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Abstract Each conjugacy class of actions of PGL (2,Z) on the projective line over
a finite field Fq denoted by PL

(
Fq

)
, can be represented by a coset diagram D (θ, q),

where θ ∈ Fq and q is a prime power. The coset diagrams are composed of fragments,
and the fragments are further composed of two or more circuits at a certain common
point. Professor Graham Higman raised a question: for what values of q and θ , can
a fragment γ be found in D (θ, q)? Mushtaq in 1983 found that the condition for the
existence of a fragment in D (θ, q) is a polynomial f inZ [z]. In this paper, we answer
the question: how many polynomials are obtained from the fragments, composed by
joining the circuits (n1, n2) and (m1,m2), where n2 < n1 < m2 < m1, at all points
of connection.

Keywords Modular group · Coset diagrams · Projective line over a finite field
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1 Introduction

It is well known that the modular group PSL (2,Z) [1,3,4] is generated by the linear
fractional transformations x : z → −1/z and y : z → z − 1/z which satisfy the
relations x2 = y3 = 1.
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1116 Q. Mushtaq, A. Razaq

If t is z → 1/z which does not belong to PSL (2,Z), then x, y, t generate the
extended modular group PGL (2,Z) and satisfy the relations x2 = y3 = t2 =
(xt)2 = (yt)2 = 1.

Let q be a power of a prime p. Let PL
(
Fq

)
denote the projective line over

the finite field Fq . Then PL
(
Fq

) = Fq ∪ {∞}. The group PGL (2, q) has its
customary meaning, as the group of all linear fractional transformations z →
az + b/cz + d such that a, b, c, d are in Fq and ad − bc is non-zero, while
PSL (2, q) is its subgroup consisting of those where ad − bc is a quadratic residue
in Fq .

In 1978, G. Higman introduced a new type of graph called a coset diagram for
PGL (2,Z). In 1983, Mushtaq [6] laid its foundation. The three cycles of y are
denoted by small triangles whose vertices are permuted counter-clockwise by y and
any two vertices which are interchanged by x are joined by an edge. The fixed points of
x and y are denoted by heavy dots. Notice (yt)2 = 1 is equivalent to t yt = y−1, which
means that t reverses the orientation of the triangles representing the three cycles of
y (as reflection does); because of this, there is no need to make the diagram more
complicated by introducing t-edges. For details about coset diagrams, one can refer
to [2,8–10].

Two homomorphisms α and β from PGL (2,Z) to PGL (2, q) are called con-
jugate if β = αρ for some inner automorphism ρ on PGL (2, q). We call α to
be non-degenerate if neither of x, y lies in the kernel of α. In [7] it has been
shown that there is a one-to-one correspondence between the conjugacy classes of
non-degenerate homomorphisms from PGL (2,Z) to PGL (2, q) and the elements
θ �= 0, 3 of Fq under the correspondence which maps each class to its parameter
θ . When θ = 0, 3 we get degenerate homomorphisms [7]. In other words, it has
been shown that for each θ in Fq , there exists a conjugacy class determined by the
pair (x, y) via α. Thus each θ of Fq determines a pair (x, y) which further gives
a coset diagram. This implies that for each such conjugacy class, we get a unique
coset diagram. It is unique in the sense that for all pairs (x, y) in the same conju-
gacy class, we get the same coset diagram except that the labeling of the vertices
vary from pair to pair. Thus the elements, which are conjugate over the field Fq ,
will give essentially the same coset diagram. Let D (θ, q) denote the coset diagram
corresponding to the action of PGL (2,Z) on PL

(
Fq

)
via a homomorphism with

parameter θ .

2 Occurrence of Fragments in D (θ, q)

By a circuit in a coset diagram for an action of PGL (2,Z) on PL
(
Fq

)
, we mean

a closed path of triangles and edges. Coset diagrams for the action of PGL (2,Z)on
PL

(
Fq

)
are composed of fragments, whereas the fragments themselves are composed

of circuits. For a sequence of positive integers n1, n2, ..., n2k , the circuitwhich contains
a fixed point of an elementw = (xy)n1

(
xy−1

)n2
...

(
xy−1

)n2k ∈ PSL (2,Z) for some
k ≥ 1, we mean the circuit in which n1 triangles have one vertex inside the circuit
and n2 triangles have one vertex outside the circuit and so on. Since it is a cycle
(n1, n2, ..., n2k), so it does not make any difference if n1 triangles have one vertex

123



Homomorphic Images of Circuits in PSL(2,Z)-Space 1117

outside the circuit n1, n2, ..., n2k and n2 triangles have one vertex inside the circuit
and so on.

For a given sequence of positive integers, the circuit of the type (n1, n2, ..., n2k′ , n1,
n2, ..., n2k′ , ..., n1, n2, ..., n2k′), where k′ divides k, is said to have a period of length
2k′. A circuit which is not of this type is called a non-periodic circuit. A circuit is
called simple, if each vertex of the circuit is fixed by a unique word w or its inverse
w−1. Two circuits (n1, n2, ..., n2k) and (m1,m2, ...,m2k′) are connected circuits, if
any two vertices in the circuits (n1, n2, ..., n2k) and (m1,m2, ...,m2k′) are joined by
a path.

Consider two non-periodic and simple circuits (n1, n2, ..., n2k) and (m1,m2, ...,

m2k′). Let vi be any vertex in (n1, n2, ..., n2k) fixed by a wordwi and v j be any vertex
in (m1,m2, ...,m2k′) fixed by a word w j . In order to connect these two circuits at vi
and v j , we choose, without any loss of generality (n1, n2, ..., n2k) and apply w j on
vi in such a way that w j ends at vi . Consequently, we get a fragment γ , containing a
vertex v = vi = v j fixed by the pair wi , w j .

The action of PGL (2,Z) on PL
(
Fq2

)
yields two components, namely PL

(
Fq

)

and PL
(
Fq2

)− PL
(
Fq

)
. For sake of simplicity, let PL

(
Fq

)
denote the complement

PL
(
Fq2

)−PL
(
Fq

)
. If a fragment occurs in the coset diagram D (θ, q) corresponding

to an action of PGL (2,Z) on a projective line, then the projective line in which

it occurs may be PL
(
Fq

)
or PL

(
Fq

)
. Since D (θ, q) is made of fragments, it is

therefore necessary to ask, when a fragment exists in D (θ, q). In [5], this question is
answered in the following way.

Theorem 1 Given a fragment, there is a polynomial f in Z [z] such that

(i) if the fragment occurs in D (θ, q), then f (θ) = 0,
(ii) if f (θ) = 0, then the fragment, or a homomorphic image of it occurs in D (θ, q)

or in PL
(
Fq

)
.

In [5], the method of calculating a polynomial from a fragment is given. Here
we describe this method briefly. Let (n1, n2, ..., n2k) and (m1,m2, ...,m2k′) be two
non-periodic circuits, and a fragment γ is composed by joining a vertex vi , fixed by
wi = (xy)n1

(
xy−1

)n2
...

(
xy−1

)n2k in (n1, n2, ..., n2k) with the vertex v j fixed by
w j = (xy)m1

(
xy−1

)m2
...

(
xy−1

)m2k′ in (m1,m2, ...,m2k′). Then λ contains a vertex
vi = v j , fixed by the pair wi , w j . Let X and Y be the matrices corresponding to x and
y of PGL (2, q). Then wi and w j can be expressed as

Wi = (XY )n1
(
XY−1

)n2
...

(
XY−1

)n2k

W j = (XY )m1
(
XY−1

)m2
...

