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Abstract We establish some oscillation criteria for the third-order Emden—Fowler
neutral delay dynamic equations of the form:

(@) (x(@) +rx @)™ + p)x? (8()) =0

on a time scale T, where y > 0 is a quotient of odd positive integers, and a and p are
real-valued positive rd-continuous functions defined on T. Due to the different values
of y, we give not only the oscillation criteria for superlinear neutral delay dynamic
equations, but also the oscillation criteria for sublinear neutral delay dynamic equations
based on the Hille and Nehari-type oscillation criteria. Our results extend and improve
some known results in the literature and are new even for the corresponding third-order
differential equations and difference equations as our special cases.
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1 Introduction

In this paper, we study the oscillation for the third-order Emden—Fowler neutral delay
dynamic equations of the form:

(@) (x(t) + r@Ox(ONMA + p)x?7 (8(1)) =0 (1.1)

on a time scale T with sup T = oo, where the following hypotheses hold:

(A1) y > 0is the quotient of odd positive integers;

(A2) a and p are positive real-valued rd-continuous functions defined on T such
that ftjo At/a(t) = oo;

(A3) r is a real-valued rd-continuous function defined on T such that either 0 <
r(t)y <lor—1<rg<r(t) <0;

(Ay) the functions 7 : T — T and § : T — T are rd-continuous functions such
that t(¢) <1t,8(t) <t,lim;_o0T(t) =lim; 0 8(f) = c0andto§ =358or.

We note that if T = R, then o () = 1, u(t) = 0, x2(¢) = x'(¢). The third-order
Emden—Fowler dynamic equation (1.1) becomes third-order nonlinear neutral delay
differential equation:

(a®)(x@) +r®)x(@)”) + p)xV(5(t)) =0, teR. (1.2)

IfT =7Z,theno(t) =t + 1, u(t) = 1,and x2(t) = Ax(t) = x(t + 1) — x(1),
and Eq. (1.1) becomes third-order nonlinear neutral delay difference equation:

Ala(AAx () +r)x(T() + pH)x" (1) =0, teZ (1.3)

Note that Emden—Fowler dynamic equation with its continuous version, that is,
(1.2), has numerous applications in several physical branches, for example, [1,2], and
the reference therein. Moreover, when ¢ is a discrete variable, it is (1.3), and it also
has many applications to use.

In recent years, there has been much research activity concerning the oscillation and
nonoscillation of solutions of various dynamic equations on time scales unbounded
above; we refer the reader to the papers [3—10]. And for the oscillation and nonoscilla-
tion of the neutral delay dynamic equations, some excellent works have already been
established, and we refer the reader to the various articles [11-26].

In [11], Han et al. investigated a third-order neutral Emden—Fowler delay dynamic
equation:

r @) —a®x@®)N™A + p)x? (8(1) =0, teT, (1.4)

where r, a, and p are positive real-valued rd-continuous functions defined on T with
0 <a(t) <ap < 1,limy_, a(t) = a < 1. Using Riccati transformation technique
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Hille and Nehari-Type Oscillation Criteria... 1189

and the integral inequality technique, they established some sufficient conditions for
the oscillation of (1.4) and one of them is the following: assume y > 1 and there
exists a positive function n € Crld([to, o), R), such that for some 0 < k < 1 and
for all constants M > 0

. ! r(s)(n"(5))? B
ht"iigp/to (W(S)P(S)é'(s) — m) As = 00, (1.5)

where ¢(¢t) := (h2(8(¢),t)/t)Y. Then, every solution x of (1.4) oscillates or
lim;— 00 x(¢) = 0.

On the foundation of Han’s work, Grace [12] studied equation (1.4) again. They
established some new criteria for the oscillation of (1.4) and improved the Han’s work.

In this paper, we studied the third-order neutral delay dynamic equation (1.1), and
note that when r(¢) in (1.1) satisfies the case —1 < rg < r(t) < 0, this equation is
essentially the same as (1.4). Different from the above works, we establish some new
oscillation criteria for (1.1) based on the Hille and Nehari-type oscillation criteria.
And we have considered both superlinear case with y > 1 and sublinear case with
0 < y < 1. The obtained results are advantageous, since the Hille and Nehari-type
oscillation criteria are sharp.

