

Algebraical Dependence and Uniqueness Problem for Meromorphic Mappings with Few Moving Targets

Hongzhe Cao^{[1](http://orcid.org/0000-0001-5583-9397)}¹

Received: 20 August 2015 / Revised: 29 February 2016 / Published online: 12 April 2016 © Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2016

Abstract The purpose of this article is twofold. The first is to prove algebraical dependence of meromorphic mappings from \mathbb{C}^m into $P^n(\mathbb{C})$ sharing few moving hyperplanes. The second is to show uniqueness theorem for meromorphic mappings from the viewpoint of dependence. These results improve and extend some earlier works.

Keywords Meromorphic mappings · Algebraical dependence · Uniqueness theorem · Moving targets

Mathematics Subject Classification 32H30 · 30D35

1 Introduction and Main Results

In 1926, Nevanlinna [\[6](#page-16-0)] showed that for two non-constant meromorphic functions *f* and *g* on the complex plane \mathbb{C} , if they have the same inverse images for five distinct values, then $f = g$, and if they have the same inverse images, counted with multiplicities, for four distinct values, then *g* is a special type of a linear fractional transformation of *f* . These results are usually called the five-value theorem and four-value theorem.

In 1929, as an improvement of the above mentioned Nevanlinna's results, Cartan [\[1](#page-15-0)] declared that there are at most two meromorphic functions on C which have the

Communicated by V. Ravichandran.

B Hongzhe Cao hongzhecao@126.com

¹ Department of Mathematics, Nanchang University, Nanchang 330031, Jiangxi, People's Republic of China

same inverse images regardless of multiplicities for four distinct values. However, Steinmetz [\[14\]](#page-16-1) gave examples which showed that Cartan's declaration is false. In relation to this, Ji [\[5\]](#page-16-2) obtained algebraic dependence of meromorphic mappings by the use of Cartan's original idea in 1988. Later, Stoll [\[15\]](#page-16-3) generalized the results of Ji to parabolic covering spaces. Ru [\[12\]](#page-16-4) studied the case of holomorphic curves for moving targets. In 2010, Thoan and Duc [\[7\]](#page-16-5) proved some results on algebraic dependence of meromorphic mappings. Recently, Thoan et al. [\[8\]](#page-16-6) improved their work and proved that

Theorem A (Thoan-Duc-Quang [\[8](#page-16-6)]) *Let* $f_1, \ldots, f_\lambda : \mathbb{C}^m \to P^n(\mathbb{C})$ *be non-constant meromorphic mappings. Let* $\{a_j\}_{j=1}^q$ *be meromorphic mappings of* \mathbb{C}^m *into* $P^n(\mathbb{C})$ *in*
in grading position with the $T_n(\mathbb{C})$ *of grading* $(T_n(\mathbb{C})) \setminus \{1 \leq i \leq n\}$ *and* $(f_n(\mathbb{C})) \neq 0$ *general position such that* $T_{a_i}(r) = o(\max_{1 \le i \le \lambda} \{T_{f_i}(r)\})(1 \le j \le q)$ and $(f_i, a_j) \ne j$ O for each $1 \le i \le \lambda$, $1 \le j \le q$. Assume that the following conditions are satisfied.

- *(a)* $\min\{v_{(f_1, a_i)}, 1\} = \cdots = \min\{v_{(f_\lambda, a_i)}, 1\}$ *for each* $1 \leq j \leq q$.
- (*b*) dim{*z* : $(f, a_i)(z) = (f, a_j)(z) = 0$ } $\leq m 2$ (1 $\leq i < j \leq q$).
- *(c)* There exists an integer number $l, 2 \leq l \leq \lambda$, such that for any increasing sequence $1 \le j_1 < \cdots < j_l \le \lambda$, $f_{j_1}(z) \wedge \cdots \wedge f_{j_l}(z) = 0$ *on* ∪ $_{j=1}^q \{z : (f_1, a_j)(z) = 0\}$ *.*

If q > $\frac{n(2n+1)\lambda-(n-1)(\lambda-1)}{\lambda-l+1}$, then f_1, \ldots, f_λ are algebraically dependent over $\mathbb C$, i.e., $f_1 \wedge \cdots \wedge f_\lambda \equiv 0$ *on* \mathbb{C} .

Let $f: \mathbb{C}^m \to P^n(\mathbb{C})$ *be a meromorphic mapping and d be a positive integer or* +∞*. Let* {*a ^j*} *q ^j*=¹ *be "small" (with respect to f) meromorphic mappings of* ^C*^m into Pn*(C) *in general position such that*

$$
\dim\{z : (f, a_i)(z) = (f, a_j)(z) = 0\} \le m - 2 (1 \le i < j \le q).
$$

Consider the set $\mathcal{G}(f, \{a_j\}_{j=1}^q, d)$ *of all meromorphic mappings* $g : \mathbb{C}^m \to P^n(\mathbb{C})$ *satisfying the conditions:*

- *(i)* min{ $\nu_{(f,a_i)}$, *d*} = min{ $\nu_{(g,a_i)}$, *d*} (1 ≤ *j* ≤ *q*),
- *(ii)* $f(z) = g(z)$ *on* $\bigcup_{j=1}^{q} \{z : (f, a_j)(z) = 0\}.$

For brevity, we will denote by $\sharp S$ *the cardinality of set S. In 2013, Quang* [\[10](#page-16-7)] *proved the following theorem about algebraic dependence of three maps.*

Theorem B (Quang [\[10](#page-16-7)]) *Assume* f_1 , f_2 , $f_3 \in \mathcal{G}(f, \{a_j\}_{j=1}^q, 1)$ *and* $n \ge 2$ *.*

- *(a) If q* ≥ $3n^2 + 3/2$ *, then* $f_1 \wedge f_2 \wedge f_3 \equiv 0$ *.*
- *(b) If f is linearly non-degenerate over* \Re *and* $q \geq (3n^2 + 3n + 3)/2$ *, then* $f_1 \wedge f_2 \wedge$ $f_3 \equiv 0.$

The first purpose of this article is to give an improvement of Theorem A. Namely, applying the new second main theorems given by Quang [\[11](#page-16-8)]*, we will show that*

Theorem 1 *Let* $f_1, \ldots, f_\lambda : \mathbb{C}^m \to P^n(\mathbb{C})$ *be non-constant meromorphic mappings.* Let $\{a_j\}_{j=1}^q$ *be meromorphic mappings of* \mathbb{C}^m *into* $P^n(\mathbb{C})$ *in general position such that* \mathbb{C}^m *T_{a*}_{*j*}(*r*) = *o*($\max_{1 \le i \le \lambda} \{T_{f_i}(r)\}$)(1 ≤ *j* ≤ *q*) *and* (*f_i*, *a_j*) \neq 0 *for each* 1 ≤ *i* ≤ λ , 1 ≤ $j \leq q$. Assume that the following conditions are satisfied:

- *(a)* $\min\{v_{(f_1, a_i)}, 1\} = \cdots = \min\{v_{(f_\lambda, a_i)}, 1\}$ *for each* $1 \leq j \leq q$.
- (*b*) dim{*z* : $(f, a_i)(z) = (f, a_j)(z) = 0$ } $\leq m 2$ (1 $\leq i < j \leq q$).
- *(c)* There exists an integer number $l, 2 \leq l \leq \lambda$, such that for any increasing sequence $1 \le j_1 < \cdots < j_l \le \lambda$, $f_{j_1}(z) \wedge \cdots \wedge f_{j_l}(z) = 0$ *on* ∪ $_{j=1}^q \{z : (f_1, a_j)(z) = 0\}$ *.*

If q > $\frac{3n(n+1)\lambda-2(n-1)(\lambda-1)}{2(\lambda-l+1)}$, then f_1,\ldots,f_λ are algebraically dependent over $\mathcal R$, i.e. $f_1 \wedge \cdots \wedge f_\lambda \equiv 0 \text{ on } \mathscr{R}.$

For the case $\lambda = 3$ and $l = 2$ in Theorem [1,](#page-1-0) we have the following corollary, which is better than Theorem B(a).

