

On Properties of Certain Special Zeros of Functions in the Selberg Class

Kajtaz H. Bllaca¹

Received: 15 January 2016 / Revised: 3 July 2016 / Published online: 29 July 2016 © Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2016

Abstract In this paper, assuming generalized Riemann hypothesis, we give an upper bound for the multiplicity of eventual zero at central point 1/2 and location of the first zero with positive imaginary part of function in a certain subclass of the extended Selberg class. We apply our results to automorphic *L*-functions attached to irreducible unitary automorphic representations of $GL_N(\mathbb{Q})$.

Keywords Selberg class · Explicit formulas · Riemann hypothesis · L-functions

Mathematics Subject Classification 11M41 · 11M36

1 Introduction

In 1989, Selberg [15] defined a general class of Dirichlet series having an Euler product, analytic continuation and a functional equation of Riemann type (plus some side conditions), and formulated some fundamental conjectures concerning them. Especially these conjectures give this class of Dirichlet series a certain structure which applies to central problems in number theory.

The *Selberg class* of functions, denoted by S, is a general class of Dirichlet series F satisfying the following properties:

Communicated by Emrah Kilic.

[⊠] Kajtaz H. Bllaca kajtaz.bllaca@uni-pr.edu

¹ Department of Mathematics, University of Prishtina, George Bush, Prishtina, Republic of Kosova

(1) (Dirichlet series) F posses a Dirichlet series representation

$$F(s) = \sum_{n=1}^{\infty} \frac{a_F(n)}{n^s},$$

that converges absolutely for $\Re s > 1$.

- (2) (Analytic continuation) There exists an integer $m \ge 0$ such that the function $(s-1)^m F(s)$ is an entire function of finite order. The smallest such number is denoted by m_F and is called the *polar order* of F.
- (3) (Functional equation) The function F satisfies the functional equation

$$\Phi_F(s) = w\overline{\Phi_F(1-\bar{s})},$$

where

$$\Phi_F(s) = F(s)Q_F^s \prod_{j=1}^r \Gamma(\lambda_j s + \mu_j),$$

with $Q_F > 0, r \ge 0, \lambda_j > 0, |w| = 1, \Re(\mu_j) \ge 0, j = 1, \dots, r.$

(4) (*Ramanujan hypothesis*) For every $\epsilon > 0$ we have $a_F(n) \ll n^{\epsilon}$.

(5) (*Euler product*)

$$\log F(s) = \sum_{n=1}^{\infty} \frac{b_F(n)}{n^s}$$

where $b_F(n) = 0$ for all $n \neq p^m$ with $m \ge 1$ and p prime, and $b_F(n) \ll n^{\theta}$ for some $\theta < 1/2$.

We also recall that degree and conductor, defined by

$$d_F = 2\sum_{j=1}^r \lambda_j, \quad q_F = (2\pi)^{d_F} Q_F^2 \prod_{j=1}^r \lambda_j^{2\lambda_j}, \tag{1}$$

respectively, are invariants of $F \in \mathcal{S}$ (see [8]).

In fact, by the conductor hypothesis it is assumed that for every $F \in S$ one has $q_F \in \mathbb{N}$. In the special case when $F(s) = \zeta(s)$, where $\zeta(s)$ is the Riemann zeta function then $q_{\zeta} = 1$. If $F(s) = \zeta_K(s)$, where $\zeta_K(s)$ is the Dedekind zeta function of a number field K, then $q_{\zeta_K} = |d_K|$ (see e.g. [12]). The extended Selberg class S^{\sharp} , introduced in [7], is the class of functions satisfying axioms (1), (2) and (3). For more information on properties of Selberg class and extended Selberg class see e.g. [1], [6], [12] and [13].

It is conjectured that the Selberg class coincides with the class of all automorphic *L*-functions.

In order to apply some of our results unconditionally to automorphic *L*-functions attached to irreducible unitary automorphic representations of $GL_N(\mathbb{Q})$, we also consider class $S^{\sharp\flat}$, introduced in [10]. It consists of functions satisfying axioms (1), (2) and the two following axioms:

(3') (Functional equation) The function F satisfies the functional equation

$$\Phi_F(s) = w \overline{\Phi_F(1-\bar{s})},$$

where

$$\Phi_F(s) = F(s)Q_F^s \prod_{j=1}^r \Gamma(\lambda_j s + \mu_j),$$

with $Q_F > 0, r \ge 0, \lambda_j > 0, |w| = 1, \Re(\mu_j) > -\frac{1}{4}, \Re(\lambda_j + 2\mu_j) > 0, j = 1, \dots, r.$

(5') (*Euler sum*) The logarithmic derivative of the function F possesses a Dirichlet series representation

$$\frac{F'}{F}(s) = -\sum_{n=1}^{\infty} \frac{c_F(n)}{n^s},$$

converging absolutely for $\Re s > 1$.

Let us note that (3') implies that $\Re(\lambda_i + \mu_i) > 0$. If $F \in S$ then

$$c_F(n) = b_F(n) \log n. \tag{2}$$

Assuming *GRH*, we give an upper bound for the multiplicity of eventual zero at central point 1/2. Moreover, we give a bound for the location of the first zero with positive imaginary part of function *F* in $S^{\sharp\flat}$ such that $\Re(c_F(n)) \ge 0$ for all $n \in \mathbb{N}$.

Similar results for Dedekind zeta function were obtained in [11].

The paper is organized as follows. In Sect. 2 we will give the main results of the paper. In Sect. 3 we recall an explicit formula we use in the proof of our main results. In Sect. 4 we prove preliminary lemmas. In Sect. 5 we prove main results of the paper. In Sect. 6 we apply results of Sect. 2 to automorphic *L*-functions attached to irreducible unitary automorphic representations of $GL_N(\mathbb{Q})$.

2 Main Results

In this section we give two main results of the paper. Namely, we give an upper bound for the multiplicity of eventual zero at central point 1/2 and provide an upper bound for the height of the first zero with positive imaginary part of function F in $S^{\sharp\flat}$ such that $\Re(c_F(n)) \ge 0$ for all $n \in \mathbb{N}$.

Throughout this section we assume the *GRH* i.e. we assume that all non-trivial zeros of $F \in S^{\sharp b}$ are on the line $\Re s = 1/2$.

