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Abstract In this paper, assuming generalized Riemann hypothesis, we give an upper
bound for the multiplicity of eventual zero at central point 1/2 and location of the
first zero with positive imaginary part of function in a certain subclass of the extended
Selberg class. We apply our results to automorphic L-functions attached to irreducible
unitary automorphic representations of GLN (Q).
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1 Introduction

In 1989, Selberg [15] defined a general class of Dirichlet series having an Euler prod-
uct, analytic continuation and a functional equation of Riemann type (plus some side
conditions), and formulated some fundamental conjectures concerning them. Espe-
cially these conjectures give this class of Dirichlet series a certain structure which
applies to central problems in number theory.

The Selberg class of functions, denoted by S, is a general class of Dirichlet series
F satisfying the following properties:
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1430 K. H. Bllaca

(1) (Dirichlet series) F posses a Dirichlet series representation

F(s) =
∞∑

n=1

aF (n)

ns
,

that converges absolutely for �s > 1.
(2) (Analytic continuation) There exists an integer m ≥ 0 such that the function

(s − 1)mF(s) is an entire function of finite order. The smallest such number is
denoted by mF and is called the polar order of F .

(3) (Functional equation) The function F satisfies the functional equation

ΦF (s) = wΦF (1 − s̄),

where

ΦF (s) = F(s)Qs
F

r∏

j=1

Γ (λ j s + μ j ),

with QF > 0, r ≥ 0, λ j > 0, |w| = 1,�(μ j ) ≥ 0, j = 1, . . . , r .
(4) (Ramanujan hypothesis) For every ε > 0 we have aF (n) � nε .
(5) (Euler product)

log F(s) =
∞∑

n=1

bF (n)

ns
,

where bF (n) = 0 for all n �= pm with m ≥ 1 and p prime, and bF (n) � nθ for
some θ < 1/2.

We also recall that degree and conductor, defined by

dF = 2
r∑

j=1

λ j , qF = (2π)dF Q2
F

r∏

j=1

λ
2λ j
j , (1)

respectively, are invariants of F ∈ S (see [8]).
In fact, by the conductor hypothesis it is assumed that for every F ∈ S one has

qF ∈ N. In the special case when F(s) = ζ(s), where ζ(s) is the Riemann zeta
function then qζ = 1. If F(s) = ζK (s), where ζK (s) is the Dedekind zeta function
of a number field K , then qζK = |dK | (see e.g. [12]). The extended Selberg class S	,
introduced in [7], is the class of functions satisfying axioms (1), (2) and (3). For more
information on properties of Selberg class and extended Selberg class see e.g. [1],
[6], [12] and [13].

It is conjectured that the Selberg class coincides with the class of all automorphic
L-functions.
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In order to apply some of our results unconditionally to automorphic L-functions
attached to irreducible unitary automorphic representations of GLN (Q), we also con-
sider class S	
, introduced in [10]. It consists of functions satisfying axioms (1), (2)
and the two following axioms:

(3’) (Functional equation) The function F satisfies the functional equation

ΦF (s) = wΦF (1 − s̄),

where

ΦF (s) = F(s)Qs
F

r∏

j=1

Γ (λ j s + μ j ),

with QF > 0, r ≥ 0, λ j > 0, |w| = 1,�(μ j ) > − 1
4 ,�(λ j + 2μ j ) > 0, j =

1, . . . , r .
(5’) (Euler sum) The logarithmic derivative of the function F possesses a Dirichlet

series representation

F ′

F
(s) = −

∞∑

n=1

cF (n)

ns
,

converging absolutely for �s > 1.

Let us note that (3’) implies that �(λ j + μ j ) > 0. If F ∈ S then

cF (n) = bF (n) log n. (2)

AssumingGRH, we give an upper bound for themultiplicity of eventual zero at central
point 1/2. Moreover, we give a bound for the location of the first zero with positive
imaginary part of function F in S	
 such that �(cF (n)) ≥ 0 for all n ∈ N.

Similar results for Dedekind zeta function were obtained in [11].
The paper is organized as follows. In Sect. 2 we will give the main results of the

paper. In Sect. 3 we recall an explicit formula we use in the proof of ourmain results. In
Sect. 4 we prove preliminary lemmas. In Sect. 5 we prove main results of the paper. In
Sect. 6 we apply results of Sect. 2 to automorphic L-functions attached to irreducible
unitary automorphic representations of GLN (Q).

