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Abstract A graph G is of class 1 if its edges can be colored with k colors such that
adjacent edges receive different colors, where k is the maximum degree of G. It is
proved here that every planar graph is of class 1 if its maximum degree is at least 6
and any 6-cycle contains at most two chords.
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1 Introduction

All graphs considered here are finite and simple. Let G be a graph with the vertex set
V(G) and edge set E(G). We denote the maximum degree of G by A(G).Ifv € V(G),
then its neighbor set Ng (v) (or simply N (v)) is the set of the vertices in G adjacent to
v and the degree d(v) of v is |[Ng (v)|. For V/ C V(G), denote N(V') = U,cy/ N (u).
A k-vertex, k~-vertex, or a kt-vertex is a vertex of degree k, at most k or at least k,
respectively. A k (or k™)-vertex adjacent to a vertex x is called a k (or k™)-neighbor of
x. Letdy (x), di+ (x) denote the number of k-neighbors, k- neighbors of x. A k-cycle
is a cycle of length k. Two cycles sharing a common edge are said to be adjacent.
Given a cycle C of length k in G, an edge xy € E(G)\E(C) is called a chord of C
if x, y € V(C). Such acycle C is also called a chordal-k-cycle.

Let G be a plane graph, F(G) be the face set of G. A face of an graph is said to be
incident with all edges and vertices in its boundary. Two faces sharing an edge e are
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said to be adjacent at e. The degree of a face f, denoted by dg (f) is the number of
edges incident with f where each cut edge is counted twice. A k-, kT -face is a face
of degree k, at least k. A k-face of G is called an (iy, i2, .. ., ix)-face if the vertices
in its boundary in clockwise order are of degrees i1, iz, . . ., i} respectively. A 3-face
incident with distinct vertices x, y, z is denoted by (x, y, z), moreover, by [x, y, z] if
d(x) <d(y) <d(z). A 4-face incident with distinct vertices w, v, x, y is denoted by
(w, v, x, y), moreover, by [w, v, x, y] if d(x) = 2 and v, x, y form a 3-face, we call
this 4-face special. For a vertex v € V(G), we denote by fi(v) the number of k-faces
incident with v.

A graph has an edge k-coloring if its edges can be colored with color set {1, 2, .. ., k}
such that adjacent edges receive different colors. A graph is k-edge-colorable if it has
an edge k-coloring. The edge chromatic number of a graph G, denoted by x'(G), is
the smallest integer k such that G is k-edge-colorable. In 1964, Vizing proved that for
any simple graph G, A(G) < x'(G) < A(G) + 1. A graph G is said to be of class
1if x'(G) = A(G), and of class 2 if x'(G) = A(G) + 1. A graph G is critical if it
is connected and of class 2, and x'(G — ¢) < x'(G) for any edge e of G. A critical
graph with the maximum degree A is called a A-critical graph. It is clear that every
critical graph is 2-connected.

For planar graphs, Vizing [2] noted that if A € {2, 3, 4, 5}, there exist A-critical
planar graphs, and proved that every planar graph with A > 8 is of class 1 and then
conjectured that every planar graph with maximum degree 6 or 7 is of class 1 (There
are more general results, see [3] and [5]). The case A = 7 for the conjecture has been
verified by Zhang [11] and, independently, by Sanders and Zhao [7]. The case A = 6
remains open, but some partial results are obtained. Theorem 16.3 in [2] stated that
a planar graph with the maximum degree A and the girth g is of class 1 if A > 3
and g > 8, or A >4andg > 5,or A > 5and g > 4. Lam, Liu, Shiu, and Wu
[4] proved that a planar graph G is of class 1 if A > 6 and no two 3-cycles of G
sharing a common vertex. Zhou [12] obtained that every planar graph with A > 6 and
without 4 or 5-cycles is of class 1. Bu and Wang [1] proved that every planar graph
with A > 6 and without chordal 5-cycles and chordal 6-cycles is of class 1. Wu and
Xue [9] extended the result that every planar graph with A > 6 and without 5-cycles
with two chord is of class 1. Ni [6] proved that every planar graph with A > 6 and
without chordal 6-cycles is of class 1. Recently, Xue and Wu [10] extended the result
that every planar graph with A > 6 and without 6-cycles with two chords is of class
1. In the paper, we shall improve the above result to planar graphs with A = 6 and
without 6-cycles with three chords.

