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Abstract In this paper, we first establish the weak, strong, and converse duality
theorems for a pair of primal–dual problems in set-valued optimization concerning
Q-efficient solutions. Then, duality theorems for quasi-relative efficient solutions and
Henig efficient solutions are impliedwith Q being appropriately chosen cones. Finally,
their applications to optimality conditions in the Kuhn–Tucker type are obtained.

Keywords Set-valued optimization · Duality · Q-efficient solution · Optimality
condition · Closely convexlikeness · Quasi-relative interior

Mathematics Subject Classification 49N15 · 54C60 · 90C46

1 Introduction

In optimization, convex minimization problems (primal problems) are frequently
associated maximization problems (dual problems). Studying relationships between
optimal values/solutions of the primal–dual pair, known as duality, is one of the most
important topics of optimization from both the theoretical and practical viewpoint, see
[1–3]. In the last several decades, set-valued mappings are involved in optimization,
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which leads to a new chapter in optimization theory, called set-valued optimization.
Recently,many researches on duality in set-valued optimization have been developing,
see [4–9]. The above-mentioned results require that ordering cones have nonempty
interior. But, in many problems, the interior of a cone may be empty.

To overcome these cases, several generalized concepts of the interior were intro-
duced in [10–13]. One of them is the quasi-relative interior, known as the furthest
generalization, proposed byBorwein andLewis in [13]. This notion has been employed
in different ways in optimization. In [14], optimality conditions for subconvex set-
valued optimization were established via the quasi-relative interior. In [15], this
notion was employed in regularity conditions for duality theorems of a convex vector
optimization problem. In [16], the quasi-relative interior was used to define the quasi-
relative efficient point, and optimality conditions of these solutions were obtained for
set-valued equilibrium problems. However, there are very few results of duality in
set-valued optimization concerning the quasi-relative efficient solutions.

The above observations motivate us first to study duality theorems in set-valued
optimization with respect to Q-efficient solutions, which subsumes several kinds of
properly minimal solutions (see [17]), when the ordering cones have empty interior.
Then, we obtain correlative results for quasi-relative efficient solutions and Henig
efficient solutions. Applications to optimality conditions are also discussed to show
the advantage of our results over than other existing ones.

The layout of the paper is as follows. In Sect. 2, we recall some concepts and
their properties required for the paper. In Sect. 3, we establish the weak, strong, and
converse duality theorems for a pair of primal–dual problems with respect to Q-
efficient solutions. Then, duality results for quasi-relative efficient solutions andHenig
efficient solutions are implied. Their applications to optimality conditions are given
in Sect. 4.

2 Preliminaries

Let X , Y be normed spaces, and C ⊆ Y be a pointed convex cone. For A ⊆ X , the
interior, closure, and cone hull of A are denoted by intA, clA, and coneA, respectively
(resp, for short), where coneA := {λa|λ ≥ 0, a ∈ A}. With the cone C above, its dual
and strictly dual cones in the dual space Y ∗ are denoted by, resp.

C∗ := {c∗ ∈ Y ∗|〈c∗, c〉 ≥ 0,∀ c ∈ C},
C# := {c∗ ∈ C∗|〈c∗, c〉 > 0,∀ c ∈ C\{0}}.

For a set-valued mapping F : X → 2Y , the domain, image, graph of F are defined,
resp, by

domF := {x ∈ X |F(x) 
= ∅}, imF := {y ∈ Y |y ∈ F(X)},
grF := {(x, y) ∈ X × Y |y ∈ F(x)}.

We denote F+(.) := F(.) + C .

123
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A convex subset B of the convex cone C is said to be a base of C if C = coneB
and 0 /∈ clB. Let B be a base of C , and for some ε ∈ (0, δ), setting

C�(B) := {c∗ ∈ C#|∃t > 0, s.t. 〈c∗, b〉 ≥ t,∀b ∈ B},
Cε(B) := cone(BY (0, ε) + B),

where δ := inf{||b|||b ∈ B} and BY (0, ε) := {y ∈ Y |||y|| < ε}. Note that, Cε(B) is
convex, and intCε(B) 
= ∅ even if intC = ∅.
Definition 2.1 Let S ⊆ X be convex.

(i) The quasi-relative interior of S is the set defined by

qriS := {x ∈ S|cl cone(S − x) is a linear subspace of X}.

(ii) A point s0 ∈ S is said to be a support point of A if there exists x∗ ∈ X∗\{0}
such that 〈x∗, s0〉 ≤ 〈x∗, s〉 for all s ∈ S. The set of nonsupport points of S is
denoted by N (S).

If intS 
= ∅, then N (S) = intS (see [18]). The following example gives us a case
for which intS = ∅, but N (S) 
= ∅.

Example 2.2 Let l2 be the space of the real sequences {xn}n∈N such that
∞∑
n=1

|xn|2 <

+∞, equipped with ||x ||l2 :=
( ∞∑
n=1

|xn|2
)1/2

for x = {xn}n∈N. Consider the positive
cone

l2+ := {{xn}n∈N ⊆ l2|xn ≥ 0,∀n ∈ N},

then intl2+ = ∅, but N (l2+) = {{xn}n∈N ⊆ l2|xn > 0,∀n ∈ N}.
Some basic properties of the quasi-relative interior, see [13,19], are collected in the

following proposition.

