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Abstract The purpose of this article is twofold. The first is to prove algebraical
dependence of meromorphic mappings from C

m into Pn(C) sharing few moving
hyperplanes. The second is to show uniqueness theorem for meromorphic mappings
from the viewpoint of dependence. These results improve and extend some earlier
works.
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1 Introduction and Main Results

In 1926, Nevanlinna [6] showed that for two non-constant meromorphic functions f
and g on the complex plane C, if they have the same inverse images for five distinct
values, then f = g, and if they have the same inverse images, counted with multiplici-
ties, for four distinct values, then g is a special type of a linear fractional transformation
of f . These results are usually called the five-value theorem and four-value theorem.

In 1929, as an improvement of the above mentioned Nevanlinna’s results, Cartan
[1] declared that there are at most two meromorphic functions on C which have the
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same inverse images regardless of multiplicities for four distinct values. However,
Steinmetz [14] gave examples which showed that Cartan’s declaration is false. In
relation to this, Ji [5] obtained algebraic dependence of meromorphic mappings by
the use of Cartan’s original idea in 1988. Later, Stoll [15] generalized the results of Ji to
parabolic covering spaces. Ru [12] studied the case of holomorphic curves for moving
targets. In 2010, Thoan and Duc [7] proved some results on algebraic dependence of
meromorphic mappings. Recently, Thoan et al. [8] improved their work and proved
that

Theorem A (Thoan-Duc-Quang [8])Let f1, . . . , fλ : C
m → Pn(C) be non-constant

meromorphic mappings. Let {a j }qj=1 be meromorphic mappings of C
m into Pn(C) in

general position such that Ta j (r) = o(max1≤i≤λ{T fi (r)})(1 ≤ j ≤ q) and ( fi , a j ) �≡
0 for each 1 ≤ i ≤ λ, 1 ≤ j ≤ q. Assume that the following conditions are satisfied.

(a) min{ν( f1,a j ), 1} = · · · = min{ν( fλ,a j ), 1} for each 1 ≤ j ≤ q.
(b) dim{z : ( f, ai )(z) = ( f, a j )(z) = 0} ≤ m − 2 (1 ≤ i < j ≤ q).
(c) There exists an integer number l, 2 ≤ l ≤ λ, such that for any increasing sequence

1 ≤ j1 < · · · < jl ≤ λ, f j1(z) ∧ · · · ∧ f jl (z) = 0 on ∪q
j=1{z : ( f1, a j )(z) = 0}.

If q >
n(2n+1)λ−(n−1)(λ−1)

λ−l+1 , then f1, . . . , fλ are algebraically dependent over C, i.e.,
f1 ∧ · · · ∧ fλ ≡ 0 on C.
Let f : C

m → Pn(C) be a meromorphic mapping and d be a positive integer or
+∞. Let {a j }qj=1 be “small” (with respect to f ) meromorphic mappings of C

m into
Pn(C) in general position such that

dim{z : ( f, ai )(z) = ( f, a j )(z) = 0} ≤ m − 2 (1 ≤ i < j ≤ q).

Consider the set G ( f, {a j }qj=1, d) of all meromorphic mappings g : C
m → Pn(C)

satisfying the conditions:

(i) min{ν( f,a j ), d} = min{ν(g,a j ), d} (1 ≤ j ≤ q),
(ii) f (z) = g(z) on ∪q

j=1{z : ( f, a j )(z) = 0}.
For brevity, we will denote by �S the cardinality of set S. In 2013, Quang [10] proved
the following theorem about algebraic dependence of three maps.

Theorem B (Quang [10]) Assume f1, f2, f3 ∈ G ( f, {a j }qj=1, 1) and n ≥ 2.

(a) If q ≥ 3n2 + 3/2, then f1 ∧ f2 ∧ f3 ≡ 0.
(b) If f is linearly non-degenerate overR and q ≥ (3n2 +3n+3)/2, then f1 ∧ f2 ∧

f3 ≡ 0.

The first purpose of this article is to give an improvement of Theorem A. Namely,
applying the new second main theorems given by Quang [11], we will show that

Theorem 1 Let f1, . . . , fλ : C
m → Pn(C) be non-constant meromorphic mappings.

Let {a j }qj=1 be meromorphic mappings ofC
m into Pn(C) in general position such that

Ta j (r) = o(max1≤i≤λ{T fi (r)})(1 ≤ j ≤ q) and ( fi , a j ) �≡ 0 for each 1 ≤ i ≤ λ, 1 ≤
j ≤ q. Assume that the following conditions are satisfied:
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Algebraical Dependence and Uniqueness Problem for... 839

(a) min{ν( f1,a j ), 1} = · · · = min{ν( fλ,a j ), 1} for each 1 ≤ j ≤ q.
(b) dim{z : ( f, ai )(z) = ( f, a j )(z) = 0} ≤ m − 2 (1 ≤ i < j ≤ q).
(c) There exists an integer number l, 2 ≤ l ≤ λ, such that for any increasing sequence

1 ≤ j1 < · · · < jl ≤ λ, f j1(z) ∧ · · · ∧ f jl (z) = 0 on ∪q
j=1{z : ( f1, a j )(z) = 0}.

