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1 Introduction

In this paper, R will be a ring with identity and all modules will be unitary right
R-modules. We will use the symbol N < M to denote that N is a submodule of a
module M. The notation N < M will mean that N is a small submodule of a module
M, namely M # N + X for any proper submodule X of M. For a module M, we
write Rad(M), E(M) and Endg (M) for the Jacobson radical, the injective hull and
the endomorphism ring of M, respectively. The Jacobson radical of the ring R will be
denoted by Jac(R). By Q, Z and N, we denote the ring of rational, integer and natural
numbers, respectively. Z(p>°) denotes the Priifer p-group and Z,, denotes Z/nZ.

We also denote Is(K) = {s € S| s(K) =0} for K < M and rp(I) = N{Kerg |
g € I} for aleftideal I of S = Endg(M).

A right R-module M is said to be retractable if Homg (M, U) # 0 for any nonzero
submodule U of M. For a background on retractable modules, we refer the reader
to [17]. Dually, the notion of coretractable modules was introduced and studied by
Amini, Ershad and Sharif in [1]. A right R-module M is said to be coretractable if
Homgr(M /K, M) # 0 for any proper submodule K of M. In Sect. 2, we explore
further properties of coretractable modules. For example, we investigate the factor
modules of these modules.

Section 3 is devoted to the connections between a coretractable module M and
its endomorphism ring S = Endg(M). It is shown that for some properties (P) of
modules, if ¢S satisfies (P), then My satisfies the dual property of (P). Among other
results, we prove that if M is a coretractable module such that g§ is Rickart, then M
is a dual Rickart module (see Proposition 3.15).

The investigations in Sect. 4 focus on another variation of coretractability which
will be called s-coretractable modules. This notion is introduced as the dual of the
notion of e-retractable modules studied in [17]. We provide many examples of these
modules. Moreover, some examples are presented to show that an s-coretractable
module need not be coretractable. Also, we study rings R for which the module Ry is
s-coretractable. Then we deal with direct summands and direct sums of s-coretractable
modules.

For undefined terms and terminology, the reader is referred to [2,6,7,10].

2 Some Properties of Coretractable Modules

It is of natural interest to investigate whether or not an algebraic notion is inherited
by factor modules. It is shown that a factor module of a coretractable module is not
coretractable, in general (Proposition 2.9 and Example 2.10). We present some cases
when some factor modules of a coretractable module are coretractable. In [27], Rizvi
and Roman introduced a weaker form of nonsingularity. A module M is said to be
IC-nonsingular if, for every nonzero endomorphism ¢ of M, Kerg is not essential in
M. Note that every nonsingular module is C-nonsingular (see [28, Corollary 2.4]).
In [1, Proposition 2.3(b)], it is proved that for a coretractable module M, if M is
nonsingular, then M is semisimple. We begin with a slight generalization of this
result.
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Proposition 2.1 Let M be a coretractable module. Then M is KC-nonsingular if and
only if M is semisimple.

Proof Suppose that M is K-nonsingular but not semisimple. Hence M has a proper
essential submodule N by [32, 20.2]. Since M is coretractable, there exists a nonzero
homomorphism ¢ : M —> M such that ¢(N) = 0. Then N € Kerg. Since N is
essential in M, Kerg is essential in M. As M is C-nonsingular, we have ¢ = 0. This
is a contradiction. The converse is immediate. m]

Let M be aright R-module and S = Endz(M). The module M is called a Rickart
moduleifforeveryp € S, Kerg = {x € M | ¢p(x) = 0} = e, M for some idempotent
ey € S (see [21]).

Recall that the module M is called a Baer module if for any submodule N of M,
Is(N) is a direct summand of S, equivalently, for every I < g8, ry (/) is a direct
summand of M (see [27]).

It is clear that the following implications hold:

Baer = Rickart = KC-nonsingular.

A ring R (not necessarily commutative) is called a domain if for all x,r € R,
xr =0 = x = 0orr = 0. The next result is a direct consequence of Proposition 2.1.

Corollary 2.2 A coretractable module M is semisimple if at least one of the following
conditions holds:

(i) forany (x,r) € M x R, xr = 0= x =0orr =0 (eg. M is a torsion-free
module over a commutative domain);
(ii) M is a Rickart module;
(iii) M is a Baer module.

Next, we provide another application of Proposition 2.1.

Corollary 2.3 Let R be a commutative domain which is not a field. Let P be a nonzero
projective R-module. Then P is not coretractable.

Proof Note that R has no simple projective modules, since otherwise R has a maximal
ideal which is a direct summand. Therefore P is not semisimple. Moreover, it is well
known that P is isomorphic to a direct summand of a free R-module. Thus P is
torsion-free. The result follows by Corollary 2.2. O

The next example shows that the assumption of coretractability is not superfluous
in Proposition 2.1.

Example 2.4 (1) Let R be a commutative domain which is not a field. By Corollary
2.3, the R-module Ry is not coretractable. On the other hand, it is easily seen that
Rp is a K-nonsingular R-module which is not semisimple.

(2) Let R be a von Neumann regular ring which is not semisimple. By [1, Proposi-
tion 4.4], the R-module Rp is not coretractable. In addition, it is clear that Ry is a
K-nonsingular R-module (see [18, Corollary 7.7]). Now, we present two explicit
examples of rings which satisfy these conditions.
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1278 N. O. Ertag et al.

(a) We cantake R = anl F;, where each F; = F is a field.