2.1 Multiplicity of Eventual Zero at Central Point

Theorem 1 Let *R* be the multiplicity of eventual zero at central point 1/2 of function $F \in S^{\sharp\flat}$ such that $\Re(c_F(n)) \ge 0$ and let $B(F) = 2\sum_{j=1}^r \lambda_j \left(\Re\left(\Psi\left(\frac{\lambda_j}{2} + \mu_j\right)\right) - \log(2\pi\lambda_j) \right)$. (a) If $q_F > e$ then

$$R \le \frac{(4m_F + 1)\log q_F + B(F)}{2\log \log q_F}$$

(b) If $0 < q_F \leq e$ then

(i)
$$R = 0$$
, for $m_F = 0$,
(ii) $R \le \frac{4m_F e^{W\left(\frac{B(F)+1}{4em_F}\right)+1}+B(F)+1}{2\left(W\left(\frac{B(F)+1}{4em_F}\right)+1\right)}$, for $4m_F + B(F) + 1 > 0$,

where m_F is the polar order of F, q_F is the conductor of F, λ_j , μ_j are given as in axiom (3') and W denotes the Lambert function.

2.2 Location of the First Zero with Positive Imaginary Part

Theorem 2 Let *h* be the height of the first zero with imaginary part different from zero of the function $F \in S^{\sharp\flat}$. Assume that *F* satisfies axiom (5) of the Selberg class and $\Re(c_F(n)) \ge 0$. Then, for $q_F > e$ we have the bound

$$h \le \max\left\{\frac{16\sqrt{2}\Big[(4m_F + 1)\log q_F + B(F)\Big]}{\pi \log q_F \log \log q_F}, \frac{(2\theta + 1)\pi}{\sqrt{2}\log[\log q_F/16(K_F + \delta)]}\right\}.$$

Here q_F is the conductor of F, m_F is the polar order of F, B(F) is given in Theorem 1, K_F is defined in Lemma 3, $\theta < 1/2$ stemmed from axiom (5) of the Selberg class and $\delta > 0$.

In the case when $F \in S$ with non-negative coefficients, we can get sharper upper bound for the height of the first zero of F with positive imaginary part, as stated in the following

Theorem 3 Let h be the height of the first zero with imaginary part different from zero of the function $F \in S$ and $F(1 + it) \neq 0$ for all $t \in \mathbb{R}$ such that $a_F(n) \geq 0$ for all $n \in \mathbb{N}$. Then, for $q_F > e$ we have the bound

$$h \le \max\left\{\frac{16\sqrt{2}\Big[(4m_F + 1)\log q_F + B(F)\Big]}{\pi \log q_F \log \log q_F}, \frac{\pi}{\sqrt{2}\log[\log q_F/16(m_F + \tau)]}\right\},\$$

where q_F is conductor of F, m_F is the polar order of F, B(F) is given in Theorem 1 and $\tau > 0$.

3 Preliminaries

3.1 Explicit Formula for Functions in $S^{\sharp\flat}$

The universal class of test functions in this paper is the class W of regulated functions [3] i.e. functions possessing the one-sided limits at each point. For $f \in W$, we always suppose 2f(x) = f(x + 0) + f(x - 0). If I is an interval with endpoints a and b(a < b), we write f(I) = f(b) - f(a).

Let ϕ be continuous function defined on $[0, \infty)$ and strictly increasing from 0 to ∞ . A function *f* is said to be of ϕ -bounded variation on *I* if

$$V_{\phi}(f, I) = \sup \sum_{n} \phi(|f(I_n)|),$$

where the supremum is taken over all systems $\{I_n\}$ of non-overlapping subintervals of I (cf. [22]).

The crucial tool for deriving our main results is the explicit formula for functions in the Selberg class and its generalizations, applied to suitably constructed test functions.

Theorem 4 [20, Theorem 3.1], [10, Proposition 2.2] *Let a regularized function G satisfy the following conditions:*

- 1. $G \in \phi BV(\mathbb{R}) \cap L^1(\mathbb{R})$.
- 2. $G(x)e^{(1/2+\epsilon)|x|} \in \phi BV(\mathbb{R}) \cap L^1(\mathbb{R})$, for some $\epsilon > 0$.
- 3. $G(x) + G(-x) 2G(0) = O(|\log |x||^{-\alpha})$, as $x \to 0$, for some $\alpha > 2$.

Let $g(x) = G(-\log x)$, for x > 0, $G_j(x) = G(x) \exp\left(\frac{ix\Im \mu_j}{\lambda_j}\right)$ and Z(F) the set of all non-trivial zeros of $F \in S^{\sharp\flat}$. Then, the formula

$$\begin{split} \lim_{a \to \infty} & \sum_{\rho \in Z(F)|\Im\rho| \le a} ord(\rho) M_{\frac{1}{2}}g(\rho) \\ &= m_F M_{\frac{1}{2}}g(0) + m_F M_{\frac{1}{2}}g(1) \\ &- \sum_n \frac{c_F(n)}{n^{\frac{1}{2}}}g(n) - \sum_n \frac{\overline{c_F}(n)}{n^{\frac{1}{2}}}g(1/n) + 2G(0)\log Q_F \\ &+ \sum_{j=1}^r \int_0^\infty \left[\frac{2\lambda_j G_j(0)}{x} - \frac{\exp((1 - \frac{\lambda_j}{2} - \Re\mu_j)\frac{x}{\lambda_j})}{1 - e^{\frac{-x}{\lambda_j}}} (G_j(x) + G_j(-x)) \right] e^{\frac{-x}{\lambda_j}} dx \end{split}$$

holds true for an arbitrary function $F \in S^{\sharp\flat}$, where

$$M_{\frac{1}{2}}g(s) = \int_{-\infty}^{\infty} G(x)e^{(s-1/2)x} \mathrm{d}x$$

denotes the translate by 1/2 of the Mellin transform of the function g.

Corollary 1 Let G be an even regularized function satisfying conditions of Theorem 4 then, the formula

$$\begin{split} \lim_{a \to \infty} \sum_{\rho \in Z(F)|\Im\rho| \le a} ord(\rho) M_{\frac{1}{2}}g(\rho) \\ &= m_F M_{\frac{1}{2}}g(0) + m_F M_{\frac{1}{2}}g(1) - 2\sum_n \frac{\Re(c_F(n))}{n^{\frac{1}{2}}}g(1/n) \\ &+ G(0) \Big(\log q_F - d_F \log(2\pi) - 2\sum_{j=1}^r (\lambda_j \log \lambda_j) \Big) \\ &+ 2\sum_{j=1}^r \int_0^\infty \left[\frac{\lambda_j G(0)}{x} - \frac{\exp((1 - \frac{\lambda_j}{2} - \Re\mu_j)\frac{x}{\lambda_j})}{1 - e^{\frac{-x}{\lambda_j}}} G(x) \cosh\left(\frac{ix\Im\mu_j}{\lambda_j}\right) \right] e^{\frac{-x}{\lambda_j}} dx \end{split}$$
(3)

holds true for an arbitrary function $F \in S^{\sharp\flat}$.