Regarding Hille and Nehari-type oscillation criteria, in 1948, Hille [27] considered
the second-order linear differential equation:

x"(t) + p()x(1) =0, (1.6)

and gave a sufficient condition for the oscillation of (1.6), that is, if the condition

e 1
lim inft/ p(s)ds > — (1.7)
t—00 ¢ 4

holds, then every solution of (1.6) oscillates. In [28], Nehari by different approach
proved that if

(1.8)

t—o0o t 4’

TP B s 1
lim inf — s p(s)ds > —
t

, then Eq. (1.6) is oscillatory. We note that the inequalities (1.7) and (1.8) are sharp
and cannot be weakened. Indeed, letting p(¢) = 1 /4t2 forr > 1, we have

o0 1 [ 1
lirninft/ p(s)ds =liminf—/ s2p(s)ds = —, (1.9)
t—00 ¢ t—>o00 f J; 4
and the second-order Euler differential equation

1
x"(t) + X0 =0.1>1, (1.10)

has a nonoscillatory solution x(¢) = Jt.
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1190 Y. Wang et al.

Recently, many researchers have used oscillation criteria of this type in many other
fields for studying the oscillatory behaviour of solutions. In 2007, Erbe et al. [29]
extended Hille and Nehari type oscillatory criteria to dynamic equation on time scales.
They studied a third-order dynamic equation

X228 @) + p(Hx (1) = 0, (1.11)

and obtained some sufficient conditions for the oscillation of solutions of the form:

 ho (s, 1
liminft/ 26:10) ) A5 > L (1.12)
t—00 P o(s) 4
or
1 [ I*
lltnigf?/t a(s)ha(o(s), 1) p(s)As > 57 (1.13)

where h;(t, s) is the Taylor monomial of degree 2, [* := limsup o (¢)/¢. If (1.12) or
—>00
(1.13) holds, then every solution x of (1.11) is oscillatory or satisfies lim,_, o, x () = O.

In [30], Agarwal et al. extended Erbe’s work to the delay dynamic equations. They
investigated the third-order delay dynamic equations

(@rx®™2@) + p)x(z(1) = 0, (1.14)

and established some Hille and Nehari oscillatory criteria for the equations which
include retarded term 7 (7). They give the results that if the condition

7(s) j;l (Aufa(u))

1
liminf/ / U 2 W A5 > -, (1.15)
t—00 1 g(s) U(S)(Au/a(u)) 4
or
I (Auja(u))
L (79 ugay) e WS I
lim inf A ey p(s)As > "
70 o atey /6 J 7 (Aujau)) 1+1
(1.16)

holds, then every solution x of (1.14) is oscillatory or satisfies lim;_, oo x(#) = 0.

To the best of our knowledge, there are no results regarding the Hille and Nehari-
type oscillation criteria for the third-order neutral delay dynamic equations on time
scales up to now, not even for the superlinear or sublinear dynamic equations. The
natural question now is: Can one find the Hille and Nehari-type oscillation criteria for
third-order neutral delay nonlinear dynamic equations on time scales? The purpose
of this paper is to give an affirmative answer to this question. We establish some
Hille and Nehari-type oscillation criteria for the oscillation for (1.1) based on Erbe
and Agarwal’s work. And our results also improve and extend their results for both
superlinear and sublinear neutral delay dynamic equations.
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2 Preliminary and Lemmas

For completeness, we recall the following concepts related to the notion of time
scales. A time scale T is an arbitrary nonempty closed subset of the real numbers
R. Since we are interested in asymptotic behaviour, we suppose that the time scale
under consideration is not bounded above and is a time scale interval of the form:
[to, o0)T := [f9, 00) N T. On any time scale, we defined the forward and backward
jump operators by o (¢) :=inf{s € T : s > t} and p(¢) := inf{s € T : s < ¢}, where
inf@ := supT and sup® := inf T, ¥ denotes the empty set. A point ¢ € T is said
to be left-dense if p(r) = ¢ and r > inf T, right-dense if o(t) = r and t < sup T,
left-scattered if p(¢) < ¢ and right-scattered if o (¢#) > ¢. The graininess u of the time
scale is defined by u(¢) := o(t) — t, and for any function f : T — R, we denote
fo@) := f(o(t)). A function g : T — R is said to be right-dense continuous (rd-
continuous) provided g is continuous at right-dense points and at left-dense points in
T, left-hand limits exist and are finite. The set of all such rd-continuous functions is
denoted by C,4(T).

For afunction f : T — R, if f is continuous at ¢ and # is right-scattered, the (delta)
derivative is defined by

flo®) - f®)

Ay =
o= o(t) —t

If ¢ is right-dense, then the derivative is defined by

lim L= f6)
m —.

—tt t—=s

/0 =

Note that if T = R, then the delta derivative is just the standard derivative, and when
T = 7Z the delta derivative is just the forward difference operator. For more details
about the time scales, see [31,32].

Next, for the convenience we define that

z(t) = x(t) +r(t)x(z(1)). 2.1

Note that if 0 < r(¢t) < 1 and x(t(¢)) > 0, we have z(t) > x(#). If =1 < rg <
r(t) < 0and x(z(¢)) > 0, we have z(t) < x(¢).