2 Main Results

In this section we give two main results of the paper. Namely, we give an upper bound
for the multiplicity of eventual zero at central point 1/2 and provide an upper bound
for the height of the first zero with positive imaginary part of function F in S	
 such
that �(cF (n)) ≥ 0 for all n ∈ N.

Throughout this section we assume the GRH i.e. we assume that all non-trivial
zeros of F ∈ S	
 are on the line �s = 1/2.
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2.1 Multiplicity of Eventual Zero at Central Point

Theorem 1 Let R be the multiplicity of eventual zero at central point 1/2 of function

F ∈ S	
 such that �(cF (n)) ≥ 0 and let B(F) = 2
∑r

j=1 λ j

(
�
(
Ψ
(

λ j
2 + μ j

))
−

log(2πλ j )
)
.

(a) If qF > e then

R ≤ (4mF + 1) log qF + B(F)

2 log log qF
.

(b) If 0 < qF ≤ e then
(i) R = 0, for mF = 0,

(ii) R ≤ 4mFe
W
(
B(F)+1
4emF

)
+1+B(F)+1

2

(
W

(
B(F)+1
4emF

)
+1

) , for 4mF + B(F) + 1 > 0,

where mF is the polar order of F, qF is the conductor of F, λ j , μ j are given as in
axiom (3’) and W denotes the Lambert function.

2.2 Location of the First Zero with Positive Imaginary Part

Theorem 2 Let h be the height of the first zero with imaginary part different from
zero of the function F ∈ S	
. Assume that F satisfies axiom (5) of the Selberg class
and �(cF (n)) ≥ 0. Then, for qF > e we have the bound

h ≤ max

⎧
⎨

⎩
16

√
2
[
(4mF + 1) log qF + B(F)

]

π log qF log log qF
,

(2θ + 1)π√
2 log[log qF/16(KF + δ)]

⎫
⎬

⎭ .

Here qF is the conductor of F,mF is the polar order of F, B(F) is given in Theorem
1, KF is defined in Lemma 3, θ < 1/2 stemmed from axiom (5) of the Selberg class
and δ > 0.

In the case when F ∈ S with non-negative coefficients, we can get sharper upper
bound for the height of the first zero of F with positive imaginary part, as stated in
the following

Theorem 3 Let h be the height of the first zero with imaginary part different from
zero of the function F ∈ S and F(1 + i t) �= 0 for all t ∈ R such that aF (n) ≥ 0 for
all n ∈ N. Then, for qF > e we have the bound

h ≤ max

⎧
⎨

⎩
16

√
2
[
(4mF + 1) log qF + B(F)

]

π log qF log log qF
,

π√
2 log[log qF/16(mF + τ)]

⎫
⎬

⎭ ,

where qF is conductor of F, mF is the polar order of F, B(F) is given in Theorem 1
and τ > 0.
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3 Preliminaries

3.1 Explicit Formula for Functions in S��

The universal class of test functions in this paper is the classW of regulated functions
[3] i.e. functions possessing the one-sided limits at each point. For f ∈ W , we always
suppose 2 f (x) = f (x + 0) + f (x − 0). If I is an interval with endpoints a and
b(a < b), we write f (I ) = f (b) − f (a).

Let φ be continuous function defined on [0,∞) and strictly increasing from 0 to
∞. A function f is said to be of φ-bounded variation on I if

Vφ( f, I ) = sup
∑

n

φ(| f (In)|),

where the supremum is taken over all systems {In} of non-overlapping subintervals of
I (cf. [22]).

The crucial tool for deriving our main results is the explicit formula for functions in
the Selberg class and its generalizations, applied to suitably constructed test functions.

Theorem 4 [20, Theorem 3.1], [10, Proposition 2.2] Let a regularized function G
satisfy the following conditions:

1. G ∈ φBV (R) ∩ L1(R).

2. G(x)e(1/2+ε)|x | ∈ φBV (R) ∩ L1(R), for some ε > 0.
3. G(x) + G(−x) − 2G(0) = O(| log |x ||−α), as x → 0, for some α > 2.