Proof Since G is even function then

$$G(-\log x) = G(\log x), \quad x > 0,$$

hence g(x) = g(1/x), which yields

$$\sum_{n} \frac{c_F(n)}{n^{\frac{1}{2}}} g(n) + \sum_{n} \frac{\overline{c_F}(n)}{n^{\frac{1}{2}}} g(1/n) = 2 \sum_{n} \frac{\Re(c_F(n))}{n^{\frac{1}{2}}} g(1/n),$$

and

$$G_j(x) + G_j(-x) = 2G(x) \cosh\left(\frac{ix\Im\mu_j}{\lambda_j}\right).$$

Furthermore, from (1) we get

$$2\log Q_F = \log q_F - d_F \log(2\pi) - 2\sum_{j=1}^r \lambda_j \log \lambda_j.$$

This completes the proof.

3.2 The Prime Number Theorem in the Selberg Class

For $F \in S$ let us denote by

$$\psi_F(x) = \sum_{n \le x} c_F(n)$$

Deringer

the analogue of the Chebyshev ψ -function, where $c_F(n)$ is defined by (2).

The Selberg class analogue of the prime number theorem is a theorem that explains the asymptotic behaviour of the function $\psi_F(x)$, as $x \to \infty$.

Kaczorowski and Perelli [9] have proved the equivalence between the prime number theorem for the Selberg class and non-vanishing on the line $\Re s = 1$ for every function in S, without using Tauberian arguments. They proved the following theorem.

Theorem 5 [9, Theorem 1] Let $F \in S$. Then $\psi_F(x) = m_F x + p_F(x)$, where $p_F(x) = o(x)$ as $x \to \infty$ if and only if $F(1 + it) \neq 0$ for every $t \in \mathbb{R}$.

4 Preliminary Lemmas

In the proof of our main results, we will need the following lemmas.

Lemma 1 [11, p. 63] Let G be defined by

$$G(x) = \begin{cases} 1 - |x|, & \text{if } |x| \le 1\\ 0, & \text{otherwise.} \end{cases}$$

Then G satisfies the conditions of Corollary 1 and

$$\hat{G}(u) = \left(\frac{2\sin\frac{u}{2}}{u}\right)^2,$$

where \hat{G} is the Fourier transform of G.

Lemma 2 [11, Lemma 1] Let *H* be the function with compact support on $[0, \infty]$ defined by

$$H(x) = \begin{cases} (1-x)\cos(\pi x) + \frac{3}{\pi}\sin(\pi x), & \text{if } 0 \le x \le 1, \\ (1+x)\cos(\pi x) - \frac{3}{\pi}\sin(\pi x), & \text{if } -1 \le x < 0, \\ 0, & \text{otherwise.} \end{cases}$$

Then H satisfies the condition of Corollary 1 and

$$\hat{H}(u) = 2\left(2 - \frac{u^2}{\pi^2}\right) \left(\frac{2\pi}{\pi^2 - u^2} \cos\frac{u}{2}\right)^2.$$

The proof of Lemmas 1 and 2 is based on partial integration of the Mellin transform.

Let $b_F(n)$ be as in axiom (5) of the Selberg class. Then there exists $C_F \ge 1$ such that

$$|b_F(n)| \le C_F n^{\theta}, \quad \theta < 1/2.$$
(4)

The Chebyshev function is defined by $\psi(x) = \sum_{n \le x} \Lambda(n)$, where $\Lambda(n)$ is von Mangoldt function. It satisfies the asymptotic formula

$$\psi(x) = x + r(x),\tag{5}$$

🖉 Springer

where $r(x) = O(x \exp(-a\sqrt{\log x}))$ for some a > 0 and x large enough (see e.g. [2, p.111]).

Lemma 3 Let $H_T(x) = H(x/T)$, where H is defined in Lemma 2 and $g_T(1/n) = H\left(\frac{\log n}{T}\right)$.

(a) For $F \in S^{\sharp\flat}$ satisfying axiom (5) of the Selberg class we have

$$\sum_{n} \frac{|c_F(n)|}{n^{\frac{1}{2}}} g_T(1/n) \le 4K_F e^{\frac{T}{2}(2\theta+1)} + r_2(T),$$

where

$$K_F = \frac{C_F}{2\theta + 1}$$

$$r_{2}(T) = C_{F} \left(2e^{\frac{T}{2}(2\theta-1)}r(e^{T}) + 2r_{1}(e^{T})e^{-\frac{T}{2}} + \int_{1}^{e^{T}} x^{\theta-\frac{3}{2}}r(x)dx + \int_{1}^{e^{T}} x^{-\frac{3}{2}}r_{1}(x)dx \right)$$

$$r_1(x) = \frac{\theta}{\theta+1} - \theta \int_{1}^{x} t^{\theta-1} r(t) dt,$$

and C_F , r(x) are as in (4), (5), respectively. (b) For $F \in S$ and $F(1 + it) \neq 0$ such that $a_F(n) \geq 0$ for all $n \in \mathbb{N}$ we have

$$\sum_{n} \frac{c_F(n)}{n^{\frac{1}{2}}} g_T(1/n) \le 4m_F e^{\frac{T}{2}} + P_F(T),$$

where

$$P_F(T) = 2p_F(e^T)e^{-\frac{T}{2}} + \int_{1}^{e^T} p_F(x)x^{-\frac{3}{2}}dx,$$

 m_F is as in axiom (2) of the Selberg class and p_F is as in Theorem 5. Proof Definition of H yields

$$H\left(\frac{\log n}{T}\right) = \begin{cases} \left(1 - \frac{\log n}{T}\right)\cos\left(\frac{\pi\log n}{T}\right) + \frac{3}{\pi}\sin\left(\frac{\pi\log n}{T}\right), & \text{if } 0 \le \log n \le T, \\ \left(1 + \frac{\log n}{T}\right)\cos\left(\frac{\pi\log n}{T}\right) - \frac{3}{\pi}\sin\left(\frac{\pi\log n}{T}\right), & \text{if } -T \le \log n < 0, \\ 0, & \text{otherwise,} \end{cases}$$

Deringer

hence

$$-2 \le H\left(\frac{\log n}{T}\right) \le 2$$
, for $e^{-T} \le n \le e^{T}$.

