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Abstract A right R-module M is called coretractable (s-coretractable) if
Hom(M/K , M) �= 0 for any proper submodule (supplement submodule) K of
M . In this article, we continue the study of coretractable modules. Then we study
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summands and a direct sum of s-coretractable modules may not be s-coretractable.
Examples are provided to illustrate and delineate the results.
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1 Introduction

In this paper, R will be a ring with identity and all modules will be unitary right
R-modules. We will use the symbol N ≤ M to denote that N is a submodule of a
module M . The notation N � M will mean that N is a small submodule of a module
M , namely M �= N + X for any proper submodule X of M . For a module M , we
write Rad(M), E(M) and EndR(M) for the Jacobson radical, the injective hull and
the endomorphism ring of M , respectively. The Jacobson radical of the ring R will be
denoted by Jac(R). By Q, Z and N, we denote the ring of rational, integer and natural
numbers, respectively. Z(p∞) denotes the Prüfer p-group and Zn denotes Z/nZ.

We also denote lS(K ) = {s ∈ S | s(K ) = 0} for K ≤ M and rM (I ) = ∩{Kerg |
g ∈ I } for a left ideal I of S = EndR(M).

A right R-module M is said to be retractable if HomR(M,U ) �= 0 for any nonzero
submodule U of M . For a background on retractable modules, we refer the reader
to [17]. Dually, the notion of coretractable modules was introduced and studied by
Amini, Ershad and Sharif in [1]. A right R-module M is said to be coretractable if
HomR(M/K , M) �= 0 for any proper submodule K of M . In Sect. 2, we explore
further properties of coretractable modules. For example, we investigate the factor
modules of these modules.

Section 3 is devoted to the connections between a coretractable module M and
its endomorphism ring S = EndR(M). It is shown that for some properties (P) of
modules, if S S satisfies (P), then MR satisfies the dual property of (P). Among other
results, we prove that if M is a coretractable module such that S S is Rickart, then M
is a dual Rickart module (see Proposition 3.15).

The investigations in Sect. 4 focus on another variation of coretractability which
will be called s-coretractable modules. This notion is introduced as the dual of the
notion of e-retractable modules studied in [17]. We provide many examples of these
modules. Moreover, some examples are presented to show that an s-coretractable
module need not be coretractable. Also, we study rings R for which the module RR is
s-coretractable. Then we deal with direct summands and direct sums of s-coretractable
modules.

For undefined terms and terminology, the reader is referred to [2,6,7,10].

2 Some Properties of Coretractable Modules

It is of natural interest to investigate whether or not an algebraic notion is inherited
by factor modules. It is shown that a factor module of a coretractable module is not
coretractable, in general (Proposition 2.9 and Example 2.10). We present some cases
when some factor modules of a coretractable module are coretractable. In [27], Rizvi
and Roman introduced a weaker form of nonsingularity. A module M is said to be
K-nonsingular if, for every nonzero endomorphism ϕ of M , Kerϕ is not essential in
M . Note that every nonsingular module is K-nonsingular (see [28, Corollary 2.4]).
In [1, Proposition 2.3(b)], it is proved that for a coretractable module M , if M is
nonsingular, then M is semisimple. We begin with a slight generalization of this
result.
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A Variation of Coretractable Modules 1277

Proposition 2.1 Let M be a coretractable module. Then M is K-nonsingular if and
only if M is semisimple.

Proof Suppose that M is K-nonsingular but not semisimple. Hence M has a proper
essential submodule N by [32, 20.2]. Since M is coretractable, there exists a nonzero
homomorphism ϕ : M −→ M such that ϕ(N ) = 0. Then N ⊆ Kerϕ. Since N is
essential in M , Kerϕ is essential in M . As M is K-nonsingular, we have ϕ = 0. This
is a contradiction. The converse is immediate. 
�

Let M be a right R-module and S = EndR(M). The module M is called a Rickart
module if for every ϕ ∈ S, Kerϕ = {x ∈ M | ϕ(x) = 0} = eϕM for some idempotent
eϕ ∈ S (see [21]).

Recall that the module M is called a Baer module if for any submodule N of M ,
lS(N ) is a direct summand of S S, equivalently, for every I ≤ S S, rM (I ) is a direct
summand of M (see [27]).

It is clear that the following implications hold:

Baer ⇒ Rickart ⇒ K-nonsingular.

A ring R (not necessarily commutative) is called a domain if for all x, r ∈ R,
xr = 0 ⇒ x = 0 or r = 0. The next result is a direct consequence of Proposition 2.1.

Corollary 2.2 A coretractable module M is semisimple if at least one of the following
conditions holds:

(i) for any (x, r) ∈ M × R, xr = 0 ⇒ x = 0 or r = 0 (e.g. M is a torsion-free
module over a commutative domain);

(ii) M is a Rickart module;
(iii) M is a Baer module.

Next, we provide another application of Proposition 2.1.

Corollary 2.3 Let R be a commutative domain which is not a field. Let P be a nonzero
projective R-module. Then P is not coretractable.

Proof Note that R has no simple projective modules, since otherwise R has a maximal
ideal which is a direct summand. Therefore P is not semisimple. Moreover, it is well
known that P is isomorphic to a direct summand of a free R-module. Thus P is
torsion-free. The result follows by Corollary 2.2. 
�

The next example shows that the assumption of coretractability is not superfluous
in Proposition 2.1.

Example 2.4 (1) Let R be a commutative domain which is not a field. By Corollary
2.3, the R-module RR is not coretractable. On the other hand, it is easily seen that
RR is a K-nonsingular R-module which is not semisimple.

(2) Let R be a von Neumann regular ring which is not semisimple. By [1, Proposi-
tion 4.4], the R-module RR is not coretractable. In addition, it is clear that RR is a
K-nonsingular R-module (see [18, Corollary 7.7]). Now, we present two explicit
examples of rings which satisfy these conditions.
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(a) We can take R = ∏
n≥1 Fi , where each Fi = F is a field.

