
bound for the multiplicity of eventual zero at central point 1/2 and location of the
first zero with positive imaginary part of function in a certain subclass of the extended
Selberg class. We apply our results to automorphic L-functions attached to irreducible
unitary automorphic representations of G Ly (Q).
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1 Introduction

In 1989, Selberg [15] defined a general class of Dirichlet series having an Euler prod-
uct, analytic continuation and a functional equation of Riemann type (plus some side
conditions), and formulated some fundamental conjectures concerning them. Espe-
cially these conjectures give this class of Dirichlet series a certain structure which
applies to central problems in number theory.

The Selberg class of functions, denoted by S, is a general class of Dirichlet series
F satisfying the following properties:
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(1) (Dirichlet series) F posses a Dirichlet series representation

F(s) :ZaF(n)’

n=1 n
that converges absolutely for fts > 1.

(2) (Analytic continuation) There exists an integer m > 0 such that the function
(s — 1)™F (s) is an entire function of finite order. The smallest such number is
denoted by m r and is called the polar order of F.

(3) (Functional equation) The function F satisfies the functional equation

Pr(s) =wPr(l —5),

where

Dp(s) = F() Q% [ [ T s + 1)),
j=1

with Qp > 0,r >0,4; >0, |w|=1,RN(u;) >0,j=1,...,r.
(4) (Ramanujan hypothesis) For every € > 0 we have ar(n) < n€.
(5) (Euler product)

]

log F(s) = z bF(n),

nS

n=1

where br(n) = 0 for all n # p™ with m > 1 and p prime, and by (n) < n® for
some 6 < 1/2.

We also recall that degree and conductor, defined by

24,

r r
dr =2 1. qr = Q)" 03 [+, (1)
j=1

j=1

respectively, are invariants of F' € S (see [8]).

In fact, by the conductor hypothesis it is assumed that for every F € S one has
gr € N. In the special case when F(s) = ¢(s), where {(s) is the Riemann zeta
function then g; = 1. If F'(s) = (g (s), where g (s) is the Dedekind zeta function
of a number field K, then g, = |dk| (see e.g. [12]). The extended Selberg class S,
introduced in [7], is the class of functions satisfying axioms (1), (2) and (3). For more
information on properties of Selberg class and extended Selberg class see e.g. [1],
[6], [12] and [13].

It is conjectured that the Selberg class coincides with the class of all automorphic
L-functions.
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In order to apply some of our results unconditionally to automorphic L-functions
attached to irreducible unitary automorphic representations of G L 5 (Q), we also con-
sider class S%, introduced in [10]. It consists of functions satisfying axioms (1), (2)
and the two following axioms:

(3’) (Functional equation) The function F satisfies the functional equation
Dr(s) = wdp(l —3),
where
-
Drp(s) = F(&) Q% [[ T 0js + 1)),
j=1

with O > 0,7 > 0,4; > 0, |w| = 1, R(;) > —F, R(j +2u;) > 0, j =
1,...,r.

(5°) (Euler sum) The logarithmic derivative of the function F possesses a Dirichlet
series representation

Fo > cp(n)
7<s>——n§ —

converging absolutely for fis > 1.

Let us note that (3) implies that W(A; + ;) > 0.If F € S then

cp(n) =br(n)logn. @)

Assuming GRH, we give an upper bound for the multiplicity of eventual zero at central
point 1/2. Moreover, we give a bound for the location of the first zero with positive
imaginary part of function F in S such that R(cy(n)) > 0 foralln € N.

Similar results for Dedekind zeta function were obtained in [11].

The paper is organized as follows. In Sect. 2 we will give the main results of the
paper. In Sect. 3 we recall an explicit formula we use in the proof of our main results. In
Sect. 4 we prove preliminary lemmas. In Sect. 5 we prove main results of the paper. In
Sect. 6 we apply results of Sect. 2 to automorphic L-functions attached to irreducible
unitary automorphic representations of G Ly (Q).