(
XY−1

)m2k′

where k, k′ > 0. By making use of Eqs. (3.1)–(3.7) of [5], the matrices Wi ,Wj and
WiWj can be expressed linearly as

Wi = λ0 I + λ1X + λ2Y + λ3XY

Wj = μ0 I + μ1X + μ2Y + μ3XY
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such that λi and μi , for i = 0, 1, 2, 3 are expressions in r and �, where r is the
trace of XY and � is its determinant. Since (v) wi = v and (v) w j = v, the 2 × 2
matricesWi andWj have an eigenvector in common. This by Lemma 3.1 of [5] means
that the algebra generated by Wi and Wj has dimension 3. The algebra contains
I,Wi ,Wj ,WiWj and so these must be linearly dependent. Using Eqs. (3.1)–(3.7) of
[5], the matrix WiWj can be expressed as

WiWj = ν0 I + ν1X + ν2Y + ν3XY,

where νi , for i = 0, 1, 2, 3 can be calculated in terms of the λi and μi , using Eqs.
(3.1)–(3.7) of [5]. The condition that I,Wi ,Wj andWiWj are linearly dependent, can
be expressed as

∣
∣∣∣∣∣

λ1 λ2 λ3
μ1 μ2 μ3
ν1 ν2 ν3

∣
∣∣∣∣∣
= 0.

If we carry out the calculation of ν1, ν2, ν3 in terms of λi and μi , we find that this is
equivalent to

(λ2μ3 − μ2λ3)
2 + �(λ3μ1 − μ3λ1)

2 + (λ1μ2 − μ1λ2)
2

+ r (λ2μ3 − μ2λ3) (λ3μ1 − μ3λ1) + (λ2μ3 − μ2λ3) (λ1μ2 − μ1λ2) = 0.

This gives a homogeneous equation in � and r . In [7], θ is defined as r2/�, so we
can substitute �θ for r2 to get a polynomial in θ .

Let vi and vk be any two vertices in a fragment λ, such that vi is fixed by the pair
wi , w j and vk is fixed by the pair wk, wl . Suppose f (θ) is a polynomial obtained
by choosing the vertex vi in λ, that is, f (θ) is obtained from the words wi and w j .
Suppose g (θ) is a polynomial obtained by choosing the vertex vk in λ, that is, g (θ) is
obtained from the words wk and wl . If f (θ) = 0, then by Theorem 1, the fragment λ,

or its homomorphic image occurs in D (θ, q) or in PL
(
Fq

)
. So there exists a vertex

in D (θ, q) or in PL
(
Fq

)
which is fixed bywk andwl . Again, by Theorem 1, we have

g (θ) = 0. Similarly, if g (θ) = 0, then f (θ) = 0. This shows that a unique polynomial
is obtained from a fragment. Also there does not exist two distinct fragments γ and
δ such that if γ exists in D (θ, q), then also δ and vice versa. This shows that two
distinct fragments do not have the same condition for the existence in D (θ, q), that
is, they have distinct polynomials.
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Let the homomorphic image of the fragment γ

occur in the coset diagram D (θ, q). Since D (θ, q) admits an axis of symmetry, the
mirror image of γ under the permutation t will also occur.

v v*

By γ ∗ we shall mean, the mirror image of γ . If w = xyη1xyη2 ...xyηn (η = 1or
−1) is a word, then let w∗ = xy−η1xy−η2 ...xy−ηn . If a vertex v is fixed by w, then
the vertex fixed by w∗ is denoted by v∗.

Remark 1 Since t reverses the orientation of the triangles representing the three cycles
of y (as reflection does), so if y contains a vertex v fixed by the pair wi , w j , then
obviously its mirror image γ ∗ contains a vertex v∗ fixed by the pair w∗

i , w
∗
j . Since

D (θ, q) has a vertical symmetry, therefore if γ exists in D (θ, q), then itsmirror image
γ ∗ also exists in D (θ, q). So condition for the existence of γ and γ ∗ in D (θ, q) is
the same, that is, a unique polynomial is obtained from γ and γ ∗. The mirror image
of γ is formed by flipping it horizontally. There are certain fragments which remain
exactly the same, if we flip them horizontally, that is, they have the same orientations
as those of their mirror images. These kinds of fragments have vertical symmetry
and may have fixed points of t . A fragment γ containing a vertex v fixed by the
pair wi , w j , has the same orientation as that of its mirror image if and only if it
contains a vertex v∗ fixed by the pair w∗

i , w
∗
j . For example, the fragment formed by

joining a vertex vi , fixed by (xy)n1
(
xy−1

)n2 in (n1, n2) with the vertex v j , fixed by
(xy)m1+n1/2

(
xy−1

)m2
(xy)m1−n1/2 in (m1,m2) has the same orientation as that of its

mirror image. Diagrammatically, it means
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n 2 – 2 triangles

m 2 triangles

vv*

n1 triangles

Since γ and γ ∗ are the same fragments except their orientations, so we have the
following Theorem.

Theorem 2 Let γ and δ be two fragments, such that γ contains a vertex fixed by the
pair wi , w j . Then γ and δ are the same if and only if δ contains a vertex fixed by the
pair wi , w j or the pair w∗

i , w
∗
j .

3 Points of Connection

If a fragment γ is created by joining a vertex vi in (n1, n2, ..., n2k) with the vertex v j

in (m1,m2, ...,m2k′), then vi and v j are not the only vertices, that are joined. But there
are many (depends upon vi and v j ) vertices in (n1, n2, ..., n2k) and (m1,m2, ...,m2k′)
that are joined. That is, a fragment has finitely many vertices of connection in
(n1, n2, ..., n2k) and (m1,m2, ...,m2k′).

Remark 2 If v is fixed by wi ∈ PSL (2,Z), then (v) w is fixed by the conjugate
w−1wiw of wi .

Definition 1 Let vi , vk and v j , vl be the vertices in (n1, n2, ..., n2k) and (m1,m2, ...,

m2k′), respectively, such that vi , vk, v j and vl are fixed by wi , wk, w j and wl , respec-
tively. Let γ be the fragment formed by joining vi with v j . Then a pair of vertices
V (vk, vl) is equivalent to the pair of vertices V

(
vi , v j

)
if and only if by joining vi and

v j to create γ, vk , and vl also get connected with each other. If two pairs of vertices
V (vk, vl) and V

(
vi , v j

)
are equivalent, then we write V (vk, vl) ∼ V

(
vi , v j

)
.

Let γ be the fragment formed by joining the vertex vi , fixed by wi , in
(n1, n2, ..., n2k) with the vertex v j , fixed by w j , in (m1,m2, ...,m2k′) and R be the
set of pairs of vertices that are equivalent to V

(
vi , v j

)
. Suppose P is the set of words

such that for any w ∈ P , both vertices (vi ) w and
(
v j

)
w lie on (n1, n2, ..., n2k) and

(m1,m2, ...,m2k′), respectively.

Theorem 3 For any w ∈ P, there is a pair of vertices in R.