(b) (See [3, Example 1.6] and [21, Example 2.19]) For a field F, let F;, = F for
each n € N. Consider the ring

R = H?zolen liolen
@ZOZIFn < EBS(;IF"’ 1>

which is a subring of the 2 x 2 matrix ring over the ring []2, Fy,, where
< @,;2 Fy, 1 > is the F-algebra generated by ®;° , F;, and 1. Then R is a von
Neumann regular ring which is not semisimple.

As an application of Corollary 2.2, we can give the following example which will
be needed in the last section.

Example 2.5 Let R be the ring as in Example 2.4(2)(b). Consider the right R-module

8 (l) . By [21, Example 2.19], M is a Rickart
module which is not semisimple. Hence the module M, is not coretractable by Corol-
lary 2.2.

M = eR, where e is the idempotent

Recall that a module M is called quasi-injective if it is M-injective, that is for
every submodule X of M, any homomorphism ¢ : X — M can be extended to a
homomorphism ¢ : M — M.

A submodule N of an R-module M is called fully invariant if f(N) is contained
in N for every R-endomorphism f of M.

Let M be a module with § = Endg(M). It is clear that N C ryls(N) for every
submodule N of M. In [1, Corollary 4.2], the authors provided some conditions under
which N = ry;lg(N). In a similar vein, we show the next result.

Proposition 2.6 Let Mg be a quasi-injective coretractable module with S =
Endgr(M). Let N = xR be a cyclic fully invariant submodule of M. Then ryls(N) =
N.

Proof We only need to show that ryls(N) € N. Let u € ryls(N). Without loss
of generality, we can assume that N # M. Then [g(N) # 0 as M is coretractable.
Define the R-homomorphism ¢ : S/Is(N) — M by s 4+ Is(N) +— s(u) and the
R-monomorphism 1 : S/Is(N) — M by s + Is(N) +— s(x). Since M is quasi-
injective, there exists a homomorphism 2 € S such that in = ¢. Then, h(x) = u.
Hence u € N as N is fully invariant. O

Example 2.7 Consider the Z-module M = @_,Z(p;°), where p; (1 < i < n)
are distinct prime integers. By [24, Theorem 3.10], every submodule of M is
fully invariant. Moreover, M is an injective coretractable module by [1, Exam-
ple 2.2 and Proposition 2.6]. Applying Proposition 2.6, it follows that ry;lg(N) = N
for every cyclic submodule of M.

Next, we study the question: does any factor module of a coretractable module
inherit the property? We begin with an example which shows that the coretractability
property does not transfer from a module to each of its direct summands (see also
[1, p 291] for other examples).
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Example 2.8 In[1,Example 3.15],itis given aring R over which every free R-module
is coretractable, but R has a projective module P which is not coretractable. Note that
P is isomorphic to a direct summand of a free R-module.

Recall that a ring R is said to be right Kasch if every simple right R-module can
be embedded in Ry (see [18, p. 280]). It is shown in [1, Theorem 2.14] that a ring R
is right Kasch if and only if the module Ry is coretractable.

Proposition 2.9 Let R be a right Kasch ring which is not left perfect. Then R has
a coretractable module M which contains a submodule N such that M /N is not
coretractable.

Proof By [1, Theorem 2.14], the R-module Ry is coretractable. On the other hand,
since the ring R is not left perfect, R has acyclic R-module M which is not coretractable
by [1, Proposition 3.8]. Therefore, there exists a right ideal / of R such that the R-
module R/I is not coretractable. O

The next example guarantees the existence of a ring with the required conditions of
Proposition 2.9. This ring is taken from [ 18, Proposition 8.30] and [19, Exercise 8.18].

Example 2.10 Let {p; : i € I} be the set of prime integers. Consider the (Z, Z)-
bimodule M = @®;c;Z/p;Z (in the natural way with identical left, right Z-actions).
Let R = M @ Z be the trivial extension of Z by M. By [18, Proof of Proposition 8.30],
R is a commutative Kasch ring which has infinitely many simple modules. So R is
not semilocal. Hence, R is not perfect.

The next proposition deals with a special case of factor modules of coretractable
modules.

Proposition 2.11 Let M be a coretractable module. If N is a submodule of M such
that ¢(M) is not contained in N for every nonzero ¢ € Endr(M), then M/N is
coretractable.

Proof Let T/N be a proper submodule of M/N. Since M is coretractable, there
exists a nonzero homomorphism o : M — M such that «(7T) = 0. Define ¢ :
M/N — M/Nbym+ N — a(m)-+ N.Clearly, ¢ is well defined and (M /N) =
(@(M)+ N)/N.Since a(M) € N, ¢ # 0. Also, we have (T /N) = 0. Thus, M /N
is coretractable. O

Let M be a module. In [29], it was introduced the submodule_?(M Y=N{N <M |
M/N < E(M/N)}. The module M is called noncosingular if Z(M) = M. Note that
noncosingularity is inherited by homomorphic images (see [29, Proposition 2.4]).

Corollary 2.12 Let M be a noncosingular coretractable module and N < M. Then
M /N is coretractable.

Proof Let 0 # ¢ € Endg(M). Since M is noncosingular, we have Z(p(M)) =
g(M ) by [29, Proposition 2.4]. Therefore ¢ (M) is not small in M, since otherwise
Z(p(M)) = 0. Thus, (M) g N. The result follows by Proposition 2.11. O
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1280 N. O. Ertag et al.