(a) Let $\varphi_F(x) = \sum_{n \le x} |c_F(n)|$. From (2) and (4) we get

$$\varphi_F(x) = \sum_{n \le x} |b_F(n)| \log n \le C_F \sum_{p^k \le x} p^{k\theta} \log p^k = C_F \sum_{n \le x} n^{\theta} \Lambda(n).$$

Therefore

$$\varphi_F(x) \le C_F \sum_{n \le x} n^{\theta} \Lambda(n) = C_F \int_{1}^{x} t^{\theta} d\psi(t)$$

With partial integration we have

$$\int_{1}^{x} t^{\theta} d\psi(t) = \frac{1}{\theta + 1} x^{\theta + 1} + x^{\theta} r(x) + r_1(x),$$

hence

$$\varphi_F(x) \le \frac{C_F}{\theta + 1} x^{\theta + 1} + C_F x^{\theta} r(x) + C_F r_1(x).$$

Now, we have the following estimate of the sum

$$\sum_{n} \frac{|b_F(n)| \log n}{n^{\frac{1}{2}}} g_T(1/n) \le 2 \sum_{n \le e^T} \frac{|b_F(n)| \log n}{n^{\frac{1}{2}}} = 2 \int_{1}^{e^T} \frac{1}{x^{1/2}} d\varphi_F(x).$$

An integration by parts of the last integral gives

$$\int_{1}^{e^{T}} \frac{1}{x^{1/2}} d\varphi_{F}(x) \leq \frac{\varphi_{F}(e^{T})}{e^{T/2}} + \frac{1}{2} \int_{1}^{e^{T}} \frac{\varphi_{F}(x)}{x^{3/2}} \mathrm{d}x \leq 2K_{F}e^{\frac{T}{2}(2\theta+1)} + \frac{1}{2}r_{2}(t),$$

it follows

$$\sum_{n} \frac{|b_F(n)| \log n}{n^{\frac{1}{2}}} g_T(1/n) \le 4K_F e^{\frac{T}{2}(2\theta+1)} + r_2(t)$$

(b) Since $F \in S$ and $F(1 + it) \neq 0$ from (2), Theorem 5 and definition of g_T we have

$$\sum_{n} \frac{c_F(n)}{n^{\frac{1}{2}}} g_T(1/n) \le 2 \sum_{1 \le n \le e^T} \frac{c_F(n)}{n^{\frac{1}{2}}} = 2 \int_{1}^{e^T} \frac{1}{x^{\frac{1}{2}}} d\psi_F(x).$$

With partial integration we have

$$\int_{1}^{e^{T}} \frac{1}{x^{\frac{1}{2}}} d\psi_{F}(x) \leq 2m_{F}e^{\frac{T}{2}} + \frac{1}{2}P_{F}(T),$$

hence

$$\sum_{n} \frac{c_F(n)}{n^{\frac{1}{2}}} g_T(1/n) \le 4m_F e^{\frac{T}{2}} + P_F(T).$$

Lemma 4 [11, Lemma 3] Let A, B, C be three positive real constants and $\alpha > 0$. If T > 0 satisfies $AT + Be^{\alpha T} \ge C$, then

$$T \ge \min\left\{\frac{C}{2A}, \frac{\log(C/2B)}{\alpha}\right\}.$$

Proof By contradiction.

5 Proof of Main Results

In this section we prove main results of the paper given in Sect. 2.

5.1 Proof of Theorem 1

Let $s = \sigma + it$. The Mellin transform of G is given by

$$M_{\frac{1}{2}}g(s) = \int_{-\infty}^{\infty} G(x)e^{(s-1/2)x} dx = \int_{-\infty}^{\infty} G(x)e^{(\sigma-1/2)x}e^{itx} dx = \hat{G}_{\sigma}(t),$$

where

$$G_{\sigma}(t) = G(x)e^{(\sigma - 1/2)x}.$$

If $\sigma = 1/2$ then

$$M_{\frac{1}{2}}g\left(\frac{1}{2}+it\right) = \int_{-\infty}^{\infty} G(x)e^{itx}dx = \hat{G}(t)$$

For t = 0 we have

$$M_{\frac{1}{2}}g\left(\frac{1}{2}\right) = \hat{G}(0) = 1.$$

Deringer

Now,

$$M_{\frac{1}{2}}g(0) + M_{\frac{1}{2}}g(1) = \int_{-\infty}^{\infty} G(x)e^{-\frac{x}{2}}dx + \int_{-\infty}^{\infty} G(x)e^{\frac{x}{2}}dx = 4\int_{0}^{\infty} G(x)\cosh\left(\frac{x}{2}\right)dx.$$

Setting $G_T(x) = G(x/T)$ for T > 0 we get

$$\hat{G}_T(u) = \int_{-\infty}^{\infty} G_T(x) e^{iux} dx = \int_{-\infty}^{\infty} G(x/T) e^{iux} dx.$$

Substituting x/T = t we get

$$\hat{G}_T(u) = T \int_{-\infty}^{\infty} G(t) e^{iuTt} dt = T \hat{G}(Tu).$$

If *R* is order of eventual zero of $F(s) \in S^{\sharp \flat}$ at point $\rho = 1/2$ then applying explicit formula (3) for the function $G_T(x)$ we obtain the inequalities