Proof Let w ∈ P , then (vi ) w and
(
v j

)
w lie on (n1, n2, ..., n2k) and (m1,m2, ...,

m2k′), respectively. We join (vi ) w with
(
v j

)
w and create a fragment δ. Then by
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Remark 2, the vertex (vi ) w = (
v j

)
w of δ is fixed by the pair w−1wiw,w−1w jw,

whereas the vertex ((vi ) w)w−1 = ((
v j

)
w

)
w−1 of δ is fixed by the pair

w
(
w−1wiw

)
w−1 = wi , w

(
w−1w jw

)
w−1 = w j . This show that δ and γ are the

same fragments. Therefore, by joining vi and v j to create γ, (vi ) w and
(
v j

)
w also

get connected. Hence V
(
(vi ) w,

(
v j

)
w

) ∼ V
(
vi , v j

)
. ��

Remark 3 Let vi and v j be any vertices in a circuit such that vi is fixed by wi , and
(vi ) w = v j . Then in addition tow, there is another pathw−1

i w fromvi tov j .Moreover,
wi and w−1

i w are the only two paths from vi to v j .

Theorem 4 Corresponding to each pair of vertices V (vk, vl) ∈ R, there is a unique
word w ∈ P such that (vi ) w = vk,

(
v j

)
w = vl .

Proof Let V (vk, vl) ∈ R, so V (vk, vl) ∼ V
(
vi , v j

)
. Therefore, by joining vi and v j

to create γ, vk and vl also get connected with each other. This implies that there is
a same path from vi to vk in (n1, n2, ..., n2k) and from v j to vl in (m1,m2, ...,m2k′)
that is, (vi ) w = vk and

(
v j

)
w = vl . Since vk and vl lie on (n1, n2, ..., n2k) and

(m1,m2, ...,m2k′), respectively, therefore (vi ) w and
(
v j

)
w lie on (n1, n2, ..., n2k)

and (m1,m2, ...,m2k′), respectively. This shows that w ∈ P . By Remark 3, there is
another path w−1

i w, from vi to vk in (n1, n2, ..., n2k), that is, (vi ) w−1
i w = vk . But(

v j
)
w−1
i w �= vl , therefore w−1

i w /∈ P . Similarly for the second path w−1
j w, from v j

to vl in (m1,m2, ...,m2k′), we have (vi ) w−1
j w �= vk . Hence w is a unique word in P .

��
Theorem 5 There is a one-to-one correspondence between R and P.

The Proof is an immediate consequence of Theorems 3 and 4.

4 Counting of the Number of Vertices of Connection for a Fragment

Each point of connection gives a pair of words, which further gives a polynomial.
Since a unique polynomial is obtained from a fragment γ , so a unique polynomial is
evolved for all the vertices of connection for γ . Therefore, it is important to know all
the vertices of connection for γ .

Let γ be created by joining the vertex vi fixed by wi in (n1, n2) with the vertex v j

fixed by w j in (m1,m2), and s = |R|. Then there are at least s vertices of connection
in (n1, n2) and (m1,m2) to obtain γ . Note that s is not the total number of vertices
of connection in (n1, n2) and (m1,m2) to compose γ . To find the total number of
vertices of connection, one has to be extra careful.

If γ has different orientations from its mirror image, then by Remark 1, γ does not
contain a vertex fixed by the pair w∗

i , w
∗
j . That is, by joining vi with v j to create γ , v∗

i
and v∗

j are not connected. So there are s vertices of connection for the mirror image
of γ .

But if γ has the same orientation as that of its mirror image, then by Remark 1, γ
contains a vertex fixed by the pair w∗

i , w
∗
j . That is, by joining vi with v j , the vertices
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v∗
i and v∗

j also get connected. Hence total number of vertices of connection for γ are
{
2s if γ has different orientations from its mirror image
s if γ has the same orientation as that of its mirror image

.

5 Joining of Circuits

Consider two circuits (n1, n2) and (m1,m2).

e1

e2

e3 e4

e5

e6 e3n 1

e3n 1 1

e3n 1 2

f1

f2

f3 f4

f5

f6 f3n2 2

f3n 2 1

f3n 2

u1

u2

u3 u4

u5

u6 u3m 1 2

u3m 1 1

u3m 1

v 1

v 2

v 3 v 4

v 5

v 6 v 3m 2 2

v 3m 2 1

v 3m 2

In above figures, one can see that

e3i1+1 is fixed by (xy)i1
(
xy−1

)n2
(xy)n1−i1 ,

f3 j1+1 is fixed by (xy) j1
(
xy−1

)n1
(xy)n2− j1 ,

e3(i1+1) is fixed by
(
xy−1

)n1−(i1+1)
(xy)n2

(
xy−1

)i1+1
,

f3( j1+1) is fixed by
(
xy−1

)n2−( j1+1)
(xy)n1

(
xy−1

) j1+1
,

u3i2+1 is fixed by (xy)i2
(
xy−1

)m2
(xy)m1−i2 ,
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v3 j2+1 is fixed by (xy) j2
(
xy−1

)m1
(xy)m2− j2 ,

u3(i2+1) is fixed by
(
xy−1

)m1−(i2+1)
(xy)m2

(
xy−1

)i2+1
,

v3( j2+1) is fixed by
(
xy−1

)m2−( j2+1)
(xy)m1

(
xy−1

) j2+1
,

where

i1 = 0, 1, 2..., n1 − 1, j1 = 0, 1, 2..., n2 − 1,

i2 = 0, 1, 2...,m1 − 1, j2 = 0, 1, 2...,m2 − 1.

The number of vertices in (n1, n2) and (m1,m2) are 3 (n1 + n2) and 3 (m1 + m2),
respectively. So there are 9 (n1 + n2) (m1 + m2) vertices of connection in (n1, n2) and
(m1,m2). For convenience, let n1 ≥ n2 andm1 cannot be less than n1, n2 andm2. For
example, consider two circuits (3, 5) and (7, 8), then we takem1 = 8,m2 = 7, n1 = 5
and n2 = 3 that is, (m1,m2) = (8, 7) , (n1, n2) = (5, 3).

Professor Graham Higman raised a question: for what values of q and θ , can a
fragment γ be found in D (θ, q)? Mushtaq in 1983 found that the condition for the
existence of a fragment in D (θ, q) is a polynomial f in Z [z]. Let us join (n1, n2) and
(m1,m2) at a certain point, and form a fragment γ . As, a fragment has somany vertices
of connection in (n1, n2) and (m1,m2). So if we change the point of connection in
(n1, n2) and (m1,m2), it is not necessary that we get a fragment different from γ . It is
therefore necessary to ask, how many distinct fragments (polynomials) are formed, if
we join the circuits (n1, n2) and (m1,m2) at all vertices of connection? In this section,
we answer this question for (n1, n2) and (m1,m2), where n2 < n1 < m2 < m1.
We also mention those vertices of connection in (n1, n2) and (m1,m2), which are
important. There is no need to join (n1, n2) and (m1,m2) at the points, which are not
mentioned as important. Because if we join (n1, n2) and (m1,m2) at such a point u,
we obtain a fragment, which we have already been obtained by joining at important
points.

First we prove some lemmas, which are used in our main results.
Let i1 = 0, 1, 2, ..., n1 − 1.

Lemma 1 If the vertex f3n2 , fixed by (xy)n1
(
xy−1

)n2 in (n1, n2) is connected with
the vertices u3i1+1, fixed by (xy)i1

(
xy−1

)m2
(xy)m1−i1 in (m1,m2), then there are

n1 distinct fragments, and there are 6
∑n1−1

i1=0 (i1 + 2) vertices of connection of these
fragments.