2 Main Results

In this section we give two main results of the paper. Namely, we give an upper bound
for the multiplicity of eventual zero at central point 1/2 and provide an upper bound
for the height of the first zero with positive imaginary part of function F in S* such
that 9i(crp(n)) > 0 foralln € N.

Throughout this section we assume the GRH i.e. we assume that all non-trivial
zeros of F € S* are on the line fts = 1/2.
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2.1 Multiplicity of Eventual Zero at Central Point

Theorem 1 Let R be the multiplicity of eventual zero at central point 1/2 of function
F € S8 such that R(cp(n)) > 0 and let B(F) = ZZ;Zl Aj (9{(11/ (%’ + p,j)) —
log(272))-

(a) If qr > e then

_ @mr + Dloggr + B(F)
- 2logloggr ’

R

(b) If0 < qr < e then

(i) R=0, formp =0,
W(B4(F)+l) .
(ii) R < 3mre L~ fordmp + B(F) 41> 0,

)
dem g

where mp is the polar order of F, qF is the conductor of F, L, u; are given as in
axiom (3’) and W denotes the Lambert function.

2.2 Location of the First Zero with Positive Imaginary Part

Theorem 2  Let h be the height of the first zero with imaginary part different from

zero of the function F € S®. Assume that F satisfies axiom (5) of the Selberg class

and N(cp(n)) > 0. Then, for qr > e we have the bound

16«/5[(4mF+ l)logqF+B(F)] 26 + Dr
mloggrloglogqr " V2log[log g /16(KF + 8)]

h < max

Here g is the conductor of F, mF is the polar order of F, B(F) is given in Theorem
1, K is defined in Lemma 3, 0 < 1/2 stemmed from axiom (5) of the Selberg class
and § > 0.

In the case when F € S with non-negative coefficients, we can get sharper upper
bound for the height of the first zero of F with positive imaginary part, as stated in
the following

Theorem 3 Let h be the height of the first zero with imaginary part different from
zero of the function F € S and F(1 4 it) # 0 for all t € R such that ap(n) > 0 for
alln € N. Then, for qr > e we have the bound
16ﬁ[(4mF + 1) loggr + B(F)] N

7 loggr logloggr " V2log[log gr/16(mp + 1)]

h < max

where qF is conductor of F, mp is the polar order of F, B(F) is given in Theorem 1
andt > 0.
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3 Preliminaries
3.1 Explicit Formula for Functions in S¥

The universal class of test functions in this paper is the class W of regulated functions
[3]i.e. functions possessing the one-sided limits at each point. For f € W, we always
suppose 2f(x) = f(x +0) + f(x — 0). If I is an interval with endpoints a and
b(a < b), we write f(I) = f(b) — f(a).

Let ¢ be continuous function defined on [0, co) and strictly increasing from O to
oo. A function f is said to be of ¢-bounded variation on 7/ if

Vo (f. 1) = sup D ¢ (1 f L)),

where the supremum is taken over all systems {7,,} of non-overlapping subintervals of
I (cf. [22]).

The crucial tool for deriving our main results is the explicit formula for functions in
the Selberg class and its generalizations, applied to suitably constructed test functions.

Theorem 4 [20, Theorem 3.1], [10, Proposition 2.2] Let a regularized function G
satisfy the following conditions:

1. G € pBV(R)N L' (R).
2. G(x)e1/2HIIl ¢ p BV (R) N LY(R), for some € > 0.
3. G(x)+ G(—x) —2G(0) = O(|log |x||~*), as x — O, for some a > 2.

