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Abstract In this paper, a meshless numerical scheme for solving an inverse source
problem is considered. The proposed scheme is based on approximating the solution
employing the thin plate spline (TPS) radial basis function (RBF). Applying this
radial basis function results in a badly ill-condition system of equations. The Tikhonov
regularizationmethod is employed for solving this system of equations. Determination
of regularization parameter is based on generalized cross-validation (GCV) technique.
Some numerical examples are presented to demonstrate the accuracy and ability of
this method.
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1 Introduction

In the process of transportation, diffusion, and conduction of natural materials, the
following heat equation is induced:
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ut − a2�u = f (x, t; u), (x, t) ∈ � × (0, T ], (1)

where u represents state variable, a represents the diffusion coefficient,� represents a
bounded domain in R, and f denotes physical laws, which means source terms here.
Since the characteristics of sources in practical problems are always unknown, there
aremany researches on such inverse problems of determining source terms from1970s.
For example, the inverse problem of determining an unknown heat source function in
the heat conduction equation has been considered inmany papers[4,5,8,10,15,16,22].
The inverse problems are unstable in nature because the unknown solutions have to
be determined from indirect observable data which contain measurement errors. The
major difficulty in establishing any numerical algorithm to approximate the solution
is the ill-posedness of the problem and the ill-conditioning of the resultant discretized
matrix. Therefore, in this paper, in order to overcome the instability of the solution,
the RBF combined with the Tikhonov regularization and the GCV criterion for the
choice of the regularization parameter is developed. Radial basis functions are used
actively for solving partial differential equations. For example, see [1,17,18].

The organization of this paper is as follows: In Sect. 2, we briefly introduce a mesh-
less scheme based on thin plate spline (TPS) radial basis function method. The math-
ematical formulation and method of our interest problem is presented in Sect. 3. The
results of a numerical experiment are presented in Sects. 4, and 5 concludes the paper.

2 Radial Basis Function Approximation

The approximation of a distribution u(x), using radial basis functions, may be written
as a linear combination of N radial functions; usually it takes the following form:

u(x) �
N∑

j=1

λ jφ(x, x j ) + ψ(x), x ∈ � ⊂ Rd , (2)

where N is the number of points, x = (x1, x2, . . . , xd), d is the dimension of the
problem, λ j ’s are coefficients to be determined, and φ is the radial basis function.
Equation (2) can be written without the additional polynomial ψ . In this case φ must
be unconditionally positive definite to guarantee the solvability of the resulting system
(e.g., Gaussian or inverse multiquadrics). However, ψ is usually required when φ is
conditionally positive definite, i.e., when φ has a polynomial growth towards infinity.
Examples are thin plate splines andmultiquadrics.Wewill use the thin plate splines for
the new numerical scheme introduced in Sect. 3. The reason is that previous analyses
have shown that the multiquadrics and thin plate splines give the most accurate results
for scattered data approximations [9]. However, the accuracy of the multiquadrics
method depends on a shape parameter, and as yet there is nomathematical theory about
how to choose its optimal value. Hence, most applications of the multiquadrics use
experimental tuning parameters or expensive optimization techniques to evaluate the
optimum shape parameter [6], while the thin plate splinemethod gives good agreement
without requiring such additional parameters and based on soundmathematical theory
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[7]. Therefore, the TPS radial basis function is widely used for the numerical solution
of partial differential equations [19–21].

The generalized thin plate splines defined as

φ(x, x j ) = φ(r j ) = r2mj log(r j ), m = 1, 2, 3, . . . , (3)

where r j =‖ x − x j ‖ is the Euclidean norm. Since φ in Eq. (3) is C2m−1 continuous,
a higher-order TPS must be used, for higher-order partial differential operators. The
advection–diffusion equation is of second order, and thus, m = 2 is used to ensure at
least C2 continuity for u (i.e., second-order thin plate splines) [1–3].