Proof Let γi1 be the fragments formed by joining the vertex f3n2 with the vertices
u3i1+1. Then

P1 =
{
x, xy−1, xy, xyx, xyxy−1, (xy)2 ,

..., (xy)i1 x, (xy)i1 xy−1, (xy)i1+1 , e, y, y−1
}
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1124 Q. Mushtaq, A. Razaq

is the set of words such that for any w ∈ P1, both the vertices
(
f3n2

)
w and

(
u3i1+1

)
w

lie on (n1, n2) and (m1,m2), respectively. By Theorem 5, each fragment in
{
γi1

}
has

at least |P1| = 3 (i1 + 2) vertices of connection in (n1, n2) and (m1,m2). ��
Now we show that none of the fragments in

{
γi1

}
has the same orientation as that

of its mirror image. Let γk ∈ {
γi1

}
, then γk is formed by joining the vertex f3n2

fixed by (xy)n1
(
xy−1

)n2 , with the vertex u3k+1 fixed by (xy)k
(
xy−1

)m2
(xy)m1−k .

By Theorems 3 and 4, V
(
f ∗
3n2

, u∗
3k+1

)
∼ V

(
f3n2 , u3k+1

)
if and only if there exists

a word w ∈ P1 such that
(
f3n2

)
w = f ∗

3n2
, (u3k+1) w = u∗

3k+1. But there does

not exist such a word in P1. This implies that V
(
f ∗
3n2

, u∗
3k+1

)
is not equivalent to

V
(
f3n2 , u3k+1

)
, that is, by joining f3n2 with u3k+1 to create γk, f ∗

3n2
is not connected

with u∗
3k+1. Therefore, γk has different orientations from its mirror image. So each

fragment in
{
γi1

}
has at least 6 (i1 + 3) vertices of connection in (n1, n2) and (m1,m2).

Now we show that any two fragments γk, γl ∈ {
γi1

}
where k �= l, are distinct.

Since γk is formed by joining the vertex f3n2 fixed by (xy)n1
(
xy−1

)n2 , with the vertex
u3k+1 fixed by (xy)k

(
xy−1

)m2
(xy)m1−k and γl is formed by joining the vertex f3n2

fixed by (xy)n1
(
xy−1

)n2 , with the vertex u3l+1 fixed by (xy)l
(
xy−1

)m2
(xy)m1−l .

Therefore, by Theorem 4, if V
(
f3n2 , u3l+1

) ∼ V
(
f3n2 , u3k+1

)
, then there exists a

word w ∈ P1 such that
(
f3n2

)
w = f3n2 , (u3k+1) w = u3l+1. There is only one

word e ∈ P1 for which
(
f3n2

)
e = f3n2 , but (u3k+1) e �= u3l+1. This implies that

V
(
f3n2 , u3l+1

)
is not equivalent to V

(
f3n2 , u3k+1

)
, that is, by joining f3n2 with

u3k+1 to create γk, f3n2 is not connected with u3l+1. Therefore, γk does not contain
a vertex fixed by (xy)n1

(
xy−1

)n2 and (xy)l
(
xy−1

)m2
(xy)m1−l . Also by Theorem 4,

if V
(
f ∗
3n2

, u∗
3l+1

)
∼ V

(
f3n2 , u3k+1

)
, then there exists a word w ∈ P1 such that

(
f3n2

)
w = f ∗

3n2
, (u3k+1) w = u∗

3l+1. But P1 does not contain such a word. This

implies that V
(
f ∗
3n2

, u∗
3l+1

)
is not equivalent to V

(
f3n2 , u3k+1

)
, that is, by joining

f3n2 with u3k+1 to create γk, f ∗
3n2

is not connected with u∗
3l+1. Therefore, γk does

not contain a vertex fixed by
(
xy−1

)n1
(xy)n2 and

(
xy−1

)l
(xy)m2

(
xy−1

)m1−l
. Hence

by Theorem 2, all the fragments in
{
γi1

}
are distinct. Therefore,

∣∣γi1
∣∣ = n1 and there

are 6
∑n1−1

i1=0 (i1 + 2) vertices of connection for all these fragments.
Let

j1 = m1 + n1 + r1
2

,
m1 + n1 + 2 + r1

2
, ...,m1 − 1,

where r1 =
{
0 if m1 + n1 is even integer
1 if m1 + n1 is odd integer

. It is clear that j1 > i1.

Lemma 2 If the vertex f3n2 , fixed by (xy)n1
(
xy−1

)n2 in (n1, n2) is connected with
the vertices u3 j1+1, fixed by (xy) j1

(
xy−1

)m2
(xy)m1− j1 in (m1,m2), then there are

1/2 (m1 − n1 − r1) distinct fragments, and there are 3 (n1 + 2) (m1 − n1 − 1) ver-
tices of connection of these fragments.
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Proof Let μ j1 be the fragments formed by joining the vertex f3n2 with the vertices
u3 j1+1. Then

P2 =
{
x, xy−1, xy, xyx, xyxy−1, (xy)2 , ..., (xy)n1−1 x, (xy)n1−1 xy−1, (xy)n1 ,

(xy)n1 x, (xy)n1 xy−1, (xy)n1+1 , e, y−1, y

}

is the set of words such that for anyw ∈ P2, both the vertices
(
f3n2

)
w and

(
u3 j1+1

)
w

lie on (n1, n2) and (m1,m2), respectively. By Theorem 5, each fragment in
{
μ j1

}
has

at least |P2| = 3 (n1 + 2) vertices of connection. ��

Now we show that all fragments in
{
μ j1

}
are distinct, and only μm1+n1/2 ∈ {

μ j1

}

has the same orientation as that of its mirror image. Let μk, μl ∈ {
μ j1

}
, then μk is

formed by joining the vertices, f3n2 and u3k+1 and μl is formed by joining f3n2 with
u3l+1. By Theorem 3 and 4, V

(
f3n2 , u3l+1

) ∼ V
(
f3n2 , u3k+1

)
, if and only if there

exists a word w ∈ P2 such that
(
f3n2

)
w = f3n2 , (u3k+1) w = u3l+1. There is only

one word e ∈ P2 for which
(
f3n2

)
e = f3n2 , but (u3k+1) e �= u3l+1. This implies

that V
(
f3n2 , u3l+1

)
is not equivalent to V

(
f3n2 , u3k+1

)
, that is, by joining f3n2 with

u3k+1 to createμk, f3n2 is not connectedwith u3l+1. Therefore,μk does not contain a
vertex fixed by (xy)n1

(
xy−1

)n2 and (xy)l
(
xy−1

)m2
(xy)m1−l . Also by Theorem 3 and

4, V
(
f ∗
3n2

, u∗
3l+1

)
∼ V

(
f3n2 , u3k+1

)
, if and only if there exists a word w ∈ P2 such

that
(
f3n2

)
w = f ∗

3n2
, (u3k+1) w = u∗

3l+1. There is only one word (xy)n1 x ∈ P2 for
which

(
f3n2

)
(xy)n1 x = f ∗

3n2
and (u3k+1) (xy)n1 x = u∗

3(m1+n1−k)+1. This implies

that for l = m1 + n1 − k, V
(
f ∗
3n2

, u∗
3l+1

)
∼ V

(
f3n2 , u3k+1

)
, that is, by joining

f3n2 with u3k+1 to create μk, f ∗
3n2

and u∗
3l+1 also get connected. Therefore, μk

contains a vertex fixed by
(
xy−1

)n1
(xy)n2 and

(
xy−1

)l
(xy)m2

(
xy−1

)m1−l
. Hence by

Theorem 2, the fragments μk and μl are the mirror images of each other if and only if
l = m1+n1−k.Nowfor all k ∈ {m1 + n1 + r1/2,m1 + n1 + 2 + r1/2, ...,m1 − 1}−
m1 + n1/2,we havem1+n1−k < m1 + n1 + r1/2, implying thatμm1+n1−k /∈ {

μ j1

}
.