Proposition 2.3 Let S ⊆ X be convex. Then,

(i) if intS 
= ∅, then intS = qriS;
(ii) λqriS + (1 − λ)S ⊆ qriS for all λ ∈ (0, 1], which implies that qriS is convex;
(iii) cl qriS = clS;
(iv) suppose that S is a pointed cone, then 0 /∈ qriS and qriS ∪ {0} is a cone;
(v) if U ⊆ X is convex, then qriS × qriU = qri(S ×U );
(vi) x ∈ qriS if and only if NS(x) is a linear subspace of X∗, where NS(x) := {x∗ ∈

X∗|〈x∗, y − x〉} ≤ 0,∀y ∈ S}.
Definition 2.4 Let Q ⊆ Y be an arbitrary nonempty cone, different from Y , and
A ⊆ Y . A point a0 ∈ A is said to be a Q-efficient point of A if

(A − a0) ∩ −Q = ∅.

123



1064 N. L. H. Anh

Definition 2.4 was also mentioned in [17] with respect to an open cone Q. This
notion contains as special cases several kinds of properly efficient points in vector
optimization. In the paper, a Q-efficient point is defined without the openness of Q.

Remark 2.5 It follows from Definition 2.4 that

(i) if Q = qriC , a0 is said to be a quasi-relative efficient point of A.When intC 
= ∅,
it becomes the well-known definition of a weakly efficient point of A.

(ii) if Q = intεC(B), a0 is said to be a Henig efficient point of A.

Definition 2.6 ([20]) The mth-order contingent cone of a subset S ⊆ X at x0 ∈ clS
with respect to ui ∈ X , i = 1, . . . ,m − 1, is defined by

Tm
S (x0, u1, . . . , um−1) := {u ∈ X |∃tn → 0+, ∃
un → u, x0 + tnu1 + . . . + tm−1

n um−1 + tmn un ∈ S}.

When m = 1, TS(x0) has some properties as follows.

Proposition 2.7 ([20]) Let S ⊆ X and x0 ∈ clS. Then,

(i) TS(x0) is closed;
(ii) TS(x0) = TclS(x0);
(iii) if S is convex, then TS(x0) = clcone(S − x0); whence TS(x0) is convex;
(iv) if S is convex, then qriS = {x ∈ S| TS(x) is a linear subspace of X} (see [13]).
Definition 2.8 ([21]) Let S ⊆ X , and F : X → 2Y . The mapping F is said to be
closely C-convexlike on S if cl(F(S) + C) is convex.

3 Duality

SupposeC and D be closed pointed convex cones in normed spaces Y and Z , resp, and
qriC × qriD 
= ∅. For S ⊆ X be nonempty, and F : X → 2Y and G : X → 2Z with
domF ∪ domG ⊆ S, we consider the following constrained set-valued optimization
problem

(P)

⎧
⎨

⎩

Minimize F(x),
x ∈ S,

G(x) ∩ −D 
= ∅.

The feasible set of (P) is denoted by A := {x ∈ S : G(x) ∩ −D 
= ∅}.
Let Q be an arbitrary nonempty convex cone, different from Y . A point (x0, y0) ∈

grF is said to be a Q-efficient solution of (P) if x0 ∈ A and (F(A) − y0) ∩ −Q = ∅.
Consider the dual problem of (P) formulated as follows

(D)

{
Maximize h(c∗, d∗, y),
(c∗, d∗, y) ∈ H,
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where h : Y ∗ × Z∗ × Y → Y is defined by h(c∗, d∗, y) := y, and

H :=
{

(c∗, d∗, y) ∈ (Q∗\{0}) × D∗ × Y |〈c∗, y〉 ≤ inf
(v,w)∈(F,G)(S)

{〈
c∗, v

〉 + 〈
d∗, w

〉}
}

.

Let

� := {y ∈ Y |there exists (c∗, d∗) ∈ (Q∗\{0}) × D∗ such that (c∗, d∗, y) ∈ H}.

A feasible element (c∗, d∗, y0) ∈ H is said to be a Q-efficient solution of (D) if
(� − y0) ∩ Q = ∅.

We now establish the weak, strong, and converse duality theorems for Q-efficient
solutions of the primal–dual problems (P) and (D).

Theorem 3.1 (Weak duality) Suppose that (x0, y0) and (c∗, d∗, y) are feasible ele-
ments of (P) and (D), resp. Then, 〈c∗, y〉 ≤ 〈c∗, y0〉.
Proof Since (x0, y0) is a feasible elements of (P), there exists z0 ∈ G(x0) ∩ −D with
x0 ∈ S. It follows from the feasibility of (c∗, d∗, y) that

〈c∗, y〉 ≤ inf
(v,w)∈(F,G)(S)

{〈c∗, v〉 + 〈d∗, w〉}
≤ 〈c∗, y0〉 + 〈d∗, z0〉
≤ 〈c∗, y0〉 (z0 ∈ −D and d∗ ∈ D∗).

For the next result, we denote (FQ,G)+(.) := (F,G)(.) + Q × D.

Theorem 3.2 (Strong duality) Let (x0, y0) ∈ grF, z0 ∈ G(x0)∩−D, and N (D) 
= ∅.
Suppose that (x0, y0) is a Q-efficient solution of (P) and the following conditions hold

(i) (F−y0,G) is closely (C×D)-convexlike on S, where (F−y0)(x) := F(x)−y0;
(ii) (FQ)+(A) is closed whenever Q is not open;
(iii) ∃(e, k) ∈ −(Q × qriD) satisfying (e, k) /∈ TM (0, 0), where M :=

{(FQ,G)+(x) − (y0, 0)|x ∈ S\A};
(iv) ∃x ∈ S such that G(x) ∩ −N (D) 
= ∅.