Lemma 2.1 Assume that0 < r(t) < 1, then an eventually positive solution x of (1.1)
only satisfies the following two cases for t > t| sufficiently large:

(i) z(t) >0, 220) >0, 2221) >0, (a2 (1)> <0,
(i) z(t) > 0, z22(t) <0, z222(t) > 0, (a()Z22 ()2 <.

Proof Suppose that x is an eventually positive solution of (1.1), there exists #; €

[to, oo)T such that x () > 0, x(z(¢)) > Oand x(5(¢)) > 0 on [#1, co)T, which implies
that z(#) > O on [#1, 00)T by O < r(¢) < 1. From (1.1), we have
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1192 Y. Wang et al.

@z @)* = —px? (6(1) <0, 1 =1. (22)
Hence a(t)z2%(t) is strictly decreasing on [¢{, oo)T and has one sign eventually. It

means z22 (¢) has one sign eventually. We claim that z22 () > 0 eventually. Assume
not, there exists to > t; such that

2201 <0, t>n0. (2.3)
Then we can choose a negative constant ¢ and 3 > 5 such that
a)Z??2 (1) <c <0, t>1. (2.4)

Dividing (2.4) by a(t) and integrating from #3 to ¢, we have

LA
22 SZA(I3)+C/ i (2.5)

13 m

Let t — oo. By the hypothesis Aj: ftso At/a(t) = oo, we have that 2@1) > —ocoas
t — 0. Thus, there is a 4 > t3 such that for t > 14,

A1) < z2%(14) < 0. (2.6)
Integrating the previous inequality from 74 to ¢, we obtain
2(1) = 2(1) < 22 (W)t — 1a). @7

Letting t — oo, we get that z(f) — —oo, which is a contradiction for z(z) > 0
eventually. So z22(¢) > 0 eventually and the proof is complete. O

Lemma 2.2 ([14, Lemma 2.1 and Lemma 2.2]) Assume that —1 < ry < r(t) < 0,
then an eventually positive solution x of (1.1) only satisfies the following three cases
fort > t1 sufficiently large:

(i) z(t) > 0, Z2(1) > 0, Z22(1) > 0, (a*2 (@)™ <0,
(i) z(t) > 0, z2() <0, z2%1) >0, @®**@)™ <0,
(i) z(1) <0, 72@1) <0, z22(1)>0, @®**@)> <0 and Jim x(1)=0.

Lemma 2.3 Assume that 0 < r(t) < 1, and x is an eventually positive solution of
(1.1) and satisfies case (i) of Lemma 2.1. Then we get that

P AuA
2(t) > (M)ZA(I) (2.8)

t 1
Joy i Au

holds fort € (t1, oco)T and ZA(Z)/( fttl As/a(s)) is nonincreasing fort € (t1, 00)T.
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Proof Assume that x is an eventually positive solution and satisfies case (i) of Lemma
2.1. Then from Lemma 2.1 we get when ¢ € (¢1, o0)T

! " a(s)z2 (s
ZA(I)=ZA(I1)+/ ZAA(S)AS=ZA(I1)+/ 4OS)
n n d(S)
' As
> zA(t1)+a(t)zM(t)/ —. 2.9)
1 Cl(S)
So we have that N N
AA ([T As )
Z2(1) 200 J o — 5o “0 2 10
1 As - t As (o(t) As = (2.10)
1 a(s) foat) Jn als)

for all r > #{, which implies zA(t)/( f;l As/a (s)) is nonincreasing for t € (f1, co)T.
Using this we easily get

t
2(1) =z(t1)+/ Z22(s)As

1

A S Au
() J;
= z(1) +/ —_— Zua(“) As
n 1 a(u)
A
(1)
> 2(0) + A// s @.11)
t1 a(u) atu
for ¢t € (t1, oo)1. The proof is complete. O

Lemma 2.4 Assumethat —1 < rog < r(t) < 0, and x is an eventually positive solution
of (1.1) and satisfies case (i) of Lemma 2.2. Then we get

L AuA
2(1) > M ZA(,) (2.12)
j;l a(u)A

fort € (t1, co)T and zA(t)/(ftt1 As/a(s)) is nonincreasing fort € (t1, 0o)T.

Proof The proof is similar to that of the proof of Lemma 2.3, so we omit the details.
O

Lemma 2.5 Assume that 0 < r(t) < 1 and x is an eventually positive solution of
(1.1) which satisfies case (ii) of Lemma 2.1. If there is a constant A > 0 such that

00 14
/ p(s)(l —(1+ A)r(8(s))) R (s)As = o0, (2.13)
0]
where R(t) := fz:) ((U(u) — to)/a(u)) Au fort € [tg, 00)T, then lim;—, o x(¢) = 0.
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1194 Y. Wang et al.

