

Edge Colorings of Planar Graphs Without 6-Cycles with Three Chords

Wenwen Zhang¹ · Jian-Liang Wu1

Received: 23 December 2014 / Revised: 13 February 2016 / Published online: 17 May 2016 © Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2016

Abstract A graph *G* is of class 1 if its edges can be colored with *k* colors such that adjacent edges receive different colors, where *k* is the maximum degree of *G*. It is proved here that every planar graph is of class 1 if its maximum degree is at least 6 and any 6-cycle contains at most two chords.

Keywords Edge coloring · Planar graph · Cycle · Class 1

1 Introduction

All graphs considered here are finite and simple. Let *G* be a graph with the vertex set *V*(*G*) and edge set *E*(*G*). We denote the maximum degree of *G* by $\Delta(G)$. If $v \in V(G)$, then its neighbor set $N_G(v)$ (or simply $N(v)$) is the set of the vertices in *G* adjacent to v and the degree $d(v)$ of v is $|N_G(v)|$. For $V' \subseteq V(G)$, denote $N(V') = \bigcup_{u \in V'} N(u)$. A *k*-*vertex*, *k*−-*vertex*, or a *k*+-*vertex* is a vertex of degree *k*, at most *k* or at least *k*, respectively. A k (or k^+)-vertex adjacent to a vertex x is called a k (or k^+)-neighbor of *x*. Let $d_k(x)$, $d_{k+1}(x)$ denote the number of *k*-neighbors, k^+ -neighbors of *x*. A *k*-cycle is a cycle of length *k*. Two cycles sharing a common edge are said to be adjacent. Given a cycle C of length k in G, an edge $xy \in E(G) \backslash E(C)$ is called a *chord* of C if *x*, *y* ∈ *V*(*C*). Such a cycle *C* is also called a chordal-*k*-cycle.

Let *G* be a plane graph, $F(G)$ be the face set of *G*. A face of an graph is said to be incident with all edges and vertices in its boundary. Two faces sharing an edge *e* are

Communicated by Sanming Zhou.

 \boxtimes Jian-Liang Wu jlwu@sdu.edu.cn

¹ School of Mathematics, Shandong University, Jinan 250100, China

said to be adjacent at *e*. The degree of a face f, denoted by $d_G(f)$ is the number of edges incident with f where each cut edge is counted twice. A k -, k ⁺-face is a face of degree *k*, at least *k*. A *k*-face of *G* is called an (i_1, i_2, \ldots, i_k) -face if the vertices in its boundary in clockwise order are of degrees i_1, i_2, \ldots, i_k respectively. A 3-face incident with distinct vertices *x*, *y*, *z* is denoted by (x, y, z) , moreover, by $[x, y, z]$ if $d(x) \leq d(y) \leq d(z)$. A 4-face incident with distinct vertices w, v, x, y is denoted by (w, v, x, y) , moreover, by $[w, v, x, y]$ if $d(x) = 2$ and v, x, y form a 3-face, we call this 4-face special. For a vertex $v \in V(G)$, we denote by $f_k(v)$ the number of *k*-faces incident with v.

A graph has an edge *k*-coloring if its edges can be colored with color set{1, 2,..., *k*} such that adjacent edges receive different colors. A graph is *k*-edge-colorable if it has an edge *k*-coloring. The edge chromatic number of a graph *G*, denoted by χ (*G*), is the smallest integer *k* such that *G* is *k*-edge-colorable. In 1964, Vizing proved that for any simple graph *G*, $\Delta(G) \leq \chi'(G) \leq \Delta(G) + 1$. A graph *G* is said to be of class 1 if $\chi'(G) = \Delta(G)$, and of class 2 if $\chi'(G) = \Delta(G) + 1$. A graph *G* is critical if it is connected and of class 2, and $\chi'(G - e) < \chi'(G)$ for any edge *e* of *G*. A critical graph with the maximum degree Δ is called a Δ -critical graph. It is clear that every critical graph is 2-connected.