2 The Main Result and its Proof

Firstly, we introduce some known lemmas.
Lemma 1 [7],[11] Every planar graph with maximum degree at least 7 is of class 1.

Lemma 2 (Vizing’s Adjacency Lemma [2]) Let G be a A-critical graph, and let u
and v be adjacent vertices of G with d(v) = k.

(a) Ifk < A, then u is adjacent to at least A — k + 1 vertices of degree A,
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(b) If k = A, then u is adjacent to at least two vertices of degree A.
From the above Lemma, it is easy to get the following corollary.

Corollary 3 Let G be a A-critical graph. Then

(a) every vertex is adjacent to at most one 2-vertex and at least two A-vertices;
(b) the sum of the degree of any two adjacent vertices is at least A + 2;

(c) ifuv € E(G) and d(u) + d(v) = A + 2, then every vertex of N({u, v}) \ {u, v}
is a A-vertex.

Lemma 4 [11] Suppose that G is a A-critical graph, uv € E(G) andd(u) +d(v) =
A + 2. Then

(a) every vertex of N(N ({u, v})) \ {u, v} is of degree at least A — 1,
(b) ifd(u),d(v) < A, then every vertex of N(N ({u, v})) \ {u, v} is a A-vertex.

Lemma 5 [7] No A-critical graph has distinct vertices x, y, z such that x is adjacent
toyandz, d(z) <2A —d(x) —d(y)+2,andxzisinatleastd(x) +d(y) — A —2
triangles not containing y.

Lemma 6 [8] Let G be a A-critical graph with A(G) > 6 and let x be a 4-vertex.
Then the following hold:

(a) Ifx is adjacent to a (A —2)-vertex, say y, then every vertex of Ng (Ng (x)) \ {x, ¥}
is a A-vertex;

(b) Suppose that x is not adjacent to any (A —2)-vertex and y is one neighbor of x. If
v is adjacent to dg(y) — (A — 3) (A — 2)™ -vertices, then each of the other three
neighbors of x is adjacent to only one (A — 2)™ -vertex, which is x;

(c) Ifx is adjacent to a (A — 1)-vertex, then there are at least two A-vertices in Ng(x)
which are adjacent to at most two (A —2)~ -vertices. Moreover, if x is adjacent to
two (A — 1)-vertices, then each of the two A-neighbors of x is adjacent to exactly
one (A — 2)~ -vertex, which is x.

Let the edges of a graph be colored with colors from C = {1, ..., k}andletu € V.
If an edge incident with u is colored i, we say u sees i. Otherwise, we say u misses i.
If a vertex u sees a color i, we use (u, i) to denote the edge incident with u colored i.
Given two colors i, j € {1, ..., k}, an (i, j)-chain is a path whose edges are colored
alternatively i and j, and we use (u, i) ~ (v, j) to denote that there is a (i, j)-chain
containing (u, i) and (v, j).Let L; j(u) denote the longest (i, j)-chain passing through
u.

The following is the key fact when dealing with a A-critical graph G.

Fact7 Let G be a A-critical graph and xy € E(G). Giving any edge A-coloring of
G — xy, if x misses j and y misses k, then x sees k, y sees j, and (x, k) ~ (y, j).

Proof If x does not see k, then we can color xy with k to obtain an edge A-coloring
of G, a contradiction. By the same argument, y sees j. If (x,k) ~ (y, j), then we
can swap colors on Ly j(x) and color xy with k to obtain an edge A-coloring of G, a
contradiction, too. O
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Fig. 1 Black vertices do not

have neighbors other than y

presented in the picture, while

white vertices can be adjacent to

each other as well as to some X w
. \9

other vertices Z

Lemma 8 No 6-critical graph has distinct vertices v, w, x, y, z such that d(x) =
d(w) =4,d(y) =5, and vwz and xyz are triangles (see Fig. 1).

Proof Suppose, to be contrary, that a 6-critical graph G contains such vertices
v, w, X, Y, z. Since G is 6-critical, G — xy has an edge 6-coloring ¢. By Fact 7, we
can assume that ¢ (xz) = 1, x sees 2, 3 and y sees 4, 5, 6. We consider the following
cases.

Casel ¢ (yz) € {4, 5, 6}, With outloss of generality (WLOG), assume that ¢ (yz) = 4.

Subcase 1.1 y misses 1.
Since d(y) = 5, y must miss 2 or 3. WLOG, assume that y misses 2. Then y sees
3. By Fact 7, we have (x, i) ~ (y, j), where i € {l,2}and j € {4, 5, 6}.