If q >
3n(n+1)λ−2(n−1)(λ−1)

2(λ−l+1) , then f1, . . . , fλ are algebraically dependent overR, i.e.
f1 ∧ · · · ∧ fλ ≡ 0 on R.

For the case λ = 3 and l = 2 in Theorem 1, we have the following corollary, which
is better than Theorem B(a).

Corollary 1 Assume f1, f2, f3 ∈ G ( f, {a j }qj=1, 1) and n ≥ 2. If q ≥ 9n2+5n+4
4 , then

f1 ∧ f2 ∧ f3 ≡ 0.

On the other hand, the uniqueness problem with truncated multiplicities for mero-
morphic mappings fromC

m into Pn(C) sharing a finite set of fixed (or moving) targets
in Pn(C) has been studied very intensively by many authors in the last few decades,
and they related to many problems in Nevanlinna theory and hyperbolic complex
analysis (see ref. [2], [4], [13]). In [3], Chen-Li-Yan studied the uniqueness problem
without the assumption of the linearly non-degeneracy for meromorphic mappings.

Theorem C (Chen-Li-Yan [3]) If q = 4n2 + 2n, n ≥ 2, then �G ( f, {a j }qj=1, 1) = 1.

Later, Thoan et al. [8] showed the result still valid if q = 4n2 + 2.
Set rankR( f ) := rank{ f0, . . . , fn} over R. It is easy to see that the definition

of rankR( f ) does not depend on the choice of the reduced representation of f . In
2013, Quang and An [9] got the following uniqueness theorem with fewer moving
hyperplanes.

Theorem D (Quang-An [9]) If q > 4nk + 2, n ≥ 2, where k + 1 = rankR( f ), then
�G ( f, {a j }qj=1, 1) = 1.

Quang [11] established some new secondmain theorem for meromorphic mappings
intersecting moving hyperplanes. For their application, Quang showed the following
result.

Theorem E (Quang [11])

(a) If q > 9n2+9n+4
4 , n ≥ 2, then �G ( f, {a j }qj=1, 1) ≤ 2.

(b) If q > 3n2 + n + 2 and n ≥ 2, then �G ( f, {a j }qj=1, 1) = 1.

The following question arises naturally: are there uniqueness theorem with few
moving hyperplanes? Based on the propagation of dependence in Theorem 1, the
second purpose of this paper is to give an answer to the above question. Namely, we
will prove the following result.

Theorem 2 Let f : C
m → Pn(C) be a meromorphic mapping and let {a j }qj=1 be

“small” (with respect to f ) meromorphic mappings of C
m into Pn(C) in general

position such that

dim{z : ( f, ai )(z) = ( f, a j )(z) = 0} ≤ m − 2 (1 ≤ i < j ≤ q).

Set k + 1 = rankR( f ), then the following assertions hold:
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(i) If k ≥ n+1
2 and q > 2(2n + 1)k − 2k2 + 2 (n ≥ 2), then �G ( f, {a j }qj=1, 1) = 1.

(ii) If k < n+1
2 and q >

2k2+2(n−1)k+(n+3)+
√

(2k2+2(n−1)k+n−1)2+8(3n+1)k
2 (n ≥ 2),

then �G ( f, {a j }qj=1, 1) = 1.

Put Q = 2k2+2(n−1)k+n+3+
√

(2k2+2(n−1)k+n−1)2+8(3n+1)k
2 . For 1 ≤ k < n+1

2 , we
have

2(2n + 1)k − 2k2 + 2 − Q

= 8k(k − n+1
2 )(2k2 − (4n + 3)k + 2n)

−6k2 + 6(n + 1)k − (n − 1) + √
(2k2 + 2(n − 1)k + n − 1)2 + 8(3n + 1)k

>0.

By Theorem 2, we get the following corollary.

Corollary 2 Let f : C
m → Pn(C) be a meromorphic mapping and let {a j }qj=1 be

“small” (with respect to f ) meromorphic mappings of C
m into Pn(C) in general

position such that

dim{z : ( f, ai )(z) = ( f, a j )(z) = 0} ≤ m − 2 (1 ≤ i < j ≤ q).

If q > 2(2n+1)k−2k2+2, n ≥ 2, where k+1 = rankR( f ), then �G ( f, {a j }qj=1, 1) =
1.

Since 1 ≤ k ≤ n, Corollary 2 implies that

Corollary 3 If q > 2n2 + 2n + 2 and n ≥ 2, then �G ( f, {a j }qj=1, 1) = 1.

We would like to notice that Theorem 2 is an improvement of not only the above
mentioned theorems, but also of many uniqueness theorem of meromorphic mappings
for moving targets without counting multiplicity.

