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Abstract A graph G is of class 1 if its edges can be colored with k colors such that
adjacent edges receive different colors, where k is the maximum degree of G. It is
proved here that every planar graph is of class 1 if its maximum degree is at least 6
and any 6-cycle contains at most two chords.
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1 Introduction

All graphs considered here are finite and simple. Let G be a graph with the vertex set
V (G) and edge set E(G).We denote themaximumdegree ofG by�(G). If v ∈ V (G),
then its neighbor set NG(v) (or simply N (v)) is the set of the vertices in G adjacent to
v and the degree d(v) of v is |NG(v)|. For V ′ ⊆ V (G), denote N (V ′) = ∪u∈V ′N (u).
A k-vertex, k−-vertex, or a k+-vertex is a vertex of degree k, at most k or at least k,
respectively. A k (or k+)-vertex adjacent to a vertex x is called a k (or k+)-neighbor of
x . Let dk(x), dk+(x) denote the number of k-neighbors, k+- neighbors of x . A k-cycle
is a cycle of length k. Two cycles sharing a common edge are said to be adjacent.
Given a cycle C of length k in G, an edge xy ∈ E(G)\E(C) is called a chord of C
if x, y ∈ V (C). Such a cycle C is also called a chordal-k-cycle.

Let G be a plane graph, F(G) be the face set of G. A face of an graph is said to be
incident with all edges and vertices in its boundary. Two faces sharing an edge e are
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said to be adjacent at e. The degree of a face f , denoted by dG( f ) is the number of
edges incident with f where each cut edge is counted twice. A k-, k+-face is a face
of degree k, at least k. A k-face of G is called an (i1, i2, . . . , ik)-face if the vertices
in its boundary in clockwise order are of degrees i1, i2, . . . , ik respectively. A 3-face
incident with distinct vertices x, y, z is denoted by (x, y, z), moreover, by [x, y, z] if
d(x) ≤ d(y) ≤ d(z). A 4-face incident with distinct vertices w, v, x, y is denoted by
(w, v, x, y), moreover, by [w, v, x, y] if d(x) = 2 and v, x, y form a 3-face, we call
this 4-face special. For a vertex v ∈ V (G), we denote by fk(v) the number of k-faces
incident with v.

Agraphhas an edge k-coloring if its edges can be coloredwith color set {1, 2, . . . , k}
such that adjacent edges receive different colors. A graph is k-edge-colorable if it has
an edge k-coloring. The edge chromatic number of a graph G, denoted by χ ′(G), is
the smallest integer k such that G is k-edge-colorable. In 1964, Vizing proved that for
any simple graph G, �(G) ≤ χ ′(G) ≤ �(G) + 1. A graph G is said to be of class
1 if χ ′(G) = �(G), and of class 2 if χ ′(G) = �(G) + 1. A graph G is critical if it
is connected and of class 2, and χ ′(G − e) < χ ′(G) for any edge e of G. A critical
graph with the maximum degree � is called a �-critical graph. It is clear that every
critical graph is 2-connected.

For planar graphs, Vizing [2] noted that if � ∈ {2, 3, 4, 5}, there exist �-critical
planar graphs, and proved that every planar graph with � ≥ 8 is of class 1 and then
conjectured that every planar graph with maximum degree 6 or 7 is of class 1 (There
are more general results, see [3] and [5]). The case � = 7 for the conjecture has been
verified by Zhang [11] and, independently, by Sanders and Zhao [7]. The case � = 6
remains open, but some partial results are obtained. Theorem 16.3 in [2] stated that
a planar graph with the maximum degree � and the girth g is of class 1 if � ≥ 3
and g ≥ 8, or � ≥ 4 and g ≥ 5, or � ≥ 5 and g ≥ 4. Lam, Liu, Shiu, and Wu
[4] proved that a planar graph G is of class 1 if � ≥ 6 and no two 3-cycles of G
sharing a common vertex. Zhou [12] obtained that every planar graph with � ≥ 6 and
without 4 or 5-cycles is of class 1. Bu and Wang [1] proved that every planar graph
with � ≥ 6 and without chordal 5-cycles and chordal 6-cycles is of class 1. Wu and
Xue [9] extended the result that every planar graph with � ≥ 6 and without 5-cycles
with two chord is of class 1. Ni [6] proved that every planar graph with � ≥ 6 and
without chordal 6-cycles is of class 1. Recently, Xue and Wu [10] extended the result
that every planar graph with � ≥ 6 and without 6-cycles with two chords is of class
1. In the paper, we shall improve the above result to planar graphs with � = 6 and
without 6-cycles with three chords.