Let g(x) = G(—logx), forx > 0,G;(x) = G(x)exp (UNM’) and Z(F) the set of
all non-trivial zeros of F € S®. Then, the formula

lim > ord(p)Myg(p)

a—> 00
PEZ(F)|3pl<a

_ZCF(n) o )_ZCF( )g(l/ )+2G(0)log OF

n n2

n

n2
" 122560 exp((1 — 5 — %)) i)
+ /[ — al (Gix)+Gj(— x))i|e i dx
0

j=l1 1—e”

holds true for an arbitrary function F € S®, where

o]

M%g(s)z / G(x)eB ™12y

—00

denotes the translate by 1/2 of the Mellin transform of the function g.
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1434 K. H. Bllaca

Corollary 1 Let G be an even regularized function satisfying conditions of Theorem
4 then, the formula

lim > ord(p)Mg(p)
PEZ(F)Sp|=a

=mrMyg(0) +mrMyg(l) =23
n

m(CF](”l))g(l/n)

n

[N}

+ G(O)(logqF —dplog@m) =23 (; 1ong))

j=l1
PR Mo )X .
A:G(0)  exp((I— 5 —MNRpj)) iy =
+2Z/[ O _ U G(x)cosh(lx Y“-’)]ewdx
; X i Aj
j=1y 1—e”
(3)
holds true for an arbitrary function F € S%.
Proof Since G is even function then
G(—logx) = G(ogx), x>0,
hence g(x) = g(1/x), which yields
cr(n) cr(n) N(cr(n))
> e+ > e/ =2 ——=g(1/n),
n N2 n N2 o n2
and
ixIpj
G;(x) + G j(~x) = 2G(x) cosh ( - )
J
Furthermore, from (1) we get
-
2log OF = logqr —dFlog(2m) — ZZAJ- log ;.
j=I
This completes the proof. O

3.2 The Prime Number Theorem in the Selberg Class

For F € S let us denote by

V() =Y cr(n)

n<x
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the analogue of the Chebyshev 1/-function, where cr(n) is defined by (2).

The Selberg class analogue of the prime number theorem is a theorem that explains
the asymptotic behaviour of the function ¥ ¢ (x), as x — oo.

Kaczorowski and Perelli [9] have proved the equivalence between the prime number
theorem for the Selberg class and non-vanishing on the line fs = 1 for every function
in S, without using Tauberian arguments. They proved the following theorem.

Theorem 5 [9, Theorem 1] Let F € S. Then Y (x) = mpx+ pr(x), where pp(x) =
o(x) as x — oo ifand only if F(1 4 it) # 0 for every t € R.

4 Preliminary Lemmas

In the proof of our main results, we will need the following lemmas.

Lemma 1 [11, p. 63] Let G be defined by

I—|x|, if|x] =<1
0, otherwise.

G(x) = [

Then G satisfies the conditions of Corollary 1 and
N 2sin 5 2
G(u) = ,
u

where G is the Fourier transform of G.

Lemma 2 [11, Lemma 1] Let H be the function with compact support on [0, 00]
defined by

(1 = x)cos(rx) + 2 sin(wx), if0<x<1I,
H(x) = (1 +x)cos(rx) — = sin(rx), if —1<x <0,
0, otherwise.

Then H satisfies the condition of Corollary 1 and

N u? 2 W\’
H(M):Z 2—; mCOSE .

The proof of Lemmas 1 and 2 is based on partial integration of the Mellin transform.
Let br(n) be as in axiom (5) of the Selberg class. Then there exists Cr > 1 such

that
lbr(n)| < Cpn®, 6 <1/2. 4)

The Chebyshev function is defined by ¥ (x) = > . A(n), where A(n) is von Man-
goldt function. It satisfies the asymptotic formula

n<x

v(x) =x+r), )
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1436 K. H. Bllaca

where r(x) = O (x exp(—a+/logx)) for some a > 0 and x large enough (see e.g. [2,
p-111]).

Lemma3 Let Hr(x) = H(x/T), where H is defined in Lemma 2 and gr(1/n) =
H(107gwn).