But for k = m1 + n1/2,we getm1+n1−k = m1 + n1/2. Therefore,μm1+n1/2 has the
same orientation as that of its mirror image. Hence any two fragments μk, μl ∈ {

μ j1

}

are distinct. Since j1 = m1 + n1 + r1/2,m1 + n1 + 2 + r1/2, ...,m1 − 1, therefore∣∣μ j1

∣∣ = 1/2 (m1 − n1 − r1).
Let m1 + n1 be an even integer, then there is only one fragment μm1+n1/2 ∈ {

μ j1

}

having the same orientation as that of itsmirror image, and all other 1/2 (m1 − n1 − 2)
fragments have different orientations from their mirror images. Hence there are

2 |P2|
(
m1 − n1 − 2

2

)
+ |P2| = 6 (n1 + 2)

(
m1 − n1 − 2

2

)
+ 3 (n1 + 2)

= 3 (n1 + 2) (m1 − n1 − 1)

vertices of connection for the fragments in
{
μ j1

}
.

Let m1 + n1 be an odd integer, then all fragments in
{
μ j1

}
have different

orientations from their mirror images. Hence there are 2 |P2| (m1 − n1 − 1/2) =
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6 (n1 + 2) (m1 − n1 − 1/2) = 3 (n1 + 2) (m1 − n1 − 1) vertices of connection for
the fragments in

{
μ j1

}
.

Lemma 3 If the vertex f3n2 , fixed by (xy)n1
(
xy−1

)n2 in (n1, n2) is connected with
the vertices v3i1+1, fixed by (xy)i1

(
xy−1

)m1
(xy)m2−i1 in (m1,m2), then there are

n1 distinct fragments, and there are 6
∑n1−1

i1=0 (i1 + 2) vertices of connection of these
fragments.

The proof is obtained by interchanging m1,m2, P1 and γi1 by m2,m1, P3 and γ ′
i1
,

respectively, in the proof of Lemma 1.
Let

j2 = m2 + n1 + r2
2

,
m2 + n1 + 2 + r2

2
, ...,m2 − 1,

where r2 =
{
0 if m2 + n1 is even integer
1 if m2 + n1 is odd integer

.

Lemma 4 If the vertex f3n2 , fixed by (xy)n1
(
xy−1

)n2 in (n1, n2) is connected with
the vertices v3 j2+1, fixed by (xy) j2

(
xy−1

)m1
(xy)m2− j2 in (m1,m2), then there are

1/2 (m2 − n1 − r2) distinct fragments, and there are 3 (n1 + 2) (m2 − n1 − 1) ver-
tices of connection of these fragments.

The proof is obtained by interchanging m1,m2, j1, P2 and μ j1 by m1,m1, j2, P4
and μ′

j2
, respectively, in the proof of Lemma 2.

Let i2 = 1, 2, ..., n2 − 1.

Lemma 5 If the vertex e3n1 , fixed by (xy)n2
(
xy−1

)n1 in (n1, n2) is connected with
the vertices u3i2+1, fixed by (xy)i2

(
xy−1

)m2
(xy)m1−i2 in (m1,m2), then there are

(n2 − 1) distinct fragments, and there are 6
∑n2−1

i2=1 (i2 + 2) vertices of connection of
these fragments.

The proof is obtained by interchanging n1, n2, i1, P1 and γi1 by n2, n1, i2, P5 and
λi2 , respectively, in the proof of Lemma 1.

Let

j3 = m1 + n2 + r3
2

,
m1 + n2 + 2 + r3

2
, ...,m1 − 1,

where r3 =
{
0 if m1 + n2 is even integer
1 if m1 + n2 is odd integer

.

Lemma 6 If the vertex e3n1 , fixed by (xy)n2
(
xy−1

)n1 in (n1, n2) is connected with
the vertices u3 j3+1, fixed by (xy) j3

(
xy−1

)m2
(xy)m1− j3 in (m1,m2), then there are

1/2 (m1 − n2 − r3) distinct fragments, and there are 3 (n2 + 2) (m1 − n2 − 1) ver-
tices of connection of these fragments.
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The proof is obtained by interchanging n1, n2, j1, P2 and μ j1 by n2, n1, j3, P6 and
ν j3 , respectively, in the proof of Lemma 2.

Lemma 7 If the vertex e3n1 , fixed by (xy)n2
(
xy−1

)n1 in (n1, n2) is connected with
the vertices v3i2+1, fixed by (xy)i2

(
xy−1

)m1
(xy)m2−i2 in (m1,m2), then there are

(n2 − 1) distinct fragments, and there are 6
∑n2−1

i2=1 (i2 + 2) vertices of connection of
these fragments.

The proof is obtained by interchanging n1, n2,m1,m2, i1, P1 and γi1 by n2, n1,m2,

m1, i2, P7 and λ′
i2
, respectively, in the proof of Lemma 1.

Let

j4 = m2 + n2 + r4
2

,
m2 + n2 + 2 + r4

2
, ...,m2 − 1,

where r4 =
{
0 if m2 + n2 is even integer
1 if m2 + n2 is odd integer

.

Lemma 8 If the vertex e3n1 , fixed by (xy)n2
(
xy−1

)n1 in (n1, n2) is connected with
the vertices v3 j4+1, fixed by (xy) j4

(
xy−1

)m1
(xy)m2− j4 in (m1,m2), then there are

1/2 (m2 − n2 − r4) distinct fragments, and there are 3 (n2 + 2) (m2 − n2 − 1) ver-
tices of connection of these fragments.

Theproof is obtainedby interchangingn1, n2,m1,m2, j1, P2 andμ j1 byn2, n1,m2,

m1, j4, P8 and ν′
j4
, respectively, in the proof of Lemma 2.

Let

p1 = 1, 2, ...,m1 − 1, p2 = 1, 2, ...,m2 − 1, q1 = 1, 2, ...,
n1 − (r5 + 2)

2
and

q2 = 1, 2, ...,
n2 − (r6 + 2)

2

where r5 =
{
0 if n1 is even integer
1 if n1 is odd integer

and r6 =
{
0 if n2 is even integer
1 if n2 is odd integer

.

Lemma 9 If the vertices e3q1 , fixed by
(
xy−1

)n1−q1
(xy)n2

(
xy−1

)q1 in (n1, n2)
are connected with the vertices u3p1+1, fixed by (xy)p1

(
xy−1

)m2
(xy)m1−p1 in

(m1,m2), then there are 1/2 (n1 − (r5 + 2)) (m1 − 1) distinct fragments, and there
are 6 (n1 − (r5 + 2)) (m1 − 1) vertices of connection of these fragments.