(b) (See [3, Example 1.6] and [21, Example 2.19]) For a field F , let Fn = F for
each n ∈ N. Consider the ring

R =
[∏∞

n=1 Fn ⊕∞
n=1Fn⊕∞

n=1Fn < ⊕∞
n=1Fn, 1 >

]

which is a subring of the 2 × 2 matrix ring over the ring
∏∞

n=1 Fn , where
< ⊕∞

n=1Fn, 1 > is the F-algebra generated by⊕∞
n=1Fn and 1. Then R is a von

Neumann regular ring which is not semisimple.

As an application of Corollary 2.2, we can give the following example which will
be needed in the last section.

Example 2.5 Let R be the ring as in Example 2.4(2)(b). Consider the right R-module

M = eR, where e is the idempotent

[
0 0
0 1

]

. By [21, Example 2.19], M is a Rickart

module which is not semisimple. Hence the module MR is not coretractable by Corol-
lary 2.2.

Recall that a module M is called quasi-injective if it is M-injective, that is for
every submodule X of M , any homomorphism ϕ : X → M can be extended to a
homomorphism ψ : M → M .

A submodule N of an R-module M is called fully invariant if f (N ) is contained
in N for every R-endomorphism f of M .

Let M be a module with S = EndR(M). It is clear that N ⊆ rMlS(N ) for every
submodule N of M . In [1, Corollary 4.2], the authors provided some conditions under
which N = rMlS(N ). In a similar vein, we show the next result.

Proposition 2.6 Let MR be a quasi-injective coretractable module with S =
EndR(M). Let N = x R be a cyclic fully invariant submodule of M. Then rMlS(N ) =
N.

Proof We only need to show that rMlS(N ) ⊆ N . Let u ∈ rMlS(N ). Without loss
of generality, we can assume that N �= M . Then lS(N ) �= 0 as M is coretractable.
Define the R-homomorphism ϕ : S/ lS(N ) −→ M by s + lS(N ) �→ s(u) and the
R-monomorphism η : S/ lS(N ) −→ M by s + lS(N ) �→ s(x). Since M is quasi-
injective, there exists a homomorphism h ∈ S such that hη = ϕ. Then, h(x) = u.
Hence u ∈ N as N is fully invariant. 
�
Example 2.7 Consider the Z-module M = ⊕n

i=1Z(p∞
i ), where pi (1 ≤ i ≤ n)

are distinct prime integers. By [24, Theorem 3.10], every submodule of M is
fully invariant. Moreover, M is an injective coretractable module by [1, Exam-
ple 2.2 and Proposition 2.6]. Applying Proposition 2.6, it follows that rMlS(N ) = N
for every cyclic submodule of M .

Next, we study the question: does any factor module of a coretractable module
inherit the property? We begin with an example which shows that the coretractability
property does not transfer from a module to each of its direct summands (see also
[1, p 291] for other examples).
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Example 2.8 In [1, Example 3.15], it is given a ring R over which every free R-module
is coretractable, but R has a projective module P which is not coretractable. Note that
P is isomorphic to a direct summand of a free R-module.

Recall that a ring R is said to be right Kasch if every simple right R-module can
be embedded in RR (see [18, p. 280]). It is shown in [1, Theorem 2.14] that a ring R
is right Kasch if and only if the module RR is coretractable.

Proposition 2.9 Let R be a right Kasch ring which is not left perfect. Then R has
a coretractable module M which contains a submodule N such that M/N is not
coretractable.

Proof By [1, Theorem 2.14], the R-module RR is coretractable. On the other hand,
since the ring R is not left perfect, R has a cyclic R-moduleM which is not coretractable
by [1, Proposition 3.8]. Therefore, there exists a right ideal I of R such that the R-
module R/I is not coretractable. 
�

The next example guarantees the existence of a ring with the required conditions of
Proposition 2.9. This ring is taken from [18, Proposition 8.30] and [19, Exercise 8.18].

Example 2.10 Let {pi : i ∈ I } be the set of prime integers. Consider the (Z, Z)-
bimodule M = ⊕i∈IZ/piZ (in the natural way with identical left, right Z-actions).
Let R = M⊕Z be the trivial extension ofZ by M . By [18, Proof of Proposition 8.30],
R is a commutative Kasch ring which has infinitely many simple modules. So R is
not semilocal. Hence, R is not perfect.

The next proposition deals with a special case of factor modules of coretractable
modules.

Proposition 2.11 Let M be a coretractable module. If N is a submodule of M such
that ϕ(M) is not contained in N for every nonzero ϕ ∈ EndR(M), then M/N is
coretractable.

Proof Let T/N be a proper submodule of M/N . Since M is coretractable, there
exists a nonzero homomorphism α : M → M such that α(T ) = 0. Define ψ :
M/N −→ M/N bym+N �→ α(m)+N . Clearly,ψ is well defined andψ(M/N ) =
(α(M)+ N )/N . Since α(M) � N , ψ �= 0. Also, we have ψ(T/N ) = 0. Thus, M/N
is coretractable. 
�

Let M be a module. In [29], it was introduced the submodule Z(M) = ∩{N ≤ M |
M/N � E(M/N )}. The module M is called noncosingular if Z(M) = M . Note that
noncosingularity is inherited by homomorphic images (see [29, Proposition 2.4]).

Corollary 2.12 Let M be a noncosingular coretractable module and N � M. Then
M/N is coretractable.