Proof Let x be an eventually positive solution of (1.1) such that case (ii) of Lemma
2.1 holds for t > t;. Then z(¢#) > O is strictly decreasing eventually and has finite
limit. Now we claim that lim,_, o, z(#) = 0. Otherwise, lim,_, », z(#) = [ > 0, By the
properties of limit, for A > O there is a #, € [f1, 0o)T such thatl < z(t) < (1 + 1)/
for t € [fp, 00)T. There exists t3 € [fp, 00)T such that 1, < §(t(¢)) and 1, < §(¢) for
t € [t3, 00)T. Hence we have

[ <z(@) < (1+2),
[ <z(8(x(1))) < (1 + M), te€]t3,00)T.

By the definition of z, since 0 < r(¢) < 1l and x(¢) > O for ¢ € [#1, 00)T, we have that
fort € [t3, cO)T

z(t) = x(1).
So

x(8(1)) = z(8(1)) = r(8(0))x(r(8(1))) = 2(8(2)) — r(8(1))x(8(z(r)))
> 2(8(1) —r@(M)z((r (1)) = I[1 = (1 +)r(n)]. (2.14)

Then, from (1.1) we have
— (@)™ = p A1 — A +0rEm)Y . (2.15)

Integrating both sides of (2.15) from ¢ to v, and letting v — o0, due to z22(¢) > 0
eventually, we get

281 > i/oo p)(1 — (1 4+ 1)r(8(s)))” As. (2.16)
a(t) J;

Integrating again from ¢ to v, and letting v — oo, we have

-2 > ly/ Wlu)/ p(s)(1 — (1 4+ A)r8(s) AsAu. (2.17)
t u

Integrating again from #3 to v, and letting v — oo, we have

z7(t3) > lV/ / ﬁ/ p()(1 — (1 4+ 1)r(8(s))” AsAuAv, (2.18)
3 v u

which contradicts condition (2.13). Since by [11, Lemma 2.4], we have that

/OO/OOL/OOP(S)Q — (1 + M) AsAuAv
0w Jvoa) Jy

o(s) 1 o(u)
—/ AvAuAs
(l(bt) Io

=/ p(s)(1—(1 +k)r(5(S)))”/
fo

4]
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00 o(s) _

- / P — (14 2)r () / oW =1 A
10 10 a(u)

= / p(s)(1 — 1+ )»)V(S(S)))VRU(S)AS. (2.19)
fo

Solim;_, o z(#) = 0.Fromz(¢) > x(¢) fort € [#1, co)T, we finally getlim;_, oo X (¢) =
0 and complete the proof. O

Lemma 2.6 Assume that —1 < ro < r(t) < 0and x is an eventually positive solution
of (1.1) which satisfies case (ii) of Lemma 2.2. If

/ P(S)R? (s)As = oo, (2.20)
fo

where R(t) := fz; ((o(u) — t())/a(u)) Au fort € [tg, 00)T, then lim;—. o x () = 0.
Proof Let x be an eventually positive solution of (1.1) such that case (ii) of Lemma 2.2
holds for¢ > #1. Then z(¢) > Ois strictly decreasing eventually and has finite limit, and
we claim that only lim;_, », z(#) = 0 holds. Assume not, let lim;, . z(#) = > O.
Since —1 < r9p < r(t) < 0, By the definition of z we have that x(t) > z(¢) on
[t1, 0o)T. So there exists t; € [t1, 00)T such that x(¢) > z(¢t) > [ fort € [tp, c0)T. SO
x(8(t)) >l on[t3,00)T C [fp, 0o)T and makes (1.1) become

— (@@ = pol’. (2:21)

Then putting a same operation which used in Lemma 2.5 towards to (2.15), we get
o
z(13) = 17 / p(s)R? (s)As,
13

which a contradiction to (2.20). So we have lim;_, o z() = 0.

Next we prove that lim;—, o x(#) = 0, and first we claim that x is bounded on
[t2, co)T. If not, there exists a sequence {t,, },,eN € [f2, 00)T Witht,, — coasm — oo
such that

x(ty) = max{x(s) : fo <s <t} and lim x(#,) = co.
m—0Q
It follows from 7 (¢) < ¢ that

Z(ty) = x(ty) + r () x (T () = (1 + ro)x(tm),

which implies that lim;_, o z(#,) = 00, this contradicts the fact that lim;_, o, z(#) = 0.
Hence, we know x is bounded and we can assume that

limsup x(t) = x1, liminf x (1) = x;.
t—>00 =00
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1196 Y. Wang et al.