If the cone Q is open, then there exists (c∗, d∗) ∈ (Q∗\{0}) × D∗ such
that (c∗, d∗, y0) is a Q-efficient solution of (D). Otherwise, the efficiency of
(c∗, d∗, y0) is fulfilled if, additionally, the following condition hold

(v) I (H) ⊆ Q#, where I : Y ∗ × Z∗ × Y → Y ∗ is defined by I (c∗, d∗
, y) = c∗ for

every (c∗, d∗
, y) ∈ H.

Proof With (e, k) in the condition (iii), we first prove that (e, k) /∈ TM̂ (0, 0), where

M̂ := (FQ,G)+(S) − (y0, 0). Suppose that (e, k) ∈ TM̂ (0, 0), i.e., there exist tn →
0+, {xn}n∈N ⊆ S, (yn, zn) ∈ (F,G)(xn) for all n ∈ N, and {(qn, dn)}n∈N ⊆ Q × D
such that

vn := yn + qn − y0
tn

→ e,

wn := zn + dn
tn

→ k. (3.1)
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1066 N. L. H. Anh

If {xn}n∈N ⊆ S\A for infinitely many n ∈ N, then (e, k) ∈ TM (0, 0) (by Defini-
tion 2.6), which contradicts (iii). If {xn}n∈N ⊆ A, by the Q-efficiency of (x0, y0), we
get (F(A) − y0) ∩ −Q = ∅, which implies that

cone((FQ)+(A) − y0) ∩ −Q = ∅. (3.2)

It follows from (3.1) that vn ∈ cone((FQ)+(A)− y0) and e ∈ clcone((FQ)+(A)− y0).
If Q is open, it follows from (3.2) that clcone((FQ)+(A) − y0) ∩ −Q = ∅, which
contradicts the fact that e ∈ clcone((FQ)+(A) − y0) and e ∈ −Q. When Q is not
open, the condition (ii) ensures that e ∈ cone((FQ)+(A) − y0), which contradicts
(3.2) since e ∈ −Q. Hence, (e, k) /∈ TM̂ (0, 0). ��

Moreover, TM̂ (0, 0) is a closed convex cone [from (i) and Proposition 2.7(i)–(iii)].
Thus, we can separate (e, k) and TM̂ (0, 0) (see [1]), i.e., there exists (c∗, d∗) ∈ (Y ∗ ×
Z∗)\{(0, 0)} such that, for all (y, z) ∈ TM̂ (0, 0),

〈c∗, e〉 + 〈d∗, k〉 < 0 ≤ 〈c∗, y〉 + 〈d∗, z〉.

By Proposition 2.7(iii), we get M̂ ⊆ TM̂ (0, 0). Therefore, for all (y, z) ∈ (F,G)(S),
(q, d) ∈ Q × D,

〈c∗, y + q − y0〉 + 〈d∗, z + d〉 ≥ 0. (3.3)

For given q0 ∈ Q, taking y = y0, q = q0, and z = z0 in (3.3), we have, for each
d ∈ D,

〈

c∗, 1
n
q0

〉

+ 〈d∗, z0 + d〉 ≥ 0,

equivalently,

1

n

〈
c∗, q0

〉 + 〈d∗, z0 + d〉 ≥ 0.

When n → +∞, the above inequality implies that, for all d ∈ D,

〈d∗, z0 + d〉 ≥ 0. (3.4)

From (3.4), we have 〈d∗, z0〉 ≥ 0 (with d = 0).Moreover, (3.4) shows that 〈d∗, d〉 ≥ 0
for all d ∈ D (since D is a cone), i.e., d∗ ∈ D∗. Thus, 〈d∗, z0〉 ≤ 0 (z0 ∈ −D). Hence,
〈d∗, z0〉 = 0.

Considering (3.3) with y = y0, z = z0, and d = 0, we get 〈c∗, q〉 ≥ 0 for all q ∈ Q,
which implies that c∗ ∈ Q∗. Suppose that c∗ = 0. By (iv), there exists z ∈ G(x) with
−z ∈ N (D). It follows from (3.3) that 〈d∗,−z〉 ≤ 〈d∗, d〉. If d∗ 
= 0, then −z is a
support point of D, which contradicts the fact that −z ∈ N (D). Thus, d∗ = 0, which
is impossible since (c∗, d∗) 
= (0, 0). Hence, c∗ 
= 0.
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On the other hand, (3.3) gives us the following inequality

〈c∗, y0〉 ≤ inf
(v,w)∈(F,G)(S)

{〈
c∗, v

〉 + 〈
d∗, w

〉}
.

Accordingly, (c∗, d∗, y0) is a feasible element of (D).Next,weprove that (c∗, d∗, y0) is
a Q-maximal solution of (D). Suppose to the contrary, i.e., there exists (ĉ∗, d̂∗, ŷ) ∈ H
such that ŷ − y0 ∈ Q (ŷ 
= y0). There are only two cases as follows.

• Case 1 If the cone Q is open, we get that 〈ĉ∗, ŷ − y0〉 > 0. On the other hand, it
follows from Theorem 3.1 that 〈ĉ∗, ŷ − y0〉 ≤ 0, which is a contradiction.