Let g(x) = G(− log x), for x > 0,G j (x) = G(x) exp
(
i xμ j

λ j

)
and Z(F) the set of

all non-trivial zeros of F ∈ S	
. Then, the formula

lim
a→∞

∑

ρ∈Z(F)|ρ|≤a

ord(ρ)M 1
2
g(ρ)

= mFM 1
2
g(0) + mFM 1

2
g(1)

−
∑

n

cF (n)

n
1
2

g(n) −
∑

n

cF (n)

n
1
2

g(1/n) + 2G(0) log QF

+
r∑

j=1

∞∫

0

[
2λ j G j (0)

x
−

exp((1 − λ j
2 − �μ j )

x
λ j

)

1 − e
−x
λ j

(G j (x) + G j (−x))

]
e

−x
λ j dx

holds true for an arbitrary function F ∈ S	
, where

M 1
2
g(s) =

∞∫

−∞
G(x)e(s−1/2)xdx

denotes the translate by 1/2 of the Mellin transform of the function g.
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1434 K. H. Bllaca

Corollary 1 Let G be an even regularized function satisfying conditions of Theorem
4 then, the formula

lim
a→∞

∑

ρ∈Z(F)|ρ|≤a

ord(ρ)M 1
2
g(ρ)

= mFM 1
2
g(0) + mFM 1

2
g(1) − 2

∑

n

�(cF (n))

n
1
2

g(1/n)

+ G(0)
(
log qF − dF log(2π) − 2

r∑

j=1

(λ j log λ j )
)

+ 2
r∑

j=1

∞∫

0

[
λ j G(0)

x
−

exp((1 − λ j
2 − �μ j )

x
λ j

)

1 − e
−x
λ j

G(x) cosh
( i xμ j

λ j

)]
e

−x
λ j dx

(3)

holds true for an arbitrary function F ∈ S	
.

Proof Since G is even function then

G(− log x) = G(log x), x > 0,

hence g(x) = g(1/x), which yields

∑

n

cF (n)

n
1
2

g(n) +
∑

n

cF (n)

n
1
2

g(1/n) = 2
∑

n

�(cF (n))

n
1
2

g(1/n),

and

G j (x) + G j (−x) = 2G(x) cosh
( i xμ j

λ j

)
.

Furthermore, from (1) we get

2 log QF = log qF − dF log(2π) − 2
r∑

j=1

λ j log λ j .

This completes the proof. ��

3.2 The Prime Number Theorem in the Selberg Class

For F ∈ S let us denote by

ψF (x) =
∑

n≤x

cF (n)
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the analogue of the Chebyshev ψ-function, where cF (n) is defined by (2).
The Selberg class analogue of the prime number theorem is a theorem that explains

the asymptotic behaviour of the function ψF (x), as x → ∞.
Kaczorowski andPerelli [9] have proved the equivalence between the primenumber

theorem for the Selberg class and non-vanishing on the line�s = 1 for every function
in S, without using Tauberian arguments. They proved the following theorem.

Theorem 5 [9, Theorem1]Let F ∈ S. ThenψF (x) = mFx+pF (x), where pF (x) =
o(x) as x → ∞ if and only if F(1 + i t) �= 0 for every t ∈ R.

4 Preliminary Lemmas

In the proof of our main results, we will need the following lemmas.

Lemma 1 [11, p. 63] Let G be defined by

G(x) =
{
1 − |x |, if |x | ≤ 1
0, otherwise.

Then G satisfies the conditions of Corollary 1 and

Ĝ(u) =
(
2 sin u

2

u

)2

,

where Ĝ is the Fourier transform of G.

Lemma 2 [11, Lemma 1] Let H be the function with compact support on [0,∞]
defined by

H(x) =
⎧
⎨

⎩

(1 − x) cos(πx) + 3
π
sin(πx), if 0 ≤ x ≤ 1,

(1 + x) cos(πx) − 3
π
sin(πx), if − 1 ≤ x < 0,

0, otherwise.

Then H satisfies the condition of Corollary 1 and

Ĥ(u) = 2

(
2 − u2

π2

)(
2π

π2 − u2
cos

u

2

)2

.

The proof of Lemmas 1 and 2 is based on partial integration of the Mellin transform.
Let bF (n) be as in axiom (5) of the Selberg class. Then there exists CF ≥ 1 such

that
|bF (n)| ≤ CFn

θ , θ < 1/2. (4)

The Chebyshev function is defined by ψ(x) = ∑
n≤x Λ(n), where Λ(n) is von Man-

goldt function. It satisfies the asymptotic formula

ψ(x) = x + r(x), (5)

123



1436 K. H. Bllaca

where r(x) = O(x exp(−a
√
log x)) for some a > 0 and x large enough (see e.g. [2,

p.111]).