By —1 <rg <r(t) <0, we get

x1 +rox; < lim z(z) < xp + roxa,
—0o0

x1 +rox; <0 < xp +roxz,

which implies that x; < x7, so x; = x3, hence, lim;,_,» x(#) = 0. The proof is
complete. O

3 Oscillation Criteria by Comparison Theorem

Theorem 3.1 Assume that there is a constant A > 0 such that (2.13) holds, and
0 < r(t) < 1. Then every solution x of (1.1) oscillates or lim;_, x(t) = O if the
inequality

(@®)y®()™ + Ay (5(1)) <0, (3.1)
with
8 5 _L_AyAs
A() = p(H)(1 = r(E@)Y | e (32)
Au

n a(u)

has no eventually positive solution.

Proof Suppose that (1.1) has a nonoscillatory solution x. We may assume without
loss of generality that x(z) > 0, x(z(¢)) > 0, and x(8(¢)) > O for all ¢ € [#1, cO)T,
11 € [ty, 0o)T. Then by Lemma 2.1, 7 satisfies two cases. Assume that z satisfies case
(i). By the definition of z, we have that

x(®)=z(®) —r(Ox(x@®) = z(t) —r(Oz(z () = A —r@))z(@), t €[, 0)T.
(3.3)
From (1.1), there exists a £, > t; such that

@@z @)™ + p()(1 = r((1))” (81)) <0, €, 00)T. (34

By Lemma 2.3, there exists a t3 > f, such that

50) 2L AuAs
1 1 a(u)
26 = [

131 a(u)

22 5(1)). (3.5)

Substituting this into (3.4) we obtain for ¢ € [t3, co)T that

5O 5 LAy
@020 + py(1 —rayy [ mAeAs

131 a(u)

Y
261 <0.

(3.6)
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Set y(t) = z2(t). Then from (3.6), y is positive and satisfies the inequality (3.1), and
this contradicts the assumption of our theorem. If (if) holds, by Lemma 2.5, x (¢) only
satisfies lim;_, oo x(#) = 0. The proof is complete. O

Theorem 3.2 Assume that (2.20) holds, and —1 < rog < r(t) < 0. Then every solution
x of (1.1) oscillates or lim;—, o x(t) = O if the inequality

(@@®)y®()™ + By (5(1)) < 0, (3.7)
with
8 15 _L_AyAs
B(1) = p(r) [ e (3.8)
O L Au
151 a(u

has no eventually positive solution.

Proof Suppose to the contrary that (1.1) has a nonoscillatory solution x. We may
assume withoutloss of generality that there exists 11 > fg suchthatx(¢) > 0,x(z(¢)) >
0,and x(5(¢)) > O forall r € [t1, o0)T.

From Lemma 2.2, if (i) holds, by the definition of z, we have that

x(t) =z(@) —r®x(x @) = z(t) —r(Oz(z (@) = z(¢), te€[r,00). (3.9
From (1.1), there exists a t, > t; such that
@Oz ()™ + p()(3(1))Y <0, t € [tr, 00)T. (3.10)

By Lemma 2.4, there exists a 3 > t, such that

5 IN L AuAs
26 = [ ‘“f”A 22 60)). (3.11)
u

131 a(u)

Substituting the last inequality in (3.10), we obtain for ¢ € [#3, co)T that

3 fs L AuAs
AA A H 1 a(u)
(a®z>2@)N" + p() 30 1

1 a(u)

Y
(Z2(5(1)) <0. (3.12)

Set y(t) = z2(t). Then from (3.12), y is positive and satisfies the inequality (3.7),
and this contradicts the assumption of our theorem. If (ii) holds, by Lemma 2.6, then
lim;_, o, x(¢) = 0. The proof is complete. O

4 Oscillation Criteria for the Linear and Superlinear Dynamic
Equations with y > 1

In this section, we establish some Hille and Nehari-type oscillation criteria for (1.1)
with y > 1.
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Theorem 4.1 Assume that 0 < r(t) < 1, y > 1 and there is a constant . > 0 such
that (2.13) holds. If

5(5) 1
t A 00 — 1
Py = 11m1nf/ =2 Jo at (I =r@)) pls)As > —,
=00 Jyy a(s) Ji 7 —(1 Y 4

1
@.1)

then every solution x of (1.1) oscillates or satisfies lim;_, oo x(t) = 0.