$$\begin{aligned} RM_{\frac{1}{2}}g_{T}(1/2) \\ &\leq \lim_{a \to \infty} \sum_{\rho \in Z(F)|\Im \rho| \leq a} ord(\rho) M_{\frac{1}{2}}g_{T}(\rho) \\ &= m_{F}(M_{\frac{1}{2}}g_{T}(0) + M_{\frac{1}{2}}g_{T}(1)) - 2\sum_{n} \frac{\Re(c_{F}(n))}{n^{\frac{1}{2}}}g_{T}(1/n) \\ &+ G_{T}(0) \Big(\log q_{F} - d_{F}\log(2\pi) - 2\sum_{j=1}^{r} (\lambda_{j}\log\lambda_{j})\Big) \\ &+ 2\sum_{j=1}^{r} \int_{0}^{\infty} \bigg[\frac{\lambda_{j}G_{T,j}(0)}{x} - \frac{\exp((1 - \frac{\lambda_{j}}{2} - \Re(\mu_{j}))\frac{x}{\lambda_{j}})}{1 - e^{\frac{-x}{\lambda_{j}}}} G_{T}(x) \cosh\left(\frac{ix\Im\mu_{j}}{\lambda_{j}}\right) \bigg] e^{\frac{-x}{\lambda_{j}}} dx \\ &\leq 4m_{F} \int_{0}^{\infty} G_{T}(x) \cosh\left(\frac{x}{2}\right) dx + \log q_{F} - 2\sum_{j=1}^{r} \lambda_{j}\log(2\pi\lambda_{j})) \\ &+ \sum_{j=1}^{r} \int_{0}^{\infty} \bigg[\frac{2\lambda_{j}G_{T,j}(0)}{x} - \frac{\exp((1 - \frac{\lambda_{j}}{2} - \Re(\mu_{j}))\frac{x}{\lambda_{j}})}{1 - e^{\frac{-x}{\lambda_{j}}}} (G_{T,j}(x) + G_{T,j}(-x)) \bigg] e^{\frac{-x}{\lambda_{j}}} dx. \end{aligned}$$

$$(6)$$

We denote by

$$I = \int_{0}^{\infty} \left[\frac{2\lambda_j G_{T,j}(0)}{x} - \frac{\exp((1 - \frac{\lambda_j}{2} - \Re\mu_j)\frac{x}{\lambda_j})}{1 - e^{\frac{-x}{\lambda_j}}} (G_{T,j}(x) + G_{T,j}(-x)) \right] e^{\frac{-x}{\lambda_j}} dx.$$

D Springer

Substituting in the above integral $\frac{x}{\lambda_j} = t$, employing the equality $G_{T,j}(0) = 1$, we get

$$I = \lambda_j \int_{0}^{\infty} \left[\frac{2}{t} - \frac{\exp((1 - \frac{\lambda_j}{2} - \Re\mu_j)t)}{1 - e^{-t}} (G_{T,j}(\lambda_j t) + G_{T,j}(-\lambda_j t)) \right] e^{-t} dt.$$

By the definition of function G_j it follows that

$$G_{T,j}(\lambda_j t) + G_{T,j}(-\lambda_j t) = \begin{cases} \left(1 - \frac{\lambda_j t}{T}\right) \left(e^{it\Im\mu_j} + e^{-it\Im\mu_j}\right), & \text{if } 0 \le t \le \frac{T}{\lambda_j} \\ 0, & \text{otherwise.} \end{cases}$$

For $0 \le t \le \frac{T}{\lambda_j}$

$$\left(1 - \frac{\lambda_j t}{T}\right) \le 1,$$

hence

$$I \leq \lambda_j \left[\int_0^\infty \left[\frac{1}{t} - \frac{\exp((1 - \frac{\lambda_j}{2} - \Re\mu_j)t)}{1 - e^{-t}} e^{it\Im\mu_j} \right] e^{-t} dt \right]$$
$$+ \int_0^\infty \left[\frac{1}{t} - \frac{\exp((1 - \frac{\lambda_j}{2} - \Re\mu_j)t)}{1 - e^{-t}} e^{-it\Im\mu_j} \right] e^{-t} dt \right]$$
$$= \lambda_j \left[\int_0^\infty \left[\frac{1}{t} - \frac{\exp((1 - \frac{\lambda_j}{2} - \bar{\mu}_j)t)}{1 - e^{-t}} \right] e^{-t} dt \right]$$
$$+ \int_0^\infty \left[\frac{1}{t} - \frac{\exp((1 - \frac{\lambda_j}{2} - \mu_j)t)}{1 - e^{-t}} e^{-it\Im\mu_j} \right] e^{-t} dt$$
$$= \lambda_j \left(\Psi \left(\frac{\lambda_j}{2} + \bar{\mu}_j \right) + \Psi \left(\frac{\lambda_j}{2} + \mu_j \right) \right).$$

Since

$$4\int_{0}^{\infty} G_{T}(x) \cosh\left(\frac{x}{2}\right) dx = 4\int_{0}^{T} (1-\frac{x}{T}) \cosh\left(\frac{x}{2}\right) dx$$
$$\leq 4\int_{0}^{T} \cosh\left(\frac{x}{2}\right) dx \leq 4e^{T/2},$$
$$M_{\frac{1}{2}}g_{T}(1/2) = T\hat{G}(T \cdot 0) = T \cdot 1 = T,$$

we get

$$RT \leq 4m_F e^{T/2} + \log q_F - 2\sum_{j=1}^r \lambda_j \log(2\pi\lambda_j) + \sum_{j=1}^r \lambda_j \left(\Psi\left(\frac{\lambda_j}{2} + \bar{\mu}_j\right)\right) + \sum_{j=1}^r \lambda_j \left(\Psi\left(\frac{\lambda_j}{2} + \mu_j\right)\right).$$

Deringer

It follows that

$$RT \le 4m_F e^{T/2} + \log q_F - 2\sum_{j=1}^r \lambda_j \log(2\pi\lambda_j) + 2\sum_{j=1}^r \lambda_j \Re\left(\Psi\left(\frac{\lambda_j}{2} + \mu_j\right)\right)$$
$$= 4m_F e^{T/2} + \log q_F + B(F).$$

Setting $T = 2 \log \log q_F$ for $q_F > e$ we get

$$2R\log\log q_F \le 4m_F\log q_F + \log q_F + B(F),$$

hence

$$R \le \frac{4m_F \log q_F + \log q_F + B(F)}{2\log \log q_F}$$

If $0 < q_F \leq e$, then

$$RT \le 4m_F e^{T/2} + B(F) + 1,$$

hence

$$R \le \inf_{T>0} \Big\{ \frac{4m_F e^{T/2} + B(F) + 1}{T} \Big\}.$$

If $m_F = 0$ then $\inf_{T>0} \left\{ \frac{4m_F e^{T/2} + B(F) + 1}{T} \right\} = 0$. Otherwise, let

$$f(T) = \frac{4m_F e^{T/2} + B(F) + 1}{T}$$

Then function f has minimum at point T > 0 satisfying equation

$$2m_F e^{T/2}(T-2) = B(F) + 1.$$

We can solve the last equation using the Lambert W-function and get

$$T = 2\left(W\left(\frac{B(F)+1}{4em_F}\right) + 1\right).$$

This proves our theorem.