If Pd
q denotes the space of d-variate polynomials of order not exceeding q, and

letting the polynomials P1, . . . , Pm be the basis of Pd
q in R

d , then the polynomial
ψ(x), in Eq. (2), is usually written in the following form:

ψ(x) =
m∑

i=1

ςi Pi (x), (4)

wherem = (q−1+d)!/(d!(q−1)!). Also (λ1, . . . , λN ) and (ς1, . . . , ςm) are unknown
scalars. We collocate (2) at the N points. However, an extra m equations are required
for obtaining unknown coefficients. This is insured by the conditions for (2) as

N∑

j=1

λ j Pi (x j ) = 0, i = 1, 2, . . . ,m. (5)

3 Statement of the Problem

Consider the one-dimensional problem in which the source term f (x, t; u) can be
written in the form f (x, t; u) = ϕ(t) f (x)

ut − a2uxx = ϕ(t) f (x), 0 < x < 1, 0 < t < T, (6)

u(x, 0) = v(x), 0 ≤ x ≤ 1,

u(0, t) = g(t), 0 ≤ t ≤ T,

u(1, t) = k(t), 0 ≤ t ≤ T, (7)

with the overspecified condition

u(x, T ) = h(x), 0 ≤ x ≤ 1, (8)

where T is a positive constant, ϕ(t), g(t), v(x), and k(t) are considered known func-
tions, while f (x) and u(x, t) are unknown functions which remain to be determined.
We assume that the functions appearing in the data are measurable and satisfy the
following conditions:
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| ϕ(t) |≤ Kϕ, | ϕ́(t) |≤ K ∗
ϕ, | ϕ(T ) |≥ ϕ0 > 0,

{
h(x), v(x)

} ∈ W 2
2 ([0, 1]) ∩ W 1◦

2 , ‖ v ‖W 2
2
≤ M0, ‖ h ‖W 2

2
≤ Kh,

where Kϕ, ϕ0 are positive constants, K ∗
ϕ, M0, Kh are nonnegative constants, and the

spaces W 2
2 ([0, 1]),W 1◦

2 with the corresponding norms are understood in the usual
sense[14].

Under assumptions given above and some additional conditions, Kamynin demon-
strated the existence and uniqueness of the solution in [13]. From (6) and (8), one may
obtain

uxx (x, T ) = h′′(x) = 1

a2
(
ut (x, T ) − ϕ(T ) f (x)

)
. (9)

Hence,

f (x) = ut (x, T ) − a2h′′(x)
ϕ(T )

. (10)

Substituting (10) into (6) yields

uxx (x, t) − ut (x, t)

a2
+ ϕ(t)ut (x, T )

a2ϕ(T )
− ϕ(t)h′′(x)

ϕ(T )
= 0. (11)

Now we use the RBF’s for discretization of both time and space variables. Let � =
{(xi , ti ), 0 ≤ xi ≤ 1, 0 ≤ ti ≤ T, i = 1, . . . , N − 3} be a set of scattered nodes. Then
the solution of the problem (11) and (7) is considered as follows:

ũ(x, t) =
N−3∑

i=1

λiφi (x, t) + λN−2x + λN−1t + λN , (12)

where φi (x, t) = φ(‖ (x, t)−(xi , ti ) ‖2) for a radial function φ and λi , i = 1, . . . , N ,
are unknown constants must be identified.

The collocation technique is used for determining unknowns λi , i = 1, . . . , N . Let

� = �1 ∪ �2 ∪ �3 ∪ �4, (13)

where

�1 = {
(xi , ti ), 0 ≤ xi ≤ 1, ti = 0, i = 1, . . . , N1

}
, (14)

�2 = {
(xi , ti ), xi = 0, 0 < ti ≤ T, i = 1, . . . , N2

}
, (15)

�3 = {
(xi , ti ), xi = 1, 0 < ti ≤ T, i = 1, . . . , N3

}
, (16)