Corollary 1 *Assume f*₁, *f*₂, *f*₃ ∈ $\mathcal{G}(f, \{a_j\}_{j=1}^q, 1)$ *and* $n \geq 2$ *. If* $q \geq \frac{9n^2+5n+4}{4}$, *then f*₁ ∧ *f*₂ ∧ *f*₃ \equiv 0*.*

On the other hand, the uniqueness problem with truncated multiplicities for meromorphic mappings from \mathbb{C}^m into $P^n(\mathbb{C})$ sharing a finite set of fixed (or moving) targets in $P^n(\mathbb{C})$ has been studied very intensively by many authors in the last few decades, and they related to many problems in Nevanlinna theory and hyperbolic complex analysis (see ref. [\[2\]](#page-15-1), [\[4\]](#page-15-2), [\[13](#page-16-9)]). In [\[3](#page-15-3)], Chen-Li-Yan studied the uniqueness problem without the assumption of the linearly non-degeneracy for meromorphic mappings.

Theorem C (Chen-Li-Yan [\[3](#page-15-3)]) *If q* = $4n^2 + 2n$, $n \ge 2$, then $\sharp \mathcal{G}(f, \{a_j\}_{j=1}^q, 1) = 1$. *Later, Thoan et al.* [\[8](#page-16-6)] *showed the result still valid if* $q = 4n^2 + 2$ *.*

Set rank $\mathcal{R}(f) := rank{f_0, \ldots, f_n}$ *over* \mathcal{R} *. It is easy to see that the definition of rankR*(*f*) *does not depend on the choice of the reduced representation of f . In 2013, Quang and An* [\[9\]](#page-16-10) *got the following uniqueness theorem with fewer moving hyperplanes.*

Theorem D (Quang-An [\[9](#page-16-10)]) *If q > 4nk* + 2, *n* \geq 2, where *k* + 1 = *rank* $\mathcal{R}(f)$ *, then* $\sharp \mathscr{G}(f, \{a_j\}_{j=1}^q, 1) = 1.$

Quang [\[11](#page-16-8)] *established some new second main theorem for meromorphic mappings intersecting moving hyperplanes. For their application, Quang showed the following result.*

Theorem E (Quang [\[11](#page-16-8)])

(a) If
$$
q > \frac{9n^2 + 9n + 4}{4}
$$
, $n \ge 2$, then $\sharp \mathcal{G}(f, \{a_j\}_{j=1}^q, 1) \le 2$.
\n(b) If $q > 3n^2 + n + 2$ and $n \ge 2$, then $\sharp \mathcal{G}(f, \{a_j\}_{j=1}^q, 1) = 1$.

The following question arises naturally: are there uniqueness theorem with few moving hyperplanes? Based on the propagation of dependence in Theorem [1](#page-1-0)*, the second purpose of this paper is to give an answer to the above question. Namely, we will prove the following result.*

Theorem 2 *Let* $f : \mathbb{C}^m \to P^n(\mathbb{C})$ *be a meromorphic mapping and let* $\{a_j\}_{j=1}^q$ *be* "*small*" (with respect to f) meromorphic mappings of \mathbb{C}^m *into* $P^n(\mathbb{C})$ *in general position such that*

$$
\dim\{z : (f, a_i)(z) = (f, a_j)(z) = 0\} \le m - 2 (1 \le i < j \le q).
$$

Set $k + 1 = \text{rank}_{\mathcal{R}}(f)$ *, then the following assertions hold:*

(i) If
$$
k \ge \frac{n+1}{2}
$$
 and $q > 2(2n+1)k - 2k^2 + 2$ ($n \ge 2$), then $\sharp \mathcal{G}(f, \{a_j\}_{j=1}^q, 1) = 1$.
\n(ii) If $k < \frac{n+1}{2}$ and $q > \frac{2k^2 + 2(n-1)k + (n+3) + \sqrt{(2k^2 + 2(n-1)k + n-1)^2 + 8(3n+1)k}}{2}$ ($n \ge 2$),

then
$$
\sharp \mathcal{G}(f, \{a_j\}_{j=1}^q, 1) = 1
$$
.
Put $Q = \frac{2k^2 + 2(n-1)k + n + 3 + \sqrt{(2k^2 + 2(n-1)k + n-1)^2 + 8(3n+1)k}}{2}$. For $1 \le k < \frac{n+1}{2}$, we

have

$$
2(2n + 1)k - 2k^{2} + 2 - Q
$$

=
$$
\frac{8k(k - \frac{n+1}{2})(2k^{2} - (4n + 3)k + 2n)}{-6k^{2} + 6(n + 1)k - (n - 1) + \sqrt{(2k^{2} + 2(n - 1)k + n - 1)^{2} + 8(3n + 1)k}} > 0.
$$

By Theorem [2,](#page-2-0) we get the following corollary.

Corollary 2 *Let* $f : \mathbb{C}^m \to P^n(\mathbb{C})$ *be a meromorphic mapping and let* $\{a_j\}_{j=1}^q$ *be "small" (with respect to f) meromorphic mappings of* C*^m into Pn*(C) *in general position such that*

$$
\dim\{z : (f, a_i)(z) = (f, a_j)(z) = 0\} \le m - 2 (1 \le i < j \le q).
$$

If q > 2(2*n*+1)*k*−2*k*²+2, *n* ≥ 2, where *k*+1 = $rank_{\mathcal{R}}(f)$, then $\sharp \mathcal{G}(f, \{a_j\}_{j=1}^q, 1)$ = 1*.*

Since $1 \leq k \leq n$, Corollary [2](#page-3-0) implies that

Corollary 3 *If* $q > 2n^2 + 2n + 2$ *and* $n \ge 2$ *, then* $\sharp \mathcal{G}(f, \{a_j\}_{j=1}^q, 1) = 1$ *.*

We would like to notice that Theorem [2](#page-2-0) is an improvement of not only the above mentioned theorems, but also of many uniqueness theorem of meromorphic mappings for moving targets without counting multiplicity.

2 Basic Notions and Preliminaries in Nevanlinna Theory

We set $||z|| = (|z_1|^2 + \cdots + |z_m|^2)^{\frac{1}{2}}$ for $z = (z_1, \dots, z_m) \in \mathbb{C}^m$, $B(r) := \{z : z_m\}$ $||z|| \le r$, $S(r) := \{z : ||z|| = r\}, d^c := \frac{\sqrt{-1}}{4\pi} (\overline{\partial} - \partial), v := (dd^c ||z||^2)^{m-1}$ and $\sigma := d^c \log ||z||^2 \wedge (dd^c \log ||z||^2)^{m-1}.$

Let $F(z)$ be a nonzero holomorphic function on a domain Ω in \mathbb{C}^m . For $\alpha =$ $(\alpha_1, \cdots, \alpha_m)$ with $\alpha_i \in \mathbb{Z}_+$ $(1 \leq i \leq m)$, set $|\alpha| = \sum_{i=1}^m \alpha_i$ and $D^{\alpha}F =$ $\frac{\partial^{|\alpha|}F}{\partial(\alpha_1)z_1\cdots\partial(\alpha_m)z_m}$, where \mathbb{Z}_+ denote the set of nonnegative integers. We define the map $\nu_F : \Omega \to \mathbb{Z}_+$ by $\nu_F(a) := \max\{m : D^{\alpha} F = 0 \text{ for all } \alpha \text{ with } |\alpha| < m\}(a \in \Omega).$