• Case 2 If Q is a nonopen cone, from (v), we get that 〈ĉ∗, ŷ − y0〉 > 0, which
contradicts Theorem 3.1.

Remark 3.3 (i) The conditions (ii) and (iii) are used to imply that (e, k) /∈ TM̂(0,0),

i.e., TM̂ (0, 0) is not a linear subspace, which means (0, 0) /∈ qriM̂ (Proposi-
tion 2.7(iv)). Moreover, by Proposition 2.3(vi), NM̂ (0, 0) is also not a linear
subspace, so there exists (c∗, d∗) 
= (0, 0) such that (c∗, d∗) ∈ NM̂ (0, 0). This
is the main idea for the proof of the strong duality.

(ii) The fact that (0, 0) /∈ qriM̂ is equivalent to the condition (b) in Theorem 8.1.16
in [20]. Thus, our assumptions can be considered as a sufficient condition for
that of Theorem 8.1.16 in [20].

(iii) The condition (v) is necessary for the Q-efficiency of (c∗, d∗, y0)when the cone
Q is not open. In general, the conclusion that 〈ĉ∗, ŷ − y0〉 > 0 with ŷ − y0 ∈ Q
may be not valid in this case. Indeed, let Y = R

2 and Q = {(0, a) ∈ Y |a ≥ 0},
then Q is not an open cone and Q∗ = {(y1, y2) ∈ Y |y1 ∈ R, y2 ≥ 0}. With
c∗ = (1, 0) ∈ Q∗, it is easy to see that 〈c∗, y − y0〉 = 0 and y − y0 ∈ Q for all
y ∈ Q.

Theorem 3.4 (Converse duality) Let x0 ∈ A, and (x0, y0) ∈ grF. Suppose that
(c∗, d∗, y0) is a feasible element of (D). If Q is an open cone, then (x0, y0) is a Q-
efficient solution of (P). Otherwise, the Q-efficiency of (x0, y0) is satisfied if c∗ ∈ Q#.

Proof Suppose that (x0, y0) is not a Q-efficient solution of (P), i.e., there exists x ∈ A
such that (F(x) − y0) ∩ −Q 
= ∅. It means that there is y ∈ F(x), z ∈ G(x) ∩ −D
with y − y0 ∈ −Q. By the assumption, in the case of Q being a nonopen cone, we
get that 〈c∗, y − y0〉 < 0 (this property is fulfilled for c∗ ∈ Q∗\{0} when Q is open).
It follows from the feasibility of (c∗, d∗, y0) that 〈c∗, y〉 + 〈d∗, z〉 ≥ 〈c∗, y0〉 for all
(y, z) ∈ (F,G)(S). Thus,

〈c∗, y − y0〉 ≥ −〈d∗, z〉.

With y = y, z = z in the above inequality, we have 〈c∗, y − y0〉 ≥ 0, which is a
contradiction. ��

The assumption that c∗ ∈ Q# in Theorem 3.4 is not a necessary condition for the
Q-efficiency of (x0, y0) by the following example.
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1068 N. L. H. Anh

Example 3.5 Let X = Y = R
2, Z = R, S = R

2+, C = {0} × R+, D = R+, and
Q = {0} × (R+\{0}). Consider two set-valued map F : X → 2Y , G : X → 2Z

defined by F(x) := R
2+ for all x ∈ S and

G(x) :=
{
D, if x ∈ (intS) ∪ {(0, 0)},
{1/n}n∈N, if x ∈ {(x1, x2) ∈ S\{(0, 0)}| x1x2 = 0}.

Then, A = (intS) ∪ {(0, 0)}. Take x0 = (0, 0), y0 = (0, 0), and z0 = 0, it is obvious
to see that (c∗, d∗, y0) (with c∗ = (1, 0) and d∗ = 0) is a feasible element of (D) and
c∗ /∈ Q#, but (x0, y0) is a Q-efficient solution of (P).

In the rest of this section, we discuss duality theorems for some kinds of efficient
solutions with Q being appropriately chosen cones.

3.1 Quasi-Relative Efficient Solutions

Theorem 3.6 Let (x0, y0) ∈ grF, z0 ∈ G(x0) ∩ −D, and N (D) 
= ∅.
(i) (Strong duality) Suppose that (x0, y0) is a quasi-relative efficient solution of

(P) and the conditions (i)–(iv) in Theorem 3.2 hold with respect to F+ in (ii)
and (F,G)+ in (iii). Then, there exists (c∗, d∗) ∈ (C∗\{0}) × D∗ such that
(c∗, d∗, y0) is a feasible element of (D). If, additionally, the condition (v) in
Theorem 3.2 is satisfied, then (c∗, d∗, y0) is a quasi-relative efficient solution of
(D).

(ii) (Converse duality) Suppose that x0 ∈ A, (c∗, d∗, y0) is a feasible element of
(D), and c∗ ∈ C#. Then, (x0, y0) is a quasi-relative efficient solution of (P).

Proof It follows from Theorems 3.2, 3.4 with Q = qriC .
If intC 
= ∅, by Remark 2.5(i), we get the following results for weakly efficient

solutions when the ordering cone in the constraint space has possibly empty interior.
��

Theorem 3.7 Let (x0, y0) ∈ grF, z0 ∈ G(x0) ∩ −D, and N (D) 
= ∅.
(i) (Strong duality) Suppose that (x0, y0) is a weakly efficient solution of (P), and

the conditions (i), (iii), (iv) in Theorem 3.2 hold with respect to (F,G)+ in (iii).
Then, there exists (c∗, d∗) ∈ (C∗\{0}) × D∗ such that (c∗, d∗, y0) is a weakly
efficient solution of (D).