For planar graphs, Vizing [\[2\]](#page-6-0) noted that if $\Delta \in \{2, 3, 4, 5\}$, there exist Δ -critical planar graphs, and proved that every planar graph with $\Delta \geq 8$ is of class 1 and then conjectured that every planar graph with maximum degree 6 or 7 is of class 1 (There are more general results, see [\[3\]](#page-6-1) and [\[5](#page-7-0)]). The case $\Delta = 7$ for the conjecture has been verified by Zhang [\[11\]](#page-7-1) and, independently, by Sanders and Zhao [\[7](#page-7-2)]. The case $\Delta = 6$ remains open, but some partial results are obtained. Theorem 16.3 in [\[2\]](#page-6-0) stated that a planar graph with the maximum degree Δ and the girth *g* is of class 1 if $\Delta \geq 3$ and $g \ge 8$, or $\Delta \ge 4$ and $g \ge 5$, or $\Delta \ge 5$ and $g \ge 4$. Lam, Liu, Shiu, and Wu [\[4](#page-7-3)] proved that a planar graph *G* is of class 1 if $\Delta \ge 6$ and no two 3-cycles of *G* sharing a common vertex. Zhou [\[12](#page-7-4)] obtained that every planar graph with $\Delta \geq 6$ and without 4 or 5-cycles is of class 1. Bu and Wang [\[1\]](#page-6-2) proved that every planar graph with $\Delta \geq 6$ and without chordal 5-cycles and chordal 6-cycles is of class 1. Wu and Xue [\[9](#page-7-5)] extended the result that every planar graph with $\Delta \geq 6$ and without 5-cycles with two chord is of class 1. Ni [\[6\]](#page-7-6) proved that every planar graph with $\Delta \geq 6$ and without chordal 6-cycles is of class 1. Recently, Xue and Wu [\[10](#page-7-7)] extended the result that every planar graph with $\Delta \geq 6$ and without 6-cycles with two chords is of class 1. In the paper, we shall improve the above result to planar graphs with $\Delta = 6$ and without 6-cycles with three chords.

2 The Main Result and its Proof

Firstly, we introduce some known lemmas.

Lemma 1 [\[7](#page-7-2)],[\[11](#page-7-1)] *Every planar graph with maximum degree at least* 7 *is of class* 1*.*

Lemma 2 (Vizing's Adjacency Lemma [\[2\]](#page-6-0)) *Let G be a Δ-critical graph, and let u and v be adjacent vertices of G with* $d(v) = k$.

(a) If $k < \Delta$, then u is adjacent to at least $\Delta - k + 1$ vertices of degree Δ ;

(b) If $k = \Delta$, then u is adjacent to at least two vertices of degree Δ .

From the above Lemma, it is easy to get the following corollary.

Corollary 3 Let G be a Δ -critical graph. Then

- (a) every vertex is adjacent to at most one 2-vertex and at least two Δ -vertices;
- (b) the sum of the degree of any two adjacent vertices is at least $\Delta + 2$;

 $f(c)$ *if uv* $\in E(G)$ *and* $d(u) + d(v) = \Delta + 2$, *then every vertex of* $N({u, v}) \setminus {u, v}$ i *s* $a \Delta$ -vertex.

Lemma 4 [\[11](#page-7-1)] *Suppose that G is a* Δ -*critical graph, uv* $\in E(G)$ *and* $d(u) + d(v) =$ $\Delta + 2$. Then

(a) every vertex of $N(N({u, v})) \setminus {u, v}$ is of degree at least $\Delta - 1$;

(b) if $d(u)$, $d(v) < \Delta$, then every vertex of $N(N({u, v})) \setminus {u, v}$ is a Δ -vertex.