2 Basic Notions and Preliminaries in Nevanlinna Theory

We set ‖z‖ = (|z1|2 + · · · + |zm |2) 1
2 for z = (z1, · · · , zm) ∈ C

m , B(r) := {z :
‖z‖ ≤ r}, S(r) := {z : ‖z‖ = r}, dc :=

√−1
4π (∂ − ∂), υ := (ddc‖z‖2)m−1 and

σ := dc log ‖z‖2 ∧ (ddc log ‖z‖2)m−1.
Let F(z) be a nonzero holomorphic function on a domain Ω in C

m . For α =
(α1, · · · , αm) with αi ∈ Z+ (1 ≤ i ≤ m), set |α| = ∑m

i=1 αi and DαF =
∂ |α|F

∂(α1)z1···∂(αm )zm
, where Z+ denote the set of nonnegative integers. We define the map

νF : Ω → Z+ by νF (a) := max{m : DαF = 0 f or all α wi th |α| < m}(a ∈ Ω).
We mean by a divisor on a domain Ω in C

m a map ν : Ω → Z such that, for
each a ∈ Ω , there are nonzero holomorphic functions F and G on a connected
neighborhood U ⊂ Ω of a such that ν(z) = νF (z) − νG(z) for each z ∈ U outside
an analytic set of dimension ≤ m − 2. Two divisors are regarded as the same if they
are identical outside an analytic set of dimension ≤ m − 2. For a divisor ν on Ω , we
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Algebraical Dependence and Uniqueness Problem for... 841

set |ν| := {z : ν(z) �= 0}, which is a purely (m − 1)-dimensional analytic subset of Ω

or empty. For a divisor ν on C
m and a positive integer M or M = +∞, we define the

truncated divisor ν[M] by ν[M](z) := min{M, ν(z)}.
Let ϕ be a nonzero meromorphic function on Ω in C

m . We define the divisor νϕ

as follows: for each a ∈ C
m , choose nonzero holomorphic functions F and G on a

neighborhood U of a such that ϕ = F
G on U and dim(F−1(0) ∩ G−1(0)) ≤ m − 2.

Then, put νϕ(a) := νF (a), νϕ(z) := νF (z) and ν∞
ϕ := νG , which are independent of

choices of F and G and so globally well-defined on Ω .
Define the counting function of ν by

N (r, ν) :=
∫ r

1

n(t)

t2m−1 dt, (1 < r < +∞)

where

n(t) :=
∫
|ν|∩B(r) ν(z)υ if m ≥ 2,∑

|z|≤t ν(z) if m = 1.

Similarly, we define n[M](t) and N (r, ν[M]) and denote by N [M](r, ν), respectively.
Let ϕ : C

m → C be a meromorphic function. Define

Nϕ(r) := N (r, νϕ), N [M]
ϕ (r) := N [M](r, νϕ).

For brevity, we will omit the character M if M = +∞.
Let f : C

m → Pn(C) be a meromorphic mapping. We can choose holomorphic
functions f0, · · · , fn on C

m such that I f := {z : f0(z) = · · · = fn(z)} is of
dimension at most m − 2, and f (z) = ( f0 : · · · : fn) outside I f . Usually, f (z) =
( f0 : · · · : fn) is called a reduced representation of f .

Set ‖ f ‖ := (| f0|2 + · · · + | fn|2) 1
2 , the characteristic function of f is defined by

T f (r) :=
∫

S(r)
log ‖ f ‖σ −

∫

S(1)
log ‖ f ‖σ, r > 1.

Note that T f (r) is independent on the choice of the reduced representation.
Let a be a meromorphic mapping of C

m into Pn(C) with reduced representation
a = (a0 : · · · : an). We define

m( f,a)(r) :=
∫

S(r)
log

‖ f ‖‖a‖
|( f, a)| σ −

∫

S(1)
log

‖ f ‖‖a‖
|( f, a)| σ,

where ‖a‖ := (|a0|2 + · · · + |an|2) 1
2 and r > 1. Throughout this paper, we always

assume that the homogeneous coordinates of Pn(C) are chosen so that for a given
meromorphic mapping a = (a0 : · · · : an) of C

m into Pn(C), a0 �≡ 0. Then, we set
ã = ( a0a0

: · · · : an
a0

).
Let a1, . . . , aq (q ≥ n + 1) be q meromorphic mappings of C

m into Pn(C) with
reduced representations a j = (a j0 : · · · : a jn)(1 ≤ j ≤ q). We say that a1, . . . , aq
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842 H. Cao

located in general position if det(a jk ) �≡ 0 for any 1 ≤ j0 < j1 < · · · < jn ≤ q.
Denote byM the field of meromorphic functions onC

m and denote byR the smallest
subfield of M which contains C and all

a jk
a jl

with a jl �≡ 0.

Let f and a be meromorphic mappings of C
m into Pn(C) with reduced rep-

resentations f = ( f0 : · · · : fn) and a = (a0 : · · · : an). We say that
f is linearly non-degenerate over R if f0, . . . , fn are linearly independent over
R. Put ( f, a) := ∑n

i=0 ai fi , then we say that a is “small” with respect to f if
Ta(r) = o(T f (r)) as r → +∞. Denote by ν( f,a) the map of C

m into Z whose value
ν( f,a)(z) is the intersection of the images of f and a at f (z).

If f, a : C
m → Pn(C) be meromorphic mappings such that ( f, a) �≡ 0, then the

First Main Theorem for moving targets in value distribution theory states that

T f (r) + Ta(r) = m( f,a)(r) + N( f,a)(r) + O(1).

For a nonzero meromorphic function ϕ on C
m , the proximity function m(r, ϕ) is

defined by

m(r, ϕ) =
∫

S(r)
log+ |ϕ|σ,

where log+ |x | = max{log x, 0} for x ≥ 0. The Nevanlinna’s characteristic function
is defined by

T (r, ϕ) := N (r, ν∞
ϕ ) + m(r, ϕ).