We mean by a divisor on a domain Ω in \mathbb{C}^m a map $\nu : \Omega \to \mathbb{Z}$ such that, for each $a \in \Omega$, there are nonzero holomorphic functions *F* and *G* on a connected neighborhood $U \subset \Omega$ of *a* such that $v(z) = v_F(z) - v_G(z)$ for each $z \in U$ outside an analytic set of dimension $\leq m-2$. Two divisors are regarded as the same if they are identical outside an analytic set of dimension $\leq m-2$. For a divisor ν on Ω , we set $|v| := \{z : v(z) \neq 0\}$, which is a purely $(m - 1)$ -dimensional analytic subset of Ω or empty. For a divisor ν on \mathbb{C}^m and a positive integer *M* or $M = +\infty$, we define the truncated divisor $v^{[M]}$ by $v^{[M]}(z) := \min\{M, v(z)\}.$

Let φ be a nonzero meromorphic function on Ω in \mathbb{C}^m . We define the divisor ν_φ as follows: for each $a \in \mathbb{C}^m$, choose nonzero holomorphic functions *F* and *G* on a neighborhood *U* of *a* such that $\varphi = \frac{F}{G}$ on *U* and dim($F^{-1}(0) \cap G^{-1}(0)$) $\leq m - 2$. Then, put $\nu_{\varphi}(a) := \nu_F(a), \nu_{\varphi}(z) := \nu_F(z)$ and $\nu_{\varphi}^{\infty} := \nu_G$, which are independent of choices of F and G and so globally well-defined on Ω .

Define the counting function of ν by

$$
N(r, v) := \int_1^r \frac{n(t)}{t^{2m-1}} dt, \ (1 < r < +\infty)
$$

where

$$
n(t) := \frac{\int_{|v| \cap B(r)} v(z)v}{\sum_{|z| \le t} v(z)} \quad \text{if} \quad m \ge 2,
$$

Similarly, we define $n^{[M]}(t)$ and $N(r, v^{[M]})$ and denote by $N^{[M]}(r, v)$, respectively.

Let $\varphi : \mathbb{C}^m \to \mathbb{C}$ be a meromorphic function. Define

$$
N_{\varphi}(r) := N(r, \nu_{\varphi}), N_{\varphi}^{[M]}(r) := N^{[M]}(r, \nu_{\varphi}).
$$

For brevity, we will omit the character M if $M = +\infty$.

Let $f: \mathbb{C}^m \to P^n(\mathbb{C})$ be a meromorphic mapping. We can choose holomorphic functions f_0 , \cdots , f_n on \mathbb{C}^m such that $I_f := \{z : f_0(z) = \cdots = f_n(z)\}$ is of dimension at most $m - 2$, and $f(z) = (f_0 : \cdots : f_n)$ outside I_f . Usually, $f(z) =$ $(f_0: \cdots: f_n)$ is called a reduced representation of f.

Set $|| f || := (|f_0|^2 + \cdots + |f_n|^2)^{\frac{1}{2}}$, the characteristic function of *f* is defined by

$$
T_f(r) := \int_{S(r)} \log ||f|| \sigma - \int_{S(1)} \log ||f|| \sigma, \ \ r > 1.
$$

Note that $T_f(r)$ is independent on the choice of the reduced representation.

Let *a* be a meromorphic mapping of \mathbb{C}^m into $P^n(\mathbb{C})$ with reduced representation $a = (a_0 : \cdots : a_n)$. We define

$$
m_{(f,a)}(r) := \int_{S(r)} \log \frac{\|f\| \|a\|}{|(f,a)|} \sigma - \int_{S(1)} \log \frac{\|f\| \|a\|}{|(f,a)|} \sigma,
$$

where $||a|| := (|a_0|^2 + \cdots + |a_n|^2)^{\frac{1}{2}}$ and $r > 1$. Throughout this paper, we always assume that the homogeneous coordinates of $P^n(\mathbb{C})$ are chosen so that for a given meromorphic mapping $a = (a_0 : \cdots : a_n)$ of \mathbb{C}^m into $P^n(\mathbb{C}), a_0 \neq 0$. Then, we set $\tilde{a} = (\frac{a_0}{a_0} : \cdots : \frac{a_n}{a_0}).$

Let a_1, \ldots, a_q $(q \ge n + 1)$ be *q* meromorphic mappings of \mathbb{C}^m into $P^n(\mathbb{C})$ with reduced representations $a_j = (a_{j0} : \cdots : a_{jn})(1 \le j \le q)$. We say that a_1, \ldots, a_q

located in general position if $\det(a_{ik}) \neq 0$ for any $1 \leq j_0 < j_1 < \cdots < j_n \leq q$. Denote by $\mathcal M$ the field of meromorphic functions on $\mathbb C^m$ and denote by $\mathcal R$ the smallest subfield of *M* which contains \mathbb{C} and all $\frac{a_{j_k}}{a_{j_l}}$ with $a_{j_l} \neq 0$.

Let *f* and *a* be meromorphic mappings of \mathbb{C}^m into $P^n(\mathbb{C})$ with reduced representations $f = (f_0 : \cdots : f_n)$ and $a = (a_0 : \cdots : a_n)$. We say that *f* is linearly non-degenerate over \mathcal{R} if f_0, \ldots, f_n are linearly independent over \mathscr{R} . Put $(f, a) := \sum_{i=0}^{n} a_i f_i$, then we say that *a* is "small" with respect to *f* if $T_a(r) = o(T_f(r))$ as $r \to +\infty$. Denote by $v_{(f,a)}$ the map of \mathbb{C}^m into $\mathbb Z$ whose value $v_{(f,a)}(z)$ is the intersection of the images of f and a at $f(z)$.

If $f, a: \mathbb{C}^m \to P^n(\mathbb{C})$ be meromorphic mappings such that $(f, a) \neq 0$, then the First Main Theorem for moving targets in value distribution theory states that

$$
T_f(r) + T_a(r) = m_{(f,a)}(r) + N_{(f,a)}(r) + O(1).
$$

For a nonzero meromorphic function φ on \mathbb{C}^m , the proximity function $m(r, \varphi)$ is defined by

$$
m(r,\varphi) = \int_{S(r)} \log^+ |\varphi|\sigma,
$$

where $\log^+ |x| = \max\{\log x, 0\}$ for $x \ge 0$. The Nevanlinna's characteristic function is defined by

$$
T(r,\varphi) := N(r,\nu_{\varphi}^{\infty}) + m(r,\varphi).
$$

We regard φ as a meromorphic mapping of \mathbb{C}^m into $P^1(\mathbb{C})$, then

$$
T_{\varphi}(r) = T(r, \varphi) + O(1).
$$

As usual, by the notation " $\Vert P, \Vert'$ we mean the assertion *P* holds for all $r \in [0, +\infty)$ excluding a Borel subset *E* of the interval $[0, +\infty)$ with $\int_E dr < +\infty$.

The First Main Theorem for general position (see [\[15\]](#page-16-3), p. 326) Assume that $1 \leq \lambda \leq n+1$, $f_i: \mathbb{C}^m \to P^n(\mathbb{C})$ $(1 \leq i \leq \lambda)$ are λ meromorphic mappings located in general position. Then

$$
N(r, \mu_{f_1 \wedge \dots \wedge f_\lambda}) + m(r, f_1 \wedge \dots \wedge f_\lambda) \leq \sum_{1 \leq i \leq \lambda} T_{f_i}(r) + O(1).
$$

Let *V* be a complex vector space of dimension $n \geq 1$. The vectors $\{v_1, \ldots, v_k\}$ are said to be in general position if for each selection of integers $1 \leq i_1 < \cdots < i_p \leq k$ with $p \leq n$, $v_{i_1} \wedge \cdots \wedge v_{i_n} \neq 0$. The vectors $\{v_1, \ldots, v_k\}$ are said to be in special position if they are not in general position. Take $1 \leq p \leq k$, then $\{v_1, \ldots, v_k\}$ are said to be in *p*-special position if for each selection of integers $1 \le i_1 < \cdots < i_p \le k$ the vectors v_{i_1}, \ldots, v_{i_p} are in special position.