As an immediate consequence of the above theorem, in the case when the conductor of function F is small, we get the following

Corollary 2 Let $F \in S^{\sharp\flat}$ be such that $\Re(c_F(n)) \ge 0$. Assume also that the conductor, q_F of F is less then or equal to e and that F is holomorphic. Then, $F(1/2) \ne 0$, i.e. F is non-vanishing at the central point.

Remark 1 From the proof of the Theorem 1 it is easy to see that the statement of theorem holds true under slightly less restrictive assumptions on $\Re(c_F(n))$. Namely, it is sufficient to assume that

$$\sum_{n} \frac{\Re(c_F(n))}{n^{\frac{1}{2}}} g_T(1/n) \ge 0,$$

see formula (6).

5.2 Proof of Theorem 2

For $T = \sqrt{2\pi}/h$ and $u \ge h$ it is easy to see that

$$M_{\frac{1}{2}}g_T\left(\frac{1}{2}+iu\right) = \hat{H}_T(u) \le 0.$$

hence from the GRH and Lemma 2 we have

$$\sum_{\rho \in Z(F)|\Im\rho| \le a} ord(\rho) M_{\frac{1}{2}} g_T(\rho) = R M_{\frac{1}{2}} g_T(0) + \sum_{\rho \in Z(F)\rho \ne 1/2|\Im\rho| \le a} ord(\rho) M_{\frac{1}{2}} g_T(\rho)$$
$$\le R \hat{H}_T(0) = \frac{16}{\pi^2} R T,$$

for all a > 1. Therefore letting $a \to \infty$ and applying explicit formula (3) we obtain the inequality

$$\frac{16}{\pi^2} RT \ge m_F(M_{\frac{1}{2}}g_T(0) + M_{\frac{1}{2}}g_T(1)) - 2\sum_n \frac{\Re(c_F(n))}{n^{\frac{1}{2}}} g_T(1/n) \\
+ H_T(0) \Big(\log q_F - d_F \log(2\pi) - 2\sum_{j=1}^r (\lambda_j \log \lambda_j) \Big) \\
+ \sum_{j=1}^r \int_0^\infty 2 \Big[\frac{\lambda_j H_{T,j}(0)}{x} - \frac{\exp((1 - \frac{\lambda_j}{2} - \Re\mu_j)\frac{x}{\lambda_j})}{1 - e^{\frac{-x}{\lambda_j}}} H_T(x) \cosh\left(\frac{ix\Im\mu_j}{\lambda_j}\right) \Big] e^{\frac{-x}{\lambda_j}} dx.$$
(7)

Since

$$M_{\frac{1}{2}}g_T(0) + M_{\frac{1}{2}}g_T(1) = 4\int_0^\infty H_T(x)\cosh\left(\frac{x}{2}\right) dx.$$

by the definition of function $H_T(x)$ we have

$$M_{\frac{1}{2}}g_{T}(0) + M_{\frac{1}{2}}g_{T}(1) = 4\int_{0}^{T} \left[\left(1 - \frac{x}{T}\right) \cos\left(\frac{\pi x}{T}\right) + \frac{3}{\pi} \sin\left(\frac{\pi x}{T}\right) \right] \cosh\left(\frac{x}{2}\right) dx.$$

Using partial integration we get

$$M_{\frac{1}{2}}g_T(0) + M_{\frac{1}{2}}g_T(1) \ge \frac{16T^3}{(4\pi^2 + T^2)^2}e^{\frac{T}{2}}.$$
(8)

Since $H_{T,j}(0) = 1$ and from the definition of the function $H_T(x)$ we get

$$\int_{0}^{\infty} 2\left[\frac{\lambda_{j}H_{T,j}(0)}{x} - \frac{\exp\left(\left(1 - \frac{\lambda_{j}}{2} - \Re\mu_{j}\right)\frac{x}{\lambda_{j}}\right)}{1 - e^{\frac{-x}{\lambda_{j}}}}H_{T}(x)\cosh\left(\frac{ix\Im\mu_{j}}{\lambda_{j}}\right)\right]e^{\frac{-x}{\lambda_{j}}}dx$$

$$= \int_{0}^{T}\left[\frac{\lambda_{j}e^{\frac{-x}{\lambda_{j}}}}{x} - \frac{e^{-\left(\frac{\lambda_{j}}{2} + \mu_{j}\right)\frac{x}{\lambda_{j}}}}{1 - e^{\frac{-x}{\lambda_{j}}}}\left(\left(1 - \frac{x}{T}\right)\cos\left(\frac{\pi x}{T}\right) + \frac{3}{\pi}\sin\left(\frac{\pi x}{T}\right)\right)\right]dx$$

$$+ \int_{0}^{T}\left[\frac{\lambda_{j}e^{\frac{-x}{\lambda_{j}}}}{x} - \frac{e^{-\left(\frac{\lambda_{j}}{2} + \mu_{j}\right)\frac{x}{\lambda_{j}}}}{1 - e^{\frac{-x}{\lambda_{j}}}}\left(\left(1 - \frac{x}{T}\right)\cos\left(\frac{\pi x}{T}\right) + \frac{3}{\pi}\sin\left(\frac{\pi x}{T}\right)\right)\right]dx$$

$$= I_{1} + I_{2}.$$

For simplicity, we evaluate I_1 . Substituting x = tT we have

$$I_{1} = T \int_{0}^{1} \left[\frac{e^{\frac{-Tt}{\lambda_{j}}}}{\frac{Tt}{\lambda_{j}}} - \frac{e^{-(\frac{\lambda_{j}}{2} + \mu_{j})\frac{Tt}{\lambda_{j}}}}{1 - e^{\frac{-Tt}{\lambda_{j}}}} \left((1 - t)\cos(\pi t) + \frac{3}{\pi}\sin(\pi t) \right) \right] dx.$$

Expanding the function under the integral sign in the Taylor series at t = 0, we see that it is bounded as $t \rightarrow 0$ and the bound is independent of T, hence

$$\sum_{j=1}^{r} \int_{0}^{\infty} 2\left[\frac{\lambda_{j}H_{T,j}(0)}{x} - \frac{\exp\left(\left(1 - \frac{\lambda_{j}}{2} - \Re\mu_{j}\right)\frac{x}{\lambda_{j}}\right)}{1 - e^{\frac{-x}{\lambda_{j}}}}H_{T}(x)\cosh\left(\frac{ix\Im\mu_{j}}{\lambda_{j}}\right)\right]$$
$$e^{\frac{-x}{\lambda_{j}}}dx = cT.$$
(9)