Lemma 5 [\[7](#page-7-2)] *No* Δ -critical graph has distinct vertices x, y, z such that x is adjacent *to* y and z, $d(z) < 2\Delta - d(x) - d(y) + 2$, and xz is in at least $d(x) + d(y) - \Delta - 2$ *triangles not containing y.*

Lemma 6 [\[8](#page-7-8)] *Let G be a* Δ -critical graph with $\Delta(G) \ge 6$ and let x be a 4-vertex. *Then the following hold*:

- (a) If x is adjacent to a $(\Delta 2)$ -vertex, say y, then every vertex of $N_G(N_G(x)) \setminus \{x, y\}$ i *s* a Δ -vertex;
- (b) Suppose that x is not adjacent to any $(\Delta 2)$ -vertex and y is one neighbor of x. If *y* is adjacent to $d_G(y) - (\Delta - 3)(\Delta - 2)^{-}$ -vertices, then each of the other three *neighbors of x is adjacent to only one* $(∆ - 2)$ [–]-vertex, which is x;
- (c) If x is adjacent to a $(\Delta 1)$ -vertex, then there are at least two Δ -vertices in $N_G(x)$ $\emph{which are adjacent to at most two } (\Delta-2)^{+}$ -vertices. Moreover, if x is adjacent to two $(\Delta - 1)$ -vertices, then each of the two Δ -neighbors of x is adjacent to exactly *one* $(\Delta - 2)^{-}$ *-vertex, which is x.*

Let the edges of a graph be colored with colors from $C = \{1, \ldots, k\}$ and let $u \in V$. If an edge incident with *u* is colored *i*, we say *u* sees *i*. Otherwise, we say *u* misses *i*. If a vertex u sees a color i , we use (u, i) to denote the edge incident with u colored i . Given two colors $i, j \in \{1, \ldots, k\}$, an (i, j) -chain is a path whose edges are colored alternatively *i* and *j*, and we use $(u, i) \sim (v, j)$ to denote that there is a (i, j) -chain containing (u, i) and (v, j) . Let $L_{i, j}(u)$ denote the longest (i, j) -chain passing through *u*.

The following is the key fact when dealing with a Δ -critical graph G .

Fact 7 Let *G* be a Δ -critical graph and $xy \in E(G)$. Giving any edge Δ -coloring of *G* − *xy*, if *x* misses *j* and *y* misses *k*, then *x* sees *k*, *y* sees *j*, and (*x*, *k*) ∼ (*y*, *j*).

Proof If *x* does not see *k*, then we can color *xy* with *k* to obtain an edge Δ -coloring of *G*, a contradiction. By the same argument, *y* sees *j*. If $(x, k) \sim (y, j)$, then we can swap colors on $L_{k,j}(x)$ and color xy with k to obtain an edge Δ -coloring of G , a contradiction, too. **Fig. 1** Black vertices do not have neighbors other than presented in the picture, while white vertices can be adjacent to each other as well as to some other vertices

Lemma 8 *No* 6-critical graph has distinct vertices v, w, x, y, z such that $d(x) =$ $d(w) = 4$, $d(y) = 5$, and vwz and xyz are triangles (see Fig. [1\)](#page-3-0).

Proof Suppose, to be contrary, that a 6-critical graph *G* contains such vertices v, w, x, y, z . Since *G* is 6-critical, $G - xy$ has an edge 6-coloring ϕ . By Fact [7,](#page-2-0) we can assume that $\phi(xz) = 1$, *x* sees 2, 3 and *y* sees 4, 5, 6. We consider the following cases.

Case 1 $\phi(yz) \in \{4, 5, 6\}$, With out loss of generality (WLOG), assume that $\phi(yz) = 4$.

Subcase 1.1 *y* misses 1.

Since $d(y) = 5$, *y* must miss 2 or 3. WLOG, assume that *y* misses 2. Then *y* sees 3. By Fact [7,](#page-2-0) we have (x, i) ∼ (y, j) , where $i \in \{1, 2\}$ and $j \in \{4, 5, 6\}$.

Subcase 1.1.1 $\phi(wz) = 2$.