2 The Main Result and its Proof

Firstly, we introduce some known lemmas.

Lemma 1 [7],[11] Every planar graph with maximum degree at least 7 is of class 1.

Lemma 2 (Vizing’s Adjacency Lemma [2]) Let G be a �-critical graph, and let u
and v be adjacent vertices of G with d(v) = k.

(a) If k < �, then u is adjacent to at least � − k + 1 vertices of degree �;
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(b) If k = �, then u is adjacent to at least two vertices of degree �.

From the above Lemma, it is easy to get the following corollary.

Corollary 3 Let G be a �-critical graph. Then

(a) every vertex is adjacent to at most one 2-vertex and at least two �-vertices;
(b) the sum of the degree of any two adjacent vertices is at least � + 2;
(c) if uv ∈ E(G) and d(u) + d(v) = � + 2, then every vertex of N ({u, v}) \ {u, v}
is a �-vertex.

Lemma 4 [11] Suppose that G is a�-critical graph, uv ∈ E(G) and d(u)+d(v) =
� + 2. Then

(a) every vertex of N (N ({u, v})) \ {u, v} is of degree at least � − 1;
(b) if d(u), d(v) < �, then every vertex of N (N ({u, v})) \ {u, v} is a �-vertex.

Lemma 5 [7] No�-critical graph has distinct vertices x, y, z such that x is adjacent
to y and z, d(z) < 2� − d(x) − d(y) + 2, and xz is in at least d(x) + d(y) − � − 2
triangles not containing y.

Lemma 6 [8] Let G be a �-critical graph with �(G) ≥ 6 and let x be a 4-vertex.
Then the following hold:

(a) If x is adjacent to a (�−2)-vertex, say y, then every vertex of NG(NG(x))\{x, y}
is a �-vertex;

(b) Suppose that x is not adjacent to any (�−2)-vertex and y is one neighbor of x. If
y is adjacent to dG(y) − (� − 3) (� − 2)−-vertices, then each of the other three
neighbors of x is adjacent to only one (� − 2)−-vertex, which is x;

(c) If x is adjacent to a (�−1)-vertex, then there are at least two�-vertices in NG(x)
which are adjacent to at most two (�−2)−-vertices. Moreover, if x is adjacent to
two (�−1)-vertices, then each of the two �-neighbors of x is adjacent to exactly
one (� − 2)−-vertex, which is x.

Let the edges of a graph be colored with colors fromC = {1, . . . , k} and let u ∈ V .
If an edge incident with u is colored i , we say u sees i . Otherwise, we say u misses i .
If a vertex u sees a color i , we use (u, i) to denote the edge incident with u colored i .
Given two colors i, j ∈ {1, . . . , k}, an (i, j)-chain is a path whose edges are colored
alternatively i and j , and we use (u, i) ∼ (v, j) to denote that there is a (i, j)-chain
containing (u, i) and (v, j). Let Li, j (u) denote the longest (i, j)-chain passing through
u.

The following is the key fact when dealing with a �-critical graph G.

Fact 7 Let G be a �-critical graph and xy ∈ E(G). Giving any edge �-coloring of
G − xy, if x misses j and y misses k, then x sees k, y sees j , and (x, k) ∼ (y, j).