The Second Main Theorem for general position (see [\[15](#page-16-3)], Theorem 2.1, P.326) Let *M* be a connected complex manifold of dimension *m*. Let *A* be a pure $(m - 1)$ dimensional analytic subset of *M*. Let *V* be a complex vector space of dimension $n + 1 > 1$. Let *p* and *k* be integers with $1 \le p \le k \le n + 1$. Let $f_i : M \to P(V)$, $1 \leq j \leq k$ be meromorphic mappings. Assume that f_1, \ldots, f_k are in general position. Also assume that f_1, \ldots, f_k are in *p*-special position on *A*. Then we have

$$
\mu_{f_1 \wedge \cdots \wedge f_k} \ge (k - p + 1) \nu_A.
$$

The following is the "second main theorem type" for meromorphic mappings intersecting moving targets with truncated counting function according to S.D.Quang [\[11](#page-16-8)].

Second Main Theorem for moving targets (Quang [\[11\]](#page-16-8)) Let $f: \mathbb{C}^m \to P^n(\mathbb{C})$ be a meromorphic mapping and $\{a_i\}_{i=1}^q$ $(q \geq 2n - k + 2)$ be meromorphic mappings of \mathbb{C}^m into $P^n(\mathbb{C})$ located in general position such that $(f, a_i) \neq 0$ ($1 \leq i \leq q$), where $k + 1 = \text{rank}_{\mathscr{R}}(f)$. Then the following assertions hold:

(a)
$$
\|\frac{q}{2n-k+2}T_f(r) \le \sum_{i=1}^q N_{(f,a_i)}^{[k]}(r) + o(T_f(r)) + O(\max_{1 \le i \le q} T_{a_i}(r)),
$$

(b)
$$
\|\frac{q-n+2k-1}{n+k+1}T_f(r) \le \sum_{i=1}^q N^{[k]}_{(f,a_i)}(r) + o(T_f(r)) + O(\max_{1 \le i \le q} T_{a_i}(r)).
$$

Remark:

- (1) If $k \geq \frac{n+1}{2}$ then the above theorem (a) is stronger than (b), otherwise, if $k < \frac{n+1}{2}$ then (b)is stronger than (a).
- (2) If $k \geq 1$, we have the following estimates:

$$
\min_{1 \le k \le n} \{ \max\{ \frac{q}{2n - k + 2}, \frac{q - n + 2k - 1}{n + k + 1} \} \} \ge \begin{cases} \frac{2q}{3(n+1)} & \text{if } q \ge 3n + 3, \\ \frac{q - n + 1}{n + 2} & \text{if } q < 3n + 3. \end{cases}
$$

Therefore, S.D.Quang [\[11](#page-16-8)] obtained the following corollary.

Corollary 2.1 *Let* $f: \mathbb{C}^m \to P^n(\mathbb{C})$ *be a meromorphic mapping and* $\{a_i\}_{i=1}^q$ ($q \geq 0$ $(2n+1)$ *be meromorphic mappings of* \mathbb{C}^m *into* $P^n(\mathbb{C})$ *located in general position such that* $(f, a_i) \neq 0$ ($1 \leq i \leq q$).

(a) Then we have

$$
\|\frac{2q-n+1}{3(n+1)}T_f(r)\leq \sum_{i=1}^q N_{(f,a_i)}^{[n]}(r)+o(T_f(r))+O(\max_{1\leq i\leq q} T_{a_i}(r)).
$$

(b) If q ≥ 3*n* + 3*, then*

$$
\|\frac{2q}{3(n+1)}T_f(r)\leq \sum_{i=1}^q N_{(f,a_i)}^{[n]}(r)+o(T_f(r))+O(\max_{1\leq i\leq q}T_{a_i}(r)).
$$

(c) If q < 3*n* + 3*, then*

$$
\|\frac{q-n+1}{n+2}T_f(r)\leq \sum_{i=1}^q N_{(f,a_i)}^{[n]}(r)+o(T_f(r))+O(\max_{1\leq i\leq q}T_{a_i}(r)).
$$

 \mathcal{L} Springer

3 Proof of Theorem [1](#page-1-0)

Proof It suffices to prove Theorem [1](#page-1-0) in the case of $\lambda \leq n + 1$. Assume that $f_1 \wedge f_2$ $\cdots \wedge f_{\lambda} \neq 0$. Considering $\lambda - 1$ arbitrary moving targets $a_{i_1}, \ldots, a_{i_{\lambda-1}}$, then there exists a_{i_0} with $i_0 \notin \{i_1, \ldots, i_{\lambda-1}\}$ such that the matrix $\sqrt{2}$ $\Big\}$ $(f_1, a_{i_0}) \cdots (f_{\lambda}, a_{i_0})$ $(f_1, a_{i_1}) \cdots (f_{\lambda}, a_{i_1})$
 $\vdots \qquad \vdots \qquad \vdots$ $(f_1, a_{i_{\lambda-1}}) \cdots (f_{\lambda}, a_{i_{\lambda-1}})$ \setminus $\left.\right\}$ is nondegenerate.

 $\sqrt{2}$

 $(f_1, a_1) \cdots (f_{\lambda}, a_1)$ $(f_1, a_2) \cdots (f_{\lambda}, a_2)$
 $\vdots \qquad \vdots \qquad \vdots$ ⎞

 $\sqrt{ }$

is of rank

 $\Big\}$

Indeed, suppose on contrary, the matrix

 $(f_1, a_{n+1}) \cdots (f_{\lambda}, a_{n+1})$ $\leq \lambda - 1$ (< *n* + 1). Let $a_j = (a_{j0} : \cdots : a_{jn})$ ($1 \leq j \leq n + 1$) be the reduced representations of a_1, \ldots, a_{n+1} and $f_j = (f_{j0} : \cdots : f_{jn})(1 \leq j \leq \lambda)$ be the reduced representations of f_1, \ldots, f_λ . Then

$$
\begin{pmatrix}\n(f_1, a_1) & \cdots & (f_{\lambda}, a_1) \\
(f_1, a_2) & \cdots & (f_{\lambda}, a_2) \\
\vdots & \vdots & \vdots \\
(f_1, a_{n+1}) & \cdots & (f_{\lambda}, a_{n+1})\n\end{pmatrix} = \begin{pmatrix}\na_{10} & \cdots & a_{1n} \\
a_{20} & \cdots & a_{2n} \\
\vdots & \vdots & \vdots \\
a_{n+10} & \cdots & a_{n+1n}\n\end{pmatrix} \cdot \begin{pmatrix}\nf_{10} & \cdots & f_{\lambda 0} \\
f_{11} & \cdots & f_{\lambda 1} \\
\vdots & \vdots & \vdots \\
f_{1n} & \cdots & f_{\lambda n}\n\end{pmatrix}.
$$

Since a_1, \dots, a_{n+1} are in general position, we get $f_1 \wedge \dots \wedge f_\lambda \equiv 0$. This is a contradiction.

We denote by $\mu_{\tilde{f}_1 \wedge \cdots \wedge \tilde{f}_\lambda}$ the divisor associated with $f_1 \wedge \cdots \wedge f_\lambda$, $N(r, \mu_{\tilde{f}_1 \wedge \cdots \wedge \tilde{f}_\lambda})$ the counting function associated with the divisor $\mu_{\tilde{f}_1 \wedge \cdots \wedge \tilde{f}_k}$, where $f_t := ((f_t, a_{i_0}) : (f_t, a_{i_0}) \vee (f_t, a_{i_0}))$ ($1 \le t \le 1$). We will prove the following elements \cdots : $(f_t, a_{i_{\lambda-1}})$ (1 ≤ *t* ≤ λ). We will prove the following claim.