�4 = {
(xi , ti ), 0 < xi < 1, 0 < ti ≤ T, i = 1, . . . , N4

}
. (17)
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Also we assume �i 
= ∅ for 1 ≤ i ≤ 4. Now (7) and (11) are approximated by using
(12). We obtain

N−3∑

i=1

λiφi (xk, tk) + λN−2xk + λN−1tk + λN = v(xk), (xk, tk) ∈ �1, (18)

N−3∑

i=1

λiφi (xk, tk) + λN−2xk + λN−1tk + λN = g(tk), (xk, tk) ∈ �2, (19)

N−3∑

i=1

λiφi (xk, tk) + λN−2xk + λN−1tk + λN = k(tk), (xk, tk) ∈ �3, (20)

N−3∑

i=1

λi
[
a2ϕ(T )

∂2

∂x2
φi (xk, tk) − ϕ(T )

∂

∂t
φi (xk, tk) + ϕ(tk)

∂

∂t
φi (xk, T )

]

+λN−1
[
ϕ(tk) − ϕ(T )

] = a2ϕ(tk) h
′′(xk), (xk, tk) ∈ �4, (21)

and the additional conditions due to (5) are written as

N−3∑

i=1

λi =
N−3∑

i=1

λi xi =
N−3∑

i=1

λi ti = 0. (22)

Equations (18)–(22) result in a linear systemof equations. By solving this linear system
the approximate solution of the transformed problem (7) and (11) will be obtained.
The values of the unknown coefficients λi can be obtained by solving the following
matrix equation:

Aλ = b. (23)

Due to ill-posedness of the original inverse problem, the linear system (23) is ill-
conditioned. Now, we use the Tikhonov regularization method with the GCV criterion
described in [11,12]. Denoting the regularized solution of (23) byλα∗

, the approximate
solution u∗

α for the problems (11) and (7) is given as

u∗
α(x, t) =

N−3∑

i=1

λα∗
i φi (x, t) + λα∗

N−2x + λα∗
N−1t + λα∗

N . (24)

Then f (x) may be estimated as

f ∗(x) = u∗
α(x, T ) − a2h′′(x)

ϕ(T )
. (25)

4 Numerical Examples

It should be noted that in many practical situations, the measured data are unavoidably
contaminated by inherent measurement errors. Thus, we will replace exact data by
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Table 1 The values of cond(A),
RMS(u), RES(u), RMS(f ),
RES(f ) for various values of
T, σ = 0.1%, N = 32 for
Example 1

T RMS(u) RES(u) RMS(f ) RES(f ) Cond(A)

0.5 0.0551 0.1629 0.4881 0.4217 6.7699 × 108

0.6 0.0327 0.0967 0.0492 0.0425 4.6086 × 108

0.7 0.0276 0.0818 0.1089 0.0941 3.8553 × 108

0.8 0.0068 0.0200 0.3727 0.3220 2.6539 × 108

0.9 0.0026 0.0076 0.5620 0.4855 2.4576 × 108
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Fig. 1 The GCV function obtained for levels of noise added into the measured data, namely σ =
0.1%(. . .), σ = 1%(−) with N = 32, T = 0.6 for Example 1

noise data given by
b = b + σ.randn(i), i = 1, . . . , N , (26)

where the magnitude σ indicates the percentage error level and randn(i) is a normal
distribution functionwith zeromean andunit standard deviation, and it is realized using
the Matlab function randn. For numerical verification, we assume that the diffusion
coefficient a = 1.