Proof If x does not see k, then we can color xy with k to obtain an edge �-coloring
of G, a contradiction. By the same argument, y sees j . If (x, k) � (y, j), then we
can swap colors on Lk, j (x) and color xy with k to obtain an edge �-coloring of G, a
contradiction, too. 	
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Fig. 1 Black vertices do not
have neighbors other than
presented in the picture, while
white vertices can be adjacent to
each other as well as to some
other vertices

y

x
z

v

w

Lemma 8 No 6-critical graph has distinct vertices v,w, x, y, z such that d(x) =
d(w) = 4, d(y) = 5, and vwz and xyz are triangles (see Fig. 1).

Proof Suppose, to be contrary, that a 6-critical graph G contains such vertices
v,w, x, y, z. Since G is 6-critical, G − xy has an edge 6-coloring φ. By Fact 7, we
can assume that φ(xz) = 1, x sees 2, 3 and y sees 4, 5, 6. We consider the following
cases.

Case 1φ(yz) ∈ {4, 5, 6},With out loss of generality (WLOG), assume thatφ(yz) = 4.

Subcase 1.1 y misses 1.
Since d(y) = 5, y must miss 2 or 3. WLOG, assume that y misses 2. Then y sees

3. By Fact 7, we have (x, i) ∼ (y, j), where i ∈ {1, 2} and j ∈ {4, 5, 6}.
Subcase 1.1.1 φ(wz) = 2.

Since (x, 2) ∼ (y, 4), w sees 4. If w misses 1, then we can obtain an edge 6-
coloring of G by recoloring wz with 1, zx with 4, yz with 2, and coloring xy with 1,
a contradiction. So w sees 1. Since d(w) = 4, w must miss 5 or 6. WLOG, assume
that w misses 5. Since (x, 1) ∼ (y, 5), L5,1(w) does not pass x and y. So we swap
colors on L1,5(w), recolor wz with 1, zx with 4, yz with 2, and coloring xy with 1 to
obtain an edge 6-coloring of G, a contradiction.

Subcase 1.1.2 φ(wz) = 3 and φ(vz) = 2.
Suppose that φ(vw) = 1. Then w sees 2, for otherwise, we can obtain an edge

6-coloring of G by recoloring zv with 1, yz and vw with 2, zx with 4, and coloring xy
with 1, a contradiction. If w misses i ∈ {4, 5, 6}, then we can swap colors on L2,i (w)

to satisfy that w misses 2. So w sees 4, 5, and 6. It is impossible. If φ(vw) = 4,
then w sees 2 according to (x, 2) ∼ (y, 4), and it follows that w sees 5, 6, it is also
impossible. Suppose that φ(vw) = 5. Then w sees 1, for otherwise we swap colors
on L5,1(w) to go back to the previous case that φ(vw) = 1. By w seeing 1, we can
induce that w also sees 6. Since d(w) = 4 and w sees 1, 3, 5, 6, w misses 4. Thus we
swap colors on L4,1(w) to satisfy that w misses 1 to go back to the above case. It is
similar to settle the case φ(vw) = 6.

Subcase 1.1.3 φ(wz) = 3 and φ(vz) ∈ {5, 6}. WLOG, assume that φ(vz) = 5.
Suppose that φ(vw) = 1. Since (x, 1) ∼ (y, 5), w sees 5. Consecutively, it is

easy to check that w sees 2, 4, and 6, it is impossible. If φ(vw) = 4, Then w sees
1, for otherwise, we just need to swap colors on L4,1(w) to go back the above case.
Consecutively,w sees 2, 5, and 6, it is also impossible. Suppose that φ(vw) = 2. Then
w sees 5, for otherwise, we just need to swap colors on L2,5(w) to go back to Subcase
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1.1.2. Consecutively, w sees 1 and 6, it is also impossible. It is similar to settle the
case that φ(vw) = 6.

Subcase 1.1.4 φ(wz) ∈ {5, 6}. WLOG, assume that φ(wz) = 5.
Since (x, 1) ∼ (y, 5), w sees 1. If w misses 4, then we can obtain an edge 6-

coloring of G by recoloring wz with 4, zx with 5, yz with 1, and coloring xy with 4, a
contradiction. Sow sees 4.w also sees 6, for otherwise, we swap colors on L1,6(w) to
obtain the case that w misses 1. Hence w sees 1, 4, 5, 6. It follows from d(w) = 4 that
w misses 2, and we swap colors on L4,2(w) to obtain that w misses 4, a contradiction.

