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Abstract In this paper, we are concerned with a nonlinear hyperbolic problem in peri-
odically perforated domains with a homogeneous Neumann condition on the holes. By
the periodic unfolding method, we derive the corrector results for the homogenization
of this problem.

Keywords Homogenization · Correctors · Nonlinear wave equations · Perforated
domains · Periodic unfolding method

Mathematics Subject Classification 35B27 · 35L05 · 35L70

1 Introduction

In this paper, we study the correctors for the homogenization of a nonlinear wave
equation in a perforated domain Ω∗

ε = Ω\Sε, where Ω ⊂ R
n is an open and bounded

set with Lipschitz continuous boundary and Sε is a set of ε-periodic holes of size ε.
Let A be a periodic, symmetric, bounded and elliptic matrix. The problem under

consideration is
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u′′
ε − div(Aε∇uε) + g(u′

ε) = fε in Ω∗
ε × (0, T ),

uε = 0 on ∂Ω × (0, T ),

Aε∇uε · nε = 0 on ∂Sε × (0, T ),

uε(x, 0) = u0ε, u′
ε(x, 0) = u1ε in Ω∗

ε ,

(1.1)

where Aε(x) := A( x
ε
) and nε is the outward unit normal vector field defined on ∂Sε.

The function g is nonlinear and satisfies some suitable growth assumptions [see (3.4)].
The data {u0ε, u1ε, fε} are given in V ε × V ε × H1(0, T ; L2(Ω∗

ε )).
The study of this problem can at least date back to the work of Lions [22], in

which Lions studied the optimal control for nonlinear hyperbolic systems. It is also
closely related to nonlinear relativistic damped problems. In [3], Cavalcanti, Domingos
Cavalcanti, Andrade and Ma studied a similar problem with a Dirichlet condition on
the boundary of the holes (the size of the holes is smaller than the period). For other
nonlinear problems, just to name a few, we here mention the work in [4,24–26] and
the references therein.

For problem (1.1), Gaveau [19] proved the existence and uniqueness of the solution,
as well as the homogenization result. In this paper, we consider the correctors for this
homogenization. The proofs mainly rely on the periodic unfolding method, which was
originally introduced in Cioranescu et al. [6] (see also [7]) and extended to perforated
domains in Cioranescu et al. [12] (see Cioranescu et al. [8] for more general situations
and a comprehensive presentation). Next we state our main results, in which we will
use some notations to be defined in the next section.

The first part of the paper is devoted to the homogenization of problem (1.1) in
terms of the unfolding operators. This form contains more information than that of
Gaveau [19] (see Remark 3.3). Moreover, it can be used to obtain the corrector results
for problem (1.1).

In fact, under suitable assumptions on the initial data [see (3.2)–(3.4) and (3.8)],
there exist u ∈ L∞(0, T ; H1

0 (Ω)) with u′ ∈ L∞(0, T ; H1
0 (Ω)) and u′′ ∈

L∞(0, T ; L2(Ω)), û ∈ L∞(0, T ; L2(Ω, H1
per(Y

∗))) withMY ∗ (̂u) = 0, such that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

T ∗
ε (uε) → u strongly in Lq

(
0, T ; L2(Ω, H1(Y ∗))

)
,

T ∗
ε (∇uε) ⇀ ∇u + ∇y û weakly∗ in L∞(0, T ; L2(Ω × Y ∗)),

T ∗
ε (u′

ε) → u′ strongly in Lq
(
0, T ; L2(Ω, H1(Y ∗))

)
,

‖u′
ε − u′‖Lq(0,T ;L2(Ω∗

ε )) → 0,

where q is any number in (1,+∞) and T ∗
ε is the unfolding operator. Moreover,

⎧
⎪⎪⎨

⎪⎪⎩

ũε ⇀ θu weakly∗ in L∞(0, T ; L2(Ω)),

Aε∇̃uε ⇀ θ A0∇u weakly∗ in L∞(0, T ; L2(Ω)),

g̃(u′
ε) ⇀ θg(u′) weakly∗ in L∞(0, T ; L2(Ω)).
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We also get the following homogenized wave equation

⎧
⎪⎨

⎪⎩

u′′ − div(A0∇u) + g(u′) = f in Ω × (0, T ),

u = 0 on ∂Ω × (0, T ),

u(x, 0) = u0, u′(x, 0) = u1 in Ω,

(1.2)

where the homogenized matrix A0 is the classical constant positive-definite one in
Cioranescu and Saint Jean Paulin [13] (see also [9]).