Corollary 2.13 Let R be a right Noetherian ring. Let M be a coretractable R-module
with Rad(M) = M. If N is a finitely generated submodule of M, then M/N is
coretractable.

Proof By Proposition 2.11. O

3 Some Notions Versus Their Duals

Let M be a coretractable R-module with S = Endg(M). In the literature, we can
find several examples of properties (P) of modules for which the fact that the left
S-module S satisfies (P) implies that My satisfies the dual property of (P). Among
others, we can cite the following examples:

1. If 5§ is uniform, then Mg is hollow (see [1, Corollary 4.6]).

2. If ¢S has finite uniform dimension, then Mg has finite hollow dimension (see [1,
Proposition 4.10]).

3. If S5 has the summand intersection property, then Mg has the summand sum
property (see [9, Proposition 2.5]).

4. If S is a Baer ring, then My, is a dual Baer module (see [16, Theorem 3.6]).

These links between some concepts and their duals are the motivations for the inves-
tigations in this section. We prove that if 5§ satisfies (Cy1), then M is @-supplemented
(Theorem 3.6). We show that if M is quasi-injective and é-supplemented, then every
finitely generated left ideal of S has a complement which is a direct summand of ¢S
(Theorem 3.11). It is also shown that if ¢S is Rickart, then M is a d-Rickart module
(Proposition 3.15).

Proposition 3.1 Let M be a nonzero coretractable module with S = Endg(M). If
every descending chain Vi 2 Vo 2 - -- of left ideals of S with (), Vi = 0 becomes
stationary after finitely many steps, then every ascending chain Uy € Uy C --- of
right submodules of M with | J;-., Ui = M becomes stationary after finitely many
steps.

Proof Let Uy € U, < --- be an ascending chain of right submodules of M
with (J;», Ui = M. Therefore Is(U;) 2 Is(Uz) 2 ---. In addition, we have
Is(Ui1U) = Is(Xi=1Ui) = (Ni»1lsUi) = Is(M) = 0 (see [2, Proposi-
tion 2.16]). By hypothesis, there exists k > 1 such that Ig(U;) = Is5(Uy) for every
i > k. We claim that Uy = M, for if not, there exists 0 % ¢ € § such that ¢(U;) =0
since M is a coretractable module. It follows that ¢ € Is(Uy). Hence ¢ € Is(U;) for
all i > 1. Therefore ¢ (M) = (p(zi>1 U;) = 0, a contradiction. O

Let N and K be submodules of amodule M. Recall that K is said to be a complement
of N in M if K is maximal with respect to the property K N N = 0. Dually, we say
that K is a supplement of N in M if M = N + K and K is minimal with respect
to this property, equivalently, M = N + K and N N K < K. Note that every
direct summand of M can be considered as a supplement and a complement of some
submodule of M. Recall that a submodule K of M is called coclosed in M if whenever
K/L <« M/L for asubmodule L of K, then L = K. Note that every direct summand

@ Springer
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of M is coclosed in M. A right R-module M is called semi-injective if for any f € S,
Sf =lIls(Kerf) = Isry(Sf), where S = Endr(M). Note that every quasi-injective
module is semi-injective (see [6]).

Proposition 3.2 Let K and N be submodules of a coretractable module M g such that
K is coclosedin M. Let S = Endr(M). Ifls(K) is a complement of [s(N) in s S, then
K is a supplement of N in M. The converse holds when My is semi-injective and K
is a direct summand of M.

Proof Assume that /g(K) is a complement of [s(N) in gS. Suppose that M #= N + K.
Since M is coretractable, there exists 0 % f € § such that f(N + K) = 0. Thus
f els(N)NlIs(K). Hence f = 0, a contradiction. Thus, M = N + K. Moreover,
Is(N) & Is(K) is essential in S by [10, Proposition 1.3]. Therefore, [g(N N K) is
essential in ¢S as Ig(N) @ [s(K) C Is(N N K). By [1, Proposition 4.5(a)], we have
NNK <« M. Since K is coclosed, NN K < K (see [6, 3.7(3)]). It follows that K is
a supplement of N in M.

Conversely, assume that M is semi-injective and K is a direct summand of M
which is a supplement of N in M. So, there exists a submodule L of M such that
M = N+ K = L & K. Note that I[g(N) NIs(K) = Is(L) Nls(K) = 0. Then
IsS(INNK) =Ils(N)®ls(K)and S = Ig(LNK) =Is(L)®Is(K) by [1, Lemma 4.9].
Since N N K <« K and M is semi-injective, [g(N N K) is essential in ¢S by [1,
Proposition 4.5(c)]. Thus, Is(N) @ Is(K) is essential in 5S5. Let ¥ be a complement of
Is(N)in 5§ containing /s (K ). Therefore, [ (N)®ls(K) isessential inlg(N)@DY . From
[2, Proposition 5.20], it follows that [g(K) is essential in Y. Since § = [g(L) & 1ls(K),
Is(K) is a direct summand of Y by modularity. So ¥ = [g(K). This completes the
proof. O

Recall that a module M is called cosemisimple if every simple module is M-
injective. Note that a module M is cosemisimple if and only if every submodule
of M is coclosed in M if and only if the radical of every factor module of M is zero
(see [6, 3.8] and [32, 23.1]). The following two corollaries are now immediate since
0 is the only small submodule of a cosemisimple module.