Claim 3.1 *For every* $z \in \mathbb{C}^m$ *outside an analytic set of codimension* > 2*, we have*

$$
\sum_{j=0}^{\lambda-1} \left(\lambda \min_{1 \leq t \leq \lambda} \{ \nu_{(f_t, a_{i_j})}(z) \} + (\lambda - l) \sum_{t=1}^{\lambda} \min \{ \nu_{(f_t, a_{i_j})}(z), 1 \} \right)
$$

+
$$
\sum_{j \in \{1, ..., q\} \setminus \{i_0, i_1, ..., i_{\lambda-1}\}} \sum_{t=1}^{\lambda} (\lambda - l + 1) \min \{ \nu_{(f_t, a_j)}(z), 1 \} \leq \lambda \mu_{\tilde{f}_1 \wedge \dots \wedge \tilde{f}_{\lambda}}(z).
$$

In fact, the Claim is the Claim 3.2 in [\[8\]](#page-16-6)*, we give the proof here for completeness of our proof. Let* $I = \{i_0, i_1, \ldots, i_{\lambda-1}\}, \overline{I} = \{1, 2, \ldots, q\} \setminus I$, $\mathscr{A} := \bigcup_{i \in I} (f_1, a_i)^{-1}(0)$, $\overline{\mathscr{A}} := \bigcup_{i \in \overline{I}} (f_1, a_i)^{-1}(0)$ *and* $A = \bigcup_{1 \le i < j \le q} ((f_1, a_i)^{-1}(0) \cap (f_1, a_j)^{-1}(0)).$

Case 1 Let $z_0 \in \mathcal{A} \setminus (A \cup \bigcup_{i=1}^{\lambda} I(f_i) \cup (a_{i_0} \wedge \cdots \wedge a_{i_{\lambda-1}})^{-1}(0))$ be a regular point of $\mathscr A$. Without loss of generality, we assume that z_0 is a zero of (f_1, a_{i_0}) where $i_0 \in I$. Let *S* be an irreducible analysis subset of $\mathscr A$ containing z_0 and *U* be an open neighborhood of z_0 in \mathbb{C}^m , such that $U \cap (\mathscr{A} \setminus S) = \emptyset$. Choosing a holomorphic function *h* on neighborhood $U' \subset U$ of z_0 such that $\nu_h(z) = \min_{1 \le t \le \lambda} {\{\nu_{(f_t, a_{i_0})}(z)\}}$ if $z \in S$ and $v_h(z) = 0$ if $z \notin S$. Then $(f_t, a_{i_0}) = hu_t$ $(1 \le t \le \lambda)$, where u_t is holomorphic function.

Since the matrix $\sqrt{2}$ $\overline{\mathcal{L}}$ $(f_1, a_{i_1}) \cdots (f_{\lambda}, a_{i_1})$
 $\vdots \qquad \vdots \qquad \vdots$ $(f_1, a_{i_{\lambda-1}}) \cdots (f_{\lambda}, a_{i_{\lambda-1}})$ \setminus $\Big|$ is of rank ≤ λ − 1. Therefore, there

exist not all zero holomorphic function b_1, \ldots, b_λ such that

$$
\sum_{t=1}^{\lambda} b_t(f_t, a_{i_j}) = 0 \ (1 \le j \le \lambda - 1).
$$

It implies that

$$
\sum_{t=1}^{\lambda} b_t \tilde{f}_t = \left(\sum_{t=1}^{\lambda} b_t (f_t, a_{i_0}), 0, \ldots, 0 \right).
$$

Without loss of generality, we may assume that the set of the common zeros of ${b_t}_{t=1}^{\lambda}$ which is as of generality, we may assume that the set of the common zeros of $\{v_t\}_{t=1}^t$ is an analysis subset of codimension ≥ 2 . Then there exists an index, say λ , such that $S \not\subset b_{\lambda}^{-1}(0)$.

Thus, for each $z \in (U' \cap S) \setminus b_{\lambda}^{-1}(0)$, we have

$$
\tilde{f}_1(z) \wedge \cdots \wedge \tilde{f}_\lambda(z) = \tilde{f}_1(z) \wedge \cdots \wedge \widetilde{f_{\lambda-1}}(z) \wedge (\tilde{f}_\lambda(z) + \sum_{t=1}^{\lambda-1} \frac{b_t}{b_\lambda} \tilde{f}_t(z))
$$

$$
= \tilde{f}_1(z) \wedge \cdots \wedge \widetilde{f_{\lambda-1}}(z) \wedge (V(z)h(z))
$$

$$
= h(z) \tilde{f}_1(z) \wedge \cdots \wedge \widetilde{f_{\lambda-1}}(z) \wedge V(z),
$$

where $V(z) = (u_{\lambda} + \sum_{t=1}^{\lambda-1} \frac{b_t}{b\lambda} u_t, 0, \dots, 0)$. On the other hand,

$$
\begin{pmatrix}\n(f_{j_1}, a_{i_0}) & \cdots & (f_{j_l}, a_{i_0}) \\
(f_{j_1}, a_{i_1}) & \cdots & (f_{j_l}, a_{i_1}) \\
\vdots & \vdots & \vdots \\
(f_{j_1}, a_{i_{\lambda-1}}) & \cdots & (f_{j_1}, a_{i_{\lambda-1}})\n\end{pmatrix} = \begin{pmatrix}\na_{i_00} & \cdots & a_{i_0n} \\
a_{i_10} & \cdots & a_{i_1n} \\
\vdots & \vdots & \vdots \\
a_{i_{\lambda-1}0} & \cdots & a_{i_{\lambda-1}n}\n\end{pmatrix} \cdot \begin{pmatrix}\nf_{j_10} & \cdots & f_{j_l0} \\
f_{j_11} & \cdots & f_{j_l1} \\
\vdots & \vdots & \vdots \\
f_{j_1n} & \cdots & f_{j_ln}\n\end{pmatrix}.
$$

Since a_1, \dots, a_q are in general position, rank $\{a_{i_0}, \dots, a_{i_{\lambda-1}}\} = \lambda$. By the assumption, for any increasing sequence $1 \le j_1 < \cdots < j_l \le \lambda - 1$, $f_{j_1}(z) \wedge \cdots \wedge f_{j_l}(z) = 0$ on *S*. Thus,

$$
\text{rank}\{\widetilde{f_{j_1}},\cdots,\widetilde{f_{j_l}}\} \leq \min\{\text{rank}\{f_{j_1},\cdots,f_{j_l}\},\text{rank}\{a_{i_0},\cdots,a_{i_{\lambda-1}}\}\}
$$
\n
$$
= \text{rank}\{f_{j_1},\cdots,f_{j_l}\}.
$$

 \mathcal{D} Springer

Hence $\tilde{f}_{j_1}(z) \wedge \cdots \wedge \tilde{f}_{j_l}(z) = 0$ on *S*. It yields that the family $\{\tilde{f}_1, \ldots, \tilde{f}_l, V(z)\}$ is in (*l* + 1)− special position on *S*. By the Second Main Theorem for general position, we have

$$
\mu_{\tilde{f}_1 \wedge \dots \wedge \tilde{f}_{\lambda-1} \wedge V}(z) \ge \lambda - l, \ z \in S.
$$