The second part of the paper deals with the corrector results of problem (1.1), which
is completely new. To investigate the corrector results, some additional assumptions
are needed, as already evidenced in classical works (see for instance [1,11]).

Indeed, under the assumptions (4.1)–(4.3), we get the following corrector results:

‖u′
ε − u′‖C0(0,T ;L2(Ω∗

ε )) → 0,

‖∇uε − Cε∇u‖C0(0,T ;L1(Ω∗
ε )) → 0,

where the corrector matrix Cε = (Cε
i j )1≤i, j≤n is defined by

{
Cε
i j (x) = Ci j

( x
ε

)
a.e. on Ω∗

ε ,

Ci j (y) = δi j (y) + ∂χ j
∂yi

(y) a.e. on Y ∗.

Observe thatCε is exactly the correctormatrix of the linear problem studied in [16,23].
For the homogenization and corrector results in the linear case, we refer to [10] for

a fixed domain and [16] (see also [9,23]) for a perforated domain. We also refer to
Cioranescu et al. [11] for a perforated domain with ε-periodic holes of size rε � ε. For
the semilinear case, Brahim-Otsman et al. [1] gave the homogenization and corrector
results for a fixed domain. Our study is also related to that for the parabolic case in
[14,15,17,18,20,27].

This paper is organized as follows. In Sect. 2, we briefly recall the unfoldingmethod
in perforated domains. Section 3 is devoted to the homogenization result. In Sect. 4,
we give some additional assumptions on the initial data and prove the corrector results.

2 Preliminaries

2.1 Some Notations

Let b = (b1, . . . , bn) be a basis in R
n . Set

G =
{

ξ ∈ R
n : ξ =

n∑

i=1

kibi , (k1, . . . , kn) ∈ Z
n

}

,

Y =
{

ξ ∈ R
n : ξ =

n∑

i=1

yi bi , (y1, · · · , yn) ∈ (0, 1)n
}

.
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1346 Z. Yang, Y. Yu

Suppose that Ω ⊂ R
n is an open and bounded set with Lipschitz continuous

boundary ∂Ω , and S is a closed proper subset ofY withLipschitz continuous boundary.
Denote ε by the general term of a sequence of positive real numbers which converge
to zero. Set

τε(εS) =
⋃

ξ∈G
ε(ξ + S).

Throughout the paper, we make the following assumption:

τε(εS) ∩ ∂Ω = ∅. (2.1)

Define the perforated domain

Ω∗
ε = Ω\τε(εS).

Assumption (2.1) implies that ∂Ω∗
ε = ∂Ω ∪ ∂Sε, where Sε is the subset of τε(εS)

contained in Ω . See Fig. 1 for the perforated domain.
Next, we recall some notations related to the unfolding method introduced in [7,8],

which are displayed in Fig. 2.
Set

Ω̂ε = interior

⎧
⎨

⎩

⋃

ξ∈Ξε

ε(ξ + Y )

⎫
⎬

⎭
and Λε = Ω\Ω̂ε,

where Ξε = {ξ ∈ G | ε(ξ + Y ) ⊂ Ω}. Let

Ω̂∗
ε = Ω̂ε\Sε and Λ∗

ε = Ω∗
ε \Ω̂∗

ε .

Define V ε by

V ε :=
{
v ∈ H1(Ω∗

ε ) | v = 0 on ∂Ω
}

,

S

Y

Ω∗
ε

Fig. 1 The perforated domain
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Λ∗
ε

Ω∗
ε

Ωε

Λε

Fig. 2 The sets Ω̂∗
ε , Ω∗

ε , Λ̂∗
ε and Λ∗

ε

endowed with the norm

‖v‖V ε = ‖∇v‖L2(Ω∗
ε ).

Remark 2.1 [5]

(i) Let {vε} be a sequence in V ε. For v ∈ H1
0 (Ω), the following two assertions are

equivalent:

(a) ‖vε‖V ε ≤ C and ṽε ⇀ θv weakly in L2(Ω),

(b) Qεvε ⇀ v weakly in H1
0 (Ω).

Here Qε is the linear extension operator introduced in [13].

(ii) As stated in [Remark 2.2, 5], we have the following Poincaré-Sobolev inequality
with a constant independent of ε. Namely, for any v ∈ Vε,

‖v‖Lk (Ω∗
ε ) ≤ C‖∇v‖L2(Ω∗

ε ),

for every k ∈ [2,+∞), if n = 2 and for every k ∈ [2, 2∗] (where 2∗ = 2n
n−2 ), if

n > 2.