Corollary 3.3 Let K be a submodule of a coretractable cosemisimple module Mg
with § = Endg(M). If Is(K) is a complement of [s(N) in S, then M = K @& N.

Corollary 3.4 Let Mg be a coretractable cosemisimple module with S = End g (M).
Assume that for every left ideal I of S, there exists a submodule K of Mg such that
Is(K) = 1. Then M is semisimple.

Example 3.5 Consider the Z-module M = Q. It is well known that M is not a core-
tractable module and every nonzero endomorphism of M is bijective. Let N be a
nonzero proper submodule of M. Then we have I[g(N) = 0. Thus [g(0) = Sis a
complement of /[g(N) in gS. But O is not a supplement of N in M. Note that O is a
coclosed submodule of M. This shows that coretractability is needed in Proposition
3.2.

Following [4], we say that a module M satisfies (C11) (or M is a (C11)-module) if
every submodule of M has a complement which is a direct summand of M. Dually,
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1282 N. O. Ertag et al.

a module M is called &-supplemented if every submodule of M has a supplement
which is a direct summand of M (see [12]).

Theorem 3.6 Let My be a coretractable module with S = End g (M). If the module
sS satisfies (C11), then M is ©-supplemented.

Proof Let N be aproper submodule of M. Thenlg(N) # 0as M is coretractable. Since
s satisfies (C11), there exists a direct summand 7 of gS such that I is a complement
of Ig(N) in 5S. Assume that I = Se for some idempotent element e in S. Clearly,
(1—e)(M) is adirect summand of M and [g((1 —e)(M)) = Se. Applying Proposition
3.2, (1 —e)(M) is a supplement of N in M. Therefore, M is @-supplemented. O

The coretractability assumption is not superfluous in Theorem 3.6 as shown below.

Example 3.7 Consider the Z-module Q7 again. Since End7(Q7) = Q, Endz(Qz)
satisfies (C1). However, Q7 is not ®-supplemented (see [6, Example 20.12]). Note
that the module Q7 is not coretractable.

Combining Theorem 3.6, [1, Theorem 2.14] and [32, 42.6], we obtain the following
result.

Corollary 3.8 If R is a right Kasch ring such that the R-module g R satisfies (C11),
then R is a semiperfect ring.

Lemma 3.9 Let Mg be a quasi-injective module with S = Endg(M). Let I be a left
ideal of S such that lsry(I) = I. Then lgry (I + Sf) =1 + Sf forany f € S.

Proof The proof is analogous to that of [11, Lemma 1]. Let f € S. Clearly, I +Sf C
Isrm(I + Sf). Let g € lsry(I + Sf) = Is(rm (D) Nry(Sf)) = Ls(rm (1) N Ker f).
Since g(ryy(I) NKerf) = 0, ry (1) N Kerf € Kerg = ry(Sg). Define the map 6 :
fryu)) — g(M) by f(a) — g(a) forall a € rp(I). Then 6 is well defined and
it is an R-homomorphism. Since M is quasi-injective, there exists a homomorphism
s € S such that si = i'0, where i : f(rpy(I)) —> M and i’ : g(M) —> M are the
inclusion maps. It follows that for every a € ry (1), (g —sf)(a) = (i'0 —si)(f(a)) =
0. Therefore, g — sf € lgry(I) = I. Hence, g € I + Sf. O

Corollary 3.10 Let Mg be a quasi-injective module with S = Endgr(M). Then
Isry (1) = I for any finitely generated left ideal I of S.

Proof This follows from Lemma 3.9 and the fact that Mg is a semi-injective module.
O

Theorem 3.11 Let M be a coretractable quasi-injective module with S = Endg (M).
Assume that M is @-supplemented. Then every finitely generated left ideal of S has a
complement which is a direct summand of sS.

Proof Let I be anonzero finitely generated left ideal of S. Then, s (1) # M. Since M
is @-supplemented, there exist submodules K and K’ of M suchthat M = K & K’ and
K is asupplementof rps (1) in M. By Proposition 3.2 and Corollary 3.10, it follows that
Is(K) is a complement of I = Igrp(I) in §S. Moreover, since [s(K) Nlg(K’) = 0,
we have § = Ig(K) @ ls(K’) by [1, Lemma 4.9]. Thus, I5(K) is a direct summand of
sS. O
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The following result is a direct consequence of Theorem 3.11.

Corollary 3.12 Let M be a coretractable quasi-injective module such that S =
Endr (M) is a left Noetherian ring. If the R-module M is @®-supplemented, then the
S-module g8 satisfies (C11).

Example 3.13 Consider the Z-module M = @®?_,Z(p7°), where n is a natural number
and p; (1 <i < n) are prime numbers. By [23, Propositions A.7 and A.8], M is a ®-
supplemented module. Moreover, M is a coretractable module by [1, Proposition 2.8].
Since S = Endyz (M) is a Noetherian ring (see [8, Proposition 111.4]) and M is a quasi-
injective module, it follows that the module S satisfies (C11) by Corollary 3.12.

The next example shows that the condition “M is a quasi-injective module” in
Corollary 3.12 is not superfluous.