Proof Let φ(q1,p1) be the fragments formed by joining the vertices e3q1 , fixed

by
(
xy−1

)n1−q1
(xy)n2

(
xy−1

)q1 in (n1, n2) with the vertices u3p1+1, fixed by
(xy)p1

(
xy−1

)m2
(xy)m1−p1 in (m1,m2). Then P9 = {

e, y−1, y, x, xy−1, xy
}
is the

set of words such that for any w ∈ P9, both the vertices
(
e3q1

)
w and

(
u3p1+1

)
w lie

on (n1, n2) and (m1,m2), respectively. By Theorem 5, each fragment in
{
φ(q1,p1)

}

has at least |P9| = 6 vertices of connection. ��
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Now we show that all fragments in
{
φ(q1,p1)

}
are distinct. Let φ(k1,l1), φ(k2,l2) ∈{

φ(q1,p1)
}
, then φ(k1,l1) is formed by joining the vertex e3k1 with u3l1+1 and

φ(k2,l2) is formed by joining the vertex e3k2 with u3l2+1. By Theorems 3 and 4,
V

(
e3k2 , u3l2+1

) ∼ V
(
e3k1 , u3l1+1

)
, if and only if there exists a word w ∈ P9 such

that
(
e3k1

)
w = e3k2 ,

(
u3l1+1

)
w = u3l2+1. There is only one word xy−1 ∈ P9

for which
(
e3k1

)
xy−1 = e3(k1+1), but

(
u3l1+1

)
xy−1 �= (

u3l2+1
)
. This implies that

V
(
e3k2 , u3l2+1

)
is not equivalent to V

(
e3k1 , u3l1+1

)
, that is, by joining e3k1with u3l1+1

to create φ(k1,l1), e3k2 is not connected with u3l2+1. Therefore, φ(k1,l1) does not con-

tain a vertex fixed by
(
xy−1

)n1−k2
(xy)n2

(
xy−1

)k2 and (xy)l2
(
xy−1

)m2
(xy)m1−l2 .

Also by Theorem 3 and 4, V
(
e∗
3k2

, u∗
3l2+1

)
∼ V

(
e3k1 , u3l1+1

)
, if and only if there

exists a word w ∈ P9 such that
(
e3k1

)
w = e∗

3k2
,

(
u3l1+1

)
w = u∗

3l2+1. There is only
one word x ∈ P9 for which

(
e3k1

)
x = e∗

3(n1−k1)
,

(
u3l1+1

)
x = u∗

3(m1−l1)+1, this

implies that for k2 = n1 − k1, l2 = m1 − l1, V
(
e∗
3k2

, u∗
3l2+1

)
∼ V

(
e3k1 , u3l1+1

)
,

that is, by joining e3k1 with u3l1+1 to create φ(k1,l1), e∗
3k2

and u∗
3l2+1 also get con-

nected. Therefore, φ(k1,l1) contains a vertex fixed by (xy)n1−k2
(
xy−1

)n2
(xy)k2 and

(
xy−1

)l2
(xy)m2

(
xy−1

)m1−l2 . Hence by Theorem 2, the fragments φ(k1,l1) and φ(k2,l2)

are mirror images of each other if and only if k2 = n1 − k1, l2 = m1 − l1. Now
for all k1 ∈ {1, 2, ..., n1 − (r5 + 2)/2}, we have n1 − k1 > n1 − (r5 + 2)/2, implies
φ(n1−k1,m1−l1) /∈ {

φ(q1,p1)
}
. Hence all fragments in

{
φ(q1,p1)

}
are distinct. Therefore,∣∣φ(q1,p1)

∣∣ = 1/2 (n1 − (r5 + 2)) (m1 − 1).
Now we prove none of the fragments in

{
φ(q1,p1)

}
has the same orientation as

that of its mirror image. Let φ(k1,l1) ∈ {
φ(q1,p1)

}
has the same orientation as that of

its mirror image, that is, φ(k1,l1) is the mirror image of itself. But as proved earlier,
φ(k1,l1) is the mirror image of φ(n1−k1,m1−l1). This shows that k1 = n1 − k1, l1 =
m1 − l1, that is, k1 = n1/2, l1 = m1/2. Hence φ(k1,l1) is the mirror image of itself,
if k1 = n1/2, l1 = m1/2. But φ(n1/2,m1/2) /∈ {

φ(q1,p1)
}
, as n1/2 > n1 − (r5 + 2)/2.

Hence none of the fragments in
{
φ(q1,p1)

}
has the same orientation as that of its

mirror image. This shows that each fragment in
{
φ(q1,p1)

}
has 2|P9| = 12 vertices

of connection. Since
∣∣φ(q1,p1)

∣∣ = 1/2 (n1 − (r5 + 2)) (m1 − 1), therefore there are
6 (n1 − (r5 + 2)) (m1 − 1) vertices of connection for all fragments in

{
φ(q1,p1)

}
.

Lemma 10 If the vertices e3q1 , fixed by
(
xy−1

)n1−q1
(xy)n2

(
xy−1

)q1 in (n1, n2)
are connected with the vertices v3p2+1, fixed by (xy)p2 (xy)−1m1 (xy)m2−p2 in
(m1,m2) , then there are 1/2 (n1 − (r5 + 2)) (m2 − 1) distinct fragments, and there
are 6 (n1 − (r5 + 2)) (m2 − 1) vertices of connection of these fragments.

The proof is obtained by interchangingm1,m2, p1, P9 and ϕ(q1,p1) bym2,m1, p2,
P10 and ϕ

′
(q1,p2)

, respectively, in the proof of Lemma 9.

Lemma 11 If the vertices f3q2 , fixed by
(
xy−1

)n2−q2
(xy)n1

(
xy−1

)q2 in (n1, n2)
are connected with the vertices u3p1+1, fixed by (xy)p1

(
xy−1

)m2
(xy)m1−p1 in

(m1,m2), then there are 1/2 (n2 − (r6 + 2)) (m1 − 1) distinct fragments, and there
are 6 (n2 − (r6 + 2)) (m1 − 1) vertices of connection of these fragments.
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The proof is obtained by interchanging n1, n2, q1, P9 and ϕ(q1,p1) by n2, n1, q2, P11
and ψ(q2,p1), respectively, in the proof of Lemma 9.

Lemma 12 If the vertices f3q2 , fixed by
(
xy−1

)n2−q2
(xy)n1

(
xy−1

)q2 in (n1, n2)
are connected with the vertices v3p2+1, fixed by (xy)p2

(
xy−1

)m1
(xy)m2−p2 in

(m1,m2), then there are 1/2 (n2 − (r6 + 2)) (m2 − 1) distinct fragments, and there
are 6 (n2 − (r6 + 2)) (m2 − 1) vertices of connection of these fragments.

The proof is obtained by interchanging n1, n2,m1,m2, q1, p1, P9 and ϕ(q1,p1) by
n2, n1,m2,m1, q2, p2, P12 and ψ ′

(q2,p2)
, respectively, in the proof of Lemma 9.

Let

p
′
1 =

{
1, ...,m1 − 1 if n1 is odd
1, 2, ..., m1−r7

2 if n1 is even
, p

′
2 =

{
1, ...,m2 − 1 if n1 is odd
1, 2, ..., m2−r8

2 if n1 is even
,

where r7 =
{
0 if m1 is even
1 if m1 is odd

, r8 =
{
0 if m2 is even
1 if m2 is odd

.

Lemma 13 (i) If n1 ∈ 2Z+ − 1, and the vertex e3(n1−1)/2, fixed by
(
xy−1

)n1+1/2

(xy)n2
(
xy−1

)n1−1/2
in (n1, n2) is connected with the vertices u3p′

1+1, fixed by

(xy)p
′
1
(
xy−1

)m2
(xy)m1−p

′
1 in (m1,m2), then there are (m1 − 1) distinct frag-

ments, and there are 12 (m1 − 1) vertices of connection of these fragments.

(ii) If n1 ∈ 2Z+, and the vertex e3n1/2, fixed by
(
xy−1

)n1/2
(xy)n2

(
xy−1

)n1/2 in

(n1, n2) is connectedwith the vertices u3p′
1+1, fixedby (xy)p

′
1
(
xy−1

)m2
(xy)m1−p

′
1

in (m1,m2), then there are 1/2 (m1 − r7) distinct fragments, and there are
6 (m1 − 1) vertices of connection of these fragments.