Subcase 1.1.1 ¢ (wz) = 2.

Since (x,2) ~ (y,4), w sees 4. If w misses 1, then we can obtain an edge 6-
coloring of G by recoloring wz with 1, zx with 4, yz with 2, and coloring xy with 1,
a contradiction. So w sees 1. Since d(w) = 4, w must miss 5 or 6. WLOG, assume
that w misses 5. Since (x, 1) ~ (v, 5), Ls,1(w) does not pass x and y. So we swap
colors on L1 5(w), recolor wz with 1, zx with 4, yz with 2, and coloring xy with 1 to
obtain an edge 6-coloring of G, a contradiction.

Subcase 1.1.2 ¢ (wz) = 3 and ¢ (vz) = 2.

Suppose that ¢ (vw) = 1. Then w sees 2, for otherwise, we can obtain an edge
6-coloring of G by recoloring zv with 1, yz and vw with 2, zx with 4, and coloring xy
with 1, a contradiction. If w misses i € {4, 5, 6}, then we can swap colors on L ; (w)
to satisfy that w misses 2. So w sees 4, 5, and 6. It is impossible. If ¢ (vw) = 4,
then w sees 2 according to (x, 2) ~ (y, 4), and it follows that w sees 3, 6, it is also
impossible. Suppose that ¢ (vw) = 5. Then w sees 1, for otherwise we swap colors
on Ls 1(w) to go back to the previous case that ¢ (vw) = 1. By w seeing 1, we can
induce that w also sees 6. Since d(w) = 4 and w sees 1, 3, 5, 6, w misses 4. Thus we
swap colors on Ly j(w) to satisfy that w misses 1 to go back to the above case. It is
similar to settle the case ¢ (vw) = 6.

Subcase 1.1.3 ¢ (wz) = 3 and ¢ (vz) € {5, 6}. WLOG, assume that ¢ (vz) = 5.
Suppose that ¢ (vw) = 1. Since (x, 1) ~ (v,5), w sees 5. Consecutively, it is
easy to check that w sees 2, 4, and 6, it is impossible. If ¢ (vw) = 4, Then w sees
1, for otherwise, we just need to swap colors on L4 1(w) to go back the above case.
Consecutively, w sees 2, 5, and 6, it is also impossible. Suppose that ¢ (vw) = 2. Then
w sees 5, for otherwise, we just need to swap colors on Ly s(w) to go back to Subcase
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1.1.2. Consecutively, w sees 1 and 6, it is also impossible. It is similar to settle the
case that ¢ (vw) = 6.

Subcase 1.1.4 ¢ (wz) € {5, 6}. WLOG, assume that ¢ (wz) = 5.

Since (x, 1) ~ (y,5), w sees 1. If w misses 4, then we can obtain an edge 6-
coloring of G by recoloring wz with 4, zx with 5, yz with 1, and coloring xy with 4, a
contradiction. So w sees 4. w also sees 6, for otherwise, we swap colors on L ¢(w) to
obtain the case that w misses 1. Hence w sees 1, 4, 5, 6. It follows from d(w) = 4 that
w misses 2, and we swap colors on L4 2(w) to obtain that w misses 4, a contradiction.

Subcase 1.2 y sees 1.

Since d(y) = 5, y misses 2 and 3. By Fact 7, we have (x,i) ~ (y, j), where
i € {2,3} and j € {4,5, 6}. Suppose that ¢(wz) € {2,3}. WLOG, assume that
¢(wz) = 2. Since (x,2) ~ (y,4), w sees 4. If w misses 3, then we can swap colors
on L4 3(w) to obtain a contradiction. So w sees 3. Also w sees 5, for otherwise, we
swap colors on L3 5(w) to get a contradiction. It is similar to check that w sees 6. That
is impossible. Suppose that ¢ (wz) € {5, 6}. WLOG, assume that ¢ (wz) = 5. If w
misses 2, then we swap colors on L 5(w) and go back to the above case. So w sees
2. In the same way, w sees 3. Consecutively, we have that w sees 4 and 6, contrary to
that d(w) = 4.

Case 2 ¢(yz) € {2, 3}, WLOG, assume that ¢ (yz) = 3.