Subcase 1.2 y sees 1.
Since d(y) = 5, y misses 2 and 3. By Fact 7, we have (x, i) ∼ (y, j), where

i ∈ {2, 3} and j ∈ {4, 5, 6}. Suppose that φ(wz) ∈ {2, 3}. WLOG, assume that
φ(wz) = 2. Since (x, 2) ∼ (y, 4), w sees 4. If w misses 3, then we can swap colors
on L4,3(w) to obtain a contradiction. So w sees 3. Also w sees 5, for otherwise, we
swap colors on L3,5(w) to get a contradiction. It is similar to check thatw sees 6. That
is impossible. Suppose that φ(wz) ∈ {5, 6}. WLOG, assume that φ(wz) = 5. If w

misses 2, then we swap colors on L2,5(w) and go back to the above case. So w sees
2. In the same way, w sees 3. Consecutively, we have that w sees 4 and 6, contrary to
that d(w) = 4.

Case 2 φ(yz) ∈ {2, 3}, WLOG, assume that φ(yz) = 3.
By Fact 7, we have (x, i) ∼ (y, j), where i ∈ {1, 2} and j ∈ {4, 5, 6}. Suppose

that φ(wz) ∈ {4, 5, 6}. WLOG, assume that φ(wz) = 4. Since (x, 1) ∼ (y, 4), w

sees 1. By the similar argument, we have that w sees 5 and 6. Since d(w) = 4, w

misses 2. After swapping colors on L6,2(w),w misses 6, a contradiction. Suppose that
φ(wz) = 2. Then w sees 4, 5, and 6. Since d(w) = 4, w misses 1. After swapping
colors on L6,1(w), w misses 6, a contradiction. 	


Now, we begin to prove our main result.

Theorem 9 Let G be a planar graph with � ≥ 6. If any 6-cycle contains at most two
chords, then G is of class 1.

Proof Suppose that G is a counterexample to our theorem with the minimum number
of edges and suppose that G is embedded in the plane. Then G is a 6-critical graph by
Lemma 1, and it is 2-connected. By Euler’s formula |V (G)| − |E(G)| + |F(G)| = 2,
we have

∑

x∈V (G)

(d(x) − 4) +
∑

x∈F(G)

(d(x) − 4) = −8 < 0.

We define ch to be the initial charge. Let ch(x) = d(x)−4 for each x ∈ V ∪ F . So∑
x∈V∪F ch(x) < 0. In the following,wewill reassign a new charge denoted by ch

′
(x)

to each x ∈ V∪F according to the discharging rules, since our rules onlymove charges
around, and do not affect the sum. If we show that ch

′
(x) ≥ 0 for each x ∈ V ∪ F ,

then we get an obvious contradiction 0 ≤ ∑
x∈V∪F ch

′
(x) = ∑

x∈V∪F ch(x) < 0,
which completes our proof.
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R1 Let v be a 2-vertex. If v is incident with a 5+-face f , then v receives 1 from
f , 1

2 from each adjacent vertex; If v is incident with a special 4-face f , then v

receives 1
3 from f , 56 from each adjacent vertex; Otherwise v receives 1 from each

adjacent vertex.
R2 Every 3-vertex receives 1

3 from each adjacent vertex.
R3Let f be a 3-face [x, y, z]with d(x) ≤ d(y) ≤ d(z). If d(x) ≤ 4 and d(y) ≥ 5,
then f receives 1

2 from y, 1
2 from z; If d(x) = d(y) = 4 and d(z) = 6, then f

receives 1 from z; If d(x) ≥ 5, then f receives 1
3 from x, y, z, respectively.