The values for the accuracy errors, the root mean square error (RMS), and the
relative root mean square error (RES) are defined as

RMS(u) =
√√√√ 1

N

N∑

i=1

(ui − u∗
i )

2, (27)

RES(u) =
√√√√

∑N
i=1 (ui − u∗

i )
2

∑N
i=1 (ui )2

, (28)

where N is the total number of test points, distributed in the domain [0, 1] × [0, T ].
Also ui and u∗

i are the exact and approximated values of u(x, t) at these points,
respectively.
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Fig. 2 The analytical f (x) and its approximation f ∗(x) with N = 32, T = 0.6 and levels of noise added
into the measured data, namely σ = 0.1, 1% for Example 1
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Fig. 3 The analytical f (x) and its approximation f ∗(x) with N = 48, T = 0.3 and levels of noise added
into the measured data, namely σ = 10, 20% for Example 2

Example 1 Let ϕ(t) = e2t , v(x) = x, h(x) = e2x, g(t) = 0 and k(t) = e2t . With
these assumptions, the exact solution of problem (6)–(8) is given by u(x, t) = xe2t

and f (x) = 2x . The obtained results for various values of T and σ = 0.1% are
shown in Table 1. Also in Fig. 1 it can be seen that the minimum of G(α) occurs
approximately at α = 4.8854 × 10−4 and 1.1409 × 10−7 for σ = 1 and 0.1%,
respectively. Similar results have been obtained for the other problems investigated in
this study, and therefore, they are not presented here. In Fig. 2 we do the comparison
between the exact and approximate solutions f (x) and f ∗(x). From this figure, the
numerical results are satisfactory. Even with the noise level up to σ = 1%, the
numerical solutions are still in good agreement with the exact solutions. The condition
number of the matrix A seems too large to obtain accurate solutions. However, from
Table 1, it can be easily observed that the Tikhonov regularization method works well.
Similar conclusions can be drawn from the results for Example 2. From Table 2 it
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Table 2 RES(f ) for various
values of σ and N , T = 0.6 for
Example 1

N σ = 10% σ = 1% σ = 0.1%

32 0.1135 0.1057 0.0425

48 0.2276 0.1808 0.1501

64 1.2192 0.3421 0.1699

80 0.3171 0.2368 0.1063

100 0.3174 0.2399 0.1129
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Fig. 4 The approximate u(x, t) for Example 2

Table 3 The values of cond(A), RMS(u), RES(u), RMS( f ), RES( f ) for various values of T, σ =
10%, N = 48 for Example 2

T RMS(u) RES(u) RMS(f ) RES(f ) Cond(A)

0.2 0.0121 0.0387 0.0846 0.0809 9.3099 × 1010

0.3 0.0306 0.0974 0.0389 0.0372 2.1324 × 1010

0.4 0.0328 0.1045 0.1016 0.0971 7.9735 × 109

0.5 0.0105 0.0334 0.1602 0.1531 1.3145 × 1010

0.6 0.0145 0.0463 0.1969 0.1882 2.3021 × 109

can be seen that increase of N has an increasing effect on the errors. Furthermore, the
values of RES(f ) decrease as the level of noise σ added into the input temperature
data decreases.

Example 2 Let us consider ϕ(t) = et , v(x) = sin(x), h(x) = sin(x)e, g(t) = 0 and
k(t) = sin(1)et . With these assumptions, the inverse problem (6)–(8) has the unique
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solution given by u(x, t) = sin(x)et and f (x) = 2sin(x). The function f (x) and
the approximation f ∗(x) are displayed in Fig. 3. Also the obtained results for various
values of T and σ = 10% are shown in Table 3.

Tables 1 and 3 show that the RMS(f ) and RES(f ) increase with increasing value
of T in Examples 1 and 2. The numerical results for u(x, t) is shown in Fig. 4 where
T = 0.1.

5 Conclusions

In this paper, an inverse source problem is considered by using the thin plate spline
radial basis functions and Tikhonov regularization method with the GCV criterion.
Two unknown functions in this heat source problem are estimated simultaneously.
Numerical results show the accuracy and ability of the proposed method. Employing
a similar procedure for solving the heat source f (x, t; u) = ϕ(t) f (x), while ϕ(t) is
unknown function, with transient temperature overspecification can be a nice inves-
tigation and is the subject of research work proposed by the authors of this paper. In
concluding, the proposed scheme can be easily adapted to two- and three-dimensional
inverse source problem.
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