Proof Let 0 �= ϕ ∈ EndR(M). Since M is noncosingular, we have Z(ϕ(M)) =
ϕ(M) by [29, Proposition 2.4]. Therefore ϕ(M) is not small in M , since otherwise
Z(ϕ(M)) = 0. Thus, ϕ(M) � N . The result follows by Proposition 2.11. 
�
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Corollary 2.13 Let R be a right Noetherian ring. Let M be a coretractable R-module
with Rad(M) = M. If N is a finitely generated submodule of M, then M/N is
coretractable.

Proof By Proposition 2.11. 
�

3 Some Notions Versus Their Duals

Let M be a coretractable R-module with S = EndR(M). In the literature, we can
find several examples of properties (P) of modules for which the fact that the left
S-module S S satisfies (P) implies that MR satisfies the dual property of (P). Among
others, we can cite the following examples:

1. If S S is uniform, then MR is hollow (see [1, Corollary 4.6]).
2. If S S has finite uniform dimension, then MR has finite hollow dimension (see [1,

Proposition 4.10]).
3. If SS has the summand intersection property, then MR has the summand sum

property (see [9, Proposition 2.5]).
4. If S is a Baer ring, then MR is a dual Baer module (see [16, Theorem 3.6]).

These links between some concepts and their duals are themotivations for the inves-
tigations in this section.We prove that if S S satisfies (C11), then M is⊕-supplemented
(Theorem 3.6). We show that if M is quasi-injective and ⊕-supplemented, then every
finitely generated left ideal of S has a complement which is a direct summand of S S
(Theorem 3.11). It is also shown that if S S is Rickart, then M is a d-Rickart module
(Proposition 3.15).

Proposition 3.1 Let M be a nonzero coretractable module with S = EndR(M). If
every descending chain V1 ⊇ V2 ⊇ · · · of left ideals of S with

⋂
i≥1 Vi = 0 becomes

stationary after finitely many steps, then every ascending chain U1 ⊆ U2 ⊆ · · · of
right submodules of M with

⋃
i≥1Ui = M becomes stationary after finitely many

steps.

Proof Let U1 ⊆ U2 ⊆ · · · be an ascending chain of right submodules of M
with

⋃
i≥1Ui = M . Therefore lS(U1) ⊇ lS(U2) ⊇ · · · . In addition, we have

lS(
⋃

i≥1Ui ) = lS(
∑

i≥1Ui ) = ⋂
i≥1 lS(Ui ) = lS(M) = 0 (see [2, Proposi-

tion 2.16]). By hypothesis, there exists k ≥ 1 such that lS(Ui ) = lS(Uk) for every
i ≥ k. We claim that Uk = M , for if not, there exists 0 �= ϕ ∈ S such that ϕ(Uk) = 0
since M is a coretractable module. It follows that ϕ ∈ lS(Uk). Hence ϕ ∈ lS(Ui ) for
all i ≥ 1. Therefore ϕ(M) = ϕ(

∑
i≥1Ui ) = 0, a contradiction. 
�

Let N and K be submodules of amoduleM . Recall that K is said to be a complement
of N in M if K is maximal with respect to the property K ∩ N = 0. Dually, we say
that K is a supplement of N in M if M = N + K and K is minimal with respect
to this property, equivalently, M = N + K and N ∩ K � K . Note that every
direct summand of M can be considered as a supplement and a complement of some
submodule of M . Recall that a submodule K of M is called coclosed in M if whenever
K/L � M/L for a submodule L of K , then L = K . Note that every direct summand
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of M is coclosed in M . A right R-module M is called semi-injective if for any f ∈ S,
S f = lS(Ker f ) = lSrM (S f ), where S = EndR(M). Note that every quasi-injective
module is semi-injective (see [6]).

Proposition 3.2 Let K and N be submodules of a coretractable module MR such that
K is coclosed in M. Let S = EndR(M). If lS(K ) is a complement of lS(N ) in S S, then
K is a supplement of N in M. The converse holds when MR is semi-injective and K
is a direct summand of M.

Proof Assume that lS(K ) is a complement of lS(N ) in S S. Suppose that M �= N +K .
Since M is coretractable, there exists 0 �= f ∈ S such that f (N + K ) = 0. Thus
f ∈ lS(N ) ∩ lS(K ). Hence f = 0, a contradiction. Thus, M = N + K . Moreover,
lS(N ) ⊕ lS(K ) is essential in S S by [10, Proposition 1.3]. Therefore, lS(N ∩ K ) is
essential in S S as lS(N ) ⊕ lS(K ) ⊆ lS(N ∩ K ). By [1, Proposition 4.5(a)], we have
N ∩ K � M . Since K is coclosed, N ∩ K � K (see [6, 3.7(3)]). It follows that K is
a supplement of N in M .

Conversely, assume that M is semi-injective and K is a direct summand of M
which is a supplement of N in M . So, there exists a submodule L of M such that
M = N + K = L ⊕ K . Note that lS(N ) ∩ lS(K ) = lS(L) ∩ lS(K ) = 0. Then
lS(N ∩K ) = lS(N )⊕ lS(K ) and S = lS(L ∩K ) = lS(L)⊕ lS(K ) by [1, Lemma 4.9].
Since N ∩ K � K and M is semi-injective, lS(N ∩ K ) is essential in S S by [1,
Proposition 4.5(c)]. Thus, lS(N )⊕ lS(K ) is essential in S S. Let Y be a complement of
lS(N ) in S S containing lS(K ). Therefore, lS(N )⊕lS(K ) is essential in lS(N )⊕Y . From
[2, Proposition 5.20], it follows that lS(K ) is essential in Y . Since S = lS(L)⊕ lS(K ),
lS(K ) is a direct summand of Y by modularity. So Y = lS(K ). This completes the
proof. 
�

Recall that a module M is called cosemisimple if every simple module is M-
injective. Note that a module M is cosemisimple if and only if every submodule
of M is coclosed in M if and only if the radical of every factor module of M is zero
(see [6, 3.8] and [32, 23.1]). The following two corollaries are now immediate since
0 is the only small submodule of a cosemisimple module.