For α, β ∈ R with 0 < α < β, we denote M(α, β,O) the set of the n × n matrix
fields A = (ai j )n×n ∈ (L∞(O))n

2
such that

(A(x)λ, λ) ≥ α|λ|2, |A(x)λ| ≤ β|λ|

for any λ ∈ R
n and a.e. on O.

In what follows, we will use the following notations:

• Y ∗ = Y\S̄;
• |D| denotes the Lebesgue measure of a measurable set D in R

n ;
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1348 Z. Yang, Y. Yu

• θ = |Y ∗|
|Y | ;

• MO(v) = 1
|O|

∫

O vdx;
• g̃ is the zero extension to Ω of any function g defined on a subset of Ω;
• ΩT = Ω × (0, T ).
• C denotes a generic constant which does not depend upon ε.
• δi j denotes the usual Kronecker symbol.
• The notation L p(O) will be used both for scalar and vector-valued functions
defined on the set O, since no ambiguity will arise.

2.2 A Brief Review of the Unfolding Method

In this subsection, we briefly recall the definition and properties of the unfolding
operators in perforated domains. We refer the reader to [8,16] for further properties
and related comments.

For any x ∈ R
n , we use [x]Y to denote the unique integer combination

∑n
j=1 k jb j

of the period such that x − [x]Y ∈ Y . Set {x}Y = x − [x]Y ∈ Y . Then, we have

x = ε
([ x

ε

]

Y
+

{ x

ε

}

Y

)
for x ∈ R

n .

Definition 2.2 For p ∈ [1,+∞) and q ∈ [1,∞], let φ be in Lq(0, T ; L p(Ω∗
ε )). The

unfolding operator T ∗
ε : Lq(0, T ; L p(Ω∗

ε )) �→ Lq(0, T ; L p(Ω × Y ∗)) is defined as
follows:

T ∗
ε (φ)(x, y, t) =

{
φ
(
ε
[ x

ε

]

Y
+ εy, t

)
a.e. for (x, y, t) ∈ Ω̂ε × Y ∗ × (0, T ),

0 a.e. for (x, y, t) ∈ Λε × Y ∗ × (0, T ).

Proposition 2.3 Let p ∈ [1,+∞) and q ∈ [1,∞].
(i) T ∗

ε is linear and continuous from Lq(0, T ; L p(Ω∗
ε )) to Lq(0, T ; L p(Ω ×Y ∗)).

(ii) Let w ∈ Lq(0, T ; L p(Ω∗
ε )). For a.e. t ∈ (0, T ), we have

‖T ∗
ε (w)‖L p(Ω×Y ∗) = |Y |1/p‖w‖L p(Ω̂∗

ε ) ≤ |Y |1/p‖w‖L p(Ω∗
ε ).

(iii) For w, v ∈ Lq(0, T ; L p(Ω∗
ε )), T ∗

ε (vw) = T ∗
ε (v)T ∗

ε (w).
(iv) For q ∈ [1,+∞], let φε be in Lq(0, T ; L1(Ω∗

ε )) and satisfy

∫ T

0

∫

Λ∗
ε

|φε| dx dt → 0,

then ∫ T

0

∫

Ω∗
ε

φε dx dt − 1

|Y |
∫ T

0

∫

Ω×Y ∗
T ∗

ε (φε) dx dy dt → 0.

(v) For p, q ∈ [1,∞), let {ωε} be a sequence in Lq(0, T ; L p(Ω)) such that

ωε → ω strongly in Lq(0, T ; L p(Ω)).
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Then

T ∗
ε (ωε) → ω strongly in Lq(0, T ; L p(Ω × Y ∗)).

(vi) For p ∈ (1,∞) and q ∈ (1,∞], let {ωε} be a sequence in Lq(0, T ; L p(Ω∗
ε ))

such that

‖ωε‖Lq (0,T ;L p(Ω∗
ε )) ≤ C.

If

T ∗
ε (ωε) ⇀ ω̂ weakly in Lq (

0, T ; L p(Ω × Y ∗)
)
,

then we have

ω̃ε ⇀ θMY ∗(ω̂) weakly in Lq(0, T ; L p(Ω)).

For q = ∞, the weak convergences above are replaced by the weak∗ conver-
gences, respectively.