We regard ϕ as a meromorphic mapping of C
m into P1(C), then

Tϕ(r) = T (r, ϕ) + O(1).

As usual, by the notation “‖P,′′ we mean the assertion P holds for all r ∈ [0,+∞)

excluding a Borel subset E of the interval [0,+∞) with
∫
E dr < +∞.

The First Main Theorem for general position (see [15], p. 326) Assume that
1 ≤ λ ≤ n + 1, fi : C

m → Pn(C)(1 ≤ i ≤ λ) are λ meromorphic mappings located
in general position. Then

N (r, μ f1∧···∧ fλ) + m(r, f1 ∧ · · · ∧ fλ) ≤
∑

1≤i≤λ

T fi (r) + O(1).

Let V be a complex vector space of dimension n ≥ 1. The vectors {v1, . . . , vk} are
said to be in general position if for each selection of integers 1 ≤ i1 < · · · < i p ≤ k
with p ≤ n, vi1 ∧ · · · ∧ vi p �= 0. The vectors {v1, . . . , vk} are said to be in special
position if they are not in general position. Take 1 ≤ p ≤ k, then {v1, . . . , vk} are said
to be in p-special position if for each selection of integers 1 ≤ i1 < · · · < i p ≤ k the
vectors vi1 , . . . , vi p are in special position.
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The Second Main Theorem for general position (see [15], Theorem 2.1, P.326)
Let M be a connected complex manifold of dimension m. Let A be a pure (m − 1)-
dimensional analytic subset of M . Let V be a complex vector space of dimension
n + 1 > 1. Let p and k be integers with 1 ≤ p ≤ k ≤ n + 1. Let f j : M → P(V ),
1 ≤ j ≤ k bemeromorphic mappings. Assume that f1, . . . , fk are in general position.
Also assume that f1, . . . , fk are in p-special position on A. Then we have

μ f1∧···∧ fk ≥ (k − p + 1)νA.

The following is the “second main theorem type” for meromorphic mappings inter-
secting moving targets with truncated counting function according to S.D.Quang [11].

Second Main Theorem for moving targets (Quang [11]) Let f : C
m → Pn(C)

be a meromorphic mapping and {ai }qi=1 (q ≥ 2n− k + 2 ) be meromorphic mappings
of C

m into Pn(C) located in general position such that ( f, ai ) �≡ 0(1 ≤ i ≤ q), where
k + 1 = rankR( f ). Then the following assertions hold:

(a) ‖ q
2n−k+2T f (r) ≤ ∑q

i=1 N
[k]
( f,ai )

(r) + o(T f (r)) + O(max1≤i≤q Tai (r)),

(b) ‖ q−n+2k−1
n+k+1 T f (r) ≤ ∑q

i=1 N
[k]
( f,ai )

(r) + o(T f (r)) + O(max1≤i≤q Tai (r)).

Remark:
(1) If k ≥ n+1

2 then the above theorem (a) is stronger than (b), otherwise, if k < n+1
2

then (b)is stronger than (a).
(2) If k ≥ 1, we have the following estimates:

min
1≤k≤n

{max{ q

2n − k + 2
,
q − n + 2k − 1

n + k + 1
}} ≥

{
2q

3(n+1) if q ≥ 3n + 3,
q−n+1
n+2 if q < 3n + 3.

Therefore, S.D.Quang [11] obtained the following corollary.

Corollary 2.1 Let f : C
m → Pn(C) be a meromorphic mapping and {ai }qi=1 (q ≥

2n+1) be meromorphic mappings of Cm into Pn(C) located in general position such
that ( f, ai ) �≡ 0(1 ≤ i ≤ q).

(a) Then we have

‖2q − n + 1

3(n + 1)
T f (r) ≤

q∑

i=1

N [n]
( f,ai )

(r) + o(T f (r)) + O( max
1≤i≤q

Tai (r)).

(b) If q ≥ 3n + 3, then

‖ 2q

3(n + 1)
T f (r) ≤

q∑

i=1

N [n]
( f,ai )

(r) + o(T f (r)) + O( max
1≤i≤q

Tai (r)).

(c) If q < 3n + 3, then

‖q − n + 1

n + 2
T f (r) ≤

q∑

i=1

N [n]
( f,ai )

(r) + o(T f (r)) + O( max
1≤i≤q

Tai (r)).
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844 H. Cao

3 Proof of Theorem 1

Proof It suffices to prove Theorem 1 in the case of λ ≤ n + 1. Assume that f1 ∧
· · · ∧ fλ �≡ 0. Considering λ − 1 arbitrary moving targets ai1 , . . . , aiλ−1 , then there

exists ai0 with i0 /∈ {i1, . . . , iλ−1} such that the matrix

⎛

⎜
⎜
⎜
⎝

( f1, ai0) · · · ( fλ, ai0)
( f1, ai1) · · · ( fλ, ai1)

...
...

...

( f1, aiλ−1) · · · ( fλ, aiλ−1)

⎞

⎟
⎟
⎟
⎠

is nondegenerate.

Indeed, suppose on contrary, the matrix

⎛

⎜
⎜
⎜
⎝

( f1, a1) · · · ( fλ, a1)
( f1, a2) · · · ( fλ, a2)

...
...