Corollary 3.3 Let K be a submodule of a coretractable cosemisimple module MR

with S = EndR(M). If lS(K ) is a complement of lS(N ) in S S, then M = K ⊕ N.

Corollary 3.4 Let MR be a coretractable cosemisimple module with S = EndR(M).
Assume that for every left ideal I of S, there exists a submodule K of MR such that
lS(K ) = I . Then M is semisimple.

Example 3.5 Consider the Z-module M = Q. It is well known that M is not a core-
tractable module and every nonzero endomorphism of M is bijective. Let N be a
nonzero proper submodule of M . Then we have lS(N ) = 0. Thus lS(0) = S is a
complement of lS(N ) in S S. But 0 is not a supplement of N in M . Note that 0 is a
coclosed submodule of M . This shows that coretractability is needed in Proposition
3.2.

Following [4], we say that a module M satisfies (C11) (or M is a (C11)-module) if
every submodule of M has a complement which is a direct summand of M . Dually,
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a module M is called ⊕-supplemented if every submodule of M has a supplement
which is a direct summand of M (see [12]).

Theorem 3.6 Let MR be a coretractable module with S = EndR(M). If the module
S S satisfies (C11), then M is ⊕-supplemented.

Proof Let N be a proper submodule ofM . Then lS(N ) �= 0 asM is coretractable. Since
S S satisfies (C11), there exists a direct summand I of S S such that I is a complement
of lS(N ) in S S. Assume that I = Se for some idempotent element e in S. Clearly,
(1−e)(M) is a direct summand of M and lS((1−e)(M)) = Se. Applying Proposition
3.2, (1 − e)(M) is a supplement of N in M . Therefore, M is ⊕-supplemented. 
�

The coretractability assumption is not superfluous in Theorem 3.6 as shown below.

Example 3.7 Consider the Z-module QZ again. Since EndZ(QZ) ∼= Q, EndZ(QZ)

satisfies (C11). However, QZ is not ⊕-supplemented (see [6, Example 20.12]). Note
that the module QZ is not coretractable.

Combining Theorem 3.6, [1, Theorem 2.14] and [32, 42.6], we obtain the following
result.

Corollary 3.8 If R is a right Kasch ring such that the R-module R R satisfies (C11),
then R is a semiperfect ring.

Lemma 3.9 Let MR be a quasi-injective module with S = EndR(M). Let I be a left
ideal of S such that lSrM (I ) = I . Then lSrM (I + S f ) = I + S f for any f ∈ S.

Proof The proof is analogous to that of [11, Lemma 1]. Let f ∈ S. Clearly, I + S f ⊆
lSrM (I + S f ). Let g ∈ lSrM (I + S f ) = lS(rM (I ) ∩ rM (S f )) = lS(rM (I ) ∩ Ker f ).
Since g(rM (I ) ∩ Ker f ) = 0, rM (I ) ∩ Ker f ⊆ Kerg = rM (Sg). Define the map θ :
f (rM (I )) −→ g(M) by f (a) �→ g(a) for all a ∈ rM (I ). Then θ is well defined and
it is an R-homomorphism. Since M is quasi-injective, there exists a homomorphism
s ∈ S such that si = i ′θ , where i : f (rM (I )) −→ M and i ′ : g(M) −→ M are the
inclusion maps. It follows that for every a ∈ rM (I ), (g−s f )(a) = (i ′θ −si)( f (a)) =
0. Therefore, g − s f ∈ lSrM (I ) = I . Hence, g ∈ I + S f . 
�
Corollary 3.10 Let MR be a quasi-injective module with S = EndR(M). Then
lSrM (I ) = I for any finitely generated left ideal I of S.

Proof This follows from Lemma 3.9 and the fact that MR is a semi-injective module.

�

Theorem 3.11 Let M be a coretractable quasi-injective module with S = EndR(M).
Assume that M is ⊕-supplemented. Then every finitely generated left ideal of S has a
complement which is a direct summand of S S.

Proof Let I be a nonzero finitely generated left ideal of S. Then, rM (I ) �= M . SinceM
is⊕-supplemented, there exist submodules K and K ′ ofM such thatM = K ⊕K ′ and
K is a supplement of rM (I ) inM . By Proposition 3.2 andCorollary 3.10, it follows that
lS(K ) is a complement of I = lSrM (I ) in S S. Moreover, since lS(K ) ∩ lS(K ′) = 0,
we have S = lS(K ) ⊕ lS(K ′) by [1, Lemma 4.9]. Thus, lS(K ) is a direct summand of
S S. 
�
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The following result is a direct consequence of Theorem 3.11.

Corollary 3.12 Let M be a coretractable quasi-injective module such that S =
EndR(M) is a left Noetherian ring. If the R-module M is ⊕-supplemented, then the
S-module S S satisfies (C11).

Example 3.13 Consider theZ-moduleM = ⊕n
i=1Z(p∞

i ), where n is a natural number
and pi (1 ≤ i ≤ n) are prime numbers. By [23, Propositions A.7 and A.8], M is a ⊕-
supplemented module. Moreover, M is a coretractable module by [1, Proposition 2.8].
Since S = EndZ(M) is a Noetherian ring (see [8, Proposition 111.4]) andM is a quasi-
injective module, it follows that the module S S satisfies (C11) by Corollary 3.12.

The next example shows that the condition “M is a quasi-injective module” in
Corollary 3.12 is not superfluous.

Example 3.14 Let A be the polynomial algebra k[x, y] over a field k, and let R =
A/U , where

U = (x, y)n+1 =
∑

i+ j=n+1

xi y j A(n ≥ 1).