Example 3.14 Let A be the polynomial algebra k[x, y] over a field k, and let R =
A/U, where

U=@y*= > xyanz1.
i+j=n+1

From [18, Example 3.69], it follows that R is a commutative local ring with maximal
ideal m = XR + yR. It is clear that ann(m) # 0. Hence R is a Kasch ring by [18,
Corollary 8.23]. Therefore the module Ry is coretractable by [1, Theorem 2.14]. Also,
itis shown in [18, Example 3.69] that the R-module R is not quasi-injective and R is
an Artinian ring (hence R is a Noetherian ring) such that the socle of Rg is essential
in Rg and Soc(Rr) = P f’?jk is a direct sum of n + 1 simple ideals. So, Rp is
i+j=n

not a uniform R-module. Hence, the module Rz does not satisfy (Cy) since Rg is
indecomposable. On the other hand, the R-module Rg is &-supplemented as R is a
local ring.

Recall that a ring R is called a right Rickart ring if the right annihilator of any
element in R is of the form e R for some idempotent e € R (see [18, p. 260] and [21]).

According to [22], a module M is called a d-Rickart (or dual Rickart) module if for
all p € S = Endgr(M), Img is a direct summand of M. In [22, Proposition 3.1], it is
shown that if M is a d-Rickart module, then Endg (M) is a left Rickart ring. The next
result is a partial converse of [22, Proposition 3.1].

Proposition 3.15 Let Mg be a coretractable module and S = Endg(M). If 5§ is
Rickart, then M is a d-Rickart module.

Proof Assume that ¢S is Rickart. Let 0 # ¢ € S and K = Img. Then Ig(K) = {f €
S| fo = 0} is adirect summand of ¢S. So there exists an idempotent 4 € S such that
Is(K)® Sh = S.1tfollows that 0 = ry(S) = ryls(K)Nrp (Sh) = ryls(K)NKerh.
Since K C ryls(K), we have K N Kerh = 0. Suppose that N = K + Kerh # M.
As M is coretractable, there exists 0 # g € S such that g(N) = 0. Thus g(K) =
g(Kerh) = 0. Note that Kerh = (1 — h)(M). Therefore, g(K) = 0and g(1 —h) =0,
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thatis, g € Is(K) and g = gh € Sh. Aslg(K) N Sh = 0, it follows that g = 0. This
contradicts the fact that g # 0. So K + Kerh = M. Since K N Kerh = 0, we have
K @ Kerh = M. This proves the proposition. O

The next example shows that the condition “Mp, is coretractable” cannot be omitted
from Proposition 3.15.

Example 3.16 Let R be a commutative domain which is not a field. Then Endz (R) =
R is a left Rickart ring. On the other hand, the R-module Rg is not d-Rickart by
[22, Remark 2.2]. Note that Rg is not a coretractable module (see [1, Theorem 2.14]
or Corollary 2.3).

4 s-Coretractable Modules

A module M is said to be e-retractable if Hom(M, C) # 0 for every nonzero comple-
ment submodule C of M (see [17]). Dually, we introduce the notion of s-coretractable
modules. A module M will be called s-coretractable if Hom(M /K, M) # 0 for every
proper supplement submodule K of M. Examples are provided to show that this con-
cept is a proper generalization of coretractability (Example 4.9). We show that for
every domain R, the R-module Ry is s-coretractable (Proposition 4.8). We obtain a
characterization for a direct sum of two cyclic modules over a commutative local ring
to be s-coretractable (Proposition 4.15). It is shown in Example 4.17 that a direct sum
of s-coretractable modules is not s-coretractable, in general. Then we provide some
conditions under which a direct sum of s-coretractable modules is s-coretractable
(Propositions 4.18 and 4.19).

Recall that a module M is called lifting if for every submodule N of M, there exists
a direct summand K of M suchthat K € N and N/K <K M/K.

Example 4.1 1t is clear that every module whose supplement submodules are direct
summands is s-coretractable. So, every lifting module is s-coretractable by [6,
22.3]. Also, every module which has no nonzero proper supplement submodules is
s-coretractable (e.g. the Z-module Z). Note that Z is not a coretractable Z-module.

Example 4.2 Let M be an injective module over a Dedekind domain R. Let L and K
be submodules of M such that K is a supplement of L in M. Let 0 # r € R. Then
Lr+Kr =(L+K)r =Mr = M as M isdivisible. So L+ Kr = M. Thus K = Kr
by the minimality of K. Therefore K is divisible, hence injective. It follows that K is
a direct summand of M. So M is an s-coretractable module.

Remark 4.3 (i) In [33], Zdschinger examined the rings R such that all finitely gen-
erated projective R-modules satisfy the property that all supplement submodules
are direct summands. He called these rings right L-rings. He showed that a ring R
is a left L-ring if and only if R is a right L-ring if and only if every projective right
R-module P with P/Rad(P) finitely generated is finitely generated. Clearly, any
finitely generated projective module over an L-ring is s-coretractable. Next, we
exhibit some classes of rings which are L-rings.
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(a) In [30], Valette showed that if R is a ring such that the factor ring R/ P is a right
Goldie ring for every prime ideal P (in particular, if R is a right or a left Noetherian
ring), then R is an L-ring.

(b) In [14, Theorem 2.5], it is shown that any ring with polynomial identity is an
L-ring.

(c) [25, Corollary 3.3] shows that if a ring R has either left or right Krull dimension,
then R is an L-ring.

(d) From [20, Proposition 5] or [31, Theorem 2.1], we see that every commutative
ring is an L-ring.

(e) If R is a semihereditary ring or an exchange ring (in particular, if R is a von
Neumann regular ring or a semiregular ring), then R is an L-ring (see, for example,
[13, Example 3.10](i) and (iii)).