Lemma 3 Let HT (x) = H(x/T ), where H is defined in Lemma 2 and gT (1/n) =
H
(
log n
T

)
.

(a) For F ∈ S	
 satisfying axiom (5) of the Selberg class we have

∑

n

|cF (n)|
n

1
2

gT (1/n) ≤ 4KFe
T
2 (2θ+1) + r2(T ),

where

KF = CF

2θ + 1
,

r2(T )=CF

(
2e

T
2 (2θ−1)r(eT )+2r1(e

T )e− T
2 +

eT∫

1

xθ− 3
2 r(x)dx+

eT∫

1

x− 3
2 r1(x)dx

)
,

r1(x) = θ

θ + 1
− θ

x∫

1

tθ−1r(t)dt,

and CF , r(x) are as in (4), (5), respectively.
(b) For F ∈ S and F(1 + i t) �= 0 such that aF (n) ≥ 0 for all n ∈ N we have

∑

n

cF (n)

n
1
2

gT (1/n) ≤ 4mFe
T
2 + PF (T ),

where

PF (T ) = 2pF (eT )e− T
2 +

eT∫

1

pF (x)x− 3
2 dx,

mF is as in axiom (2) of the Selberg class and pF is as in Theorem 5.

Proof Definition of H yields

H

(
log n

T

)
=

⎧
⎪⎪⎨

⎪⎪⎩

(
1 − log n

T

)
cos

(
π log n

T

)
+ 3

π
sin
(

π log n
T

)
, if 0 ≤ log n ≤ T,

(
1 + log n

T

)
cos

(
π log n

T

)
− 3

π
sin
(

π log n
T

)
, if − T ≤ log n < 0,

0, otherwise,
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hence

−2 ≤ H

(
log n

T

)
≤ 2, for e−T ≤ n ≤ eT .

(a) Let ϕF (x) = ∑
n≤x |cF (n)|. From (2) and (4) we get

ϕF (x) =
∑

n≤x

|bF (n)| log n ≤ CF

∑

pk≤x

pkθ log pk = CF

∑

n≤x

nθΛ(n).

Therefore

ϕF (x) ≤ CF

∑

n≤x

nθΛ(n) = CF

x∫

1

tθdψ(t).

With partial integration we have
x∫

1

tθdψ(t) = 1

θ + 1
xθ+1 + xθr(x) + r1(x),

hence

ϕF (x) ≤ CF

θ + 1
xθ+1 + CFx

θr(x) + CFr1(x).

Now, we have the following estimate of the sum

∑

n

|bF (n)| log n
n

1
2

gT (1/n) ≤ 2
∑

n≤eT

|bF (n)| log n
n

1
2

= 2

eT∫

1

1

x1/2
dϕF (x).

An integration by parts of the last integral gives

eT∫

1

1

x1/2
dϕF (x) ≤ ϕF (eT )

eT/2 + 1

2

eT∫

1

ϕF (x)

x3/2
dx ≤ 2KFe

T
2 (2θ+1) + 1

2
r2(t),

it follows

∑

n

|bF (n)| log n
n

1
2

gT (1/n) ≤ 4KFe
T
2 (2θ+1) + r2(t).

(b) Since F ∈ S and F(1 + i t) �= 0 from (2), Theorem 5 and definition of gT we
have

∑

n

cF (n)

n
1
2

gT (1/n) ≤ 2
∑

1≤n≤eT

cF (n)

n
1
2

= 2

eT∫

1

1

x
1
2

dψF (x).
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With partial integration we have

eT∫

1

1

x
1
2

dψF (x) ≤ 2mFe
T
2 + 1

2
PF (T ),

hence

∑

n

cF (n)

n
1
2

gT (1/n) ≤ 4mFe
T
2 + PF (T ).

��
Lemma 4 [11, Lemma 3] Let A, B,C be three positive real constants and α > 0.
If T > 0 satisfies AT + BeαT ≥ C, then

T ≥ min

{
C

2A
,
log(C/2B)

α

}
.

Proof By contradiction. ��

5 Proof of Main Results

In this section we prove main results of the paper given in Sect. 2.