From [18, Example 3.69], it follows that R is a commutative local ring with maximal
ideal m = x̄ R + ȳ R. It is clear that ann(m) �= 0. Hence R is a Kasch ring by [18,
Corollary 8.23]. Therefore the module RR is coretractable by [1, Theorem 2.14]. Also,
it is shown in [18, Example 3.69] that the R-module RR is not quasi-injective and R is
an Artinian ring (hence R is a Noetherian ring) such that the socle of RR is essential
in RR and Soc(RR) = ⊕

i+ j=n
xi y j k is a direct sum of n + 1 simple ideals. So, RR is

not a uniform R-module. Hence, the module RR does not satisfy (C11) since RR is
indecomposable. On the other hand, the R-module RR is ⊕-supplemented as R is a
local ring.

Recall that a ring R is called a right Rickart ring if the right annihilator of any
element in R is of the form eR for some idempotent e ∈ R (see [18, p. 260] and [21]).

According to [22], a module M is called a d-Rickart (or dual Rickart) module if for
all ϕ ∈ S = EndR(M), Imϕ is a direct summand of M . In [22, Proposition 3.1], it is
shown that if M is a d-Rickart module, then EndR(M) is a left Rickart ring. The next
result is a partial converse of [22, Proposition 3.1].

Proposition 3.15 Let MR be a coretractable module and S = EndR(M). If S S is
Rickart, then M is a d-Rickart module.

Proof Assume that S S is Rickart. Let 0 �= ϕ ∈ S and K = Imϕ. Then lS(K ) = { f ∈
S | f ϕ = 0} is a direct summand of S S. So there exists an idempotent h ∈ S such that
lS(K )⊕Sh = S. It follows that 0 = rM (S) = rMlS(K )∩rM (Sh) = rMlS(K )∩Kerh.
Since K ⊆ rMlS(K ), we have K ∩ Kerh = 0. Suppose that N = K + Kerh �= M .
As M is coretractable, there exists 0 �= g ∈ S such that g(N ) = 0. Thus g(K ) =
g(Kerh) = 0. Note that Kerh = (1− h)(M). Therefore, g(K ) = 0 and g(1− h) = 0,
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that is, g ∈ lS(K ) and g = gh ∈ Sh. As lS(K ) ∩ Sh = 0, it follows that g = 0. This
contradicts the fact that g �= 0. So K + Kerh = M . Since K ∩ Kerh = 0, we have
K ⊕ Kerh = M . This proves the proposition. 
�

The next example shows that the condition “MR is coretractable” cannot be omitted
from Proposition 3.15.

Example 3.16 Let R be a commutative domain which is not a field. Then EndR(R) ∼=
R is a left Rickart ring. On the other hand, the R-module RR is not d-Rickart by
[22, Remark 2.2]. Note that RR is not a coretractable module (see [1, Theorem 2.14]
or Corollary 2.3).

4 s-Coretractable Modules

Amodule M is said to be e-retractable if Hom(M,C) �= 0 for every nonzero comple-
ment submodule C of M (see [17]). Dually, we introduce the notion of s-coretractable
modules. A module M will be called s-coretractable if Hom(M/K , M) �= 0 for every
proper supplement submodule K of M . Examples are provided to show that this con-
cept is a proper generalization of coretractability (Example 4.9). We show that for
every domain R, the R-module RR is s-coretractable (Proposition 4.8). We obtain a
characterization for a direct sum of two cyclic modules over a commutative local ring
to be s-coretractable (Proposition 4.15). It is shown in Example 4.17 that a direct sum
of s-coretractable modules is not s-coretractable, in general. Then we provide some
conditions under which a direct sum of s-coretractable modules is s-coretractable
(Propositions 4.18 and 4.19).

Recall that a module M is called lifting if for every submodule N of M , there exists
a direct summand K of M such that K ⊆ N and N/K � M/K .

Example 4.1 It is clear that every module whose supplement submodules are direct
summands is s-coretractable. So, every lifting module is s-coretractable by [6,
22.3]. Also, every module which has no nonzero proper supplement submodules is
s-coretractable (e.g. the Z-module Z). Note that Z is not a coretractable Z-module.

Example 4.2 Let M be an injective module over a Dedekind domain R. Let L and K
be submodules of M such that K is a supplement of L in M . Let 0 �= r ∈ R. Then
Lr +Kr = (L +K )r = Mr = M as M is divisible. So L +Kr = M . Thus K = Kr
by the minimality of K . Therefore K is divisible, hence injective. It follows that K is
a direct summand of M . So M is an s-coretractable module.

Remark 4.3 (i) In [33], Zöschinger examined the rings R such that all finitely gen-
erated projective R-modules satisfy the property that all supplement submodules
are direct summands. He called these rings right L-rings. He showed that a ring R
is a left L-ring if and only if R is a right L-ring if and only if every projective right
R-module P with P/Rad(P) finitely generated is finitely generated. Clearly, any
finitely generated projective module over an L-ring is s-coretractable. Next, we
exhibit some classes of rings which are L-rings.
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(a) In [30], Valette showed that if R is a ring such that the factor ring R/P is a right
Goldie ring for every prime ideal P (in particular, if R is a right or a left Noetherian
ring), then R is an L-ring.

(b) In [14, Theorem 2.5], it is shown that any ring with polynomial identity is an
L-ring.

(c) [25, Corollary 3.3] shows that if a ring R has either left or right Krull dimension,
then R is an L-ring.

(d) From [20, Proposition 5] or [31, Theorem 2.1], we see that every commutative
ring is an L-ring.

(e) If R is a semihereditary ring or an exchange ring (in particular, if R is a von
Neumann regular ring or a semiregular ring), then R is an L-ring (see, for example,
[13, Example 3.10](i) and (iii)).

(ii) Zöschinger showed also that if R is a commutative integral domain or a right
Noetherian ring, then in every projective R-module supplement submodules are
direct summands (see [33, Remark page 202 and Theorem 3.3]). Hence, every
projective R-module is s-coretractable.