...

( f1, an+1) · · · ( fλ, an+1)

⎞

⎟
⎟
⎟
⎠

is of rank

≤ λ − 1(< n + 1). Let a j = (a j0 : · · · : a jn)(1 ≤ j ≤ n + 1) be the reduced
representations of a1, . . . , an+1 and f j = ( f j0 : · · · : f jn)(1 ≤ j ≤ λ) be the
reduced representations of f1, . . . , fλ. Then

⎛

⎜
⎜
⎜
⎝

( f1, a1) · · · ( fλ, a1)
( f1, a2) · · · ( fλ, a2)

...
...

...

( f1, an+1) · · · ( fλ, an+1)

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

a10 · · · a1n
a20 · · · a2n
...

...
...

an+10 · · · an+1n

⎞

⎟
⎟
⎟
⎠

·

⎛

⎜
⎜
⎜
⎝

f10 · · · fλ0
f11 · · · fλ1
...

...
...

f1n · · · fλn

⎞

⎟
⎟
⎟
⎠

.

Since a1, · · · , an+1 are in general position, we get f1 ∧ · · · ∧ fλ ≡ 0. This is a
contradiction.

We denote by μ f̃1∧···∧ f̃λ the divisor associated with f̃1 ∧ · · · ∧ f̃λ, N (r, μ f̃1∧···∧ f̃λ)

the counting function associated with the divisor μ f̃1∧···∧ f̃λ , where f̃t := (( ft , ai0) :
· · · : ( ft , aiλ−1)) (1 ≤ t ≤ λ). We will prove the following claim.

Claim 3.1 For every z ∈ C
m outside an analytic set of codimension ≥ 2, we have

λ−1∑

j=0

(

λ min
1≤t≤λ

{ν( ft ,ai j )
(z)} + (λ − l)

λ∑

t=1

min{ν( ft ,ai j )
(z), 1}

)

+
∑

j∈{1,...,q}\{i0,i1,...,iλ−1}

λ∑

t=1

(λ − l + 1)min{ν( ft ,a j )(z), 1} ≤ λμ f̃1∧···∧ f̃λ
(z).

In fact, the Claim is the Claim 3.2 in [8], we give the proof here for completeness of
our proof. Let I = {i0, i1, . . . , iλ−1}, I = {1, 2, . . . , q} \ I ,A := ∪i∈I ( f1, ai )−1(0),
A := ∪i∈ Ī ( f1, ai )−1(0) and A = ⋃

1≤i< j≤q(( f1, ai )
−1(0) ∩ ( f1, a j )

−1(0)).

Case 1 Let z0 ∈ A \ (A ∪ ∪λ
i=1 I ( fi ) ∪ (ai0 ∧ · · · ∧ aiλ−1)

−1(0)) be a regular
point of A . Without loss of generality, we assume that z0 is a zero of ( f1, ai0) where
i0 ∈ I . Let S be an irreducible analysis subset of A containing z0 and U be an open
neighborhood of z0 in C

m , such that U ∩ (A \ S) = ∅. Choosing a holomorphic
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Algebraical Dependence and Uniqueness Problem for... 845

function h on neighborhood U ′ ⊂ U of z0 such that νh(z) = min1≤t≤λ{ν( ft ,ai0 )(z)}
if z ∈ S and νh(z) = 0 if z /∈ S. Then ( ft , ai0) = hut (1 ≤ t ≤ λ), where ut is
holomorphic function.

Since the matrix

⎛

⎜
⎝

( f1, ai1) · · · ( fλ, ai1)
...

...
...

( f1, aiλ−1) · · · ( fλ, aiλ−1)

⎞

⎟
⎠ is of rank ≤ λ − 1. Therefore, there

exist not all zero holomorphic function b1, . . . , bλ such that

λ∑

t=1

bt ( ft , ai j ) = 0 (1 ≤ j ≤ λ − 1).

It implies that

λ∑

t=1

bt f̃t =
(

λ∑

t=1

bt ( ft , ai0), 0, . . . , 0

)

.

Without loss of generality, we may assume that the set of the common zeros of {bt }λt=1
is an analysis subset of codimension ≥ 2. Then there exists an index, say λ, such that
S �⊂ b−1

λ (0).
Thus, for each z ∈ (U ′ ∩ S) \ b−1

λ (0), we have

f̃1(z) ∧ · · · ∧ f̃λ(z) = f̃1(z) ∧ · · · ∧ f̃λ−1(z) ∧ ( f̃λ(z) +
λ−1∑

t=1

bt
bλ

f̃t (z))

= f̃1(z) ∧ · · · ∧ f̃λ−1(z) ∧ (V (z)h(z))

=h(z) f̃1(z) ∧ · · · ∧ f̃λ−1(z) ∧ V (z),

where V (z) = (uλ + ∑λ−1
t=1

bt
bλut , 0, . . . , 0). On the other hand,

⎛

⎜
⎜
⎜
⎝

( f j1 , ai0) · · · ( f jl , ai0)
( f j1 , ai1) · · · ( f jl , ai1)

...
...

...

( f j1, aiλ−1) · · · ( f j1 , aiλ−1)

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

ai00 · · · ai0n
ai10 · · · ai1n
...