5.1 Proof of Theorem 1

Let s = σ + i t . The Mellin transform of G is given by

M 1
2
g(s) =

∞∫

−∞
G(x)e(s−1/2)xdx =

∞∫

−∞
G(x)e(σ−1/2)x eit xdx = Ĝσ (t),

where

Gσ (t) = G(x)e(σ−1/2)x .

If σ = 1/2 then

M 1
2
g
(1
2

+ i t
)

=
∞∫

−∞
G(x)eitxdx = Ĝ(t)

For t = 0 we have

M 1
2
g
(1
2

)
= Ĝ(0) = 1.
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Now,

M 1
2
g(0) + M 1

2
g(1) =

∞∫

−∞
G(x)e− x

2 dx +
∞∫

−∞
G(x)e

x
2 dx = 4

∞∫

0

G(x) cosh
( x
2

)
dx .

Setting GT (x) = G(x/T ) for T > 0 we get

ĜT (u) =
∞∫

−∞
GT (x)eiuxdx =

∞∫

−∞
G(x/T )eiuxdx .

Substituting x/T = t we get

ĜT (u) = T

∞∫

−∞
G(t)eiuT tdt = T Ĝ(Tu).

If R is order of eventual zero of F(s) ∈ S	
 at point ρ = 1/2 then applying explicit
formula (3) for the function GT (x) we obtain the inequalities

RM 1
2
gT (1/2)

≤ lim
a→∞

∑

ρ∈Z(F)|ρ|≤a

ord(ρ)M 1
2
gT (ρ)

= mF (M 1
2
gT (0) + M 1

2
gT (1)) − 2

∑

n

�(cF (n))

n
1
2

gT (1/n)

+GT (0)
(
log qF − dF log(2π) − 2

r∑

j=1

(λ j log λ j )
)

+2
r∑

j=1

∞∫

0

[
λ j GT, j (0)

x
−

exp((1 − λ j
2 − �(μ j ))

x
λ j

)

1 − e
−x
λ j

GT (x) cosh
( i xμ j

λ j

)]
e

−x
λ j dx

≤ 4mF

∞∫

0

GT (x) cosh
( x
2

)
dx + log qF − 2

r∑

j=1

λ j log(2πλ j ))

+
r∑

j=1

∞∫

0

[
2λ j GT, j (0)

x
−

exp((1 − λ j
2 − �(μ j ))

x
λ j

)

1 − e
−x
λ j

(GT, j (x) + GT, j (−x))

]
e

−x
λ j dx .

(6)

We denote by

I =
∞∫

0

[
2λ j GT, j (0)

x
−

exp((1 − λ j
2 − �μ j )

x
λ j

)

1 − e
−x
λ j

(GT, j (x) + GT, j (−x))

]
e

−x
λ j dx .
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Substituting in the above integral x
λ j

= t , employing the equality GT, j (0) = 1, we
get

I = λ j

∞∫

0

[
2

t
− exp((1 − λ j

2 − �μ j )t)

1 − e−t
(GT, j (λ j t) + GT, j (−λ j t))

]
e−tdt.

By the definition of function G j it follows that

GT, j (λ j t) + GT, j (−λ j t) =
{(

1 − λ j t
T

)(
eitμ j + e−i tμ j

)
, if 0 ≤ t ≤ T

λ j

0, otherwise.

For 0 ≤ t ≤ T
λ j

(
1 − λ j t

T

)
≤ 1,

hence

I ≤ λ j

[ ∞∫

0

[
1
t − exp((1− λ j

2 −�μ j )t)
1−e−t ei tμ j

]
e−tdt

+
∞∫

0

[
1
t − exp((1− λ j

2 −�μ j )t)
1−e−t e−i tμ j

]
e−tdt

]

= λ j

[ ∞∫

0

[
1
t − exp((1− λ j

2 −μ̄ j )t)
1−e−t

]
e−tdt

+
∞∫

0

[
1
t − exp((1− λ j

2 −μ j )t)
1−e−t e−i tμ j

]
e−tdt

= λ j

(
Ψ
(

λ j
2 + μ̄ j

)
+ Ψ

(
λ j
2 + μ j

))
.