(vii) Let p, q ∈ [1,+∞). If ωε ∈ Lq(0, T ; L p(Ω∗
ε )) and ω ∈ Lq(0, T ; L p(Ω)),

then the following two assertions are equivalent:
(a) T ∗

ε (ωε) → ω strongly in Lq(0, T ; L p(Ω ×Y ∗)) and ‖ωε‖Lq (0,T ;L p(Λ∗
ε ))

→ 0
(b) ‖ωε − ω‖Lq (0,T ;L p(Ω∗

ε )) → 0.

Finally, we state an important convergence theorem which is crucial to achieving
our homogenization result.We refer the interested reader to [16] for the detailed proof.

Theorem 2.4 Let {wε} be a sequence in L∞(0, T ; V ε) such that

‖∇wε‖L∞(0,T ;L2(Ω∗
ε )) ≤ C and

∥
∥
∥
∂wε

∂t

∥
∥
∥
L∞(0,T ;L2(Ω∗

ε ))
≤ C.

Then, there exist w ∈ L∞(0, T ; H1
0 (Ω)) with ∂w

∂t ∈ L∞(0, T ; L2(Ω)) and ŵ ∈
L∞(0, T ; L2(Ω; H1

per(Y
∗))) with MY ∗(ŵ) ≡ 0, such that, up to a subsequence,

(i) T ∗
ε (wε) ⇀ w weakly∗ in L∞(0, T ; L2(Ω; H1(Y ∗))),

(ii) T ∗
ε (∇wε) ⇀ ∇w + ∇yŵ weakly∗ in L∞(0, T ; L2(Ω × Y ∗)),

(iii) T ∗
ε

(∂wε

∂t

)
⇀

∂w

∂t
weakly∗ in L∞(0, T ; L2(Ω × Y ∗)),

(iv) T ∗
ε (wε) → w strongly in Lq(0, T ; L2(Ω; H1(Y ∗))),

(v) ‖wε − w‖Lq (0,T ;L2(Ω∗
ε )) → 0, (2.2)

where q is any number in (1,+∞).
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3 Homogenization Result

In this section, we study the asymptotic behavior, as ε → 0, of the problem (1.1). The
study was done in [19] by the Tartar’s oscillating test functions method. Here we use
the unfolding method to study the homogenization, which will be used for getting the
corrector results. We first state the precise assumptions on the problem (1.1).

• For any ε, let Aε be a matrix such that

⎧
⎪⎨

⎪⎩

Aε(x) = A(x/ε) a.e. on Ω,

A ∈ M(α, β,Y ),

A is symmetric and Y -periodic.

(3.1)

• We suppose that ⎧
⎪⎨

⎪⎩

u0ε ∈ V ε,

u1ε ∈ V ε,

fε ∈ H1(0, T ; L2(Ω∗
ε )),

(3.2)

where H1(0, T ; L2(Ω∗
ε )) = {

vε | vε ∈ L2
(
0, T ; L2(Ω∗

ε ), v′
ε ∈ L2

(
0, T ; L2

(Ω∗
ε )

)}
.

• We also assume that u0ε is solution of the problem

⎧
⎪⎨

⎪⎩

−div(Aε∇u0ε) = h0ε in Ω∗
ε ,

u0ε = 0 on ∂Ω,

Aε∇u0ε · nε = 0 on ∂Sε

(3.3)

for some h0ε ∈ L2(Ω∗
ε ).

• Let g ∈ C1(R) be such that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(i) g is a non-decreasing function satisfying g(0) = 0,

(ii) there exist a constant C1 and an exponent ρ with

1 ≤ ρ < ∞, if n = 2 and 1 ≤ ρ < n
n−2 , if n > 2,

such that |g′(s)| ≤ C(1 + |s|ρ−1) for all s ∈ R.

(3.4)

Note that this assumption implies that

|g(s)| ≤ C2(1 + |s|ρ) for all s ∈ R, (3.5)

where C2 is some positive constant.

Remark 3.1 For a measurable function v defined on Ω∗
ε × (0, T ), we can get

T ∗
ε (g(v))(x, y, t) = g(T ∗

ε (v))(x, y, t) in Ω × Y ∗ × (0, T ),

by Definition 2.2 and g(0) = 0.
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Set
Wε =

{
vε | vε ∈ L2(0, T ; V ε

)
, v′

ε ∈ L2(0, T ; L2(Ω∗
ε )

)}

with the norm defined by

‖vε‖Wε
= ‖vε‖L2(0,T ;V ε) + ‖v′

ε‖L2(0,T ;L2(Ω∗
ε )).