(iii) If R is a hereditary ring, then every supplement submodule in a projec-
tive R-module is a direct summand. Therefore, every projective R-module is
s-coretractable (see, for example, [13, Example 3.10](i)).

Next, we give an s-coretractable module which contains a supplement submodule
that is not a direct summand.

Example 4.4 Let M be the Z-module Z2 × Z8. Note that M is coretractable by
[1, Example 2.2 and Proposition 2.6], and hence it is s-coretractable. We investi-
gate below the proper supplement submodules of M which are not direct summands.
The module M has the following lattice of submodules:

M

< (1, 1) > 0 × Z8 Z2× < 2 >

0× < 2 > < (1, 2) > Soc(M)

0× < 4 > < (1, 4) > Z2 × 0

0

Let N =< (1, 2) >. It is easy to see that N is the only proper supplement submodule
of M which is not a direct summand of M and it is a supplement of the submodules
< (1, 1) > and 0 × Z8 in M . Note that M/N =< (0, 1) + N >. On the other hand,
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we can define the nonzero homomorphism f : M/N −→ M with the definition that
(0, x) + N �→ (x, 4x), where x ∈ Z8.

In contrast to Remark 4.3, in the next example we present a ring R for which RR

is not an s-coretractable R-module. Recall that a uniserial domain R is called nearly
simple if R is not Artinian, and Jac(R) is the unique nontrivial two-sided ideal of R.
For an example of a nearly simple uniserial domain see [26, p. 325].

Example 4.5 Let R be a nearly simple uniserial domain, 0 �= r ∈ Jac(R), M =
R/r R, and S = EndR(M). Then S is a semilocal ring by [7, Corollary 4.16]. By [25,
Proposition 6.7], S has exactly three nonzero proper two-sided ideals, namely two
maximal ideals I and K and the Jacobson radical J = Jac(S) = I ∩ K which is
idempotent. Note that K is a cyclic left ideal of S by [25, p. 239]. Since S = I + K
and I ∩K = J = J 2 ⊆ J K = Rad(K ) � K , K is a supplement of I in S S. Suppose
that the S-module S S is s-coretractable. Then there exists a nonzero S-homomorphism
ϕ : S/K → S. Since S/K is simple, Kerϕ = 0. Then S/K ∼= X for some left simple
ideal X of S. It follows that K X = 0. Note that S is left uniform and the left singular
ideal of S is Zl(S) = K by [25, Proposition 6.4]. Therefore X ⊆ K as K is essential
in S S. Thus K 2 = 0. But S is a prime ring by [25, Proposition 6.7]. Then K = 0, a
contradiction. Consequently, the S-module S S is not s-coretractable.

Next, we characterize rings R for which the R-module RR is s-coretractable.

Lemma 4.6 For any right ideal K of a ring R, Hom(R/K , R) �= 0 if and only if
lR(K ) �= 0.

Proof (⇒) Let K be a right ideal of R such that Hom(R/K , R) �= 0. So there exists
a nonzero homomorphism f : RR −→ RR such that f (K ) = 0. Let f (1) = r . Then
r �= 0 and r ∈ lR(K ).

(⇐) Let K be a right ideal of R such that lR(K ) �= 0.Then there is a nonzero element
a ∈ R such that aK = 0. Consider the nonzero homomorphism f : RR → RR

defined by f (x) = ax for every x ∈ R. Then f (K ) = aK = 0. This implies that
Hom(R/K , R) �= 0. 
�
Proposition 4.7 The following conditions are equivalent for a ring R:

(i) the R-module RR is s-coretractable;
(ii) for every proper right ideal K of R which is a supplement in RR, lR(K ) �= 0.

Proof This follows from Lemma 4.6. 
�
The next result provides other examples of s-coretractable modules.

Proposition 4.8 Let R be a domain. Then RR is an s-coretractable R-module.

Proof Let K be a nonzero supplement submodule in RR . By [13, Theorem 1.6], there
exist 0 �= x ∈ R and r0 ∈ R such that K = x R and x2r0 = x . Then x(xr0 − 1) = 0.
Since R is a domain, we get xr0 = 1 ∈ K . So, K = R. Therefore, the zero submodule
of RR is the only proper supplement in RR . It follows that RR is an s-coretractable
module. 
�
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Next, some examples are presented to show that the class of coretractable modules
is a proper subclass of the class of s-coretractable modules.

Example 4.9 (1) By [1, Theorem 2.14], for a ring R, the R-module RR is coretractable
if and only if lR(I ) �= 0 for any right ideal I of R, where lR(I ) = {r ∈ R | r x = 0 for
all x ∈ I }. Hence for any domain Rwhich is not a division ring, RR is an s-coretractable
R-module which is not coretractable by Proposition 4.8.

(2) Let R and M be as in Example 2.5. Then M is not coretractable. On the other
hand, R is an L-ring as R is von Neumann regular (see Remark 4.3(i)(e)). Since M is
a cyclic projective R-module, M is s-coretractable by Remark 4.3(i).

(3) Let P be a nonzero projectiveZ-module. Then themodule P is not coretractable
by Corollary 2.3. However, P is an s-coretractable module by Remark 4.3(ii).

Next, we investigate when a direct summand of an s-coretractable module is s-
coretractable. First, we present an example which shows that the s-coretractability
property is not inherited by direct summands.

Example 4.10 Let R be a ring and let C = ⊕T∈SE(T ), where S is an irredundant set
of representatives of the simple R-modules. It is well known that C is a cogenerator
(see [2, Corollary 18.16]). Then for any module M , it is clear that C ⊕ M is again a
cogenerator and so it is coretractable (see also [1, p. 291]). So,C⊕M is s-coretractable.
But M need not be s-coretractable (see Example 4.5).