(a) For F € S¥ satisfying axiom (5) of the Selberg class we have

cr(n T
SO (1/m) < 4K peF D (1),

1
n nz

where

el el

r2(T):CF<2e€(29_1)r(er)+2r1(eT)e_€+/xg_%r(x)dx—i-/x_grl(x)dx),
1 1

X

ri(x) = 9 9/[9_1r(t)dt,
6+1
1

and Cp,r(x) are as in (4), (5), respectively.
(b) For F € S and F(1 +it) # 0 such that ap(n) > 0 for alln € N we have

S (1 /m) < dmpet + PR(T),

n N2

where

T

Pp(T) =2pp(eN)e™ 7 + / pr(x)x~1dx,
1

mp is as in axiom (2) of the Selberg class and pr is as in Theorem 5.
Proof Definition of H yields
(1 - k’%) cos ("]T

logn
H( T ): (l+1°%")cos(”lT ) if —T <logn <0,
0, otherwise,

), if0<logn <T,

S
72
3
N—
+
|
w2
. g
=
—
9
e
3

5]
02
3
~
|
|
w2
Z
=
—
N
R
3
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hence

1
—2§H(O§n)§2, for e T <n<el.

(a) Letop(x) = >, -, lcr(n)]. From (2) and (4) we get
pr(x) = > |br(m)|logn < Cr Y p"log p* = Cr > n’ Am).

n<x pk<x n<x

Therefore
X

or(n) = Cr X" A = Cr [ awo.

n<x
- 1

With partial integration we have

X

1
/ Cap ) = s )+ )

1

hence

C
or(x) < Q—Lx“l + Crx?r(x) + Crri(x).

Now, we have the following estimate of the sum

b 1 b 1
s rellogn o pr@llon / L dorto,
nz

n n<el

An integration by parts of the last integral gives

T T

e
1 ore”) 1 [oprx)
/)61/2‘190‘”()‘)S oT/2 5/ 32

1 1

e

1
dx < 2KF6%(29+1) + Erz(t),

it follows

br(n)|logn T
> LreTIogn oo (1/n) < 4K pe XD 4 ry(0),

n n2
(b) Since F € S and F(1 + it) # 0 from (2), Theorem 5 and definition of g7 we

have

el

ZCF(”)gT(l/n><2 > CF(”)—Z/ildw(x).
1

n n2 l<n<eTl n2 X2
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With partial integration we have
eT
1 T 1
—dyr(x) <2mpe? + - Pp(T),
X2 2
1
hence
cr(n) T
> ———gr(1/n) <4mpe? + Pp(T).
n n2
O

Lemmad4 [11, Lemma 3] Let A, B, C be three positive real constants and o > 0.

If T > 0 satisfies AT + Be®T > C, then

C 1
T > min [—, —og(C/2B) ]
2A o

Proof By contradiction.

5 Proof of Main Results

In this section we prove main results of the paper given in Sect. 2.

5.1 Proof of Theorem 1

Let s = o + it. The Mellin transform of G is given by

oo oo

Mig(s) = / G(x)e“~1/Dxqx = / G(x)e T VD% itxqx = Gy (1),

—00 —00
where
Go (1) = G(x)e @ 112,

If o = 1/2 then

o0
1 . _ itx A
M%g(z —i—lt) = / G()e™dx = G (1)

—00

For t = 0 we have

@ Springer



On Properties of Certain Special Zeros of Functions... 1439

Now,
o0 00 00
M%g(O) * M%g(l) = / G(x)e 2dx + / G(x)edx = 4/G(x) cosh (%)dx.
. . )

Setting Gr(x) = G(x/T) for T > 0 we get

GT(M)=/GT(x)e”“‘dxz/G(X/T)eiuxdx.

Substituting x /T =t we get
o0
Gru)=T / G dt = TG(Tu).
—0o0

If R is order of eventual zero of F(s) € S* at point p = 1/2 then applying explicit
formula (3) for the function G7(x) we obtain the inequalities

RMgr(1/2)
< lim > ord(p)Mygr(p)
PEZ(F)|Spl=<a
)
= mr(M g7 ) + Mygr (1) -2 3 T gy
n n2

+G7(0)(loggr — dr log@m) =2 3" (3, log?.)))
j=1

exp((1 — % — R(u)) ) TG
+2Z/[ i6rO) 2 N GT(x)cosh(ilx;'u])]e*/ dx

— o J
]]0 l1—e
o0

.
< 4mp/GT(x) cosh (f)dx +loggr — 2> kjlog(2ri)))
j=1

2:Gr () exp((1 =4 =R ) =

z/[ jGr;j(0) 3 b 52 (G 3000+ G (- x))] -

J= 10 l—e*/

(6)
We denote by

7 exp((1 — 4 — 9 j))
/[u jGrj0) _ iy (Gr () +Grj(— x))}e 2 iy,

0 1—6A
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Substituting in the above integral 5~ = ¢, employing the equality G ;(0) = 1, we

get

o0 Aj .