(ii) (Converse duality) Suppose that x0 ∈ A, and (c∗, d∗, y0) is a feasible solution
of (D). Then, (x0, y0) is a weakly efficient solution of (P).

Proof It follows from Theorem 3.6. ��
If, additionally, intD 
= ∅, then Theorem 3.7 (i) can be simplified as follows.

Corollary 3.8 Let (x0, y0) ∈ grF, and z0 ∈ G(x0) ∩ −D. Suppose that (x0, y0) is
a weakly efficient solution of (P), and the conditions (i), (iv) in Theorem 3.2 hold.
Then, there exists (c∗, d∗) ∈ (C∗\{0})×D∗ such that (c∗, d∗, y0) is a weakly efficient
solution of (D).
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Proof By Theorem 3.7 (i), we need to prove that the condition (iii) in Theorem 3.2
is fulfilled. Indeed, (e, k) /∈ TM (0, 0) for all (e, k) ∈ −(intC × intD), where M =
{(F,G)+(x) − (y0, 0)|x ∈ S\A}. Suppose to the contrary, i.e., there exists (e, k) ∈
−(intC × intD) such that (e, k) ∈ TM (0, 0). By the definition of the contingent cone,
there exist tn → 0+, xn ∈ S\A, zn ∈ G(xn), and dn ∈ D such that

zn + dn
tn

→ k.

Since k ∈ −intD, we have zn ∈ −intD for large enough n. On the other hand, it
follows from xn ∈ S\A that G(xn) ∩ −D = ∅, i.e., zn /∈ −D for all n, which is a
contradiction. ��

3.2 Henig Efficient Solutions

When Q = intCε(B), duality theorems of the problems (P) and (D) with respect to
Henig efficient solutions in case of intD = ∅ are established as follows.

Theorem 3.9 Let B be a base ofC, (x0, y0) ∈ grF, z0 ∈ G(x0)∩−D, and N (D) 
= ∅.
(i) (Strong duality) Suppose that (x0, y0) is a Henig efficient solution of (P) and the

conditions (i), (iii), (iv) in Theorem 3.2 holdwith respect to (F,G)+ in (iii). Then,
there exists (c∗, d∗) ∈ C�(B) × D∗ such that (c∗, d∗, y0) is a Henig efficient
solution of (D).

(ii) (Converse duality) Suppose that x0 ∈ A, (c∗, d∗, y0) is a feasible element of (D).
Then, (x0, y0) is a Henig efficient solution of (P).

Proof From Theorems 3.2, 3.4, we only need to prove that (Cε(B))∗\{0} ⊆ C�(B).
Indeed, let c∗ ∈ (Cε(B))∗\{0}, then we get 〈c∗, y〉 ≥ 0 for all y ∈ Cε(B). With a
fixed u ∈ BY (0, ε) : 〈c∗, u〉 > 0, we have B − u ⊆ B + BY (0, ε) (since BY (0, ε)
is symmetric). Thus, 〈c∗, b − u〉 ≥ 0 for all b ∈ B, which implies that 〈c∗, b〉 ≥
〈c∗, u〉 > 0. Hence, c∗ ∈ C�(B). ��

Theorem 3.9 (i) can be simplified when intD 
= ∅ as follows.

Corollary 3.10 Let B be a base of C, (x0, y0) ∈ grF, and z0 ∈ G(x0) ∩ −D.
Suppose that (x0, y0) is a Henig efficient solution of (P) and the conditions (i), (iv) in
Theorem 3.2 hold. Then, there exists (c∗, d∗) ∈ C�(B) × D∗ such that (c∗, d∗, y0) is
a Henig efficient solution of (D).

4 Applications to Optimality Conditions

From the results in Sect. 3, we obtain optimality conditions in the Kuhn–Tucker type
for Q-efficient solutions of the problem (P). Then, results for some kinds of efficient
solutions are derived.

A necessary condition for Q-efficient solutions of (P) is implied immediately from
Theorem 3.2 as follows.
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Theorem 4.1 Let (x0, y0) ∈ grF, z0 ∈ G(x0) ∩ −D, and N (D) 
= ∅. Suppose that
(x0, y0) is a Q-efficient solution of (P) and the conditions (i)–(iv) in Theorem 3.2
are satisfied. Then, there exist c∗ ∈ Q∗\{0} and d∗ ∈ D∗ such that, for all (y, z) ∈
(F,G)(S),

〈c∗, y − y0〉 + 〈d∗, z − z0〉 ≥ 0, (4.1)

and
〈d∗, z0〉 = 0. (4.2)

For sufficient conditions, we have the following theorem.

Theorem 4.2 Let (x0, y0) ∈ grF, x0 ∈ A and, z0 ∈ G(x0)∩−D. Suppose that either
of the following conditions holds

(i) there exist c∗ ∈ Q# and d∗ ∈ D∗ such that (4.1) and (4.2) hold for every
(y, z) ∈ (F,G)(S);

(ii) there exist c∗ ∈ Q∗\{0} and d∗ ∈ D∗ such that (4.2) holds, and for every
(y, z) ∈ (F,G)(S)\{(y0, z0)},

〈c∗, y − y0〉 + 〈d∗, z − z0〉 > 0. (4.3)

Then, (x0, y0) is a Q-efficient solution of (P).