Since

4

∞∫

0

GT (x) cosh
( x
2

)
dx = 4

T∫

0
(1 − x

T ) cosh
(
x
2

)
dx

≤ 4
T∫

0
cosh

(
x
2

)
dx ≤ 4eT/2,

M 1
2
gT (1/2) = T Ĝ(T · 0) = T · 1 = T,

we get

RT ≤ 4mFe
T/2 + log qF − 2

r∑

j=1

λ j log(2πλ j )

+
r∑

j=1

λ j

(
Ψ
(λ j

2
+ μ̄ j

))
+

r∑

j=1

λ j

(
Ψ
(λ j

2
+ μ j

))
.
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It follows that

RT ≤ 4mFe
T/2 + log qF − 2

r∑

j=1

λ j log(2πλ j ) + 2
r∑

j=1

λ j�
(
Ψ
(λ j

2
+ μ j

))

= 4mFe
T/2 + log qF + B(F).

Setting T = 2 log log qF for qF > e we get

2R log log qF ≤ 4mF log qF + log qF + B(F),

hence

R ≤ 4mF log qF + log qF + B(F)

2 log log qF
.

If 0 < qF ≤ e, then

RT ≤ 4mFe
T/2 + B(F) + 1,

hence

R ≤ inf
T>0

{4mFeT/2 + B(F) + 1

T

}
.

If mF = 0 then inf
T>0

{
4mFeT/2+B(F)+1

T

}
= 0. Otherwise, let

f (T ) = 4mFeT/2 + B(F) + 1

T
.

Then function f has minimum at point T > 0 satisfying equation

2mFe
T/2(T − 2) = B(F) + 1.

We can solve the last equation using the Lambert W -function and get

T = 2
(
W
( B(F) + 1

4emF

)
+ 1

)
.

This proves our theorem.
As an immediate consequence of the above theorem, in the case when the conductor

of function F is small, we get the following

Corollary 2 Let F ∈ S	
 be such that�(cF (n)) ≥ 0. Assume also that the conductor,
qF of F is less then or equal to e and that F is holomorphic. Then, F(1/2) �= 0, i.e.
F is non-vanishing at the central point.
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Remark 1 From the proof of the Theorem 1 it is easy to see that the statement of
theorem holds true under slightly less restrictive assumptions on �(cF (n)). Namely,
it is sufficient to assume that

∑

n

�(cF (n))

n
1
2

gT (1/n) ≥ 0,

see formula (6).

5.2 Proof of Theorem 2

For T = √
2π/h and u ≥ h it is easy to see that

M 1
2
gT
(1
2

+ iu
)

= ĤT (u) ≤ 0,

hence from the GRH and Lemma 2 we have∑

ρ∈Z(F)|ρ|≤a

ord(ρ)M 1
2
gT (ρ) = RM 1

2
gT (0) +

∑

ρ∈Z(F)ρ �=1/2|ρ|≤a

ord(ρ)M 1
2
gT (ρ)

≤ RĤT (0) = 16

π2 RT,

for all a > 1. Therefore letting a → ∞ and applying explicit formula (3) we obtain
the inequality

16

π2 RT ≥ mF (M 1
2
gT (0) + M 1

2
gT (1)) − 2

∑

n

�(cF (n))

n
1
2

gT (1/n)

+HT (0)
(
log qF − dF log(2π) − 2

r∑

j=1

(λ j log λ j )
)

+
r∑

j=1

∞∫

0

2

[
λ j HT, j (0)

x
−

exp((1 − λ j
2 −�μ j )

x
λ j

)

1−e
−x
λ j

HT (x) cosh
( i xμ j

λ j

)]
e

−x
λ j dx .

(7)

Since

M 1
2
gT (0) + M 1

2
gT (1) = 4

∞∫

0

HT (x) cosh
( x
2

)
dx,

by the definition of function HT (x) we have

M 1
2
gT (0) + M 1

2
gT (1) = 4

T∫

0

[(
1 − x

T

)
cos

(πx

T

)
+ 3

π
sin
(πx

T

)]
cosh

( x
2

)
dx .
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Using partial integration we get

M 1
2
gT (0) + M 1

2
gT (1) ≥ 16T 3

(4π2 + T 2)2
e
T
2 . (8)

Since HT, j (0) = 1 and from the definition of the function HT (x) we get

∞∫

0

2

⎡

⎣λ j HT, j (0)

x
−
exp((1 − λ j

2 − �μ j )
x
λ j

)