(ii) Zoschinger showed also that if R is a commutative integral domain or a right
Noetherian ring, then in every projective R-module supplement submodules are
direct summands (see [33, Remark page 202 and Theorem 3.3]). Hence, every
projective R-module is s-coretractable.

(iii)) If R is a hereditary ring, then every supplement submodule in a projec-

tive R-module is a direct summand. Therefore, every projective R-module is
s-coretractable (see, for example, [13, Example 3.10](1)).

Next, we give an s-coretractable module which contains a supplement submodule
that is not a direct summand.

Example 4.4 Let M be the Z-module Z, x Zg. Note that M is coretractable by
[1, Example 2.2 and Proposition 2.6], and hence it is s-coretractable. We investi-
gate below the proper supplement submodules of M which are not direct summands.
The module M has the following lattice of submodules:

M
/\
<, 1> 0 x Zg Tox <2 >
Ox <2 > <(1,2) > Soc(M)
Ox <4 > < (1,4) > Zn x 0

T~

Let N =< (1,2) >. Itis easy to see that N is the only proper supplement submodule
of M which is not a direct summand of M and it is a supplement of the submodules
< (1,1) > and 0 x Zg in M. Note that M/N =< (0, 1) + N >. On the other hand,
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we can define the nonzero homomorphism f : M/N — M with the definition that
0, x)+ N +— (x,4x), where x € Zg.

In contrast to Remark 4.3, in the next example we present a ring R for which Rg
is not an s-coretractable R-module. Recall that a uniserial domain R is called nearly
simple if R is not Artinian, and Jac(R) is the unique nontrivial two-sided ideal of R.
For an example of a nearly simple uniserial domain see [26, p. 325].

Example 4.5 Let R be a nearly simple uniserial domain, 0 # r € Jac(R), M =
R/rR,and S = Endr(M). Then S is a semilocal ring by [7, Corollary 4.16]. By [25,
Proposition 6.7], S has exactly three nonzero proper two-sided ideals, namely two
maximal ideals I and K and the Jacobson radical J = Jac(S) = I N K which is
idempotent. Note that K is a cyclic left ideal of S by [25, p. 239]. Since S =1 + K
and INK = J = J?> C JK =Rad(K) < K, K is a supplement of / in 5S. Suppose
that the S-module ¢S is s-coretractable. Then there exists a nonzero S-homomorphism
¢:S/K — S.Since §/K is simple, Kerp = 0. Then §/K = X for some left simple
ideal X of S. It follows that K X = 0. Note that S is left uniform and the left singular
ideal of S is Z;(S) = K by [25, Proposition 6.4]. Therefore X € K as K is essential
in ¢S. Thus K% = 0. But S is a prime ring by [25, Proposition 6.7]. Then K = 0, a
contradiction. Consequently, the S-module gS is not s-coretractable.

Next, we characterize rings R for which the R-module Ry is s-coretractable.

Lemma 4.6 For any right ideal K of a ring R, Hom(R/K, R) # 0 if and only if
IR(K) #0.

Proof (=) Let K be aright ideal of R such that Hom(R/K, R) # 0. So there exists
a nonzero homomorphism f : Rg —> Rpg such that f(K) = 0. Let f(1) = r. Then
r#0andr € [gr(K).

(«<=)Let K bearightideal of R suchthat/r(K) # 0. Then there is anonzero element
a € R such that aK = 0. Consider the nonzero homomorphism f : Rg — Rp
defined by f(x) = ax for every x € R. Then f(K) = aK = 0. This implies that
Hom(R/K, R) # 0. O

Proposition 4.7 The following conditions are equivalent for a ring R:

(i) the R-module Ry is s-coretractable;
(ii) for every proper right ideal K of R which is a supplement in Rg, [g(K) # 0.

Proof This follows from Lemma 4.6. O
The next result provides other examples of s-coretractable modules.
Proposition 4.8 Let R be a domain. Then Ry is an s-coretractable R-module.

Proof Let K be a nonzero supplement submodule in Rg. By [13, Theorem 1.6], there
exist 0 # x € Rand rg € R such that K = xR and x%rog = x. Then x(xrg — 1) = 0.
Since R is a domain, we get xrg = 1 € K. So, K = R. Therefore, the zero submodule
of Rp is the only proper supplement in Rg. It follows that Rg is an s-coretractable
module. O
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Next, some examples are presented to show that the class of coretractable modules
is a proper subclass of the class of s-coretractable modules.

Example 4.9 (1) By [1, Theorem 2.14], for aring R, the R-module Rp, is coretractable
if and only if [ (I) # O for any right ideal I of R, where [gr(/) = {r € R | rx = 0 for
allx € I}. Hence for any domain R whichisnotadivisionring, R is an s-coretractable
R-module which is not coretractable by Proposition 4.8.

(2) Let R and M be as in Example 2.5. Then M is not coretractable. On the other
hand, R is an L-ring as R is von Neumann regular (see Remark 4.3(i)(e)). Since M is
a cyclic projective R-module, M is s-coretractable by Remark 4.3(i).

(3) Let P be anonzero projective Z-module. Then the module P is not coretractable
by Corollary 2.3. However, P is an s-coretractable module by Remark 4.3(ii).

Next, we investigate when a direct summand of an s-coretractable module is s-
coretractable. First, we present an example which shows that the s-coretractability
property is not inherited by direct summands.