Proof If (i) holds, then the conclusion follows fromTheorem3.4.When (ii) is fulfilled,
suppose that (x0, y0) is not a Q-efficient solution of (P), i.e., there exists x ∈ A
(x 
= x0) such that (F(x) − y0) ∩ −Q 
= ∅. It means that there is y ∈ F(x),
z ∈ G(x) ∩ −D and y − y0 ∈ −Q. Since c∗ ∈ Q∗\{0}, we have 〈c∗, y − y0〉 ≤ 0.
On the other hand, by the assumption (with y = y, z = z), we get 〈c∗, y − y0〉 > 0,
which is a contradiction. ��

4.1 Optimality Conditions for Quasi-Relative Efficient Solutions

When Q = qriC , necessary and sufficient conditions for quasi-relative efficient solu-
tions of (P) are obtained by

Theorem 4.3 (Necessary condition) Let (x0, y0) ∈ grF, z0 ∈ G(x0) ∩ −D, and
N (D) 
= ∅. Suppose that (x0, y0) is a quasi-relative efficient solution of (P) and the
conditions (i)–(iv) in Theorem 3.2 are satisfied with respect to F+ in (ii) and (F,G)+
in (iii). Then, there exist c∗ ∈ C∗\{0} and d∗ ∈ D∗ such that (4.1) and (4.2) hold for
all (y, z) ∈ (F,G)(S).

Proof It follows from Theorem 3.6. ��
Theorem 4.4 (Sufficient condition) Let (x0, y0) ∈ grF, x0 ∈ A and, z0 ∈ G(x0) ∩
−D. Suppose that either of the following conditions holds

(i) there exist c∗ ∈ C# and d∗ ∈ D∗ such that (4.1) and (4.2) hold for every
(y, z) ∈ (F,G)(S);
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(ii) there exist c∗ ∈ C∗\{0} and d∗ ∈ D∗ such that (4.3) and (4.2) hold for every
(y, z) ∈ (F,G)(S)\{(y0, z0)}.
Then, (x0, y0) is a quasi-relative efficient solution of (P).

Proof It follows from Theorem 4.2. ��
If intC 
= ∅, Theorem 3.7 implies the following optimality condition for weakly

efficient solutions of (P) when the ordering cone D has empty interior.

Theorem 4.5 Let (x0, y0) ∈ grF, z0 ∈ G(x0) ∩ −D, and N (D) 
= ∅. Suppose the
conditions (i), (iii), (iv) in Theorem 3.2 be satisfied with respect to (F,G)+ in (iii).
Then, (x0, y0) is a weakly efficient solution of (P) if and only if there exist c∗ ∈ C∗\{0}
and d∗ ∈ D∗ such that (4.1) and (4.2) hold for all (y, z) ∈ (F,G)(S).

The following example shows a case where Theorem 4.5 can be employed, while
some existing results cannot.

Example 4.6 Let X = R
2, Y = R

2, Z = l2 be as defined in Example 2.2, C = R
2+,

and D = {{xn}n∈N ⊆ Z |xn ≥ 0,∀n ∈ N}. It is easy to see that intD = ∅, qriD =
N (D) = {{xn}n∈N ⊆ Z |xn > 0,∀n ∈ N}. Let S := {(x1, x2) ∈ X |(x1 − 1)2 + (x2 −
1)2 ≤ 1}, F : X → 2Y and G : X → 2Z be defined by

F(x1, x2) =
{

(x1, x2), if (x1, x2) ∈ S,

∅, otherwise,

G(x1, x2) =
⎧
⎨

⎩

{z ∈ Z |||z||l2 ≤ x1 + x2}, if (x1, x2) ∈ H,

qriD, if (x1, x2) ∈ S\H,

∅, otherwise,

where H := ((1, 1) − C) ∩ S. Then, H is the feasible set of (P).
Let x0 = (1, 1) ∈ H , y0 = (1, 1), and z0 = {−1/2n}n∈N. We can check that all

assumptions of Theorem 4.5 are satisfied. By calculating, we see that the necessary
condition given by Theorem 4.5 is not fulfilled. Thus, (x0, y0) is not a weakly efficient
solution of (P), but several other results cannot be used to reject (x0, y0) since intD =
∅, such as Theorem 4.2 in [6], Theorem 4.7 in [8], Theorem 3.2 in [17], Propositions
3.5, 3.6, 3.8 in [22], and Theorems 3.1, 3.2 in [23].

If, additionally, intD 
= ∅, then we can simplify Theorem 4.5 as follows.

Corollary 4.7 Let (x0, y0) ∈ grF, and z0 ∈ G(x0)∩−D. Suppose the conditions (i),
(iv) in Theorem 3.2 be satisfied. Then, (x0, y0) is a weakly efficient solution of (P) if
and only if there exist c∗ ∈ C∗\{0} and d∗ ∈ D∗ such that (4.1) and (4.2) hold for all
(y, z) ∈ (F,G)(S).

To illustrate Corollary 4.7, we consider an example as follows.

Example 4.8 Let X = R
2, Y = Z = R, C = D = R+, S = {(x1, x2) ∈ X |x1 ≥ 0},

and F : S → 2Y , G : S → 2Z be defined by

F(x1, x2) := {y ∈ Y |y ≥ −√
x1},
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and

G(x1, x2) := {y ∈ Y |y ≥ −x2}.