Hence, $\mu_{\tilde{f}_1 \wedge \cdots \wedge \tilde{f}_\lambda}(z) \ge \nu_h(z) + \lambda - l, z \in (U' \cap S) \setminus b_\lambda^{-1}(0)$. In particular,

$$
\mu_{\tilde{f}_1 \wedge \dots \wedge \tilde{f}_\lambda}(z_0) \ge \min_{1 \le t \le \lambda} \{ \nu_{(f_t, a_{i_0})}(z_0) \} + \lambda - l.
$$

Therefore

$$
\sum_{i \in I} (\lambda \min_{1 \le t \le \lambda} \{v_{(f_t, a_i)}(z_0)\} + (\lambda - l) \sum_{t=1}^{\lambda} \min \{v_{(f_t, a_i)}(z_0), 1\})
$$

+
$$
\sum_{i \in \overline{I}} \sum_{t=1}^{\lambda} (\lambda - l + 1) \min \{v_{(f_t, a_i)}(z_0), 1\}
$$

=
$$
\lambda (\min_{1 \le t \le \lambda} \{v_{(f_t, a_{i_0})}(z_0)\} + \lambda - l) \le \lambda \mu_{\tilde{f}_1 \wedge \dots \wedge \tilde{f}_\lambda}(z_0).
$$

Case 2 Let $z_0 \in \mathscr{A} \setminus (A \cup \bigcup_{i=1}^{\lambda} I(f_i) \cup (a_{i_0} \wedge \cdots \wedge a_{i_{\lambda-1}})^{-1}(0))$ be a regular point of $\widetilde{\mathscr{A}}$. Then *z*₀ is a zero of one holomorphic mapping (f_1, a_t) where $t \in \overline{I}$. According to the assumption and the proof in Case 1, the family $\tilde{f}_1, \ldots, \tilde{f}_\lambda$ are in *l*-special position on an irreducible analytic subset of codimension 1 of $\widetilde{\mathscr{A}}$ which contains z_0 . By the Second Main Theorem for general position, we have

$$
\mu_{\tilde{f}_1 \wedge \dots \wedge \tilde{f}_\lambda}(z_0) \geq \lambda - l + 1.
$$

Hence

$$
\sum_{i \in I} (\lambda \min_{1 \le t \le \lambda} \{v_{(f_t, a_i)}(z_0)\} + (\lambda - l) \sum_{t=1}^{\lambda} \min \{v_{(f_t, a_i)}(z_0), 1\})
$$

$$
+ \sum_{i \in \overline{I}} \sum_{t=1}^{\lambda} (\lambda - l + 1) \min \{v_{(f_t, a_i)}(z_0), 1\}
$$

$$
= \lambda(\lambda - l + 1) \le \lambda \mu_{\tilde{f}_1 \wedge \dots \wedge \tilde{f}_\lambda}(z_0).
$$

From the above two cases, Claim [3.1](#page-7-0) is proved.

For nonnegative integers $c_1, c_2, \ldots, c_\lambda$, it is easy to check that

$$
\min_{1 \leq t \leq \lambda} c_t \geq \sum_{t=1}^{\lambda} \min\{c_t, n\} - (\lambda - 1)n.
$$

 \mathcal{L} Springer

Since $\min\{v_{(f_1, a_{i_0})}, 1\} = \cdots = \min\{v_{(f_\lambda, a_{i_0})}, 1\}$ and $v_{(f_t, a_i)}(z_0) \geq \min\{v_{(f_t, a_{i_0})}\}$ (z_0) , 1}. Claim [3.1](#page-7-0) implies that

$$
\sum_{j=1}^{\lambda-1} \sum_{t=1}^{\lambda} \left(\lambda \min \{ v_{(f_t, a_{i_j})}(z), n \} - [(\lambda - 1)n - (\lambda - l)] \min \{ v_{(f_t, a_{i_j})}(z), 1 \} \right) + \sum_{j \in \{1, ..., q\} \setminus \{i_1, ..., i_{\lambda-1}\}} \sum_{t=1}^{\lambda} (\lambda - l + 1) \min \{ v_{(f_t, a_j)}(z), 1 \} \leq \lambda \mu_{\tilde{f}_1 \wedge \dots \wedge \tilde{f}_{\lambda}}(z).
$$

Thus,

$$
\begin{split} &\sum_{j=1}^{\lambda-1}\sum_{t=1}^{\lambda}\Bigg(\lambda N^{[n]}_{(f_t,a_{i_j})}(r)-[(\lambda-1)n-(\lambda-l)]N^{[1]}_{(f_t,a_{i_j})}(r)\Bigg)\\ &+\sum_{j\in\{1,\ldots,q\}\backslash\{i_1,\ldots,i_{\lambda-1}\}}\sum_{t=1}^{\lambda}(\lambda-l+1)N^{[1]}_{(f_t,a_j)}(r)\\ &\leq \lambda N_{\tilde{f}_1\wedge\cdots\wedge\tilde{f}_\lambda}(r). \end{split}
$$

From $T_{\tilde{f}_t}(r) \leq T_{f_t}(r) + o(\max_{1 \leq i \leq \lambda} T_{f_i}(r))$ $(1 \leq t \leq \lambda)$ and the First Main Theorem for general position, we get

$$
\sum_{j=1}^{\lambda-1} \sum_{t=1}^{\lambda} \left(\lambda N_{(f_t, a_{i_j})}^{[n]}(r) - [(\lambda - 1)n - (\lambda - l)] N_{(f_t, a_{i_j})}^{[1]}(r) \right)
$$

+
$$
\sum_{j \in \{1, ..., q\} \setminus \{i_1, ..., i_{\lambda-1}\}} \sum_{t=1}^{\lambda} (\lambda - l + 1) N_{(f_t, a_j)}^{[1]}(r) \leq \lambda \sum_{t=1}^{\lambda} T_{f_t}(r) + o(\max_{1 \leq t \leq \lambda} T_{f_t}(r)).
$$

Summing both sides of the above inequality over all sequences $1 \le i_1 < \cdots < i_{\lambda-1} \le$ *q*, we have

$$
\sum_{i=1}^{q} \sum_{t=1}^{\lambda} \left(\lambda(\lambda - 1) N_{(f_t, a_i)}^{[n]}(r) + ((\lambda - l + 1)q - (\lambda - 1)((\lambda - 1)n + 1)) N_{(f_t, a_i)}^{[1]}(r) \right)
$$

$$
\leq q \lambda \sum_{t=1}^{\lambda} T_{f_t}(r) + o(\max_{1 \leq t \leq \lambda} T_{f_t}(r)).
$$

Since $N_{(f_t, a_i)}^{[1]}(r) \geq \frac{1}{n} N_{(f_t, a_i)}^{[n]}(r)$, then

$$
\frac{(\lambda - l + 1)q + (\lambda - 1)(n - 1)}{n} \sum_{i=1}^{q} \sum_{t=1}^{\lambda} N_{(f_t, a_i)}^{[n]}(r) \leq q \lambda \sum_{t=1}^{\lambda} T_{f_t}(r) + o(\max_{1 \leq t \leq \lambda} T_{f_t}(r)).
$$

For $2 \leq l \leq \lambda \leq n$,

$$
q > \frac{3n(n+1)\lambda - 2(n-1)(\lambda - 1)}{2(\lambda - l + 1)} \ge \frac{3n^2 + 4n + 5}{2} \ge 3n + 3
$$

Applying the Second Main Theorem for moving targets (Corollary [2.1\(](#page-6-0)b)), we set

$$
\|\frac{(\lambda - l + 1)q + (\lambda - 1)(n - 1))}{n} \cdot \frac{2q}{3(n + 1)} \sum_{t=1}^{\lambda} T_{f_t}(r)
$$

$$
\leq q\lambda \sum_{t=1}^{\lambda} T_{f_t}(r) + o(\max_{1 \leq t \leq \lambda} T_{f_t}(r)).
$$