The variational formulation of problem (1.1) is to find a uε ∈ Wε such that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

〈u′′
ε , v〉(V ε)′,V ε +

∫

Ω∗
ε

Aε∇uε · ∇v dx +
∫

Ω∗
ε

g(u′
ε)v dx =

∫

Ω∗
ε

fεv dx

in D′(0, T ) for all v ∈ V ε,

uε(x, 0) = u0ε, u′
ε(x, 0) = u1ε in Ω∗

ε .

(3.6)

For every fixed ε, Gaveau [19] proved that problem (1.1) has a unique solution uε

satisfying the following estimate:

‖uε‖L∞(0,T ;Vε) + ‖u′
ε‖L∞(0,T ;Vε) + ‖u′′

ε‖L∞(0,T ;L2(Ω∗
ε ))

≤ C
(
1 + ‖u0ε‖V ε + ‖u1ε‖ρ

V ε + ‖h0ε‖L2(Ω∗
ε ) + ‖ fε(0)‖L2(Ω∗

ε )

+‖ fε‖L2(Ω∗
ε ×(0,T )) + ‖ f ′

ε‖L2(Ω∗
ε ×(0,T ))

)
, (3.7)

where the constantC does not depend on ε. Observe that the term fε(0) is well defined
due to the embedding

H1(0, T ; L2(Ω∗
ε )) ⊂ C(0, T ; L2(Ω∗

ε )).

In order to study the homogenization, we further suppose that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) h̃0ε ⇀ h weakly in L2(Ω),

(i i) ‖u0ε‖V ε ≤ C and ‖u1ε‖V ε ≤ C,

(i i i) ũ0ε ⇀ θu0 weakly in L2(Ω),

(iv) ũ1ε ⇀ θu1 weakly in L2(Ω),

(v) f̃ε ⇀ θ f weakly in L2(0, T ; L2(Ω)),

(vi) ‖ f ′
ε‖L2(0,T ;L2(Ω∗

ε )) ≤ C,

(3.8)

where C is a constant independent of ε. Notice that these assumptions are equivalent
to those in [19] due to Remark 2.1(i).

Theorem 3.2 Under the assumptions (3.1)–(3.4), let uε be the solution of problem
(1.1)with (3.8). Then, there exist u ∈ L∞(0, T ; H1

0 (Ω))with u′ ∈ L∞(0, T ; H1
0 (Ω))

123



1352 Z. Yang, Y. Yu

and u′′ ∈ L∞(0, T ; L2(Ω)), û ∈ L∞(0, T ; L2(Ω, H1
per(Y

∗))) with MY ∗ (̂u) = 0,
such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) T ∗
ε (uε) ⇀ u weakly∗ in L∞(0, T ; L2(Ω, H1(Y ∗))),

(i i) T ∗
ε (uε) → u strongly in Lq(0, T ; L2(Ω, H1(Y ∗))),

(i i i) T ∗
ε (∇uε) ⇀ ∇u + ∇y û weakly∗ in L∞(0, T ; L2(Ω × Y ∗)),

(iv) T ∗
ε (u′

ε) ⇀ u′ weakly∗ in L∞(0, T ; L2(Ω, H1(Y ∗))),
(v) T ∗

ε (u′′
ε ) ⇀ u′′ weakly∗ in L∞(0, T ; L2(Ω × Y ∗)),

(vi) T ∗
ε (u′

ε) → u′ strongly in Lq(0, T ; L2(Ω, H1(Y ∗))),
(vi i) ‖u′

ε − u′‖Lq (0,T ;L2(Ω∗
ε )) → 0,

(3.9)

where q is any number in (1,+∞). Moreover, we have the following convergences:

(i) ũε ⇀ θu weakly∗ in L∞(0, T ; L2(Ω)),

(i i) Aε∇̃uε ⇀ θ A0∇u weakly∗ in L∞(0, T ; L2(Ω)),

(i i i) g̃(u′
ε) ⇀ θg(u′) weakly∗ in L∞(0, T ; L2(Ω)). (3.10)

The pair (u, û) withMY ∗ (̂u) = 0 is the unique solution of the following problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ

∫ T

0

∫

Ω

uΨ ϕ′′dx dt + 1

|Y |
∫ T

0

∫

Ω×Y ∗
A(∇u + ∇y û)(∇Ψ + ∇yΦ)ϕ dx dy dt

+ θ

∫ T

0

∫

Ω

g(u′)Ψ ϕ dx dt = θ

∫ T

0

∫

Ω

f Ψ ϕ dx dt

for any Ψ ∈ H1
0 (Ω), Φ ∈ L2(Ω; H1

per(Y
∗)) and ϕ ∈ D(0, T ),

u = 0 on Ω × (0, T ),

u(x, 0) = u0, u′(x, 0) = u1 in Ω.