By Fact 7, we have (x,i) ~ (v, j), where i € {1,2} and j € {4, 5, 6}. Suppose
that ¢ (wz) € {4, 5, 6}. WLOG, assume that ¢ (wz) = 4. Since (x, 1) ~ (y,4), w
sees 1. By the similar argument, we have that w sees 5 and 6. Since d(w) = 4, w
misses 2. After swapping colors on Lg 2 (w), w misses 6, a contradiction. Suppose that
¢(wz) = 2. Then w sees 4, 5, and 6. Since d(w) = 4, w misses 1. After swapping
colors on Lg 1 (w), w misses 6, a contradiction. O

Now, we begin to prove our main result.

Theorem 9 Let G be a planar graph with A > 6. If any 6-cycle contains at most two
chords, then G is of class 1.

Proof Suppose that G is a counterexample to our theorem with the minimum number
of edges and suppose that G is embedded in the plane. Then G is a 6-critical graph by
Lemma 1, and it is 2-connected. By Euler’s formula |V (G)| — |E(G)| + |F(G)| = 2,
we have

D) -H+ D [dx) -4 =-8<0.

xeV(G) xeF(G)

We define ch to be the initial charge. Let ch(x) = d(x) —4 foreachx € VUF. So
> revur ch(x) < 0.Inthe following, we will reassign a new charge denoted by ch' (x)
toeachx € VUF according to the discharging rules, since our rules only move charges
around, and do not affect the sum. If we show that ch/(x) > (0foreachx €e VUF,
then we get an obvious contradiction 0 < > _yp ch' (x) = > vevur ch(x) < 0,
which completes our proof.
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R1 Let v be a 2-vertex. If v is incident with a 57 -face f, then v receives 1 from
f % from each adjacent vertex; If v is incident with a special 4-face f, then v
receives % from f, % from each adjacent vertex; Otherwise v receives 1 from each
adjacent vertex.

R2 Every 3-vertex receives 3 L from each adjacent vertex.

R3Let f bea3- face [x,y, z]withd(x) < d(y) <d(z).Ifd(x) <4andd(y) > 5,
then f receives 5 L from Vs 3 1 from z; If d(x) = d(y) = 4 and d(z) = 6, then f
receives 1 from z; If d(x) > 5, then f receives % from x, y, z, respectively.

R4 Let v be a 5-vertex.

R4.1If v is adjacent to a 3-vertex u and N (#) = {v, w, x}, then v receives % from
w and % from x;

R4.2 If v is incident with a (4, 5, 5)-face [u, v, w] and N (u) = {v, w, x, y}, then
v receives % from x, and é from y;

R4.3 If v is incident with a (4, 5, 6)-face [u, v, w], then v receives % from w.

RS Let v be a 6-vertex.

RS.1 If v is incident with a special 4-face f = [w, v, x, y] such that d(y) = 2,
then v sends % to f;

RS5.2 If v is incident with two adjacent 3-faces (u, v, x), (v, x, y), and d(u) =
d(x) = 4, then v receives % from y.

Now, let’s began to check ch’(x) > Oforallx € VUF.Let f € F(G).Ifd(f) > 53,
then f is incident with at most d(f) — 4 2-vertices by Corollary 3(c), so ch'(f) >
ch(f)—(d(f)—4) =0byRI.Suppose d(f) = 4.1If f is special, then ch’'(f) = 0+
1—1 = 0byR1andR5.1; Otherwise, ch'(f) = ch(f) = 0.Supposed(f) = 3.Since
A = 6, f must be the (27, 6, 6)-face, (3, 57, 6)-face, (4, 4, 6)-face, or (41, 5T, 5F)-
face by Lemma 2. Hence ch'(f) = ch(f) + min{2 x %, 1,3 x 1} = 0 by R3.

Letw € V(G). Then d(w) > 2. If d(w) = 2, then w 1s adjacent to two 6-vertices
by Corollary 3(a), so ch’'(w) = ch(w) +min{1 +2 x 2 3 Liox2 5 ,2x 1} =0byRI.
Ifd(w) = 3, then w is adJacent to three 57 -vertices by Corollary 3(b) and it follows
that ch’/(w) = —1 +3 x 3 = 0by R2. If d(w) = 4, then ch’(w) = ch(w) = 0.