R4 Let v be a 5-vertex.
R4.1 If v is adjacent to a 3-vertex u and N (u) = {v,w, x}, then v receives 1

3 from
w and 1

3 from x ;
R4.2 If v is incident with a (4, 5, 5)-face [u, v, w] and N (u) = {v,w, x, y}, then
v receives 1

6 from x , and 1
6 from y;

R4.3 If v is incident with a (4, 5, 6)-face [u, v, w], then v receives 1
6 from w.

R5 Let v be a 6-vertex.
R5.1 If v is incident with a special 4-face f = [w, v, x, y] such that d(y) = 2,
then v sends 1

3 to f ;
R5.2 If v is incident with two adjacent 3-faces (u, v, x), (v, x, y), and d(u) =
d(x) = 4, then v receives 1

6 from y.

Now, let’s began to check ch′(x) ≥ 0 for all x ∈ V ∪F . Let f ∈ F(G). If d( f ) ≥ 5,
then f is incident with at most d( f ) − 4 2-vertices by Corollary 3(c), so ch′( f ) ≥
ch( f )− (d( f )−4) = 0 by R1. Suppose d( f ) = 4. If f is special, then ch′( f ) = 0+
1
3− 1

3 = 0 byR1 andR5.1;Otherwise, ch′( f ) = ch( f ) = 0. Suppose d( f ) = 3. Since
� = 6, f must be the (2+, 6, 6)-face, (3, 5+, 6)-face, (4, 4, 6)-face, or (4+, 5+, 5+)-
face by Lemma 2. Hence ch′( f ) = ch( f ) + min{2 × 1

2 , 1, 3 × 1
3 } = 0 by R3.

Let w ∈ V (G). Then d(w) ≥ 2. If d(w) = 2, then w is adjacent to two 6-vertices
by Corollary 3(a), so ch′(w) = ch(w)+min{1+2× 1

2 ,
1
3 +2× 5

6 , 2×1} = 0 by R1.
If d(w) = 3, then w is adjacent to three 5+-vertices by Corollary 3(b), and it follows
that ch′(w) = −1 + 3 × 1

3 = 0 by R2. If d(w) = 4, then ch′(w) = ch(w) = 0.
Suppose that d(w) = 5. Then ch(w) = 1, min{d(u)|u ∈ N (w)} ≥ 3, d3(w) ≤ 1

,and d6(w) ≥ 2 by Corollary 3, and f3(w) ≤ 3 since all 6-cycles in G contain at most
two chords. If all neighbors of w are 5+-vertices, then ch′(w) ≥ 1 − 3 × 1

3 = 0 by
R3. If w is adjacent to a 3-vertex, say w1, then w receives 1

3 from each of neighbors
of w1 except w by R4.1, and it follows that ch′(w) ≥ 1+ 2× 1

3 − 1
3 − 2× 1

2 − 1
3 = 0

by R2 and R3. Suppose that w is adjacent to a 4-vertex. Then d6(w) ≥ 3 by Lemma
2a. If f3(w) ≤ 2, then ch′(w) ≥ 1 − 2 × 1

2 = 0 by R3; Otherwise, f3(w) = 3, w

is incident with at most one (4, 5, 5+)-face by Lemma 5. So ch′(w) ≥ 1 − max{2 ×
1
2 + 1

3 − 2 × 1
6 ,

1
2 + 2 × 1

3 − 1
6 } = 0 by R3 and R4.

Suppose that d(w) = 6. Then ch(w) = 2, d2(w) ≤ 1, and d6(w) ≥ 2 by Lemma
2, and f3(w) ≤ 4 since all 6-cycles in G contain at most two chords. Note that every
special 4-face is adjacent to at most two 3-faces since all 6-cycles contain at most
two chords. We denote by fs4(w) the number of special 4-faces incident with w and
f34(w) = f3(w) + fs4(w). It is easy to check that fs4(w) ≤ 3 and f34(w) ≤ 4.