...
...

aiλ−10 · · · aiλ−1n

⎞

⎟
⎟
⎟
⎠

·

⎛

⎜
⎜
⎜
⎝

f j10 · · · f jl0
f j11 · · · f jl1
...

...
...

f j1n · · · f jl n

⎞

⎟
⎟
⎟
⎠

.

Since a1, · · · , aq are in general position, rank{ai0 , · · · , aiλ−1} = λ. By the assumption,
for any increasing sequence 1 ≤ j1 < · · · < jl ≤ λ − 1, f j1(z) ∧ · · · ∧ f jl (z) = 0 on
S. Thus,

rank{ f̃ j1 , · · · , f̃ jl } ≤ min{rank{ f j1 , · · · , f jl }, rank{ai0 , · · · , aiλ−1}}
= rank{ f j1 , · · · , f jl }.
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Hence ˜f j1(z) ∧ · · · ∧ f̃ jl (z) = 0 on S. It yields that the family { f̃1, . . . , f̃l , V (z)} is
in (l + 1)− special position on S. By the Second Main Theorem for general position,
we have

μ
f̃1∧···∧˜fλ−1∧V

(z) ≥ λ − l, z ∈ S.

Hence, μ f̃1∧···∧ f̃λ
(z) ≥ νh(z) + λ − l, z ∈ (U ′ ∩ S) \ b−1

λ (0). In particular,

μ f̃1∧···∧ f̃λ
(z0) ≥ min

1≤t≤λ
{ν( ft ,ai0 )(z0)} + λ − l.

Therefore

∑

i∈I
(λ min

1≤t≤λ
{ν( ft ,ai )(z0)} + (λ − l)

λ∑

t=1

min{ν( ft ,ai )(z0), 1})

+
∑

i∈I

λ∑

t=1

(λ − l + 1)min{ν( ft ,ai )(z0), 1}

= λ( min
1≤t≤λ

{ν( ft ,ai0 )(z0)} + λ − l) ≤ λμ f̃1∧···∧ f̃λ
(z0).

Case 2 Let z0 ∈ Ã \(A∪∪λ
i=1 I ( fi )∪(ai0 ∧· · ·∧aiλ−1)

−1(0)) be a regular point of
Ã . Then z0 is a zero of one holomorphic mapping ( f1, at ) where t ∈ Ī . According to
the assumption and the proof in Case 1, the family f̃1, . . . , f̃λ are in l-special position
on an irreducible analytic subset of codimension 1 of Ã which contains z0. By the
Second Main Theorem for general position, we have

μ f̃1∧···∧ f̃λ
(z0) ≥ λ − l + 1.

Hence

∑

i∈I
(λ min

1≤t≤λ
{ν( ft ,ai )(z0)} + (λ − l)

λ∑

t=1

min{ν( ft ,ai )(z0), 1})

+
∑

i∈I

λ∑

t=1

(λ − l + 1)min{ν( ft ,ai )(z0), 1}

= λ(λ − l + 1) ≤ λμ f̃1∧···∧ f̃λ
(z0).

From the above two cases, Claim 3.1 is proved.
For nonnegative integers c1, c2, . . . , cλ, it is easy to check that

min
1≤t≤λ

ct ≥
λ∑

t=1

min{ct , n} − (λ − 1)n.
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Since min{ν( f1,ai0 ), 1} = · · · = min{ν( fλ,ai0 ), 1} and ν( ft ,ai )(z0) ≥ min{ν( ft ,ai0 )

(z0), 1}. Claim 3.1 implies that

λ−1∑

j=1

λ∑

t=1

(
λmin{ν( ft ,ai j )

(z), n} − [(λ − 1)n − (λ − l)]min{ν( ft ,ai j )
(z), 1}

)

+
∑

j∈{1,...,q}\{i1,...,iλ−1}

λ∑

t=1

(λ − l + 1)min{ν( ft ,a j )(z), 1} ≤ λμ f̃1∧···∧ f̃λ
(z).

Thus,

λ−1∑

j=1

λ∑

t=1

(
λN [n]

( ft ,ai j )
(r) − [(λ − 1)n − (λ − l)]N [1]

( ft ,ai j )
(r)

)

+
∑

j∈{1,...,q}\{i1,...,iλ−1}

λ∑

t=1

(λ − l + 1)N [1]
( ft ,a j )

(r)

≤ λN f̃1∧···∧ f̃λ
(r).

From T f̃t
(r) ≤ T ft (r)+o(max1≤i≤λ T fi (r)) (1 ≤ t ≤ λ) and the First Main Theorem

for general position, we get

λ−1∑

j=1

λ∑

t=1

(
λN [n]

( ft ,ai j )
(r) − [(λ − 1)n − (λ − l)]N [1]

( ft ,ai j )
(r)

)

+
∑

j∈{1,...,q}\{i1,...,iλ−1}

λ∑

t=1

(λ − l + 1)N [1]
( ft ,a j )

(r)≤λ

λ∑

t=1

T ft (r)+o( max
1≤t≤λ

T ft (r)).

Summing both sides of the above inequality over all sequences 1 ≤ i1 < · · · < iλ−1 ≤
q, we have

q∑

i=1

λ∑

t=1

(
λ(λ − 1)N [n]

( ft ,ai )
(r) + ((λ − l + 1)q − (λ − 1)((λ − 1)n + 1))N [1]

( ft ,ai )
(r)

)

≤ qλ

λ∑

t=1

T ft (r) + o( max
1≤t≤λ

T ft (r)).