Proof (i) Let φ(n1−1/2,p′
1)

be the fragments formed by joining the vertex e3(n1−1)/2,

fixed by
(
xy−1

)n1+1/2
(xy)n2

(
xy−1

)n1−1/2
in (n1, n2) with the vertices u3p′

1+1, fixed

by (xy)p
′
1
(
xy−1

)m2
(xy)m1−p′

1 in (m1,m2). Then P13 = {
e, y−1, y, x, xy−1, xy

}

is the set of words such that for any w ∈ P13, both the vertices
(
e3(n1−1)/2

)
w and(

u3p′
1+1

)
w lie on (n1, n2) and (m1,m2), respectively. By Theorem 5, each fragment

in
{
φ(n1−1/2,p′

1)

}
has at least | P13 | = 6 vertices of connection. Since in Lemma 9, it

is proved that any two fragments φ(k1,l1), φ(k2,l2) are distinct, this implies that all frag-

ments in
{
φ(n1−1/2,p′

1)

}
are distinct. Since p

′
1 =

{
1, ...,m1 − 1 if n1 is odd
1, 2, ...,m1 − r7/2 if n1 is even

,

therefore
∣∣
∣φn1−1/2,p′

1

∣∣
∣ = m1 − 1. Also in Lemma 9, it is proved that φ(n1/2,m1/2) has

the same orientation as that of its mirror images. But φ(n1/2,m1/2) /∈
{
φ(n1−1/2,p′

1)

}
,

implying that none of the fragments in
{
φ(n1−1/2,p′

1)

}
has the same orientation as that

of its mirror image. Hence there are 2|P13|
∣∣∣φn1−1/2,p′

1

∣∣∣ = 12 (m1 − 1) vertices of

connection for all fragments in
{
φ(n1−1/2,p′

1)

}
.
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(i i) Let φ(n1/2,p′
1)

be the fragments formed by joining the vertex e3n1/2, fixed

by
(
xy−1

)n1/2
(xy)n2

(
xy−1

)n1/2 in (n1, n2) with the vertices u3p′
1+1, fixed by

(xy)p
′
1
(
xy−1

)m2
(xy)m1−p

′
1 in (m1,m2). Then P13 = {

e, y−1, y, x, xy−1, xy
}
is the

set of words such that for anyw ∈ P13, both the vertices
(
e3n1/2

)
w and

(
u3p′

1+1

)
w lie

on (n1, n2) and (m1,m2), respectively. By Theorem 5, each fragment in
{
φ(n1/2,p′

1)

}

has at least |P13| = 6 vertices of connection. Since in Lemma 9, it is proved that
any two fragments φ(k1,l1), φ(k2,l2) are distinct, this implies that all fragments in
{
φ(n1/2,p′

1)

}
are distinct. Since p

′
1 =

{
1, ...,m1 − 1 if n1 is odd
1, 2, ...,m1 − r7/2 if n1 is even

, therefore
∣∣∣φ(n1/2,p′

1)

∣∣∣ = m1 − r7/2. Also in Lemma 9, it is proved that φ(n1/2,m1/2) has the

same orientation as that of its mirror images. ��
Now ifm1 is an even integer, then all fragments in

{
φ(n1/2,p′

1)

}
are distinct and only

one fragment φ(n1/2,m1/2) in
{
φ(n1/2,p′

1)

}
has the same orientation as that of its mirror

image. Hence there are 2 |P13|
(∣∣∣φ(

n1
2 ,p′

1)

∣∣∣ − 1
)

+ |P13| = 12 (m1 − 2/2) + 6 =
6 (m1 − 1) vertices of connection for all fragments in

{
φ(n1/2,p′

1)

}
.

If m1 is an odd integer, then all fragments in
{
φ(n1/2,p′

1)

}
are distinct and none

of them has the same orientation as that of its mirror image. Hence there are

2|P13|
∣∣∣φ(

n1
2 ,p′

1)

∣∣∣ = 6 (m1 − 1) vertices of connection for all fragments in
{
φ(n1/2,p′

1)

}
.

Lemma 14 (i) If n1 ∈ 2Z+ − 1, and the vertex e3(n1−1)/2, fixed by
(
xy−1

)n1+1/2

(xy)n2
(
xy−1

)n1−1/2
in (n1, n2) is connected with the vertices v3p′

2+1, fixed by

(xy)p
′
2
(
xy−1

)m1
(xy)m2−p′

2 in (m1,m2), then there are (m2 − 1) distinct frag-
ments, and there are 12 (m2 − 1) vertices of connection of these fragments.

(ii) If n1 ∈ 2Z+, and the vertex e3n1/2, fixed by
(
xy−1

)n1/2
(xy)n2

(
xy−1

)n1/2 in

(n1, n2) is connectedwith the verticesv3p′
2+1, fixedby (xy)p

′
2
(
xy−1

)m1
(xy)m2−p′

2

in (m1,m2), then there are 1/2 (m2 − r8) distinct fragments, and there are
6 (m2 − 1) vertices of connection of these fragments.

The proof is obtained by interchanging p′
1,m1,m2, P13 and φ(n1−r5/2,p′

1)
by

p′
2,m2,m1, P14 and φ′

(n1−r5/2,p′
2)
, respectively, in the proof of Lemma 13.

Let

p′′
1 =

{
1, ...,m1 − 1 if n2 is odd
1, 2, ..., m1−r7

2 if n2 is even
, p′′

2 =
{
1, ...,m2 − 1 if n2 is odd
1, 2, ..., m2−r8

2 if n2 is even
.

Lemma 15 (i) If n2 ∈ 2Z+ − 1, and the vertex f3(n2−1)/2, fixed by
(
xy−1

)n2+1/2

(xy)n1
(
xy−1

)n2−1/2
in (n1, n2) is connected with the vertices u3p′′

1+1, fixed by

(xy)p
′′
1
(
xy−1

)m2
(xy)m1−p′′

1 in (m1,m2), then there are (m1 − 1) distinct frag-
ments, and there are 12 (m1 − 1) vertices of connection of these fragments.
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(ii) If n2 ∈ 2Z+, and the vertex f3n2/2, fixed by
(
xy−1

)n2/2
(xy)n1

(
xy−1

)n2/2 in

(n1, n2) is connectedwith the vertices u3p′′
1+1, fixedby (xy)p

′′
1
(
xy−1

)m2
(xy)m1−p′′

1

in (m1,m2), then there are 1/2 (m1 − r7) distinct fragments, and there are
6 (m1 − 1) vertices of connection of these fragments.

The proof is obtained by interchanging p′
1, n1, n2, P13 and φ(n1−r5/2,p′

1)
by

p
′′
1, n2, n1, P15 and ψ(n2−r6/2,p′′

1)
, respectively, in the proof of Lemma 13.

Lemma 16 (i) If n2 ∈ 2Z+ − 1, and the vertex f3(n2−1)/2, fixed by
(
xy−1

)n2+1/2

(xy)n1
(
xy−1

)n2−1/2
in (n1, n2) is connected with the vertices v3p′′

2+1, fixed

by (xy)p
′′
2
(
xy−1

)m1
(xy)m2−p′′

2 in (m1,m2), then there are (m2 − 1) dis-
tinct fragments, and there are 12 (m2 − 1) vertices of connection of these
fragments.