2 exp((1 — % —Npu i) _

_)\.j/[—— 1—287t J (GT,j()»jt)%-GT,j(—)\jt))]e 'dr.
0

By the definition of function G it follows that
_ M)( it —it;“\‘u,‘-) : T
G104t + Gr s (Asf) = (1 A) (e i), if0 << L
0 otherwise.

s

For0<t <L
J

(1 — M) < ],
T
hence
Pl exp=S 90 o131 | o=t
I < )"j (“)r T B P a— i le~tdt
+ ?[% _ exp((lf—fr‘]wﬂ)l) —lt\sujile_tdti|
0
1 exp((1 )sz .Uv/)l) —t
= J|:f |:T - T} dr
0
A
+ (;/‘.O[% _ exp((ll—?tﬂj)t) —1[@#1] _tdt
A
= )»,-(l]/(Tf +,uj) + lI/( —i—u,))
Since
o0
X T
4/GT(x)cosh (E)dx =4 [(1 — §)cosh (%)dx
) 0
T
<4 [ cosh (3)dx = 4e™?,
Migr(1/2) = TG(T-0)=T-1=T,
we get

,
RT < 4mpe’? +logqr — 2 Ajlog(2mh ;)
j=1

+ZA(( +u,))+ZA(( +u,))
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It follows that

r r
)\’.
T/2 J
RT < dmpe’® +logqr =2 lkjlog(27r)nj)+2§ lx,-m(w(7+uj))
J= J=

=4mpe’? +logqr + B(F).
Setting T = 2loglog g for gr > e we get
2Rloglogqr <4mplogqr + loggr + B(F),
hence

R < 4mrplogqr + logqr + B(F)
- 2logloggr '

If0 < gr < e, then
RT < 4mpe’”? + B(F) + 1,

hence

{4mFeT/2+B(F)+ 1}

R < inf
T

T>0

= (0. Otherwise, let

If mp = 0 then inf {w]
T>0 T

dmpel’?2 + B(F) + 1

F(r) = T

Then function f has minimum at point 7 > 0 satisfying equation
2mpel’>(T —2) = B(F) + 1.
We can solve the last equation using the Lambert W-function and get

B(F 1
T =2(W(—( )+ ) + 1).
demp
This proves our theorem.
As an immediate consequence of the above theorem, in the case when the conductor
of function F is small, we get the following

Corollary 2 Let F € S* be such that % (cr(n)) > 0. Assume also that the conductor,
qr of F is less then or equal to e and that F is holomorphic. Then, F(1/2) # 0, i.e.
F' is non-vanishing at the central point.
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1442 K. H. Bllaca

Remark 1 From the proof of the Theorem 1 it is easy to see that the statement of
theorem holds true under slightly less restrictive assumptions on R(cr(n)). Namely,
it is sufficient to assume that

NR(c
> e oy = o

n n2
see formula (6).

5.2 Proof of Theorem 2

For T = ﬁn/h and u > h it is easy to see that
1 A
Mygr(5 +iu) = Ar@ <o,

hence from the GRH and Lemma 2 we have

Y. ord()Migr(p) = RMygr(0) + > ord(p)M 87 (p)
PEZ(F)|¥pl=a PEZ(F)p#1/2|3p|=<a

. 16
= RHr(0) = 5 RT,

for all @ > 1. Therefore letting @ — oo and applying explicit formula (3) we obtain
the inequality