1 − e
−x
λ j

HT (x) cosh

(
i xμ j

λ j

)⎤

⎦ e
−x
λ j dx

=
T∫

0

⎡

⎢⎣
λ j e

−x
λ j

x
− e

−(
λ j
2 +μ j )

x
λ j

1 − e
−x
λ j

((
1 − x

T

)
cos

(πx

T

)
+ 3

π
sin
(πx

T

))
⎤

⎥⎦ dx

+
T∫

0

⎡

⎢⎣
λ j e

−x
λ j

x
− e

−(
λ j
2 +μ̄ j )

x
λ j

1 − e
−x
λ j

((
1 − x

T

)
cos

(πx

T

)
+ 3

π
sin
(πx

T

))
⎤

⎥⎦ dx

= I1 + I2.

For simplicity, we evaluate I1. Substituting x = tT we have

I1 = T

1∫

0

⎡

⎢⎣
e

−T t
λ j

T t
λ j

− e
−(

λ j
2 +μ j )

T t
λ j

1 − e
−T t
λ j

(
(1 − t) cos(π t) + 3

π
sin(π t)

)
⎤

⎥⎦ dx .

Expanding the function under the integral sign in the Taylor series at t = 0, we see
that it is bounded as t → 0 and the bound is independent of T , hence

r∑

j=1

∞∫

0

2

⎡

⎣λ j HT, j (0)

x
−

exp
((

1 − λ j
2 − �μ j

)
x
λ j

)

1 − e
−x
λ j

HT (x) cosh

(
i xμ j

λ j

)⎤

⎦

e
−x
λ j dx = cT . (9)

Now, using Lemma 3a, (8) and (9), inequality (7) gives an inequality

16

π2 RT ≥ 16mFT 3

(4π2 + T 2)2
e
T
2 − 8KFe

T
2 (2θ+1) − 2r2(T )

+ log qF − 2
r∑

j=1

λ j log(2πλ j ) + cT .
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For T large enough there exists δ > 0 such that

∣∣∣∣
16mFT 3

(4π2 + T 2)2
e
T
2 − 2r2(T ) − 2

r∑

j=1

λ j log(2πλ j ) + cT

∣∣∣∣ ≤ 8δe
T
2 (2θ+1),

hence

16

π2 RT ≥ −8(KF + δ)e
T
2 (2θ+1) + log qF .

Setting

A = 8

π2

(4mF + 1) log qF + B(F)

log log qF
, B = 8(KF + δ), C = log qF and α = θ + 1

2

the result of Theorem 2 easily follows from Theorem 1 and Lemma 4.

5.3 Proof of Theorem 3

For T = √
2π/h, applying the explicit formula (3) as in the proof of Theorem 2 we

obtain the inequality (7).
For aF (n) ≥ 0, by [21, p. 294] we have mF > 0, hence using (8), (9) and Lemma

3b, inequality (7) yields the inequality

16

π2 RT ≥ 16mFT 3

(4π2+T 2)2
e
T
2 −8mFe

T
2 − 2PF (T )+log qF−2

r∑

j=1

λ j log(2πλ j ) + cT .

For T large enough there exists τ > 0 such that

∣∣∣∣
16mFT 3

(4π2 + T 2)2
e
T
2 − 2PF (T ) − 2

r∑

j=1

λ j log(2πλ j ) + cT

∣∣∣∣ ≤ 8τe
T
2 ,

hence

16

π2 RT ≥ −8(mF + τ)e
T
2 + log qF .

Setting

A = 8

π2

(4mF + 1) log qF + B(F)

log log qF
, B = 8(mF + τ), C = log qF and α = 1

2

the result of Theorem 3 easily follows from Theorem 1 and Lemma 4.
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6 An Application to Automorphic L-Functions

Let π be an irreducible unitary cuspidal representation of GLN (Q). Then the (finite)
automorphic L-function L(s, π) attached to π is given by products of local factors
for �s > 1 (see e.g. [4])

L(s, π) =
∏

p

N∏

j=1

(
1 − αp, j (π)p−s)−1 =

∞∑

n=1

an(π)

ns
,

where

an(π) =
N∑

j=1

αp, j (π)k .