Proof Suppose that (1.1) has a nonoscillatory solution x. We may assume without
loss of generality that x(z) > 0, x(z(¢)) > 0, and x(8(¢)) > O for all ¢ € [z9, c0)T.
Then by Lemma 2.1, z satisfies two cases. If z satisfies case (i), by Theorem 3.1, we
get (3.4) holds. Since z22(¢) > 0 and z2(¢) > 0 imply that lim;_, », z(f) = co. Thus,
there exists 1 > fg such that z(5(¢)) > 1 on [#1, c0)T, and from y > 1, we know that

2 (8(1) = 2(8(1))
fort € [11, 00)T. So (3.4) leads to
@®)z** )™ + p((1 —r@®))’z((1) <0, r€ln,00r. (42
First we define the Reccati function

a(t)z22(1)

w(t) = YA t € [t, 00)T. 4.3)

Itis easy to see that w(z) > 0. Taking the derivatives of both sides and using (4.2), we
have

(a®)z22 (1) 222 (1) — a(t) (222 (1))?
A (D22 (0 (1))

@zttt am) @)

T @) 20 0)

w (1) =

AA
< P11 - rE@) ZA(((()I;) w(t)ﬁ. .4
By Lemma 2.3, we have
60 _ 260) 260y _ (5 andens\ L d
Ao@) 2B Mo @) f;jm = Au 0 A
2O L Aun
I aw
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Since a(1)z22(t) is decreasing, we have that

2 a()z® (1) a’ O @) _ ww (1)
"o T ansem T ansew) T e @Y
Substituting (4.5) and (4.6) into (4.4), after rearranging we obtain
8D s 1A A .
w4 I Spoa = rea)y + MO0 <0 @)
j;l WAM a

Next we prove lim,_, oo w(¢) = 0 and w(z) fttl As/a(s) < 1on[t;,00)T. By (4.7)
we easily get
w(Hw? (1)

a(r)

wh(t) < —

on [t1, o0)T, that is

wh@ (1 )A<__1
w(t)ww)—( wn)) = a@)

Integrating both sides from #; to t we have

! 1 \2 I As
[ s 2
f w(s) n a(s)

e
w()  w) ~ Sy as)’

Since w(t) > 0, we have that
1 /’ As
—_ Z _—
w(t) n a(s)

By the condition f;l)o As/a(s) = oo, it is easy to see lim;_ w(t) = 0 and

w(t) f; As/a(s) < 1on [11, 00).
Due to above result, we can define

That is

I As

tlm

4.8)

7y = liminf w(r)
—00

and note that 0 < r, < 1. Now we claim that

Fe > ps 412
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where p, is defined as in (4.1). Integrating (4.7) from ¢ to oo, and by the result
lim;— oo w(t) = 0, we have that

~ {20 " o
wio = | e aw A G pas + JA
t “ mAu t a(s)
4.9)

Multiplying (4.9) by fttl As/a(s), we obtain

w(t) /1 as)

5(3)
' As [ I
2/ a(s) o a(f) (1 —=r@B()) pls)As
3l t " TM)AM
tA 0 ..o
4 / As [T wTOw) o
n a(s) Ji a(s)
5(S) 1
L' As [ f L
:/ a(s) U(IY) it) (1 =r(3())Y p(s)As
. 3| a(u)Au
() Au
rA oow(s) Au g(s) o
/ N ftl a(gu)A U({; < a(u) As. 4.10)
u u
n a(s) Ji a(s) f; aw Jn - aus

Now for any ¢ > 0, from the definition of r,, there exists #, € [t{, c0)T such that for

all t € [fp, 0O)T

t

S
w(r) \ @Zr*—s

Taking this into (4.10) we get

w(t)/1 aGs)

a(s)
t A o0
> / =L J{;;)“ﬁ” (1= r@E)) p(s)As
151 Cl(S) t f TL{)AM
e [ A 1 A
ry — — s
nal) Ji o ags) ft: aA(;’) ;lr(v) HA(;‘)
S(S) 1
IA o0 S
= / = Gf{;)“f) (1= r(5()) p(s)As
f a(s) J; M a(u)Au
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A
t o0
+(r*—s>2/£ (L) as
y as e

t1 a(u)

5(S) [ ;
/ / Ak (1= r@)) p(s)As + (ry — £)%,
n a(s) G(S) %Au
4.11)
for ¢t € [tp, co)T. Therefore, taking the inferior limits of both sides of (4.11) gives
2
Tse > Py + (s —€)°.
Since ¢ > 0 is arbitrary, we have
'y 2 Ps + ”f'

It means

which contradicts (4.1).
If (i) holds, by Lemma 2.5, we have lim;_, o x(¢) = 0. This completes the proof.

O
Theorem 4.2 Assume that y > 1, —1 < rg < r(t) < 0 and (2.20) holds. If
a(s)
" As [ J 1
/AN TR 1 H(M) -
Dy = hlrgégf/tl o/ O p(s)As > R (4.12)

f a(u)
then every solution x of (1.1) oscillates or lim;_, 5 x(¢) = 0.