Since $(x, 2) \sim (y, 4)$, w sees 4. If w misses 1, then we can obtain an edge 6coloring of *G* by recoloring wz with 1, zx with 4, yz with 2, and coloring xy with 1, a contradiction. So w sees 1. Since $d(w) = 4$, w must miss 5 or 6. WLOG, assume that w misses 5. Since $(x, 1)$ ∼ $(y, 5)$, $L_{5,1}(w)$ does not pass x and y. So we swap colors on $L_{1,5}(w)$, recolor wz with 1, *zx* with 4, *yz* with 2, and coloring *xy* with 1 to obtain an edge 6-coloring of *G*, a contradiction.

Subcase 1.1.2 $\phi(wz) = 3$ and $\phi(vz) = 2$.

Suppose that $\phi(vw) = 1$. Then w sees 2, for otherwise, we can obtain an edge 6-coloring of *G* by recoloring *z*v with 1, *yz* and vw with 2, *zx* with 4, and coloring *x y* with 1, a contradiction. If w misses $i \in \{4, 5, 6\}$, then we can swap colors on $L_{2,i}(w)$ to satisfy that w misses 2. So w sees 4, 5, and 6. It is impossible. If $\phi(vw) = 4$, then w sees 2 according to $(x, 2) \sim (y, 4)$, and it follows that w sees 5, 6, it is also impossible. Suppose that $\phi(vw) = 5$. Then w sees 1, for otherwise we swap colors on $L_{5,1}(w)$ to go back to the previous case that $\phi(vw) = 1$. By w seeing 1, we can induce that w also sees 6. Since $d(w) = 4$ and w sees 1, 3, 5, 6, w misses 4. Thus we swap colors on $L_{4,1}(w)$ to satisfy that w misses 1 to go back to the above case. It is similar to settle the case $\phi(vw) = 6$.

Subcase 1.1.3 $\phi(wz) = 3$ and $\phi(vz) \in \{5, 6\}$. WLOG, assume that $\phi(vz) = 5$.

Suppose that $\phi(vw) = 1$. Since $(x, 1) \sim (y, 5)$, w sees 5. Consecutively, it is easy to check that w sees 2, 4, and 6, it is impossible. If $\phi(vw) = 4$, Then w sees 1, for otherwise, we just need to swap colors on $L_{4,1}(w)$ to go back the above case. Consecutively, w sees 2, 5, and 6, it is also impossible. Suppose that $\phi(vw) = 2$. Then w sees 5, for otherwise, we just need to swap colors on $L_{2,5}(w)$ to go back to Subcase

1.1.2. Consecutively, w sees 1 and 6, it is also impossible. It is similar to settle the case that $\phi(vw) = 6$.

Subcase 1.1.4 $\phi(wz) \in \{5, 6\}$. WLOG, assume that $\phi(wz) = 5$.

Since $(x, 1) \sim (y, 5)$, w sees 1. If w misses 4, then we can obtain an edge 6coloring of *G* by recoloring wz with 4, *zx* with 5, yz with 1, and coloring xy with 4, a contradiction. So w sees 4. w also sees 6, for otherwise, we swap colors on $L_{1,6}(w)$ to obtain the case that w misses 1. Hence w sees 1, 4, 5, 6. It follows from $d(w) = 4$ that w misses 2, and we swap colors on $L_{4,2}(w)$ to obtain that w misses 4, a contradiction.

Subcase 1.2 *y* sees 1.

Since $d(y) = 5$, *y* misses 2 and 3. By Fact [7,](#page-2-0) we have $(x, i) \sim (y, j)$, where $i \in \{2, 3\}$ and $j \in \{4, 5, 6\}$. Suppose that $\phi(wz) \in \{2, 3\}$. WLOG, assume that $\phi(wz) = 2$. Since $(x, 2) \sim (y, 4)$, w sees 4. If w misses 3, then we can swap colors on L_4 ₃(w) to obtain a contradiction. So w sees 3. Also w sees 5, for otherwise, we swap colors on $L_{3,5}(w)$ to get a contradiction. It is similar to check that w sees 6. That is impossible. Suppose that $\phi(wz) \in \{5, 6\}$. WLOG, assume that $\phi(wz) = 5$. If w misses 2, then we swap colors on $L_{2.5}(w)$ and go back to the above case. So w sees 2. In the same way, w sees 3. Consecutively, we have that w sees 4 and 6, contrary to that $d(w) = 4$.