(ii) If n2 ∈ 2Z+, and the vertex f3n2/2, fixed by
(
xy−1

)n2/2
(xy)n1

(
xy−1

)n2/2 in

(n1, n2) is connectedwith the verticesv3p′′
2+1, fixedby (xy)p

′′
2
(
xy−1

)m1
(xy)m2−p′′

2

in (m1,m2), then there are 1/2 (m2 − r7) distinct fragments, and there are
6 (m2 − 1) vertices of connection of these fragments.

The proof is obtained by interchanging n1, n2,m1,m2, p′
1, P13 and φ(n1−r5/2,p′

1)

by n2, n1,m2,m1, p
′′
2, P16 and ψ ′

(n2−r6/2,p′′
2)
, respectively, in the proof of Lemma 13.

Lemma 17 Let β be the fragment formed by joining the vertex f3n2 , fixed by
(xy)n1 (xy)n2 in (n1, n2) with the vertex v3m2 , fixed by (xy)m1 (xy)m2 in (m1,m2),
then there are 6 (n1 + n2 + 2) vertices of connection for β.

Proof Let us join the vertex f3n2 , fixed by (xy)n1 (xy)n2 in (n1, n2) with the vertex
v3m2 , fixed by (xy)m1 (xy)m2 in (m1,m2), and create a fragment β. Then

P17

=
⎧
⎨

⎩

x, xy−1, xy, xyx, xyxy−1, (xy)2 , ..., (xy)n1−1 x, (xy)n1−1 xy−1, (xy)n1 , (xy)n1 x, (xy)n1 xy−1, (xy)n1+1 ,

y−1, y, yx, yxy−1, yxy, (yx)2 , (yx)2 y−1, (yx)2 y, (yx)3 , ..., (yx)n2−1 y−1, (yx)n2−1 y, (yx)n2 ,

(yx)n2 y−1, (yx)n2 y, e

⎫
⎬

⎭

is the set of words such that for any w ∈ P17, both the vertices
(
f3n2

)
w and

(
v3m2

)
w

lie on (n1, n2) and (m1,m2), respectively. By Theorem 5, each fragment in β has at
least |P17| = 3 (n1 + n2 + 2) vertices of connection in (n1, n2) and (m1,m2). ��

Now we show that β has different orientations from its mirror image. By Theo-

rem 4, if V
(
f ∗
3n2

, v∗
3m2

)
∼ V

(
f3n2 , v3m2

)
, then there exists a wordw ∈ P17 such that

(
f3n2

)
w = f ∗

3n2
,

(
v3m2

)
w = v∗

3m2
. There are two words (xy)n1 x, (yx)n2−1 y ∈

P17, for which
(
f3n2

)
(xy)n1 x = f ∗

3n2
and

(
f3n2

)
(yx)n2−1 y = f ∗

3n2
. But nei-

ther
(
v3m2

)
(xy)n1 x = v∗

3m2
nor

(
v3m2

)
(yx)n2−1 y = v∗

3m2
. This implies that

V
(
f ∗
3n2

, v∗
3m2

)
is not equivalent to V

(
f3n2 , v3m2

)
, that is, by joining f3n2 with v3m2

to create β, f ∗
3n2

is not connected with v∗
3m2

. Therefore, β has different orientations
from its mirror image. So β has 2 |P17| = 6 (n1 + n2 + 2) vertices of connection in
(n1, n2) and (m1,m2).
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Lemma 18 Let β ′ be the fragment formed by joining the vertex e3n1 , fixed by
(xy)n2 (xy)n1 in (n1, n2) with the vertex v3m2 , fixed by (xy)m1 (xy)m2 in (m1,m2),
then there are 6 (n1 + n2 + 2) vertices of connection for β

′
.

The proof is obtained by interchanging n1, n2, P17 and β by n2, n1, P18 and β
′
,

respectively, in the proof of Lemma 17.
We define ρ as

(n1, n2) (m1,m2) ρ

(even,even) (odd,odd) 0
(even,odd) (odd,odd) 2
(odd,odd) (odd,odd) 4
(even,even) (even,odd) 4
(even,even) (even,even) 8
(even,odd) (even,odd) 3

.

Now we are in a position, to prove our main results.

Theorem 6 There are 1/2 {(n1 + n2) (m1 + m2) + ρ} polynomials obtained by join-
ing the circuits (n1, n2) and (m1,m2), where n2 < n1 < m2 < m1, at all vertices of
connection.

Proof Let us connect the following vertices

(i) f3n2 with u3i1+1, u3 j1+1, v3i1+1, v3 j2+1.
(ii) e3n1 with u3i2+1, u3 j3+1, v3i2+1, v3 j4+1.
(iii) e3q1 with u3p1+1, v3p2+1.
(iv) f3q2 with u3p1+1, v3p2+1.
(v) e3(n1−r5)/2 with u3p′

1+1, v3p′
2+1.

(vi) f3(n2−r6)/2 with u3p′′
1+1, v3p′′

2+1.
(vii) v3m2 with f3n2 , e3n1 .

��
Then by using Lemmas 1–18, we obtain the set of fragments

F =
⎧
⎨

⎩

γi1, μ j1 , γ
′
i1
, μ′

j2
, λi2 , ν j3 , λ

′
i2
, ν′

j4
, φ(q1,p1), φ

′
(q1,p2)

, ψ(q2,p1), ψ
′
(q2,p2)

,

φ(
n1−r5

2 ,p′
1

), φ′(
n1−r5

2 ,p′
2

), ψ(
n2−r6

2 ,p′′
1

), ψ ′(
n2−r6

2 ,p′′
1

), β, β
′

⎫
⎬

⎭

and there are

S = 12
n1−1∑

i1=0

(i1 + 2) + 12 (n1 + n2 + 2) + 3 (n1 + 2) (m1 + m2 − 2n1 − 2)

+ 12
n2−1∑

i2=1

(i2 + 2) + 3 (n2 + 2) (m1 + m2 − 2n2 − 2)
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+ 6(n1 + n2 − 2)(m1 + m2 − 2)

vertices of connection of these fragments. For n2 < n1 < m2 < m1, S =
9 (n1 + n2) (m1 + m2), and so (n1, n2) and (m1,m2) are connected at all points. Since
|F | = 1

2 {(n1 + n2) (m1 + m2) + ρ}, hence there are 1/2 {(n1 + n2) (m1 + m2) + ρ}
distinct fragments, formed by joining the circuits (n1, n2) and (m1,m2), where
n2 < n1 < m2 < m1, at all vertices of connection. Since a unique polynomial is
obtained from a fragment, hence there are 1/2 {(n1 + n2) (m1 + m2) + ρ} polynomi-
als, obtainedby joining the circuits (n1, n2) and (m1,m2),wheren2 < n1 < m2 < m1,
at all vertices of connection.

6 Conclusion

The total number of points of connection of (n1, n2) and (m1,m2) are 9 (n1 + n2)
(m1 + m2). Theorem 6, assures us, in order to create all the fragments, by joining
(n1, n2) and (m1,m2), we just have to connect 1/2 {(n1 + n2) (m1 + m2) + ρ} ver-
tices of these circuits. There is no need to connect these circuits at the remaining
points. So, for each pair of circuits, we find a class of 1/2 {(n1 + n2) (m1 + m2) + ρ}
number of fragments and corresponding to each such class, we get a class of polyno-
mials. Each polynomial in this class splits linearly in a suitable Galois field [5] and
corresponding to each zero, we get a triplet

(
x, y, t

)
[7], which is a group. Hence each

pair of circuits gives us a class of groups.
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