The last example shows also that the class of s-coretractable modules is not closed
under factor modules.

As in [1, Proposition 2.5], the next result deals with some special cases.

Proposition 4.11 Let M = K ⊕ L be an s-coretractable module such that either K
is a fully invariant submodule of M or K cogenerates M. Then K is s-coretractable.

Proof Let X be a proper supplement submodule of K . Then X ⊕ L is a proper sup-
plement submodule of M by [15, Lemma 2.2]. Since M is s-coretractable, there is a
nonzero homomorphism f : M −→ M such that f (X⊕L) = 0. If K is fully invariant
in M , then f (K ) ⊆ K . As f is nonzero, f (K ) is nonzero. Thus f |K : K −→ K is
nonzero and ( f |K )(X) = 0. So K is s-coretractable. Now assume that K cogenerates
M . In the same manner as in the proof of [1, Proposition 2.5], we can see that K is
s-coretractable. 
�
Lemma 4.12 Let M be a module and let L and K be submodules of M such that
L � M and L ⊆ K. Then K is a supplement submodule in M if and only if K/L is
a supplement submodule of M/L.

Proof (⇒) By [6, 20.5(1)]. (⇐) Let N be a submodule of M such that L ⊆ N ,
(K + N )/L = M/L and (K ∩ N )/L � K/L . Let X be a submodule of M such that
(K ∩ N ) + X = K . Then X + L = K . Moreover, we have L � K by [6, 20.2].
Therefore X = K . Hence K ∩ N � K . It follows that K is a supplement of N in M .


�
Combining Lemma 4.12 and the proof of Proposition 2.11, we obtain the following

result.
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Proposition 4.13 Let M be a noncosingular s-coretractable module and N � M.
Then M/N is s-coretractable.

Next, we study the question of when a direct sum of s-coretractable modules is also
s-coretractable.

Recall that a nonzero module M is called hollow if every proper submodule is small
in M . The module M is said to be local if M has a proper submodule which contains
all other proper submodules.

Let n ∈ N. Recall that a module M is said to have hollow dimension n and this is
denoted by h.dim(M) = n, if there exists an epimorphism fromM to a direct sum of n
nonzero modules but no epimorphism from M to a direct sum of more than n nonzero
modules (see [6, 5.2]). Note that if M = 0, then h.dim(M) = 0 and a module M is
hollow if and only if h.dim(M) = 1. If M is a module over a commutative ring R, we
denote the annihilator of M by ann(M), i.e. ann(M) = {r ∈ R | Mr = 0}. If a and
b are ideals in a commutative ring R, their ideal quotient is a : b = {x ∈ R | xb ⊆ a}
which is an ideal of R.

It is clear that every local module is s-coretractable. The next proposition char-
acterizes when a direct sum of two local modules over a commutative local ring is
s-coretractable. First, we prove the following lemma.

Lemma 4.14 Let R be a commutative local ring with maximal ideal m. Let a and b
be two proper ideals of R and consider the R-module M = R/a ⊕ R/b. Then for
any nonzero proper supplement K in M, M/K is cyclic and ann(M/K ) = sa+ b or
ann(M/K ) = a + rb for some r, s ∈ R.

Proof First, we point out that Rad(M) = m/a ⊕ m/b � M . Let H1 = R/a ⊕ 0 =
(1̄, 0̃)R and H2 = 0 ⊕ R/b = (0̄, 1̃)R. Thus M = H1 + H2.

Let K be a nonzero proper supplement of M . Then h.dim(M) = h.dim(M/K ) +
h.dim(K ) by [6, 20.10(2)]. This implies that h.dim(K ) = 1. Hence K is a hollow
module. Since K is finitely generated (see [6, 20.4(2)]), it follows that K is a local
submodule of M . Therefore, there exist r, s ∈ R such that r /∈ m or s /∈ m and
K = (r̄ , s̃)R.

Assume that r /∈ m. Then M = K + H2 and M/K ∼= H2/K ∩ H2. Thus,
ann(M/K ) = ann(H2/(K ∩ H2)) = {α ∈ R | (0̄, 1̃)α = (r̄ , s̃)x for some x ∈ R}
= {α ∈ R | r x ∈ a and α − sx ∈ b for some x ∈ R}. Note that r is invertible as
r /∈ m. Then ann(M/K ) = {α ∈ R | ∃x ∈ a such that α − sx ∈ b} = sa + b. The
same reasoning applies to the case s /∈ m gives ann(M/K ) = a + rb. 
�
Proposition 4.15 Let R be a commutative local ring with maximal idealm. Let a and
b be two proper ideals of R and consider the R-module M = R/a ⊕ R/b. Then the
following conditions are equivalent:

(i) M is an s-coretractable module;
(ii) a : b �= a or b : a �= b.

Proof (i)⇒ (ii) Let K = (r̄ , s̃)R with r, s /∈ m. It is easily seen that K is a supplement
of both H1 and H2 in M . By the proof of Lemma 4.14, it follows that M/K is cyclic
and ann(M/K ) = a+ b. Since M is s-coretractable, we have Hom(M/K , R/a) �= 0
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or Hom(M/K , R/b) �= 0. If Hom(M/K , R/a) �= 0, then there exists x ∈ R such
that x /∈ a and x(a + b) ⊆ a. So there exists x ∈ R such that x /∈ a and xb ⊆ a.
That is, a : b �= a. In the same manner, we can see that Hom(M/K , R/b) �= 0 implies
b : a �= b.