Proof Using Lemmas 2.2, 2.4 and 2.6, the proof is similar to the proof of Theorem
4.1, so we omit the details. O

Remark 4.1 If r(t) = 0 and y = 1, these results become Theorem 2.8 in [30]. If
r(t) =0,a(t) =1,8() =t and y = 1, these results are Theorem 2 in [29]. So our
researches extend Erbe [29] and Agarwal [30]’s work.

Theorem 4.3 Assume thaty > 1, 0 < r(t) < 1 and there is a constant . > 0 such
that (2.13) holds. Define w(t) as in the proof of Theorem 4.1, and

t AS U(t) &
R, := limsup w(t) ——, [":=limsup tlt—Aa(s)
t—00 t a(s) t—00 f F;)
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1202 Y. Wang et al.

If

Jo 7 A (20 2 s Audv) (L= r G p)As g
r As = 1~|—l*’
1 a(s)
(4.13)

¢« = liminf
t—00

then every solution x of (1.1) oscillates or satisfies lim;_, oo x(t) = 0.

Proof On the contrary, suppose that (1.1) has a nonoscillatory solution x. We may
assume without loss of generality that x(¢) > 0, x(z(¢)) > 0, and x(5(¢)) > O for all
t € [ty, oo)t. Then Lemma 2.1 holds. If z satisfies case (i), by proceeding as in the
proof of Theorem 4.1, we get (4.4). Since

® A w2 wi) 22 (1)
YA G@) T Al Ae@) | al) A1) + pnAA ()
2 2

_w® 1 _ wi (4.14)

a®) 1+ pu@men  a®+p@Ow)

and A

AA 2 A 2 Qs
P OB O Bl O MR 0 Jn oty “15)

Aem)  a@) re) T aw) (o0 A

Substituting (4.14) and (4.15) into (4.4), we get another two Ricatti inequalities:

PO LAy As w2(1)

A 5 1 a(u)

+ 1— v 4+ 4.1
w (1) f:(') Y (I =r@®))" p@) a0+ nOwd) =0, (4.16)

3(0) A " As
e e (1 ey pn + L a1

ot) 1 o) As —
Ji aun Au a(t) Jn @

wh (1) +

2
Multiplying (4.16) by (ft‘lf(') As/a(s)) and integrating from t, € [#1, co)T to 7, we

get
t o(s) 2
/ / ﬂ wA(s)As

%) 1 Cl(M)
t ro(s) Au 8(s)

+/ / — / / —AuAv (1 —=r(8(s))) p(s)As
n Jh a(u) 1 a(u)

/’ /"<S> Au w?(s)

+ As < 0. (4.18)

n \Jn a) ] a(s)+ pls)w(s)
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The first term of the above inequality can be expanded as

t a(s) Au 2
/ / wA(s)As
t t a(u)
rAs \2 2 As \?
= aw) vo- () a5) v
t s AM 2 A
—/ (/ —) w(s)As
1% 151 a(u)
s \2
_( (_) ( ()) v
n
_ L ’ 0(3) Al (s)As
) tl a(u) 1 ( )
’ As s \?
=( —)) wo - ([ FEC
o(s)
—/ 2/ Au_ 16 ) As. (4.19)
n a(s) n o au) a(s)
Substituting this into (4.18), after rearranging we get
I As 2 As\?
([ a5) wo= (] 5) v
o(s) Au 8(s)
—// o) / / MAMAU (1 —r(8(s)))” p(s)As
n Jn N

t
+/ H(s, w(s))As, (4.20)
19}

t

2

where

. 1 o) Ay u(s)
H(s, w(s)) := E |:2/t1 2@ — a(s):| w(s)

B /"(“) Au g w2(s)
noa) ) a(s)+p)wis)

Noting that from [30, Lemma 2.7], when w(¢) > 0, we have H(s, w(s)) < 1/a(s)
for ¢t € [#1, 00)T, and we do not repeat the proof here. So

t t AS
/ H(s, w(s))As 5/ —_—
1%) 1) a(s)
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Dividing (4.20) by f[l As/a(s), we have

—A‘) wity) [ As

1 a(s) 1 a(s)
w(t)/ a(s)S Ay +ft£
i t a(s) t a(s)
s
ftz oW Lu ( 2o mAuAv) (1 = r(5(s)))" p(s)As
t As :
1 a(s)
(4.21)
Now taking the superior limits of both sides of (4.21), we get
Ry <1 —gs. (4.22)

Next, for any ¢ > 0, note that there exists 7, € (¢1, co)T such that

t

A
ry —& < w(t) = < Ri+e¢ for 1€ [fr,o0)T,
n a(s

where r, is defined as in Theorem 4.1. And

o(t) As
11 a(s)

ftl a(s)