Case 2 $\phi(yz) \in \{2, 3\}$, WLOG, assume that $\phi(yz) = 3$.

By Fact [7,](#page-2-0) we have $(x, i) \sim (y, j)$, where $i \in \{1, 2\}$ and $j \in \{4, 5, 6\}$. Suppose that $\phi(wz) \in \{4, 5, 6\}$. WLOG, assume that $\phi(wz) = 4$. Since $(x, 1) \sim (y, 4)$, w sees 1. By the similar argument, we have that w sees 5 and 6. Since $d(w) = 4$, w misses 2. After swapping colors on $L_{6,2}(w)$, w misses 6, a contradiction. Suppose that $\phi(wz) = 2$. Then w sees 4, 5, and 6. Since $d(w) = 4$, w misses 1. After swapping colors on $L_{6,1}(w)$, w misses 6, a contradiction. colors on $L_{6,1}(w)$, w misses 6, a contradiction.

Now, we begin to prove our main result.

Theorem 9 Let G be a planar graph with $\Delta \geq 6$. If any 6-cycle contains at most two *chords, then G is of class* 1*.*

Proof Suppose that *G* is a counterexample to our theorem with the minimum number of edges and suppose that *G* is embedded in the plane. Then *G* is a 6-critical graph by Lemma [1,](#page-1-0) and it is 2-connected. By Euler's formula $|V(G)| - |E(G)| + |F(G)| = 2$, we have

$$
\sum_{x \in V(G)} (d(x) - 4) + \sum_{x \in F(G)} (d(x) - 4) = -8 < 0.
$$

 $\sum_{x \in V \cup F} ch(x) < 0$. In the following, we will reassign a new charge denoted by *ch*['](*x*) We define *ch* to be the initial charge. Let $ch(x) = d(x) - 4$ for each $x \in V \cup F$. So to each $x \in V \cup F$ according to the discharging rules, since our rules only move charges around, and do not affect the sum. If we show that $ch'(x) \ge 0$ for each $x \in V \cup F$, then we get an obvious contradiction $0 \le \sum_{x \in V \cup F} ch'(x) = \sum_{x \in V \cup F} ch(x) < 0$, which completes our proof.

R1 Let v be a 2-vertex. If v is incident with a 5^+ -face f, then v receives 1 from f , $\frac{1}{2}$ from each adjacent vertex; If v is incident with a special 4-face f , then v receives $\frac{1}{3}$ from *f*, $\frac{5}{6}$ from each adjacent vertex; Otherwise v receives 1 from each adjacent vertex.

R2 Every 3-vertex receives $\frac{1}{3}$ from each adjacent vertex.

R3 Let *f* be a 3-face $[x, y, z]$ with $d(x) \le d(y) \le d(z)$. If $d(x) \le 4$ and $d(y) \ge 5$, then *f* receives $\frac{1}{2}$ from *y*, $\frac{1}{2}$ from *z*; If $d(x) = d(y) = 4$ and $d(z) = 6$, then *f* receives 1 from *z*; If $d(x) \ge 5$, then *f* receives $\frac{1}{3}$ from *x*, *y*, *z*, respectively. **R4** Let v be a 5-vertex.

R4.1 If v is adjacent to a 3-vertex *u* and $N(u) = \{v, w, x\}$, then *v* receives $\frac{1}{3}$ from w and $\frac{1}{3}$ from *x*;

R4.2 If v is incident with a (4, 5, 5)-face $[u, v, w]$ and $N(u) = \{v, w, x, y\}$, then v receives $\frac{1}{6}$ from *x*, and $\frac{1}{6}$ from *y*;

R4.3 If v is incident with a (4, 5, 6)-face [u, v, w], then v receives $\frac{1}{6}$ from w. **R5** Let *v* be a 6-vertex.