Therefore

log L(s, π) =
∞∑

n=1

bn(π)

ns

and

L ′

L
(s, π) = −

∞∑

n=1

cn(π)

ns
,

where

bn(π) = Λ(n)an(π)

log n
,

cn(π) = bn(π) log n. (10)

In the series of papers [16–19], Shahidi has shown that the complete L-function

Λ(s, π) = Q(π)s/2L∞(s, π∞)L(s, π),

where Q(π) > 0 is the conductor of π and

L∞(s, π∞) =
N∏

j=1

ΓR(s + κ j (π)).

is the archimedean factor, satisfies the functional equation

Λ(s, π) = ε(π)Λ(1 − s̄, π)

with a constant ε(π) of absolute value 1. Here, ΓR(s) = π−s/2Γ (s/2) and the para-
meters κ j satisfy the inequality �κ j > −1/2, as proved by Rudnick and Sarnak in
[14]. Jacquet and Shalika in [5] proved that
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L(s, π) �= 0 for �s = 1.

It is easy to see that L(s, π) ∈ S	
 [10, pp. 533–534] with r = N , QF =
Q(π)1/2π−N/2, λ j = 1

2 , μ j = 1
2κ j (π), j = 1, . . . , N , dF = N and the parame-

ters κ j satisfy the inequality �κ j > −1/2.
Assuming GRH for automorphic L-functions and applying results of Theorems 1

and 2 to L(s, π) ∈ S	
 we get the following corollaries.

Corollary 3 Let R be the multiplicity of the eventual zero at the central point 1/2 of
L(s, π) such that �(cn(π)) ≥ 0 and let

B(L) =
N∑

j=1

�
(
Ψ
(1
4

+ 1

2
κ j (π)

))
− N logπ.

(a) If Q(π) > e then

R ≤ (4mL + 1) log Q(π) + B(L)

2 log log Q(π)
.

(b) If 0 < Q(π) ≤ e then
(i) R = 0, when N > 1 or N = 1 and π �= I d,

(ii) R ≤ 4mLe
W
(
1−γ−π/2−log 8π

4e

)
+1+1−γ−π/2−log 8π

2

(
W

(
1−γ−π/2−log 8π

4e

)
+1

) .

where W denotes the Lambert function. Specially, if L(s, π) �= ζ(s) is automorphic
L-function with analytic conductor Q(π) less than or equal to e, then L(s, π) is
non-vanishing at central point s = 1/2.

Proof Part a) of the statement follows immediately from Theorem 1a with r = N and
λ j = 1

2 , μ j = 1
2κ j (π), j = 1, . . . , N , QF = Q(π)1/2π−N/2.

When N > 1 or N = 1 and π �= I dL-function is entire, hence mL = 0, thus
Theorem 1b yields R = 0.

When N = 1 and π = I d, L(s, π) = ζ(s), hence B(L) = Ψ (1/4) − logπ .
Moreover, Ψ (1/4) = −π

2 − 3 log 2 − γ , thus B(L) = −π
2 − log 8π − γ . The proof

is complete. ��
Corollary 4 Let h be the height of the first zero with imaginary part different from
zero of the function L(s, π). Assume that L(s, π) satisfies axiom (5) of the Selberg
class and �(cn(π)) ≥ 0, where cn(π) are given by (10). Then, for Q(π) > e we have
the bound

h ≤ max

{16
√
2
[
log Q(π) + B(L)

]

π log Q(π) log log Q(π)
,

(2θ + 1)π√
2 log[log Q(π)/16(KL + δ)]

}
.

Here mL is defined in axiom (2) of the Selberg class, B(L) is given in Corollary 3, KL

is defined in Lemma 3, θ < 1/2 and δ > 0.
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Proof Weproceed analogously as in the proof ofCorollary 3, by putting r = N , QF =
Q(π)

1
2 π− N

2 , λ j = 1
2 , μ j = 1

2κ j (π), j = 1, . . . , N . Then, we observe that the con-
ductor qζ of the Riemann zeta function is equal to one, hence applying the relation (1)
with r = 1, λ1 = 1

2 , we see that qζ = 1 = πQ2
ζ , thus the analytic conductor of the

Riemann zeta function is also equal to 1.
Therefore, assumption Q(π) > e yields that L(s, π) �= ζ(s), hence L(s, π) is

holomorphic and mL = 0.
Once we observe that,

qL = (2π)N Q2
L

(1
2

)N = πN Q(π)π−N = Q(π),

the corollary follows immediately from Theorem 2. ��
Acknowledgements I would like to thank L. Smajlović for supervising my Ph.D. thesis as well as for
helpful discussions and improvements of this paper.
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