(ii)⇒ (i) Assume that a : b �= a. So there exists x ∈ R such that x /∈ a and xb ⊆ a.
Let K be a nonzero proper supplement in M and let c = ann(M/K ). By Lemma
4.14, we have M/K ∼= R/c and c ⊆ a + b. Since x(a + b) ⊆ a, we have xc ⊆ a.
Consider the map ϕ : R/c → R/a defined by ϕ(r + c) = xr + a for all r ∈ R. It
is easily seen that ϕ is well defined and it is a nonzero R-homomorphism. Therefore
Hom(M/K , R/a) �= 0. Hence Hom(M/K , M) �= 0. The same conclusion can be
drawn for the case b : a �= b. This completes the proof. 
�

The next result is a direct consequence of Proposition 4.15.

Corollary 4.16 Let R be a commutative local ring. If a and b are two ideals of R such
that a ⊆ b, then the R-module M = R/a ⊕ R/b is s-coretractable.

Proposition 4.15 provides a source of examples of s-coretractable modules whose
direct sum is not s-coretractable.

Example 4.17 Let R be a discrete valuation ringwithmaximal idealm. By [5, Theorem
2], the power series ring T = R[[X ]] is a local ring with maximal ideal m + (X).
By [5, Theorem 4], p1 = (X) and p2 = m[[X ]] are prime ideals of T . It is clear that
p1 � p2 and p2 � p1. Therefore p1 : p2 = p1 and p2 : p1 = p2. By Proposition
4.15, it follows that the T -module T/p1 ⊕ T/p2 is not s-coretractable. However, the
T -modules T/p1 and T/p2 are s-coretractable.

Next, we provide some sufficient conditions for a direct sum of s-coretractable
modules to be s-coretractable. Note that the next two results are partial analogues to
the relevant results for coretractable modules (see [1, Propositions 2.6 and 2.8]).

Recall that a module M is called a duo module provided every submodule of M is
fully invariant. A module M is called distributive if A∩ (B+C) = (A∩ B)+ (A∩C)

for all submodules A, B and C of M . It is well known that if M is duo or distributive,
then for every submodule X ≤ M and for every decomposition M = N ⊕K , we have
X = (X ∩ N ) ⊕ (X ∩ K ) (see, for example, [24, Lemma 2.1]).

Proposition 4.18 Let M = ⊕n
i=1Mi be a module. Assume that M is duo or distribu-

tive. If M1, M2, . . ., Mn are s-coretractable, then so is M.

Proof Without loss of generality, we can assume that n = 2. Let K be a proper
supplement submodule ofM . So K = A⊕B, where A = K∩M1 and B = K∩M2. By
[6, 20.6], A and B are supplement submodules in M1 and M2, respectively. Since K �=
M , we have A �= M1 or B �= M2. Assume B �= M2. Since M2 is s-coretractable, there
exists a nonzero homomorphism f : M2/B −→ M2. Let π : M/K → M/(K + M1)

be the natural epimorphism and let μ : M2 → M be the natural inclusion. Note that
M/(K + M1) = [(K + M1) + M2]/(K + M1) ∼= M2/B since M2 ∩ (K + M1) = B.
Let g : M/(K + M1) → M2/B be an isomorphism. Then μ f gπ : M/K → M is a
nonzero homomorphism. The case A �= M1 can be handled in much the same way. It
follows that M is s-coretractable. 
�
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Proposition 4.19 Let M = ⊕α∈I Mα be the direct sum of s-coretractable submodules
{Mα | α ∈ I }. If for all α, β ∈ I , Mα is Mβ -injective and M is duo or distributive,
then M is s-coretractable.

Proof Let K be a proper supplement submodule of M . Then there exists β ∈ I
such that Mβ � K . Moreover, we have K = X ⊕ Y with X = K ∩ Mβ and
Y = K ∩ (⊕α �=βMα). Note that X is a proper supplement submodule of Mβ by
[6, 20.6]. Since Mα is Mβ -injective for all α, β ∈ I , by the same method as in the
proof of [1, Proposition 2.8], we can see that M is s-coretractable. 
�

The next example illustrates the last proposition.

Example 4.20 Let {pi | i ∈ I } be a family of distinct prime integers and let M =
⊕i∈I Mi such that for each i ∈ I , either Mi ∼= Z(p∞

i ) or Mi ∼= Z/pkii Z for some
positive integer ki . Clearly, each Mi is s-coretractable. Moreover, it is immediate that
for all i, j ∈ I , Mi is Mj -injective. By [24, Theorem 3.10], the Z-module M is duo.
Therefore by Proposition 4.19, M is s-coretractable. Note that by [1, Proposition 2.8],
M is also a coretractable Z-module.

Recall that a module M is called amply supplemented if for any two submodules
A and B of M with M = A + B, B contains a supplement of A. The following
characterization is dual to [17, Theorem 2.4] in some sense.

Proposition 4.21 The following are equivalent for an amply supplemented module
M with S = EndR(M).

(i) M is s-coretractable;
(ii) for any proper supplement submodule K of M, rM (lS(K ))/K � M/K;
(iii) for any supplement submodule K of M, if rM (lS(K )) is a direct summand of M,

then K = rM (lS(K )).

Proof (i) ⇒ (ii) Let K be a proper supplement submodule of M and L = rM (lS(K )).
To prove that L/K � M/K , let (L/K ) + (X/K ) = M/K with K ≤ X ≤ M . Since
M/K is amply supplemented (see [32, 41.7(2)]), there exists a submodule V ≤ M
such that K ⊆ V ⊆ X and V/K is a supplement of L/K in M/K . By [6, 20.5(2)],
V is a supplement submodule of M . If V �= M , then by hypothesis there exists
0 �= f ∈ EndR(M) with f (V ) = 0. Therefore, f ∈ lS(K ) and so f (L) = 0. This
implies that f (M) = f (L + V ) = 0, a contradiction. It follows that V = X = M .
Hence L/K � M/K .

(ii) ⇒ (iii) and (iii) ⇒ (i) These are similar to the proofs of (b) ⇒ (c) and (c) ⇒
(a) in [1, Lemma 4.1], respectively. 
�
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