R5.1 If v is incident with a special 4-face $f = [w, v, x, y]$ such that $d(y) = 2$, then *v* sends $\frac{1}{3}$ to *f*;

R5.2 If v is incident with two adjacent 3-faces (u, v, x) , (v, x, y) , and $d(u)$ = $d(x) = 4$, then *v* receives $\frac{1}{6}$ from *y*.

Now, let's began to check $ch'(x) \ge 0$ for all $x \in V \cup F$. Let $f \in F(G)$. If $d(f) \ge 5$, then *f* is incident with at most $d(f) - 4$ 2-vertices by Corollary [3](#page-2-1)(*c*), so $ch'(f) \ge$ $ch(f) - (d(f) - 4) = 0$ by R1. Suppose $d(f) = 4$. If *f* is special, then $ch'(f) = 0 +$ $\frac{1}{3} - \frac{1}{3} = 0$ by R1 and R5.1; Otherwise, $ch'(f) = ch(f) = 0$. Suppose $d(f) = 3$. Since $\Delta = 6$, *f* must be the (2⁺, 6, 6)-face, (3, 5⁺, 6)-face, (4, 4, 6)-face, or (4⁺, 5⁺, 5⁺)-face by Lemma [2.](#page-1-1) Hence $ch'(f) = ch(f) + min\{2 \times \frac{1}{2}, 1, 3 \times \frac{1}{3}\} = 0$ by R3.

Let $w \in V(G)$. Then $d(w) \geq 2$. If $d(w) = 2$, then w is adjacent to two 6-vertices by Corollary [3](#page-2-1)(*a*), so $ch'(w) = ch(w) + \min\{1+2 \times \frac{1}{2}, \frac{1}{3}+2 \times \frac{5}{6}, 2 \times 1\} = 0$ by R1. If $d(w) = 3$ $d(w) = 3$, then w is adjacent to three 5⁺-vertices by Corollary 3(*b*), and it follows that $ch'(w) = -1 + 3 \times \frac{1}{3} = 0$ by R2. If $d(w) = 4$, then $ch'(w) = ch(w) = 0$.

Suppose that $d(w) = 5$. Then $ch(w) = 1$, $min{d(u)|u \in N(w)} \geq 3$, $d_3(w) \leq 1$,and $d_6(w) \ge 2$ by Corollary [3,](#page-2-1) and $f_3(w) \le 3$ since all 6-cycles in G contain at most two chords. If all neighbors of w are 5⁺-vertices, then $ch'(w) \ge 1 - 3 \times \frac{1}{3} = 0$ by R3. If w is adjacent to a 3-vertex, say w_1 , then w receives $\frac{1}{3}$ from each of neighbors of w_1 except w by R4.1, and it follows that $ch'(w) \ge 1 + 2 \times \frac{1}{3} - \frac{1}{3} - 2 \times \frac{1}{2} - \frac{1}{3} = 0$ by R2 and R3. Suppose that w is adjacent to a 4-vertex. Then $d_6(w) \geq 3$ by Lemma [2a](#page-1-1). If $f_3(w) \le 2$, then $ch'(w) \ge 1 - 2 \times \frac{1}{2} = 0$ by R3; Otherwise, $f_3(w) = 3$, w is incident with at most one $(4, 5, 5^+)$ -face by Lemma [5.](#page-2-2) So $ch'(w) \ge 1 - \max\{2 \times \frac{1}{2} + \frac{1}{2} - 2 \times \frac{1}{2} + \frac{1}{2} + 2 \times \frac{1}{2} - \frac{1}{2}\}$ $\frac{1}{2} + \frac{1}{3} - 2 \times \frac{1}{6}, \frac{1}{2} + 2 \times \frac{1}{3} - \frac{1}{6}$ = 0 by R3 and R4.