(3.11)
We also have

û =
n∑

j=1

∂u

∂x j
χ j

with χ j ∈ H1
per(Y

∗) ( j = 1, . . . , n) being the solution of the cell problem:

⎧
⎪⎨

⎪⎩

−divy
(
A∇y(χ j + y j )

) = 0 in Y ∗,
A∇y(χ j + y j ) · n1 = 0 on ∂S,

MY ∗(χ j ) = 0, χ j Y -periodic.

(3.12)

Further, we get that u is the unique solution of the following homogenized wave
equation
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⎧
⎪⎨

⎪⎩

u′′ − div(A0∇u) + g(u′) = f in Ω × (0, T ),

u = 0 on ∂Ω × (0, T ),

u(x, 0) = u0, u′(x, 0) = u1 in Ω,

(3.13)

where the homogenized matrix A0 = (a0i j )1≤i, j≤n is defined by

a0i j = MY ∗
(
ai j +

n∑

k=1

aik
∂χ j

∂yk

)
. (3.14)

Proof By (3.8), we deduce from (3.7) that

‖uε‖L∞(0,T ;Vε) + ‖u′
ε‖L∞(0,T ;Vε) + ‖u′′

ε‖L∞(0,T ;L2(Ω∗
ε )) ≤ C, (3.15)

where C is a constant independent of ε. From Theorem 2.4, there exist u ∈
L∞(0, T ; H1

0 (Ω))withu′ ∈ L∞(0, T ; L2(Ω)) and û ∈ L∞(0, T ; L2(Ω, H1
per(Y

∗)))
withMY ∗ (̂u) = 0, such that (3.9)(i)–(iii) hold, at least for a subsequence (still denoted
by ε). Also, we have

T ∗
ε (u′

ε) ⇀ u′ weakly∗ in L∞ (
0, T ; L2(Ω × Y ∗)

)
. (3.16)

On the other hand, using again Theorem 2.4, we get that there exists a ∈
L∞(0, T ; H1

0 (Ω)) with a′ ∈ L∞(0, T ; L2(Ω)), such that, up to a subsequence (still
denoted by ε),

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

T ∗
ε (u′

ε) ⇀ a weakly∗ in L∞ (
0, T ; L2(Ω, H1(Y ∗))

)
,

T ∗
ε (u′′

ε ) ⇀ a′ weakly∗ in L∞ (
0, T ; L2(Ω × Y ∗)

)
,

T ∗
ε (u′

ε) → a strongly in Lq
(
0, T ; L2(Ω, H1(Y ∗))

)
,

‖u′
ε − a‖Lq(0,T ;L2(Ω∗

ε )) → 0.

This, together with (3.16), implies a = u′. Hence, we obtain (iv)–(vii) of (3.9).
In the following, we consider the convergence of g(u′

ε). Let

{
s = 2∗, if n > 2,

s ∈ (2,+∞), if n = 2.
(3.17)

We first prove that T ∗
ε (u′

ε) is bounded in L
∞(0, T ; Ls(Ω ×Y ∗)). In fact, using Propo-

sition 2.3(ii) and the Poincaré–Sobolev inequality in Remark 2.1, we derive

‖T ∗
ε (u′

ε)‖L∞(0,T ;Ls (Ω×Y ∗)) ≤ C‖u′
ε‖L∞(0,T ;Ls (Ω∗

ε )) ≤ C‖u′
ε‖L∞(0,T ;Vε). (3.18)

Combining this with (3.15), we get

‖T ∗
ε (u′

ε)‖L∞(0,T ;Ls (Ω×Y ∗)) ≤ C.
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Together with (3.9)(ii), we obtain

T ∗
ε (u′

ε) → u′ strongly in Lr (ΩT × Y ∗), ∀r ∈ [2, s), (3.19)

where we have used the interpolation theorem.
Let r = ρ if n = 2 and 2∗

2 ≤ r < 2∗ if n > 2. Then, we have r ≥ ρ. As done in
the proof of [2, Theorem 5.2], from (3.4) and the classical results in [21], we get

T ∗
ε (g(u′

ε)) = g(T ∗
ε (u′

ε)) → g(u′) strongly in L
r
ρ (ΩT × Y ∗). (3.20)

On the other hand, from (3.5), we deduce

∫

Ω∗
ε

|g(u′
ε)|2dx ≤ C

(
|Ω| + ‖u′

ε‖2ρL2ρ(Ω∗
ε )

)
≤ C

(
1 + ‖u′

ε‖2ρV ε

)
.