Since N [1]
( ft ,ai )

(r) ≥ 1
n N

[n]
( ft ,ai )

(r), then

(λ − l + 1)q + (λ − 1)(n − 1)

n

q∑

i=1

λ∑

t=1

N [n]
( ft ,ai )

(r) ≤ qλ

λ∑

t=1

T ft (r)+o(max
1≤t≤λ

T ft (r)).
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For 2 ≤ l ≤ λ ≤ n,

q >
3n(n + 1)λ − 2(n − 1)(λ − 1)

2(λ − l + 1)
≥ 3n2 + 4n + 5

2
≥ 3n + 3

Applying the Second Main Theorem for moving targets (Corollary 2.1(b)), we set

‖ (λ − l + 1)q + (λ − 1)(n − 1))

n
· 2q

3(n + 1)

λ∑

t=1

T ft (r)

≤ qλ

λ∑

t=1

T ft (r) + o( max
1≤t≤λ

T ft (r)).

Letting r → +∞, we have

(λ − l + 1)q + (λ − 1)(n − 1))

n
· 2q

3(n + 1)
≤ qλ.

Therefore

q ≤ 3n(n + 1)λ − 2(n − 1)(λ − 1)

2(λ − l + 1)
.

This is a contradiction. Thus, f1 ∧ · · · ∧ fλ ≡ 0. Theorem 1 is proved completely. ��

4 Proof of Theorem 2

Let f : C
m → Pn(C) be a meromorphic mapping and {a1, . . . , aq} be meromorphic

mappings of C
m into Pn(C). Take a reduced representation f = ( f1 : · · · : fq) of f ,

we set

V ( f ) := {(c1, . . . , cn) ∈ Rn+1 :
n∑

i=0

ci fi = 0}.

It is easy to see that V ( f ) does nor depend on the choice of the reduced representation
of f and rankR( f ) = n + 1 − dimR V ( f ).

In order to prove Theorem 2, we need the following lemma.

Lemma 4.1 Let f : C
m → Pn(C) be a meromorphic mapping and d be a positive

integer or +∞. Let {a j }qj=1 be “small” (with respect to f ) meromorphic mappings
of C

m into Pn(C) in general position such that

dim{z : ( f, ai )(z) = ( f, a j ) = 0} ≤ m − 2 (1 ≤ i < j ≤ q).

Assume that one of the following conditions satisfies:
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(i) k ≥ n+1
2 and q > 2(n + 1)k − k2, or

(ii) k < n+1
2 and q > k2 + (n − 1)k + (n + 1).

Then for every g ∈ G ( f, {a j }qj=1, 1), the following hold:

(a) V ( f ) = V (g) and rankR( f ) = rankR(g).
(b) ‖T f (r) = O(Tg(r)) and ‖Tg(r) = O(T f (r)).

Proof Without loss of generality, we may assume that rankR( f ) ≥ rankR(g). Taking
reduced representations f = ( f0 : · · · : fn) and g = (g0 : · · · : gn), respectively.

We will show that V (g) ⊆ V ( f ).
Indeed, suppose that there exists an element c = (c0, . . . , cn) ∈ Rn+1 such that∑n
i=1 ci gi = 0, but

∑n
i=1 ci fi �= 0. Since f (z) = g(z) on ∪q

j=1{z : ( f, a j )(z) = 0},
we have ∪q

i=1{z : ( f, a j )(z) = 0} ⊂ {z : ( f, c)(z) = 0}. This implies that

q∑

i=1

N [1]
( f,ai )

(r) ≤ N [1]
( f,c)(r) + o(T f (r)).

By the Second Main Theorem for moving hyperplanes, we have

– If k ≥ n+1
2 , then

‖ q

2n − k + 2
T f (r) ≤

q∑

i=1

N [k]
( f,ai )

(r) + o(T f (r))

≤ k
q∑

i=1

N [1]
( f,ai )

(r) + o(T f (r))

≤kN [1]
( f,c)(r) + o(T f (r)) ≤ kT f (r) + o(T f (r)).

Let r → +∞, we get

q ≤ 2(n + 1)k − k2.

This is in contradiction with (i).
– If k < n+1

2 , then

‖q − n + 2k − 1

n + 1 + k
T f (r) ≤

q∑

i=1

N [k]
( f,ai )

(r) + o(T f (r))

≤k
q∑

i=1

N [1]
( f,ai )

(r) + o(T f (r))

≤kN [1]
( f,c)(r) + o(T f (r)) ≤ kT f (r) + o(T f (r)).

Let r → +∞, we get

q ≤ k2 + (n − 1)k + (n + 1).
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This is in contradiction with (ii).

Hence V (g) ⊆ V ( f ). It implies that

rankR( f ) = n + 1 − dimR V ( f ) ≤ n + 1 − dimR V (g) = rankR(g).

Therefore, rankR( f ) = rankR(g), which yields V ( f ) = V (g).
By the Second Main Theorem for moving hyperplanes, q ≥ 2n − k + 2, we have

‖ q

2n + 2 − k
T f (r) ≤

q∑

i=1

N [k]
( f,ai )

(r) + o(T f (r))

≤ k
q∑

i=1

N [1]
(g,ai )

(r) + o(T f (r)) ≤ kq(Tg(r)) + o(T f (r)).