16 R(cr(n)
S RT = mp(Mygr(0) + Mygr(1) =23 =7 (1/n)
n n:
,
+HT(0)(10g qr — dplog(2n) —2> (2 log x,-))
j=1
oo Aj X
i diHr (0 (1= F=%pu)E) ST =
WEE ) cosh () [
x l1—ei J

J=1y

@)

Since
o
X
My gr(0) + My gr(l) = 4/ Hy (x) cosh (E)dx,
0

by the definition of function Hr (x) we have

T

M gr(0) + Mygr(1) = 4/ [(1 — %) cos (”TX) + %Sin (”TX)} cosh (%)dx.
0
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Using partial integration we get

Mogr©)+ Mygr(l) = —0T .t 8
187(0) + %gT()_me- (®)

Since Hr j(0) = 1 and from the definition of the function Hr (x) we get

[o/0]

AjHr (0 exp((1 — % 9%) i) ixdp;\ | =
/2 T]( )_ - i Hr(x)cosh( AM]) e™idx
0 l—e j J

T —x _h X

/ rjeti e (FHr)5; X X 3 . /mx
= - — (1 — —) cos (—) + —sin (—) dx
X b T T T T
0 1—e?
o= s
rjetio e TN X TX 3 . /mx
+ — — (1 — —) CcoS (—) + —sin (—) dx
X e T T b4 T
0 1—e”
=1L+ D.

For simplicity, we evaluate /1. Substituting x = T we have

1 [ = Mo
et e (z+up3; 3
I = i 7 (1 —t)cos(t) + — sin(wt) ) | dx.
0 Z l1—e j T

Expanding the function under the integral sign in the Taylor series at t = 0, we see
that it is bounded as + — 0 and the bound is independent of 7', hence

Z/ & HT O = ((1 —z _ERM]) )H (x) cosh (%)

— et J
jlo 1—e”

=X
A

e’idx =cT. ©)]
Now, using Lemma 3a, (8) and (9), inequality (7) gives an inequality

16R . 16mpT?3

kT 2 Gy e~ 8KreE O —2n()
T T

,
+loggr — ZZAj log(2mA;) +cT.
j=1
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1444 K. H. Bllaca

For T large enough there exists § > 0 such that

16mpT3 r
m;ﬂ%me% —22(T) =2 ) 3 log(2m)) + T < 85e 7@+,

J=1

hence

16

—RT = ~8(Kr + 8)e> D 4log gr.
Setting

8 4 1)1 B(F 1
Az_(mF+)0gQF+ ( ),BZS(KF—i—S),C:logqF and @ =0 + -
w2 loglog gr 2

the result of Theorem 2 easily follows from Theorem 1 and Lemma 4.

5.3 Proof of Theorem 3

For T = /27 h, applying the explicit formula (3) as in the proof of Theorem 2 we
obtain the inequality (7).

For ap(n) > 0, by [21, p. 294] we have mr > 0, hence using (8), (9) and Lemma
3b, inequality (7) yields the inequality

16 16mpT? 1 r :
; zmef—SmFef —2PF(T)+10gqF—22)\.j 10g(27{)\,j)+CT

j=1

For T large enough there exists t > 0 such that

_tompT? 1 2Pp(T) 2511 Qrh:) +cT| < 8te?
e — F — i Og TTA G c =0oTe-,
2 2\2 J J
(4n2 +T2) P
hence
16 T
FRT > —8(mp +1)e? +loggr.
Setting

4 _ 8 (mp + Dloggr + B(F)

1
= B=8mp+71), C=loggr and o = —
w2 loglog gr 2

the result of Theorem 3 easily follows from Theorem 1 and Lemma 4.