Example 4.10 Let R be aring and let C = @75 E(T), where S is an irredundant set
of representatives of the simple R-modules. It is well known that C is a cogenerator
(see [2, Corollary 18.16]). Then for any module M, it is clear that C & M is again a
cogenerator and so itis coretractable (see also [1, p. 291]). So, C® M is s-coretractable.
But M need not be s-coretractable (see Example 4.5).

The last example shows also that the class of s-coretractable modules is not closed
under factor modules.
As in [1, Proposition 2.5], the next result deals with some special cases.

Proposition 4.11 Let M = K @ L be an s-coretractable module such that either K
is a fully invariant submodule of M or K cogenerates M. Then K is s-coretractable.

Proof Let X be a proper supplement submodule of K. Then X & L is a proper sup-
plement submodule of M by [15, Lemma 2.2]. Since M is s-coretractable, there is a
nonzero homomorphism f : M — M suchthat f(X@ L) = 0.If K is fully invariant
in M, then f(K) C K. As f is nonzero, f(K) is nonzero. Thus f |x: K — K is
nonzero and (f |g)(X) = 0. So K is s-coretractable. Now assume that K cogenerates
M. In the same manner as in the proof of [1, Proposition 2.5], we can see that K is
s-coretractable. O

Lemma 4.12 Let M be a module and let L and K be submodules of M such that
L K Mand L C K. Then K is a supplement submodule in M if and only if K /L is
a supplement submodule of M/ L.

Proof (=) By [6, 20.5(1)]. (<) Let N be a submodule of M such that L € N,
(K+N)/L=M/Land (KNN)/L < K/L.Let X be asubmodule of M such that
(KNN)+ X = K. Then X + L = K. Moreover, we have L <« K by [6, 20.2].
Therefore X = K. Hence K N N <« K. It follows that K is a supplement of N in M.

]

Combining Lemma 4.12 and the proof of Proposition 2.11, we obtain the following
result.
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Proposition 4.13 Let M be a noncosingular s-coretractable module and N < M.
Then M /N is s-coretractable.

Next, we study the question of when a direct sum of s-coretractable modules is also
s-coretractable.

Recall that a nonzero module M is called hollow if every proper submodule is small
in M. The module M is said to be local if M has a proper submodule which contains
all other proper submodules.

Let n € N. Recall that a module M is said to have hollow dimension n and this is
denoted by h.dim (M) = n, if there exists an epimorphism from M to a direct sum of n
nonzero modules but no epimorphism from M to a direct sum of more than n nonzero
modules (see [6, 5.2]). Note that if M = 0, then h.dim(M) = 0 and a module M is
hollow if and only if h.dim(M) = 1.If M is a module over a commutative ring R, we
denote the annihilator of M by ann(M), i.e. ann(M) = {r € R | Mr = 0}. If a and
b are ideals in a commutative ring R, their ideal quotientisa: b= {x € R | xb C a}
which is an ideal of R.

It is clear that every local module is s-coretractable. The next proposition char-
acterizes when a direct sum of two local modules over a commutative local ring is
s-coretractable. First, we prove the following lemma.

Lemma 4.14 Let R be a commutative local ring with maximal ideal m. Let a and b
be two proper ideals of R and consider the R-module M = R/a & R/b. Then for
any nonzero proper supplement K in M, M /K is cyclic and ann(M/K) = sa+ b or
ann(M/K) = a+ rb for somer,s € R.

Proof First, we point out that Rad(M) = m/adm/b <K M.Let HL = R/ad 0 =
(1,0)R and H, =0 R/b = (0, )R. Thus M = H, + H,.

Let K be a nonzero proper supplement of M. Then h.dim(M) = h.dim(M/K) +
h.dim(K) by [6, 20.10(2)]. This implies that h.dim(K) = 1. Hence K is a hollow
module. Since K is finitely generated (see [6, 20.4(2)]), it follows that K is a local
submodule of M. Therefore, there exist r,s € R such that » ¢ m or s ¢ m and
K =(@,5R.

Assume that r ¢ m. Then M = K 4+ H, and M/K = H;/K N H,. Thus,
ann(M/K) = ann(H>/(K N H»)) = {a € R | (0, Da = (7, §)x for some x € R}
={ax € R|rx € aand o — sx € b for some x € R}. Note that r is invertible as
r ¢ m. Then ann(M/K) = {¢ € R | 3x € asuch that « — sx € b} = sa + b. The
same reasoning applies to the case s ¢ m gives ann(M/K) = a + rb. O

Proposition 4.15 Letr R be a commutative local ring with maximal ideal m. Let a and
b be two proper ideals of R and consider the R-module M = R/a @ R/b. Then the
following conditions are equivalent:

(i) M is an s-coretractable module;
(ii) a:b#aorb:a#b.

Proof (i) = (ii) Let K = (r, s) R withr, s ¢ m. Itis easily seen that K is a supplement
of both H; and H; in M. By the proof of Lemma 4.14, it follows that M /K is cyclic
and ann(M/K) = a+ b. Since M is s-coretractable, we have Hom(M /K, R/a) # 0
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or Hom(M /K, R/b) # 0. If Hom(M /K, R/a) # 0, then there exists x € R such
that x ¢ a and x(a + b) C a. So there exists x € R such that x ¢ a and xb C a.
Thatis, a : b # a. In the same manner, we can see that Hom(M /K, R/b) # 0 implies
b:a#b.