Then, intC = intD = R+\{0}. Let x0 = (0, 0) be a feasible point of (P), and
(y0, z0) = (0, 0). We can check that (F − y0,G) is closely (C × D)-convexlike on
S. Moreover, the point (0, 1) ∈ S holds G(0, 1) ∩ −intD 
= ∅. Then, all assumptions
of Corollary 4.7 are satisfied at (x0, y0). Let (c∗, d∗) ∈ C∗ × D∗ hold, for all (y, z) ∈
(F,G)(S),

〈c∗, y〉 + 〈d∗, z〉 ≥ 0,

which implies that, for all (x1, x2) ∈ S,

c∗(−√
x1) + d∗(−x2) ≥ 0.

Since x1 ≥ and x2 ∈ R, we must have (c∗, d∗) = (0, 0). By Corollary 4.7, (x0, y0) is
not a weakly efficient solution of (P).

4.2 Optimality Conditions for Henig Efficient Solutions

When Q = intCε(B), from Theorem 3.9, we get optimality conditions for Henig
efficient solutions when intD = ∅ as follows.

Theorem 4.9 Let B be a base ofC, (x0, y0) ∈ grF, z0 ∈ G(x0)∩−D, and N (D) 
= ∅.
Suppose the conditions (i), (iii), (iv) in Theorem 3.2 be satisfiedwith respect to (F,G)+
in (iii). Then, (x0, y0) is a Henig efficient solution of (P) if and only if there exist
c∗ ∈ C�(B) and d∗ ∈ D∗ such that (4.1) and (4.2) hold for all (y, z) ∈ (F,G)(S).

Corollary 4.10 Let (x0, y0) ∈ grF, z0 ∈ G(x0) ∩ −D, and intD 
= ∅. Suppose the
conditions (i) and (iv) in Theorem 3.2 be satisfied. Then, (x0, y0) is a Henig efficient
solution of (P) if and only if there exist c∗ ∈ C�(B) and d∗ ∈ D∗ such that (4.1) and
(4.2) hold for all (y, z) ∈ (F,G)(S).

To compare our results with other existing ones, we recall some notions.

Definition 4.11 (i) ([20]) Let K ⊆ X , x ∈ clK , and ui ∈ X , i = 1, . . . ,m − 1.
The mth-order adjacent set of K at x with respect to (u1, . . . , um−1) is defined
by

T �(m)
K (x, u1, . . . , um−1) := {u ∈ X |∀t → 0+,

∃un → u, x + tnu1 + . . . + tm−1
n um−1 + tmn un ∈ K }.

(ii) ([20]) Let F : X → 2Y , (x0, y0) ∈ grF , and (ui , vi ) ∈ X×Y , i = 1, . . . ,m−1.
Themth-order contingent derivative DmF(x0, y0, u1, v1, . . . , um−1, vm−1) of F
at (x0, y0) with respect to (ui , vi ), i = 1, . . . ,m − 1 is a set-valued mapping
from X to Y defined by
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grDmF(x0, y0, u1, v1, . . . , um−1, vm−1)

:= Tm
grF (x0, y0, u1, v1, . . . , um−1, vm−1).

(iii) ([20]) The mth-order adjacent derivative D�(m)F(x0, y0, u1, v1, . . . , um−1,

vm−1) : X → 2Y of F at (x0, y0) with respect to (ui , vi ), i = 1, . . . ,m − 1 is
defined by

grD�(m)F(x0, y0, u1, v1, . . . , um−1, vm−1)

:= T �(m)
grF (x0, y0, u1, v1, . . . , um−1, vm−1).

(iv) ([5]) The mth-order weak adjacent epiderivative D�(m)
w F(x0, y0, u1, v1, . . . ,

um−1, vm−1) : X → 2Y of F at (x0, y0)with respect to (ui , vi ), i = 1, . . . ,m−1
is defined by

D�(m)
w F(x0, y0, u1, v1, . . . , um−1, vm−1)(x) :=

WMinC{y ∈ Y |(x, y) ∈ T �(m)
epiF (x0, y0, u1, v1, . . . , um−1, vm−1)},

where WMinC A denotes the set of weakly minimal points of A.
(v) ([24]) The mth-order generalized adjacent epiderivative D�(m)

g F(x0, y0, u1, v1,
. . . , um−1, vm−1) : X → 2Y of F at (x0, y0) with respect to (ui , vi ), i =
1, . . . ,m − 1 is defined by

D�(m)
g F(x0, y0, u1, v1, . . . , um−1, vm−1)(x) :=
MinC{y ∈ Y |(x, y) ∈ T �(m)

epiF (x0, y0, u1, v1, . . . , um−1, vm−1)},
where MinC A := {a0 ∈ A|(A − a0) ∩ (−C\{0}) = ∅}.

(vi) ([4]) The mth-order upper Studniarski derivative D
m
F(x0, y0) : X → 2Y of F

at (x0, y0) is defined by

D
m
F(x0, y0)(x) := {y ∈ Y |∃t → 0+, ∃(xn, yn)

→ (x, y), y0 + tmn yn ∈ F(x0 + tnxn)}.
Remark 4.11 We have the following relationships of the above-mentioned notions.