Suppose that d(w) = 5. Then ch(w) = 1, min{d(u)|u € N(w)} > 3, d3(w) <1
,and dg(w) > 2 by Corollary 3, and f3(w) < 3 since all 6-cycles in G contain at most
two chords. If all neighbors of w are 5*t-vertices, then ch’ (w) >1-3x % = 0by
R3. If w is adjacent to a 3-vertex, say wi, then w receives 3 from each of neighbors
of w except w by R4.1, and it follows that ch'(w) > 14+2x 3 — 3 L _2x 3—3=0
by R2 and R3. Suppose that w is adjacent to a 4-vertex. Then dg(w) >3 by Lemma
2a. If f3(w) < 2,then ch’(w) > 1 —2 x 5 = 0 by R3; Otherwise, f3(w) = 3, w
is incident with at most one (4 5,5%)-face by Lemma 5. So ch/(w) > 1 — max{2 x
I+i-2xtt+2x41—%=0byR3andR4.

Suppose that d(w) = 6. Then ch(w) = 2, do(w) < 1, and dg(w) > 2 by Lemma
2, and f3(w) < 4 since all 6-cycles in G contain at most two chords. Note that every
special 4-face is adjacent to at most two 3-faces since all 6-cycles contain at most
two chords. We denote by f;4(w) the number of special 4-faces incident with w and
fra(w) = f3(w) + fia(w). Itis easy to check that fi1(w) < 3 and f31(w) < 4.

Case 1 w sends some charge to a 5-vertex v (see R4).
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Suppose that v is adjacent to a 3-vertex u. Then w sends % to v by R4.1. By
Lemma 4b, w is adjacent to five 6-vertices, that is, dg(w) = 5. Since f3s(w) < 4,
ch'(w)>2—4—-2x4—2x1=0byR3andR4.1.

Suppose that v is incident with a (4,5, 5)-face [u, v, x] such that N(u) =
{v, w, x, y}. Then v receives % from w by R4.2. By Lemma 6c¢, w is adjacent to one
4~ -vertex, which is u. Since f34(w) <4,ch'(w) =2-2x ¢ —2x 1+ -2x 1 =0.

Suppose that v is incident with a (4, 5, 6)-face [u, v, w]. Then v receives % from
w by R4.3. If dg(w) = 1, then ch'(w) > 2 — 2 x % -2 X % —2x % = 0; otherwise
ds(w) = 2. By Lemma 8, w is incident a (4, 5, 6)-face and at most one (4, 6, 6)-face,

thench’(w) >2—-2x 3+ —2x § —t=1>0byR3andR43.

Case 2 w sends % to some 6-vertex v (see RS).
Suppose v is incident with two 3-faces [w, v, x] and [v, x, y] such that d(x) =
d(y) = 4. Then f34(w) < 4 and dg(w) = 5 by Lemma 4b. So ch/(w) =2 — é —2x

1 1

Case 3 w sends no charge to its 57 -vertices.

Letk = min{d(u)|u € N(w)}.Ifk > 5, thench’(w) > 2—4x% > 0. Suppose that
k = 4. Then dg(w) > 3 by Lemma 2a. If w is incident with two 3-faces [u, w, x] and
[w, x, y]lsuch thatd(x) = d(y) = 4, then dg(w) = 4. If wy is incident with a 4T -face,
then w receives é from u, and it follows that ch’(w) > 2+ % —1- % —2x % = O since
faa(w) < 4; otherwise wy is incident with another 3-face [w, y, z], then w receives
% from each of u, z, and it follows that ch’'(w) > 2 + 2 x % —1-2x % — % =0
since f34(w) < 4; otherwise, ch’/(w) > 2 — max{1 + 3 x %, 4 x %} =0.

Suppose that k = 3. Then dg(w) > 4 by Lemma 2a. If d3(w) = 1 and ds+ (w) > 5,
then ch/(w) > 2 — % -2 x (% + %) = 0; otherwise, w is incident with two 4~ -
vertices u, v, then u and v are incident with at most one 3-face by Lemma 5 since
du) +dw) +d(w) <3+4+6 < 14.So fz4(w) < 4, and it follows that ch’(w) >
2— 5 —max{3+2x 3. 3+3x 3} >0byRI andR3.

Suppose that & = 2, that is, w is adjacent to a 2-vertex v. Then dg(w) = 5 by
Lemma 2a. If v is incident with a special 4-face f = [u, v, w, x], then f3(v) < 3 and
w sends % to v, and it follows that ch’(w) > 2 — % — % —2x % = 0; otherwise, v is
incident with a 57 -face or two 4-faces. If v is incident with a 5T -face, then w sends
3 to v, and it follows that ch’'(w) > 2 — § — (5 4+ 3 x %) = 0.If v is incident with
two 4-faces, then f34 < 3, and it follows that ch’(w) > 2 — 1 — 3 x % =0. O
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