Suppose that $d(w) = 6$. Then $ch(w) = 2$, $d_2(w) \le 1$, and $d_6(w) \ge 2$ by Lemma [2,](#page-1-1) and $f_3(w) \leq 4$ since all 6-cycles in *G* contain at most two chords. Note that every special 4-face is adjacent to at most two 3-faces since all 6-cycles contain at most two chords. We denote by $f_{s4}(w)$ the number of special 4-faces incident with w and $f_{34}(w) = f_3(w) + f_{s4}(w)$. It is easy to check that $f_{s4}(w) \le 3$ and $f_{34}(w) \le 4$.

Case 1 w sends some charge to a 5-vertex v (see R4).

Suppose that *v* is adjacent to a 3-vertex *u*. Then *w* sends $\frac{1}{3}$ to *v* by R4.1. By Lemma [4b](#page-2-3), w is adjacent to five 6-vertices, that is, $d_6(w) = 5$. Since $f_{34}(w) \leq 4$, $ch'(w) \geq 2 - \frac{1}{3} - 2 \times \frac{1}{2} - 2 \times \frac{1}{3} = 0$ by R3 and R4.1.

Suppose that v is incident with a $(4, 5, 5)$ -face $[u, v, x]$ such that $N(u)$ = $\{v, w, x, y\}$. Then v receives $\frac{1}{6}$ from w by R4.2. By Lemma [6c](#page-2-4), w is adjacent to one 4⁻-vertex, which is *u*. Since $f_{34}(w) \le 4$, $ch'(w) = 2 - 2 \times \frac{1}{6} - 2 \times \frac{1}{2} - 2 \times \frac{1}{3} = 0$.

Suppose that v is incident with a $(4, 5, 6)$ -face $[u, v, w]$. Then v receives $\frac{1}{6}$ from w by R4.3. If $d_4(w) = 1$, then $ch'(w) \ge 2 - 2 \times \frac{1}{2} - 2 \times \frac{1}{3} - 2 \times \frac{1}{6} = 0$; otherwise $d_4(w) = 2$. By Lemma [8,](#page-2-5) w is incident a $(4, 5, 6)$ -face and at most one $(4, 6, 6)$ -face, then $ch'(w) \ge 2 - 2 \times \frac{1}{2} - 2 \times \frac{1}{3} - \frac{1}{6} = \frac{1}{6} > 0$ by R3 and R4.3.

Case 2 w sends $\frac{1}{6}$ to some 6-vertex v (see R5).

Suppose v is incident with two 3-faces $[w, v, x]$ and $[v, x, y]$ such that $d(x) =$ $d(y) = 4$. Then $f_{34}(w) \le 4$ and $d_6(w) = 5$ by Lemma [4b](#page-2-3). So $ch'(w) = 2 - \frac{1}{6} - 2 \times \frac{1}{6} - 2 \times \frac{1}{6}$ $\frac{1}{2} - 2 \times \frac{1}{3} > 0.$

Case 3 w sends no charge to its 5^+ -vertices.

Let *k* = min{*d*(*u*)|*u* ∈ *N*(*w*)}. If *k* ≥ 5, then *ch*'(*w*) ≥ 2−4 × $\frac{1}{3}$ > 0. Suppose that $k = 4$. Then $d_6(w) \geq 3$ by Lemma [2a](#page-1-1). If w is incident with two 3-faces [u, w, x] and $[w, x, y]$ such that $d(x) = d(y) = 4$, then $d_6(w) = 4$. If wy is incident with a 4⁺-face, then *w* receives $\frac{1}{6}$ from *u*, and it follows that $ch'(w) \ge 2 + \frac{1}{6} - 1 - \frac{1}{2} - 2 \times \frac{1}{3} = 0$ since $f_{34}(w) \leq 4$; otherwise wy is incident with another 3-face [w, y, z], then w receives $\frac{1}{6}$ from each of *u*, *z*, and it follows that $ch'(w) \ge 2 + 2 \times \frac{1}{6} - 1 - 2 \times \frac{1}{2} - \frac{1}{3} = 0$ since $f_{34}(w) \le 4$; otherwise, $ch'(w) \ge 2 - \max\{1 + 3 \times \frac{1}{3}, 4 \times \frac{1}{2}\} = 0$.