Moreover, from (3.7), it follows that

‖g(u′
ε)‖L∞(0,T ;L2(Ω∗

ε )) ≤ C.

Combining this with (3.20), we obtain

T ∗
ε (g(u′

ε)) ⇀ g(u′) weakly∗ in L∞ (
0, T ; L2(Ω × Y ∗)

)
. (3.21)

Thus, Proposition 2.3(vi) allows us to get

g̃(u′
ε) ⇀ θg(u′) weakly∗ in L∞(0, T ; L2(Ω)). (3.22)

Arguing as done in the proof of [Theorem 3.1, 16], we can obtain the homogenized
problem (3.10). Since the solution of (3.10) is unique, each convergence in this theorem
holds for the whole sequence. ��
Remark 3.3 In addition to the homogenization result in Gaveau [19], we derived the
unfolded formulation (3.11), as well as the convergence on u′

ε [see (3.9)(vii)].

4 Corrector Results

This section is devoted to the correctors for the homogenization in Sect. 3. It is known
(see for instance [1,10]) that some additional assumptions on the initial data are nec-
essary to obtain the corrector results. Motivated by the assumptions in [16], we make
the following assumptions:

• For u1ε ∈ Vε and fε ∈ L2(0, T ; L2(Ω∗
ε )), we suppose that

(i) ‖u1ε‖V ε ≤ C,

(ii) ‖u1ε − u1‖L2(Ω∗
ε ) → 0,
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(iii) ‖ fε − f ‖L2(0,T ;L2(Ω∗
ε )) → 0,

(iv) ‖ f ′
ε‖L2(0,T ;L2(Ω∗

ε )) ≤ C, (4.1)

where u1 ∈ L2(Ω) and f ∈ L2(0, T ; L2(Ω)).

Remark 4.1 As for the assumptions on u1ε and fε, by Proposition 2.3(vii), we know
(4.1) implies (3.8).

• For g ∈ C1(R), suppose that it satisfies (3.4)(i) and

|g′(s)| ≤ C0, ∀s ∈ R, (4.2)

where C0 is a constant independent of s.

• For u0ε , we assume that it is the solution of the problem (3.3) with

‖h0ε − h‖L2(Ω∗
ε ) → 0, h = −div(A0∇u0) ∈ L2(Ω), (4.3)

for some u0 ∈ H1
0 (Ω).

Remark 4.2 For any h ∈ L2(Ω), the classical arguments (see also [10]) provide that
there exists u0 ∈ H1

0 (Ω) such that h = −div(A0∇u0) due to the ellipticity of the
matrix A0.

Proposition 4.3 Let Aε be a coefficient matrix satisfying (3.1). Suppose that u0ε is the
solution of the problem (3.3) with (4.3). Then, we have

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(i) ‖u0ε‖V ε ≤ C,

(ii) ũ0ε ⇀ θu0 weakly in L2(Ω),

(iii)
∫

Ω∗
ε

Aε∇u0ε∇u0ε dx → θ

∫

Ω

A0∇u0∇u0 dx,

(4.4)

where C is a constant independent of ε.

Proof The variational formulation of problem (3.3) is to find a u0ε ∈ V ε such that

∫

Ω∗
ε

Aε∇u0ε∇v dx =
∫

Ω∗
ε

h0εv dx for all v ∈ V ε. (4.5)

For each ε > 0, the Lax–Milgram theorem provides the existence and uniqueness of
the solution of problem (3.3). Moreover, the norm ‖u0ε‖V ε is bounded by a constant
C which is independent of ε.

Let Ψ, φ ∈ D(Ω) and ψ ∈ H1
per(Y

∗). Set

vε(x) = Ψ (x) + εφ(x)ψε(x) with ψε(x) = ψ
( x

ε

)
, (4.6)
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then
∇vε = ∇Ψ + εψε∇φ + φ(∇yψ)

( ·
ε

)
.

From Proposition 2.3, we have

T ∗
ε (vε) → Ψ strongly in L2(Ω × Y ∗),

T ∗
ε (φψε) → Φ strongly in L2(Ω × Y ∗) with Φ = φ(x)ψ(y),

T ∗
ε (∇vε) → ∇Ψ + ∇yΦ strongly in L2(Ω × Y ∗).