(i1) = (i) Assume that a : b # a. So there exists x € R suchthatx ¢ aand xb C a.
Let K be a nonzero proper supplement in M and let ¢ = ann(M/K). By Lemma
4.14, we have M/K = R/cand ¢ € a + b. Since x(a + b) C a, we have xc C a.
Consider the map ¢ : R/c — R/a defined by ¢(r +¢) = xr +aforallr € R. It
is easily seen that ¢ is well defined and it is a nonzero R-homomorphism. Therefore
Hom(M /K, R/a) # 0. Hence Hom(M /K, M) # 0. The same conclusion can be
drawn for the case b : a # b. This completes the proof. O

The next result is a direct consequence of Proposition 4.15.

Corollary 4.16 Let R be a commutative local ring. If a and b are two ideals of R such
that a C b, then the R-module M = R/a @ R/b is s-coretractable.

Proposition 4.15 provides a source of examples of s-coretractable modules whose
direct sum is not s-coretractable.

Example 4.17 Let R be adiscrete valuation ring with maximal ideal m. By [5, Theorem
2], the power series ring 7 = R[[X]] is a local ring with maximal ideal m + (X).
By [5, Theorem 4], p; = (X) and p> = m[[X]] are prime ideals of T'. It is clear that
p1 € p2 and po & py. Therefore p; : po = p; and po : p; = po. By Proposition
4.15, it follows that the T-module T /p; ® T /p> is not s-coretractable. However, the
T-modules T'/p; and T /p, are s-coretractable.

Next, we provide some sufficient conditions for a direct sum of s-coretractable
modules to be s-coretractable. Note that the next two results are partial analogues to
the relevant results for coretractable modules (see [1, Propositions 2.6 and 2.8]).

Recall that a module M is called a duo module provided every submodule of M is
fully invariant. A module M is called distributive it AN(B+C) = (ANB)+(ANC)
for all submodules A, B and C of M. It is well known that if M is duo or distributive,
then for every submodule X < M and for every decomposition M = N & K, we have
X =(XNN)®& (X NK) (see, for example, [24, Lemma 2.1]).

Proposition 4.18 Let M = @_, M; be a module. Assume that M is duo or distribu-
tive. If My, M, ..., M,, are s-coretractable, then so is M.

Proof Without loss of generality, we can assume that n = 2. Let K be a proper
supplement submodule of M.So K = A@ B,where A = KNMjand B = KNM,.By
[6,20.6], A and B are supplement submodules in M| and M, respectively. Since K #
M,wehave A #= Mjor B # M,. Assume B # M>. Since M is s-coretractable, there
exists a nonzero homomorphism f : Ma/B —> M).Letm : M/K — M /(K + M)
be the natural epimorphism and let  : My — M be the natural inclusion. Note that
M/(K + M) = [(K + M1) + Mal/(K + M) = Ma/B since Ma N (K + My) = B.
Letg: M/(K + M;) — M>/B be an isomorphism. Then pufgm : M/K — M isa
nonzero homomorphism. The case A # M can be handled in much the same way. It
follows that M is s-coretractable. O
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Proposition 4.19 Let M = Gy c1 My be the direct sum of s-coretractable submodules
My | @ € I}. If forall o, B € I, My is Mg-injective and M is duo or distributive,
then M is s-coretractable.

Proof Let K be a proper supplement submodule of M. Then there exists 8 € [
such that Mg Q K. Moreover, we have K = X ® Y with X = K N Mg and
Y = K N (®axpMy). Note that X is a proper supplement submodule of Mg by
[6, 20.6]. Since M, is Mg-injective for all a, B € I, by the same method as in the
proof of [1, Proposition 2.8], we can see that M is s-coretractable. O

The next example illustrates the last proposition.

Example 4.20 Let {p; | i € I} be a family of distinct prime integers and let M =
@Dic1M; such that for each i € I, either M; = Z(pf?o) or M; = Z/pll.{"Z for some
positive integer k;. Clearly, each M; is s-coretractable. Moreover, it is immediate that
foralli, j € I, M; is M j-injective. By [24, Theorem 3.10], the Z-module M is duo.
Therefore by Proposition 4.19, M is s-coretractable. Note that by [1, Proposition 2.8],
M is also a coretractable Z-module.

Recall that a module M is called amply supplemented if for any two submodules
A and B of M with M = A + B, B contains a supplement of A. The following
characterization is dual to [17, Theorem 2.4] in some sense.

Proposition 4.21 The following are equivalent for an amply supplemented module
M with S = Endg(M).

(i) M is s-coretractable;
(ii) for any proper supplement submodule K of M, ryy(Is(K))/K < M/K;
(iii) for any supplement submodule K of M, if ryy(Is(K)) is a direct summand of M,
then K = ry(Is(K)).

Proof (i) = (ii) Let K be a proper supplement submodule of M and L = ry; (I5(K)).
To prove that L/K <« M/K,let (L/K)+ (X/K)= M/K with K < X < M. Since
M/K is amply supplemented (see [32, 41.7(2)]), there exists a submodule V < M
such that K € V C X and V/K is a supplement of L/K in M/K. By [6, 20.5(2)],
V is a supplement submodule of M. If V # M, then by hypothesis there exists
0 # f € Endg(M) with f(V) = 0. Therefore, f € [s(K) and so f(L) = 0. This
implies that f(M) = f(L + V) = 0, a contradiction. It follows that V = X = M.
Hence L/K <« M/K.

(i1) = (iii) and (iii) = (i) These are similar to the proofs of (b) = (c) and (c) =
(a) in [1, Lemma 4.1], respectively. O
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