Letting $r \to +\infty$, we have

$$
\frac{(\lambda - l + 1)q + (\lambda - 1)(n - 1))}{n} \cdot \frac{2q}{3(n + 1)} \le q\lambda.
$$

Therefore

$$
q \leq \frac{3n(n+1)\lambda - 2(n-1)(\lambda - 1)}{2(\lambda - l + 1)}.
$$

This is a contradiction. Thus, $f_1 \wedge \cdots \wedge f_\lambda \equiv 0$ $f_1 \wedge \cdots \wedge f_\lambda \equiv 0$ $f_1 \wedge \cdots \wedge f_\lambda \equiv 0$. Theorem 1 is proved completely. \Box

4 Proof of Theorem [2](#page-2-0)

Let $f: \mathbb{C}^m \to P^n(\mathbb{C})$ be a meromorphic mapping and $\{a_1, \ldots, a_q\}$ be meromorphic mappings of \mathbb{C}^m into $P^n(\mathbb{C})$. Take a reduced representation $f = (f_1 : \cdots : f_q)$ of f , we set

$$
V(f) := \{(c_1, \ldots, c_n) \in \mathcal{R}^{n+1} : \sum_{i=0}^{n} c_i f_i = 0\}.
$$

It is easy to see that $V(f)$ does nor depend on the choice of the reduced representation of *f* and rank $\mathcal{R}(f) = n + 1 - \dim \mathcal{R} V(f)$.

In order to prove Theorem [2,](#page-2-0) we need the following lemma.

Lemma 4.1 *Let* $f : \mathbb{C}^m \to P^n(\mathbb{C})$ *be a meromorphic mapping and d be a positive integer or* $+\infty$ *. Let* {*a*_{*j*}}^{*q*}_{*j*} *be "small" (with respect to f) meromorphic mappings of* \mathbb{C}^m *into* $P^n(\mathbb{C})$ *in general position such that*

$$
\dim\{z : (f, a_i)(z) = (f, a_j) = 0\} \le m - 2 (1 \le i < j \le q).
$$

Assume that one of the following conditions satisfies:

(i) $k \geq \frac{n+1}{2}$ and $q > 2(n+1)k - k^2$, or *(ii)* $k < \frac{n+1}{2}$ *and* $q > k^2 + (n-1)k + (n+1)$ *.*

Then for every $g \in \mathscr{G}(f, \{a_j\}_{j=1}^q, 1)$ *, the following hold:*

(a) $V(f) = V(g)$ and $rank_{\mathcal{R}}(f) = rank_{\mathcal{R}}(g)$.

(b) $T_f(r) = O(T_g(r))$ *and* $T_g(r) = O(T_f(r))$ *.*

Proof Without loss of generality, we may assume that rank $\mathcal{R}(f) \geq \text{rank}_{\mathcal{R}}(g)$. Taking reduced representations $f = (f_0 : \cdots : f_n)$ and $g = (g_0 : \cdots : g_n)$, respectively. We will show that $V(g) \subset V(f)$.

Indeed, suppose that there exists an element $c = (c_0, \ldots, c_n) \in \mathbb{R}^{n+1}$ such that $n - c_0 a_n = 0$ but $\sum_{i=0}^{n} c_i f_i \neq 0$ Since $f(z) = a(z)$ on \mathbb{R}^d , $\{z : (f, a_0)(z) = 0\}$ $\sum_{i=1}^{n} c_i g_i = 0$, but $\sum_{i=1}^{n} c_i f_i \neq 0$. Since $f(z) = g(z)$ on $\bigcup_{j=1}^{q} \{z : (f, a_j)(z) = 0\},$

we have $\bigcup_{i=1}^{q} \{z : (f, a_j)(z) = 0\}$ ⊂ {*z* : $(f, c)(z) = 0$ }. This implies that

$$
\sum_{i=1}^{q} N_{(f,a_i)}^{[1]}(r) \le N_{(f,c)}^{[1]}(r) + o(T_f(r)).
$$

By the Second Main Theorem for moving hyperplanes, we have

 $-$ If $k \geq \frac{n+1}{2}$, then

$$
\| \frac{q}{2n - k + 2} T_f(r) \le \sum_{i=1}^q N_{(f,a_i)}^{[k]}(r) + o(T_f(r))
$$

$$
\le k \sum_{i=1}^q N_{(f,a_i)}^{[1]}(r) + o(T_f(r))
$$

$$
\le k N_{(f,c)}^{[1]}(r) + o(T_f(r)) \le k T_f(r) + o(T_f(r)).
$$

Let $r \to +\infty$, we get

$$
q \le 2(n+1)k - k^2.
$$

This is in contradiction with (i). $-$ If $k < \frac{n+1}{2}$, then

$$
\| \frac{q-n+2k-1}{n+1+k} T_f(r) \leq \sum_{i=1}^q N_{(f,a_i)}^{[k]}(r) + o(T_f(r))
$$

$$
\leq k \sum_{i=1}^q N_{(f,a_i)}^{[1]}(r) + o(T_f(r))
$$

$$
\leq k N_{(f,c)}^{[1]}(r) + o(T_f(r)) \leq k T_f(r) + o(T_f(r)).
$$

Let $r \to +\infty$, we get

$$
q \le k^2 + (n-1)k + (n+1).
$$

This is in contradiction with (ii).

Hence $V(g) \subseteq V(f)$. It implies that

$$
\operatorname{rank}_{\mathscr{R}}(f) = n + 1 - \dim_{\mathscr{R}} V(f) \le n + 1 - \dim_{\mathscr{R}} V(g) = \operatorname{rank}_{\mathscr{R}}(g).
$$

Therefore, $\text{rank}_{\mathscr{R}}(f) = \text{rank}_{\mathscr{R}}(g)$, which yields $V(f) = V(g)$.

By the Second Main Theorem for moving hyperplanes, $q \ge 2n - k + 2$, we have

$$
\| \frac{q}{2n+2-k} T_f(r) \le \sum_{i=1}^q N_{(f,a_i)}^{[k]}(r) + o(T_f(r))
$$

$$
\le k \sum_{i=1}^q N_{(g,a_i)}^{[1]}(r) + o(T_f(r)) \le kq(T_g(r)) + o(T_f(r)).
$$

Thus, $||T_f(r) = O(T_g(r))$. Since rank $g(f) = \text{rank}_{\mathscr{R}}(g)$, similarly we get $||T_g(r)|$ $O(T_f(r))$. The Lemma is proved.

Proof of Theorem [2](#page-2-0) Suppose that $g \in \mathcal{G}(f, \{a_j\}_{j=1}^q, 1)$ and $f \neq g$. By changing indices if necessary, we may assume that

$$
\frac{(f, a_1)}{(g, a_1)} = \frac{(f, a_2)}{(g, a_2)} = \dots = \frac{(f, a_{k_1})}{(g, a_{k_1})} \neq \frac{(f, a_{k_1+1})}{(g, a_{k_1+1})} = \dots = \frac{(f, a_{k_2})}{(g, a_{k_2})}
$$
\n
$$
\neq \dots \neq \frac{(f, a_{k_{s-1+1}})}{(g, a_{k_{s-1+1}})} = \dots = \frac{(f, a_{k_s})}{(g, a_{k_s})},
$$
\n
$$
\frac{\text{group } s}{\text{group } s}
$$

where $k_s = q$. For each $1 \le i \le q$, we set

$$
\sigma(i) = \begin{cases} i+k & \text{if } i+k \le q; \\ i+k-q, & \text{if } i+k > q. \end{cases}
$$

and

$$
P_i := (f, a_i)(g, a_{\sigma(i)}) - (g, a_i)(f, a_{\sigma(i)}).
$$

We claim that the number of elements in each group is at most *k*.