Now, using Lemma 3a, (8) and (9), inequality (7) gives an inequality

$$\frac{16}{\pi^2} RT \ge \frac{16m_F T^3}{(4\pi^2 + T^2)^2} e^{\frac{T}{2}} - 8K_F e^{\frac{T}{2}(2\theta + 1)} - 2r_2(T) + \log q_F - 2\sum_{j=1}^r \lambda_j \log(2\pi\lambda_j) + cT.$$

Description Springer

For *T* large enough there exists $\delta > 0$ such that

$$\left|\frac{16m_F T^3}{(4\pi^2 + T^2)^2} e^{\frac{T}{2}} - 2r_2(T) - 2\sum_{j=1}^r \lambda_j \log(2\pi\lambda_j) + cT\right| \le 8\delta e^{\frac{T}{2}(2\theta+1)},$$

hence

$$\frac{16}{\pi^2} RT \ge -8(K_F + \delta)e^{\frac{T}{2}(2\theta + 1)} + \log q_F.$$

Setting

$$A = \frac{8}{\pi^2} \frac{(4m_F + 1)\log q_F + B(F)}{\log \log q_F}, \ B = 8(K_F + \delta), \ C = \log q_F \text{ and } \alpha = \theta + \frac{1}{2}$$

the result of Theorem 2 easily follows from Theorem 1 and Lemma 4.

5.3 Proof of Theorem 3

For $T = \sqrt{2\pi/h}$, applying the explicit formula (3) as in the proof of Theorem 2 we obtain the inequality (7).

For $a_F(n) \ge 0$, by [21, p. 294] we have $m_F > 0$, hence using (8), (9) and Lemma 3b, inequality (7) yields the inequality

$$\frac{16}{\pi^2}RT \ge \frac{16m_FT^3}{(4\pi^2 + T^2)^2}e^{\frac{T}{2}} - 8m_Fe^{\frac{T}{2}} - 2P_F(T) + \log q_F - 2\sum_{j=1}^r \lambda_j \log(2\pi\lambda_j) + cT.$$

For T large enough there exists $\tau > 0$ such that

$$\left|\frac{16m_F T^3}{(4\pi^2 + T^2)^2} e^{\frac{T}{2}} - 2P_F(T) - 2\sum_{j=1}^r \lambda_j \log(2\pi\lambda_j) + cT\right| \le 8\tau e^{\frac{T}{2}},$$

hence

$$\frac{16}{\pi^2} RT \ge -8(m_F + \tau)e^{\frac{T}{2}} + \log q_F.$$

Setting

$$A = \frac{8}{\pi^2} \frac{(4m_F + 1)\log q_F + B(F)}{\log \log q_F}, \ B = 8(m_F + \tau), \ C = \log q_F \text{ and } \alpha = \frac{1}{2}$$

the result of Theorem 3 easily follows from Theorem 1 and Lemma 4.

Deringer

6 An Application to Automorphic L-Functions

Let π be an irreducible unitary cuspidal representation of $GL_N(\mathbb{Q})$. Then the (finite) automorphic *L*-function $L(s, \pi)$ attached to π is given by products of local factors for $\Re s > 1$ (see e.g. [4])

$$L(s,\pi) = \prod_{p} \prod_{j=1}^{N} \left(1 - \alpha_{p,j}(\pi)p^{-s}\right)^{-1} = \sum_{n=1}^{\infty} \frac{a_n(\pi)}{n^s},$$

where

$$a_n(\pi) = \sum_{j=1}^N \alpha_{p,j}(\pi)^k.$$

Therefore

$$\log L(s,\pi) = \sum_{n=1}^{\infty} \frac{b_n(\pi)}{n^s}$$

and

$$\frac{L'}{L}(s,\pi) = -\sum_{n=1}^{\infty} \frac{c_n(\pi)}{n^s},$$

where

$$b_n(\pi) = \frac{\Lambda(n)a_n(\pi)}{\log n},$$

$$c_n(\pi) = b_n(\pi)\log n.$$
(10)

In the series of papers [16-19], Shahidi has shown that the complete L-function

$$\Lambda(s,\pi) = Q(\pi)^{s/2} L_{\infty}(s,\pi_{\infty}) L(s,\pi),$$

where $Q(\pi) > 0$ is the conductor of π and

$$L_{\infty}(s,\pi_{\infty}) = \prod_{j=1}^{N} \Gamma_{\mathbb{R}}(s+\kappa_{j}(\pi)).$$

is the archimedean factor, satisfies the functional equation

$$\Lambda(s,\pi) = \epsilon(\pi)\overline{\Lambda(1-\bar{s},\pi)}$$

with a constant $\epsilon(\pi)$ of absolute value 1. Here, $\Gamma_{\mathbb{R}}(s) = \pi^{-s/2} \Gamma(s/2)$ and the parameters κ_j satisfy the inequality $\Re \kappa_j > -1/2$, as proved by Rudnick and Sarnak in [14]. Jacquet and Shalika in [5] proved that

$$L(s,\pi) \neq 0$$
 for $\Re s = 1$.

It is easy to see that $L(s,\pi) \in S^{\sharp\flat}$ [10, pp. 533–534] with $r = N, Q_F = Q(\pi)^{1/2}\pi^{-N/2}, \lambda_j = \frac{1}{2}, \mu_j = \frac{1}{2}\kappa_j(\pi), j = 1, \dots, N, d_F = N$ and the parameters κ_j satisfy the inequality $\Re \kappa_j > -1/2$.

Assuming *GRH* for automorphic *L*-functions and applying results of Theorems 1 and 2 to $L(s, \pi) \in S^{\sharp\flat}$ we get the following corollaries.

Corollary 3 Let *R* be the multiplicity of the eventual zero at the central point 1/2 of $L(s, \pi)$ such that $\Re(c_n(\pi)) \ge 0$ and let

$$B(L) = \sum_{j=1}^{N} \Re\left(\Psi\left(\frac{1}{4} + \frac{1}{2}\kappa_{j}(\pi)\right)\right) - N\log\pi.$$

(a) If $Q(\pi) > e$ then

$$R \le \frac{(4m_L+1)\log Q(\pi) + B(L)}{2\log \log Q(\pi)}$$

(b) If $0 < Q(\pi) \leq e$ then

(i)
$$R = 0$$
, when $N > 1$ or $N = 1$ and $\pi \neq Id$,
(ii) $R \leq \frac{4m_L e^{W\left(\frac{1-\gamma-\pi/2-\log 8\pi}{4e}\right)+1}+1-\gamma-\pi/2-\log 8\pi}{2\left(W\left(\frac{1-\gamma-\pi/2-\log 8\pi}{4e}\right)+1\right)}$.

where W denotes the Lambert function. Specially, if $L(s, \pi) \neq \zeta(s)$ is automorphic L-function with analytic conductor $Q(\pi)$ less than or equal to e, then $L(s, \pi)$ is non-vanishing at central point s = 1/2.