D
1
F+(x0, y0)(x) = D1F+(x0, y0)(x),

and

D�(m)
g F+(x0, y0, u1, v1, . . . , um−1, vm−1)(x)

⊆ D�(m)
w F+(x0, y0, u1, v1, . . . , um−1, vm−1)(x)

⊆ D�(m)F+(x0, y0, u1, v1, . . . , um−1, vm−1)(x)

⊆ DmF+(x0, y0, u1, v1, . . . , um−1, vm−1)(x).
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From Theorems 4.5 and 4.9, we get the following corollaries in terms of the higher-
order contingent derivative.

Corollary 4.12 Let (x0, y0) ∈ grF, z0 ∈ G(x0) ∩ −D, (ui , vi , wi ) ∈ X × (−C) ×
(−D), and N (D) 
= ∅. Suppose the conditions (i), (iii), (iv) in Theorem 3.2 be
satisfied with respect to (F,G)+ in (iii). If (x0, y0) is a weakly efficient solution
of (P), then there exist c∗ ∈ C∗\{0} and d∗ ∈ D∗ such that for all (v,w) ∈
Dm(F,G)+(x0, y0, z0, u1, v1, w1, . . . , um−1, vm−1, wm−1)(x), x ∈ X.

〈c∗, v〉 + 〈d∗, w〉 ≥ 0, (4.4)

and
〈d∗, z0〉 = 0.

Proof It follows from Theorem 4.5 that there exist c∗ ∈ C∗\{0} and d∗ ∈ D∗ such
that for all (y, z) ∈ (F,G)(S)

〈c∗, y − y0〉 + 〈d∗, z − z0〉 ≥ 0,

and

〈d∗, z0〉 = 0.

Let (v,w) ∈ Dm(F,G)+(x0, y0, z0, u1, v1, w1, . . . , um−1, vm−1, wm−1)(x), i.e.,
there are tn → 0+, {xn} ⊆ S, (yn, zn) ∈ (F,G)(xn), and (cn, dn) ∈ C × D for
all n such that

xn − x0 − tnu1 − . . . − tm−1
n um−1

tmn
→ x,

yn − y0 − tnv1 − . . . − tm−1
n vm−1

tmn
→ v,

zn − z0 − tnu1 − . . . − tm−1
n wm−1

tmn
→ w.

Since (vi , wi ) ∈ (−C) × (−D), we get

〈
c∗, yn− y0− tnv1 − . . . − tm−1

n vm−1

tmn

〉

+
〈
d∗, zn− z0− tnu1 − . . . − tm−1

n wm−1

tmn

〉

≥ 0.

Taking n → +∞, then 〈c∗, v〉 + 〈d∗, w〉 ≥ 0, and the proof is completed. ��
By the similar proof, Corollary 4.12 is also valid for all (v,w) ∈ D

m
(F,G)+

(x0, y0)(x).
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Corollary 4.13 Let B be a base of C, (x0, y0) ∈ grF, z0 ∈ G(x0) ∩ −D, and
N (D) 
= ∅. Suppose the conditions (i), (iii), (iv) in Theorem 3.2 be satisfied with
respect to (F,G)+ in (iii). If (x0, y0) is a Henig efficient solution of (P), then there
exist c∗ ∈ C�(B) and d∗ ∈ D∗ such that (4.4) and (4.2) hold for all (v,w) ∈
Dm(F,G)+(x0, y0, z0, u1, v1, w1, . . . , um−1, vm−1, wm−1)(x), x ∈ X.

Proof Based on Theorem 4.9, the proof is similar to that of Corolarry 4.13. ��
From Remark 4.11, we can see that Corollaries 4.12 and 4.13 are extensions of

Theorem 3.7 in [4], Theorem 6.1 in [25] (for weakly efficient solutions), and Theorem
6.1 in [5], Theorems 5.1, 5.2 in [24] (for Henig efficient solutions), resp, to the case
that the ordering cone D in the constraint space has possibly empty interior. Moreover,
the convexity assumption in our results is weaker than that in the above-mentioned
papers.

5 Conclusions

In the paper, we consider a kind of dual problem (D) (without using generalized deriv-
atives) of a constrained set-valued optimization problem (P). Some duality theorems
for the pair of (P)–(D) are established dealing with the concept of Q-efficiency. Then,
corresponding results for quasi-relative efficient solutions and Henig efficient solu-
tions are obtained.We also get their applications to optimality conditions in set-valued
optimization. Several examples are given to show that our results are extensions of
the existing ones in the literature to the case of ordering cones having possibly empty
interior.

Recently, Lagrange duality theoremswere presented for the same types of solutions
of a set-valued optimization problem in [20] (see Subsection 8.1.2). The dual problem
in this book is different fromour problemhere since the dual variables in this subsection
are operators, not vectors like in our work. To obtain duality theorems, the authors
proposed some regularity assumptions using the quasi-interior of a certain set, see
the Theorem 8.1.16 (the condition (c)) in [20]. Thus, for further research, we plan to
investigatewhether there is any relationship between this assumption and the condition
used in our paper or not, and if assumption we considered does hold in general.
Moreover, we intend to extend our results from vector approach to set approach, see
Subsection 2.6.2 in [20].
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12. Zǎlinescu, C.: Convex Analysis in General Vector Spaces. World Scientific, Singapore (2002)
13. Borwein, J.M., Lewis, A.S.: Partially finite convex programming, Part I : quasi relative interiors and

duality theory. Math. Program. 57, 15–48 (1992)
14. Zhou, Z.A., Yang, X.M.: Optimality conditions of generalized subconvexlike set-valued optimization

problems based on the quasi-relative interior. J. Optim. Theory Appl. 150, 327–340 (2011)
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