@ Springer



On Properties of Certain Special Zeros of Functions... 1445

6 An Application to Automorphic L-Functions
Let v be an irreducible unitary cuspidal representation of G Ly (Q). Then the (finite)

automorphic L-function L(s, ) attached to m is given by products of local factors
for Ms > 1 (see e.g. [4])

N [e ¢
L(S, 7T) = HH (1 _ap,j(f[)p_s)_l — Z an(ﬂ)’

p =1 i
where
N
an(m) = ap im0k,
j=1
Therefore
o0
by ()
logL(s,n)zz "
n=1
and
, oo
o Cn(n)
(5, 7) = ; prt
where
A
by () = (llft)an(if)’
ogn
cn(m) = by () logn. (10)

In the series of papers [16—19], Shahidi has shown that the complete L-function
A(s, 1) = Q1) * Log (s, To0) L (s, ),

where Q(;r) > 0 is the conductor of = and

N

Loo(s, o) = H IR(s + ().

j=1

is the archimedean factor, satisfies the functional equation
A(s, ) = e(n)m

with a constant € (;7) of absolute value 1. Here, I'R(s) = 7520 (s /2) and the para-

meters «; satisfy the inequality f«; > —1/2, as proved by Rudnick and Sarnak in
[14]. Jacquet and Shalika in [5] proved that
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L(s,m)#0 for s =1.

It is easy to see that L(s, ) € S* 110, pp. 533-534] with r = N, Qf =
Q(JT)I/27T_N/2,)\.J‘ = %,,uj = %Kj(]‘[),j =1,...,N,dr = N and the parame-
ters «; satisfy the inequality fx; > —1/2.

Assuming GRH for automorphic L-functions and applying results of Theorems 1
and 2 to L(s, 7) € S* we get the following corollaries.

Corollary 3 Let R be the multiplicity of the eventual zero at the central point 1/2 of
L(s, ) such that R(c,()) > 0 and let

B(L) = im(w (% + %Kj(n))) — Nlog.

j=1

(a) If Q(r) > e then

R < (4myp + 1)log Q@) + B(L)
- 2loglog Q(m) '

(b) If 0 < Q(m) < e then
(i) R=0,when N >1orN =1andn # 1d,

1—y—mn/2—log8m
w( 1 )“+1—y—n/2—1og 87

Z(W(l—yfn{‘iflog8n)+l)

where W denotes the Lambert function. Specially, if L(s, ) # ¢(s) is automorphic
L-function with analytic conductor Q(m) less than or equal to e, then L(s, ) is
non-vanishing at central point s = 1/2.

(”) R < dmpe

Proof Part a) of the statement follows immediately from Theorem la with r = N and
Aj=gou =3k, j=1,...,N, QF = Q(m)/2x=N/2,

When N > 1 or N = 1 and w # IdL-function is entire, hence m; = 0, thus
Theorem 1b yields R = 0.

When N = 1l and mr = Id,L(s,m) = ¢(s), hence B(L) = ¥(1/4) — logm.
Moreover, ¥ (1/4) = —% — 3log?2 — y, thus B(L) = —% — log 87 — y. The proof
is complete. O

Corollary 4 Let h be the height of the first zero with imaginary part different from
zero of the function L(s, ). Assume that L(s, ) satisfies axiom (5) of the Selberg
class and N (c, (7)) > 0, where ¢, () are given by (10). Then, for Q(w) > e we have
the bound

16\/5[ log O(7) + B(L)] 26 + e
7 log Q () loglog Q() /2 log[log Q(r)/16(K 1 + &)1

hfmax[

Here my is defined in axiom (2) of the Selberg class, B(L) is given in Corollary 3, K,
is defined in Lemma 3, 0 < 1/2 and § > 0.
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Proof We proceed analogously as in the proof of Corollary 3, by puttingr = N, Qf =
Q(n)%n_%, Aj = %, nj = %Kj(]‘[), j =1,..., N. Then, we observe that the con-
ductor g; of the Riemann zeta function is equal to one, hence applying the relation (1)
withr =1, X = %, weseethatg, =1=m Q2, thus the analytic conductor of the
Riemann zeta function is also equal to 1.

Therefore, assumption Q(r) > e yields that L(s, ) # ¢(s), hence L(s, ) is
holomorphic and m;, = 0.

Once we observe that,

I\ N
qr=00"0i(3) =="oma™" = o).

the corollary follows immediately from Theorem 2. O
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