Suppose that $k = 3$. Then $d_6(w) \ge 4$ by Lemma [2a](#page-1-1). If $d_3(w) = 1$ and $d_{5+}(w) \ge 5$, then $ch'(w) \ge 2 - \frac{1}{3} - 2 \times (\frac{1}{2} + \frac{1}{3}) = 0$; otherwise, w is incident with two 4⁻⁻ vertices u , v , then u and v are incident with at most one 3-face by Lemma 5 since $d(u) + d(v) + d(w) \leq 3 + 4 + 6 < 14$. So $f_{34}(w) \leq 4$, and it follows that $ch'(w) \geq$ $2 - \frac{1}{3} - \max\{\frac{1}{2} + 2 \times \frac{1}{3}, \frac{1}{3} + 3 \times \frac{1}{3}\} > 0$ by R1 and R3.

Suppose that $k = 2$, that is, w is adjacent to a 2-vertex v. Then $d_6(w) = 5$ by Lemma [2a](#page-1-1). If v is incident with a special 4-face $f = [u, v, w, x]$, then $f_3(v) \le 3$ and w sends $\frac{5}{6}$ to v, and it follows that $ch'(w) \ge 2 - \frac{5}{6} - \frac{1}{2} - 2 \times \frac{1}{3} = 0$; otherwise, v is incident with a 5^+ -face or two 4-faces. If v is incident with a 5^+ -face, then w sends $\frac{1}{2}$ to *v*, and it follows that $ch'(w) \ge 2 - \frac{1}{2} - (\frac{1}{2} + 3 \times \frac{1}{3}) = 0$. If *v* is incident with two 4-faces, then *f*₃₄ ≤ 3, and it follows that $ch'(w) \ge 2 - 1 - 3 \times \frac{1}{3} = 0$. \Box

Acknowledgements This work was partially supported by National Natural Science Foundation of China (No. 11271006).

References

- 1. Bu, Y.H., Wang, W.F.: Some sufficient conditions for a planar graph of maximum degree six to be class 1. Discret. Math. **306**(13), 1440–1445 (2006)
- 2. Fiorini, S., Wilson, R.J.: Edge-Colorings of Graphs, Research Notes in Mathematics, vol. 16. Pitman, London (1977)
- 3. Hind, H., Zhao, Y.: Edge colorings of graphs embedable in a surface of low genus. Discret. Math. **190**, 107–114 (1998)
- 4. Lam, P., Liu, J., Shiu, W., Wu, J.: Some sufficient conditions for a planar graph to be of Class 1. Congr. Numer. **136**, 201–205 (1999)
- 5. Miao, L.Y., Wu, J.L.: Edge-coloring critical graphs with high degree. Discret. Math. **257**(1), 169–172 (2002)
- 6. Ni, W.P.: Edge colorings of planar graphs with $\Delta = 6$ without short cycles contain chords. J. Nanjing Norm. Univ. **34**(3), 19–24 (2011) **(in Chinese)**
- 7. Sanders, D.P., Zhao, Y.: Planar graphs of maximum degree seven are class 1. J. Comb. Theory Ser. B **83**, 202–212 (2001)
- 8. Luo, R., Miao, L., Zhao, Y.: The size of edge chromatic critical graphs with maximum degree 6. J. Gr. Theory **60**, 149–171 (2009)
- 9. Wu, J.L., Xue, L.: Edge colorings of planar graphs without 5-cycles with two chords. Theor. Comput. Sci. **518**, 124–127 (2014)
- 10. Xue, L., Wu, J.L.: Edge colorings of planar graphs without 6-cycles with two chords. Open J. Discret. Math. **3**, 83–85 (2013)
- 11. Zhang, L.M.: Every planar graph with maximum degree 7 is of class 1. Gr. Comb. **16**, 467–495 (2000)
- 12. Zhou, G.F.: A note on graphs of class 1. Discret. Math. **263**, 339–345 (2003)