Indeed, suppose this claim does not hold. Without loss of generality, we may assume that $k_1 \geq k+1$. Since $\text{rank}_{\mathscr{R}}(f) = \dim(\{(f, \tilde{a}_i)\}_{i=1}^{k+1})_{\mathscr{R}}$, for every $0 \leq j \leq n$, there exist meromorphic mappings $c_{ii} \in \mathcal{R}$ such that

$$
f_j = \sum_{i=1}^{k+1} c_{ji}(f, \widetilde{a}_i).
$$

By Lemma [4.1,](#page-11-0) we have

$$
V(f) = V(g).
$$

It yields that

$$
g_j = \sum_{i=1}^{k+1} c_{ji}(g, \tilde{a}_i) = \frac{(f, a_1)}{(g, a_1)} f_j
$$

for every $0 \le j \le n$. Hence $f = g$. This is a contradiction. Thus, the number of elements of each group is at most *k*.

Hence $\frac{(f,a_i)}{(g,a_i)}$ and $\frac{(f,a_{\sigma(i)})}{(g,a_{\sigma(i)})}$ belong to distinct groups. This implies that $P_i \neq 0$ (1 ≤ $i \leq q$).

By Claim [3.1](#page-7-0) for $\lambda = l = 2$ and $i_0 = \sigma(i)$, we have

$$
\sum_{j=i,\sigma(i)} 2\min\{\nu_{(f,a_j)}(z),\nu_{(g,a_j)}(z)\} + 2\sum_{j=1,j\neq i,\sigma(i)}^{q} \min\{\nu_{(f,a_j)}(z),1\} \leq 2\mu_{\tilde{f}\wedge\tilde{g}}(z).
$$

for every $z \in \mathbb{C}^m$ outside an analytic set of codimension ≥ 2 . Because

$$
\min \{ \nu_{(f,a_j)}(z), \nu_{(g,a_j)}(z) \}
$$

\n
$$
\geq \min \{ \nu_{(f,a_j)}(z), k \} + \min \{ \nu_{(g,a_j)}(z), k \} - k \min \{ \nu_{(f,a_j)}(z), 1 \}.
$$

Thus,

$$
2\sum_{j=i,\sigma(i)} (\min\{\nu_{(f,a_j)}(z),k\} + \min\{\nu_{(g,a_j)}(z),k\} - k\min\{\nu_{(f,a_j)}(z),1\})
$$

+ 2
$$
\sum_{j=1,j\neq i,\sigma(i)}^q \min\{\nu_{(f,a_j)}(z),1\} \le 2\mu_{\tilde{f}\wedge\tilde{g}}(z).
$$

for every $z \in \mathbb{C}^m$ outside an analytic set of codimension ≥ 2 . It yields that

$$
\sum_{j=i,\sigma(i)} \sum_{u=f,g} (2N_{(u,a_j)}^{[k]}(r) - kN_{(u,a_j)}^{[1]}(r)) + \sum_{j=1, j\neq i,\sigma(i)}^{q} \sum_{u=f,g} N_{(u,a_j)}^{[1]}(r) \le 2T(r) + o(T(r)),
$$

where $T(r) := T_f(r) + T_g(r)$. By summing up over all *i*, we have

$$
\sum_{j=1}^{q} \sum_{u=f,g} \left(4N_{(u,a_j)}^{[k]}(r) + (q-2k-2)N_{(u,a_j)}^{[1]}(r) \right) \le 2qT(r) + o(T(r)).
$$

² Springer

Since $N_{(u,a_j)}^{[1]}(r) \geq \frac{1}{k} N_{(u,a_j)}^{[k]}(r)$, we obtain

$$
\frac{q+2k-2}{k}\sum_{j=1}^q\sum_{u=f,g}N_{(u,a_j)}^{[k]}(r)\leq 2qT(r)+o(T(r)).
$$

By the Second Main Theorem for moving targets, we get

- If
$$
k \ge \frac{n+1}{2}
$$
,
\n
$$
\frac{q+2k-2}{k} \cdot \frac{q}{2n-k+2} T(r) \le 2qT(r) + o(T(r)).
$$

Letting $r \to +\infty$, we have

$$
q \le -2k^2 + 2(2n+1)k + 2.
$$

It is a contradiction. $-$ If $k < \frac{n+1}{2}$,

$$
\frac{q+2k-2}{k} \cdot \frac{q-n+2k-1}{n+k+1} T(r) \le 2q T(r) + o(T(r)).
$$

Letting $r \to +\infty$, we have

$$
q^{2} - [2k^{2} + 2(n - 1)k + n + 3]q - 2(n + 1 - 2k)(k - 1) \leq 0.
$$

Thus,

$$
q \le \frac{2k^2 + 2(n-1)k + (n+3) + \sqrt{(2k^2 + 2(n-1)k + n-1)^2 + 8(3n+1)k}}{2}.
$$

This is a contradiction.

Therefore, we have $f = g$. This completes the proof of Theorem [2.](#page-2-0)

Acknowledgements The research is partially supported by the National Science Foundation of China, Nos: 11401291 and 11461042.

References

- 1. Cartan, H.: Un nouveau théoreme d'unicité relatif aux fonctions méromorphes. CR Acad. Sci. Paris **188**, 301–330 (1929)
- 2. Chen, Z., Yan, Q.: Uniqueness theorem of meromorphic mappings into $P^N(\mathbb{C})$ sharing $2N + 3$ hyperplanes regardless of multiplicities. Int. J. Math. **20**(06), 717–726 (2009)
- 3. Chen, Z., Li, Y., Yan, Q.: Uniqueness problem with truncated multiplicities of meromorphic mappings for moving targets. Acta Math. Sci. **27**(3), 625–634 (2007)
- 4. Lü, F.: The uniqueness problem for meromorphic mappings with truncated multiplicities. Kodai Math. J. **35**(3), 485–499 (2012)
- 5. Ji, S.: Uniqueness problem without multiplicities in value distribution theory. Pacific J. Math. **135**, 323–348 (1988)
- 6. Nevanlinna, R.: Einige Eindeutigkeitssätze in der theorie der meromorphen funktionen. Acta Math. **48**(3–4), 367–391 (1926)
- 7. Pham, D.T., Pham, V.D.: Algebraic dependences of meromorphic mappings in several complex variables. Ukrainian Math. J. **62**(7), 1073–1089 (2010)
- 8. Thoan, P.D., Duc, P.V., Quang, S.D.: Algebraic dependence and unicity theorem with a truncation level to 1 of meromorphic mappings sharing moving targets. Bull. Math. Soc. Sci. Math. Roumanie **56**(104), 2 (2013)
- 9. Quang, S.D.: Unicity of meromorphic mappings sharing few moving hyperplanes. Vietnam J. Math. **41**(4), 383–398 (2013)
- 10. Quang, S.D.: Algebraic dependences of meromorphic mappings sharing few moving hyperplanes. Ann. Polonici Math. **108**(1), 61–73 (2013)
- 11. Quang, S.D.: Second main theorems for meromorphic mappings intersecting moving hyperplanes with truncated counting functions and unicity problem[C]//Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg. Springer, Berlin (2014)
- 12. Ru, M., Stoll, W.: The Cartan conjecture for moving targets[C]. Proc. Sympos. Pure Math. 52(2) (1991)
- 13. Ru, M.: Nevanlinna Theory and Its Relation to Diophantine Approximation[M]. World Scientific, Singapore (2001)
- 14. Steinmetz, N.A.: Uniqueness theorem for three meromorphic functions. Ann. Acad. Sci. Fenn. Ser. AI Math **13**(1), 93–110 (1988)
- 15. Stoll, W.: On the propagation of dependences. Pac. J. Math. **139**(2), 311–337 (1989)