Thus, ‖T f (r) = O(Tg(r)). Since rankR( f ) = rankR(g), similarly we get ‖Tg(r) =
O(T f (r)). The Lemma is proved. ��
Proof of Theorem 2 Suppose that g ∈ G ( f, {a j }qj=1, 1) and f �= g. By changing
indices if necessary, we may assume that

( f, a1)

(g, a1)
≡ ( f, a2)

(g, a2)
≡ · · · ≡ ( f, ak1)

(g, ak1)︸ ︷︷ ︸
group 1

�≡ ( f, ak1+1)

(g, ak1+1)
≡ · · · ≡ ( f, ak2)

(g, ak2)︸ ︷︷ ︸
group 2

�≡ · · · �≡ ( f, aks−1+1)

(g, aks−1+1)
≡ · · · ≡ ( f, aks )

(g, aks )︸ ︷︷ ︸
group s

,

where ks = q. For each 1 ≤ i ≤ q, we set

σ(i) =
{
i + k if i + k ≤ q;
i + k − q, if i + k > q.

and

Pi := ( f, ai )(g, aσ(i)) − (g, ai )( f, aσ(i)).

We claim that the number of elements in each group is at most k.
Indeed, suppose this claim does not hold.Without loss of generality, wemay assume

that k1 ≥ k + 1. Since rankR( f ) = dim({( f, ãi )}k+1
i=1 )R , for every 0 ≤ j ≤ n, there

exist meromorphic mappings c ji ∈ R such that

f j =
k+1∑

i=1

c ji ( f, ãi ).

123



Algebraical Dependence and Uniqueness Problem for... 851

By Lemma 4.1, we have

V ( f ) = V (g).

It yields that

g j =
k+1∑

i=1

c ji (g, ãi ) = ( f, a1)

(g, a1)
f j

for every 0 ≤ j ≤ n. Hence f = g. This is a contradiction. Thus, the number of
elements of each group is at most k.

Hence ( f,ai )
(g,ai )

and ( f,aσ(i))

(g,aσ(i))
belong to distinct groups. This implies that Pi �≡ 0(1 ≤

i ≤ q).
By Claim 3.1 for λ = l = 2 and i0 = σ(i), we have

∑

j=i,σ (i)

2min{ν( f,a j )(z), ν(g,a j )(z)} + 2
q∑

j=1. j �=i,σ (i)

min{ν( f,a j )(z), 1} ≤ 2μ f̃ ∧g̃(z).

for every z ∈ C
m outside an analytic set of codimension ≥ 2. Because

min
{
ν( f,a j )(z), ν(g,a j )(z)

}

≥min
{
ν( f,a j )(z), k} + min{ν(g,a j )(z), k

} − kmin{ν( f,a j )(z), 1}.

Thus,

2
∑

j=i,σ (i)

(
min{ν( f,a j )(z), k} + min{ν(g,a j )(z), k} − kmin{ν( f,a j )(z), 1}

)

+ 2
q∑

j=1. j �=i,σ (i)

min{ν( f,a j )(z), 1} ≤ 2μ f̃ ∧g̃(z).

for every z ∈ C
m outside an analytic set of codimension ≥ 2. It yields that

∑

j=i,σ (i)

∑

u= f,g

(2N [k]
(u,a j )

(r) − kN [1]
(u,a j )

(r))

+
q∑

j=1. j �=i,σ (i)

∑

u= f,g

N [1]
(u,a j )

(r) ≤ 2T (r) + o(T (r)),

where T (r) := T f (r) + Tg(r). By summing up over all i , we have

q∑

j=1

∑

u= f,g

(
4N [k]

(u,a j )
(r) + (q − 2k − 2)N [1]

(u,a j )
(r)

)
≤ 2qT (r) + o(T (r)).
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Since N [1]
(u,a j )

(r) ≥ 1
k N

[k]
(u,a j )

(r), we obtain

q + 2k − 2

k

q∑

j=1

∑

u= f,g

N [k]
(u,a j )

(r) ≤ 2qT (r) + o(T (r)).

By the Second Main Theorem for moving targets, we get

– If k ≥ n+1
2 ,

q + 2k − 2

k
· q

2n − k + 2
T (r) ≤ 2qT (r) + o(T (r)).

Letting r → +∞, we have

q ≤ −2k2 + 2(2n + 1)k + 2.

It is a contradiction.
– If k < n+1

2 ,

q + 2k − 2

k
· q − n + 2k − 1

n + k + 1
T (r) ≤ 2qT (r) + o(T (r)).

Letting r → +∞, we have

q2 − [2k2 + 2(n − 1)k + n + 3]q − 2(n + 1 − 2k)(k − 1) ≤ 0.

Thus,

q ≤ 2k2 + 2(n − 1)k + (n + 3) + √
(2k2 + 2(n − 1)k + n − 1)2 + 8(3n + 1)k

2
.

This is a contradiction.

Therefore, we have f = g. This completes the proof of Theorem 2. ��
Acknowledgements The research is partially supported by the National Science Foundation of China,
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