Case 1 w sends some charge to a 5-vertex v (see R4).
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Suppose that v is adjacent to a 3-vertex u. Then w sends 1
3 to v by R4.1. By

Lemma 4b, w is adjacent to five 6-vertices, that is, d6(w) = 5. Since f34(w) ≤ 4,
ch′(w) ≥ 2 − 1

3 − 2 × 1
2 − 2 × 1

3 = 0 by R3 and R4.1.
Suppose that v is incident with a (4, 5, 5)-face [u, v, x] such that N (u) =

{v,w, x, y}. Then v receives 1
6 from w by R4.2. By Lemma 6c, w is adjacent to one

4−-vertex, which is u. Since f34(w) ≤ 4, ch′(w) = 2− 2× 1
6 − 2× 1

2 − 2× 1
3 = 0.

Suppose that v is incident with a (4, 5, 6)-face [u, v, w]. Then v receives 1
6 from

w by R4.3. If d4(w) = 1, then ch′(w) ≥ 2 − 2 × 1
2 − 2 × 1

3 − 2 × 1
6 = 0; otherwise

d4(w) = 2. By Lemma 8, w is incident a (4, 5, 6)-face and at most one (4, 6, 6)-face,
then ch′(w) ≥ 2 − 2 × 1

2 − 2 × 1
3 − 1

6 = 1
6 > 0 by R3 and R4.3.

Case 2 w sends 1
6 to some 6-vertex v (see R5).

Suppose v is incident with two 3-faces [w, v, x] and [v, x, y] such that d(x) =
d(y) = 4. Then f34(w) ≤ 4 and d6(w) = 5 by Lemma 4b. So ch′(w) = 2− 1

6 − 2×
1
2 − 2 × 1

3 > 0.

Case 3 w sends no charge to its 5+-vertices.
Let k = min{d(u)|u ∈ N (w)}. If k ≥ 5, then ch′(w) ≥ 2−4× 1

3 > 0. Suppose that
k = 4. Then d6(w) ≥ 3 by Lemma 2a. If w is incident with two 3-faces [u, w, x] and
[w, x, y] such that d(x) = d(y) = 4, then d6(w) = 4. Ifwy is incident with a 4+-face,
thenw receives 1

6 from u, and it follows that ch′(w) ≥ 2+ 1
6 −1− 1

2 −2× 1
3 = 0 since

f34(w) ≤ 4; otherwise wy is incident with another 3-face [w, y, z], then w receives
1
6 from each of u, z, and it follows that ch′(w) ≥ 2 + 2 × 1

6 − 1 − 2 × 1
2 − 1

3 = 0
since f34(w) ≤ 4; otherwise, ch′(w) ≥ 2 − max{1 + 3 × 1

3 , 4 × 1
2 } = 0.

Suppose that k = 3. Then d6(w) ≥ 4 by Lemma 2a. If d3(w) = 1 and d5+(w) ≥ 5,
then ch′(w) ≥ 2 − 1

3 − 2 × ( 12 + 1
3 ) = 0; otherwise, w is incident with two 4−-

vertices u, v, then u and v are incident with at most one 3-face by Lemma 5 since
d(u) + d(v) + d(w) ≤ 3+ 4+ 6 < 14. So f34(w) ≤ 4, and it follows that ch′(w) ≥
2 − 1

3 − max{ 12 + 2 × 1
3 ,

1
3 + 3 × 1

3 } > 0 by R1 and R3.
Suppose that k = 2, that is, w is adjacent to a 2-vertex v. Then d6(w) = 5 by

Lemma 2a. If v is incident with a special 4-face f = [u, v, w, x], then f3(v) ≤ 3 and
w sends 5

6 to v, and it follows that ch′(w) ≥ 2 − 5
6 − 1

2 − 2 × 1
3 = 0; otherwise, v is

incident with a 5+-face or two 4-faces. If v is incident with a 5+-face, then w sends
1
2 to v, and it follows that ch′(w) ≥ 2 − 1

2 − ( 12 + 3 × 1
3 ) = 0. If v is incident with

two 4-faces, then f34 ≤ 3, and it follows that ch′(w) ≥ 2 − 1 − 3 × 1
3 = 0. 	
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