On the other hand, as for h0ε , the assumption (4.3) yields

T ∗
ε (h0ε) → h strongly in L2(0, T ; L2(Ω × Y ∗)) (4.7)

due to Proposition 2.3(vii). Moreover, we use Proposition 2.3(iv) to get

lim
ε→0

∫

Ω∗
ε

h0εvε dx = lim
ε→0

1

|Y |
∫

Ω×Y ∗
T ∗

ε (h0ε)T ∗
ε (vε) dx = θ

∫

Ω

hΨ dx . (4.8)

Then, arguing as in [8], we deduce that

T ∗
ε (u0ε) ⇀ U 0 weakly in L2(Ω, H1(Y ∗)),

ũ0ε ⇀ θU 0 weakly in L2(Ω), (4.9)

where U 0 ∈ H1
0 (Ω) is the unique solution of

−div(A0∇U 0) = h.

Together with h = −div(A0∇u0), by uniqueness, this implies U 0 = u0 which gives
(4.4)(ii).

Finally, choosing u0ε as test function in (4.5), in view of (4.7) and (4.9), we have

lim
ε→0

∫

Ω∗
ε

Aε∇u0ε∇u0ε dx = lim
ε→0

∫

Ω∗
ε

h0εu
0
ε dx = θ

∫

Ω

hu0 dx = θ

∫

Ω

A0∇u0∇u0 dx,

where we used the same argument as that in (4.8). ��
Now we are in a position to state the corrector results for the homogenization of

problem (1.1).

Theorem 4.4 Let Aε be a coefficient matrix satisfying (3.1). Suppose that uε is the
solution of problem (1.1) with (4.1)–(4.3). Let u be the solution of the homogenized
problem (1.2), then we have

‖u′
ε − u′‖C0(0,T ;L2(Ω∗

ε )) → 0,

‖∇uε − Cε∇u‖C0(0,T ;L1(Ω∗
ε )) → 0. (4.10)
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The corrector matrix Cε = (Cε
i j )1≤i, j≤n is defined by

{
Cε
i j (x) = Ci j

( x
ε

)
a.e. on Ω∗

ε ,

Ci j (y) = δi j (y) + ∂χ j
∂yi

(y) a.e. on Y ∗,
(4.11)

where χ j ( j = 1, 2, . . . , n) is the solution of the cell problem (3.12).

To prove the corrector results, we are going to use a result proved for the linear
case by Donato and the present author in [16]. Here we state it below for the reader’s
convenience.

Theorem 4.5 Let Aε be a coefficient matrix satisfying (3.1). Suppose that uε is the
solution of the following problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u′′
ε − div(Aε∇uε) = Fε in Ω∗

ε × (0, T ),

uε = 0 on ∂Ω × (0, T ),

Aε∇uε · nε = 0 on ∂Sε × (0, T ),

uε(x, 0) = u0ε, u′
ε(x, 0) = u1ε in Ω∗

ε ,

(4.12)

where the initial data satisfy (4.4) and the following two assumptions:

(i) ‖u1ε − u1‖L2(Ω∗
ε ) → 0,

(ii) ‖Fε − F‖L2(0,T ;L2(Ω∗
ε )) → 0, (4.13)

with u1 ∈ L2(Ω) and F ∈ L2(0, T ; L2(Ω)). Let u be the solution of the homogenized
problem ⎧

⎪⎨

⎪⎩

u′′ − div(A0∇u) = F in Ω × (0, T ),

u = 0 on ∂Ω × (0, T ),

u(x, 0) = u0, u′(x, 0) = u1 in Ω,

where the homogenized matrix A0 is defined by (3.14). Then, we have the following
corrector results:

‖u′
ε − u′‖C0(0,T ;L2(Ω∗

ε )) → 0,

‖∇uε − Cε∇u‖C0(0,T ;L1(Ω∗
ε )) → 0.

Here the corrector matrix Cε is defined by (4.11).

Proof of Theorem 4.4 By the last convergence in (3.9), we have

‖u′
ε − u′‖L2(0,T ;L2(Ω∗

ε )) → 0.

For the function g, the assumption (4.2) implies that

|g(s1) − g(s2)| ≤ C0|s1 − s2|, ∀s1, s2 ∈ R.
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Therefore, we get
‖g(u′

ε) − g(u′)‖L2(0,T ;L2(Ω∗
ε )) → 0. (4.14)

Let Fε = fε − g(u′
ε) and F = f − g(u′). From (4.1)(iii) and (4.14), we have

‖Fε − F‖L2(0,T ;L2(Ω∗
ε )) → 0.

Together with Proposition 4.3 and (4.1), we directly get (4.10) from Theorem 4.5. ��
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