Proof Part a) of the statement follows immediately from Theorem 1a with r = N and $\lambda_j = \frac{1}{2}$, $\mu_j = \frac{1}{2}\kappa_j(\pi)$, j = 1, ..., N, $Q_F = Q(\pi)^{1/2}\pi^{-N/2}$.

When N > 1 or N = 1 and $\pi \neq IdL$ -function is entire, hence $m_L = 0$, thus Theorem 1b yields R = 0.

When N = 1 and $\pi = Id$, $L(s, \pi) = \zeta(s)$, hence $B(L) = \Psi(1/4) - \log \pi$. Moreover, $\Psi(1/4) = -\frac{\pi}{2} - 3\log 2 - \gamma$, thus $B(L) = -\frac{\pi}{2} - \log 8\pi - \gamma$. The proof is complete.

Corollary 4 Let h be the height of the first zero with imaginary part different from zero of the function $L(s, \pi)$. Assume that $L(s, \pi)$ satisfies axiom (5) of the Selberg class and $\Re(c_n(\pi)) \ge 0$, where $c_n(\pi)$ are given by (10). Then, for $Q(\pi) > e$ we have the bound

$$h \le \max\left\{\frac{16\sqrt{2} \left[\log Q(\pi) + B(L)\right]}{\pi \log Q(\pi) \log \log Q(\pi)}, \frac{(2\theta + 1)\pi}{\sqrt{2} \log[\log Q(\pi)/16(K_L + \delta)]}\right\}$$

Here m_L is defined in axiom (2) of the Selberg class, B(L) is given in Corollary 3, K_L is defined in Lemma 3, $\theta < 1/2$ and $\delta > 0$.

Proof We proceed analogously as in the proof of Corollary 3, by putting r = N, $Q_F = Q(\pi)^{\frac{1}{2}}\pi^{-\frac{N}{2}}$, $\lambda_j = \frac{1}{2}$, $\mu_j = \frac{1}{2}\kappa_j(\pi)$, j = 1, ..., N. Then, we observe that the conductor q_{ζ} of the Riemann zeta function is equal to one, hence applying the relation (1) with r = 1, $\lambda_1 = \frac{1}{2}$, we see that $q_{\zeta} = 1 = \pi Q_{\zeta}^2$, thus the analytic conductor of the Riemann zeta function is also equal to 1.

Therefore, assumption $Q(\pi) > e$ yields that $L(s, \pi) \neq \zeta(s)$, hence $L(s, \pi)$ is holomorphic and $m_L = 0$.

Once we observe that,

$$q_L = (2\pi)^N Q_L^2 \left(\frac{1}{2}\right)^N = \pi^N Q(\pi) \pi^{-N} = Q(\pi),$$

the corollary follows immediately from Theorem 2.

Acknowledgements I would like to thank L. Smajlović for supervising my Ph.D. thesis as well as for helpful discussions and improvements of this paper.

References

- 1. Carletti, E., Bragadin, E., Perelli, A.: On general L-functions. Acta Arith. 66, 147-179 (1994)
- 2. Davenport, H.: Multiplicative Number Theory, 2nd edn. Springer, New York (1980)
- Dieudonné, J.: Treatise on Analysis, Vol. I (Foundations of Modern Analysis). Academic Press, New York (1969)
- Godement, R., Jacquet, H.: Zeta Functions of Simple Algebras, Lecture Notes in Math. Springer, Berlin (1972)
- Jacquet, H., Shalika, J.A.: A non-vanishing theorem for zeta functions of *GL_n*. Invent. Math. 38, 1–16 (1976)
- Kaczorowski, J.: Axiomatic Theory of L-Functions: The Selberg Class, Lecture Notes in Mathematics, vol. 1891, pp. 133–209. Springer, Berlin (2006)
- 7. Kaczorowski, J., Perelli, A.: On the structure of the Selberg class, I: $0 \le d \le 1$. Acta Math. 182, 207–241 (1999)
- Kaczorowski, J., Perelli, A.: On the structure of the Selberg class, II: invariants and conjectures. J. Reine Angew. Math. 524, 73–96 (2000)
- Kaczorowski, J., Perelli, A.: On the prime number theorem for the Selberg class. Arch. Math. (Basel) 80, 255–263 (2003)
- Odžak, A., Smajlović, L.: On asymptotic behavior of generalized Li coefficients in the Selberg class. J. Number Theory 131, 519–535 (2011)
- Omar, S.: Majoration du premier zéro de la fonction zêta de Dedekind. Acta Arith. XCV 1, 61–65 (2000)
- 12. Perelli, A.: A survey of the Selberg class of L-functions, part I. Milan J. Math. 73, 1–28 (2004)
- Perelli, A.: A survey of the Selberg class of *L*-functions, part II. Riv. Mat. Univ. Parma 7(3*), 83–118 (2004)
- Rudnick, Z., Sarnak, P.: Zeros of principal *L*-functions and random matrix theory. Duke Math. J. 81, 269–322 (1996)
- Selberg, A.: Old and New Conjectures and Result About a Class of Dirichlet Series, Collected Papers, vol. II, pp. 47–63. Springer, Berlin (1991)
- 16. Shahidi, F.: On certain *L*-functions. Am. J. Math. 103, 297–355 (1981)
- Shahidi, F.: Fourier transforms of intertwinting operators and Plancherel measures for *GL(n)*. Am. J. Math. **106**, 67–111 (1984)
- 18. Shahidi, F.: Local coefficients as Artin factors for real groups. Duke Math. J. 52, 973–1007 (1985)
- Shahidi, F.: A proof of Langlands' conjecture on Plancherel measures; complementary series for *p*-adic groups. Ann. Math. 132, 273–330 (1990)

- Smajlović, L.: On Li's criterion for the Riemann hypothesis for Selberg class. J. Number Theory 130, 828–851 (2010)
- 21. Titchmarsh, E.C.: The Theory of Functions, 2nd edn. Oxford University Press, London (1939)
- Young, L.C.: Generalized inequalities for Stieltjes integrals and the convergence of Fourier series. Math. Ann. 115, 581–612 (1938)