Making a same operation again on (4.17) which we have used on (4.16), we have

tAs 2 2 Ag 2 [f[l a(u) +f;r(s) a(u)]w(S)
w(t) < — ) w(h) + As
n Cl(s) n a(s) 1% a(s)
o) Ay 3(s)
—// —_— / / —AuAv (1 =r((s))” p(s)As
nJy au) n au)

_/t /G(S) Au w (S) ‘/;1 u(u) As
n\Jy a)] a(s) fﬂ(v) Au

<Il*+¢ for t € [tr, 00)T.

a(u)
Then
2
n As t 1 S Au o(s) Au
i m) w(n) -, m[ nat i a(u)] w(s)As
w ) (s) - I As 1 As
1 a(s) 1 a(s)

j;z 7 uA(:) ( o ftl a(u) AMAU) (1 =r(8(s))” p(s)As

I As
1 a(s)

t s A w?(s)
ftz ( I3l a(Z)) a(s) As
o t As :
t1 a(s)
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That is
s u o(s) Au S s
I ato [ I A [we) ﬂléi>]zx
t S) w(t2) n S As §
1 a(s) 11 a(s)
w(t)/ a(s) S T As + T As
1 le as) 1 a(s)

I B (R i Audo) 0 - 6@ p@As

fl‘ As
1 a(v)

S (f o) e A

T As
1 a(s)
( 2 &)21”(2‘2) t As
t1 a(s)
< A F (R o)1+ T 4 )2 “A“S)
1 a(s) t1 a(s)
T As
P -
—gu — (r — )7 200
1 a(s)

Taking the superior limits of both sides of this inequality, since ¢ > 0 is arbitrary, we
get

Ry < R.(141") —r] — g

After rearranging, we get
g < R* — 12, (4.23)

Now combining (4.22) and (4.23), we have that
gx = I*— I*CI*,
l*
1+

gx =

which contradicts condition (4.13).
If (i) holds, by Lemma 2.5, we have lim;_, » x(¢) = 0. This completes the proof.

O
Theorem 4.4 Assume that y > 1, —1 < rg < r(t) < 0 and (2.20) holds. If
o(s) A 8(s)
flz a(l;l) ( f t MAMAU) p(s)As I*
q = lim inf - , 4.24)
t—00 t As 1 i I+
t a(s)

where [* := lim sup (f:(l) As/a(s))/(fttl As/a(s)), then every solution x of (1.1)
1—>00

oscillates or lim;_, oo x(2) = 0.
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Proof By using Lemmas 2.2, 2.4 and 2.6, the proof is similar to that of Theorem 4.3,
so we omit the details. O

Remark 4.2 Whena(t) = 1,r(t) =0,5(t) =t and y = 1, these results are Theorem
3in [29]. So these results also extend Erbe [29]’s work.

In the following parts, we give some new oscillation criteria also based on the Hille
and Nehari-type oscillation criteria. The above ratiocination z¥ (§(¢)) > z(8(¢)) is not
used.

Theorem 4.5 Assume thaty > 1, 0 < r(t) < 1 and there is a constant . > 0 such
that (2.13) holds. If

¥
my ;= liminf (1 —=r(8(s)))” p(s)As = o0,

—00

S(s) rv 1
/l As [~ [, ftl WAMAU
t

o(s) _1
1 (l(S) t f WAM

(4.25)
then every solution x of (1.1) oscillates or satisfies lim;_, oo x(t) = 0.

Proof Suppose that (1.1) has a nonoscillatory solution x. We may assume without loss
of generality that x(¢) > 0, x(z(¢)) > 0, and x(5(¢)) > 0 for all ¢ € [#p, co)T. Then
by Lemma 2.1, z satisfies two cases. Assume that z satisfies case (i). By proceeding
as in the proof of Theorem 3.1, we get (3.4). Define the new Riccati-type function as

a(t)zAA(t)

MO ==y

, te[t,o0)T. (4.26)

Taking the derivative of k(¢) and using (3.4), we get that

@)z )22 (0) —a** O @))?

A _
AT = 0 @)
B B L 261) )V_ (22 @)")A
< —p® A —r(8(1)) (—ZA e©) h(”—(zA GO
3 fs _L_AuAs 4 A\ VA
- - o I Jnaw (o)
< —pM A —r(3()) e b v
4.27)
By Keller’s chain rule [31, Theorem 1.90], we obtain
1
(@A =y / [sz2%(0 (1) + (1 — )22 )]~ 222 (1)ds
0
>y 2@ AR (1) = y @B ) T AR (). (4.28)
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Setting K =y (z%(11))” ', s0 (4.27) becomes
2O L AuAs Kz2%()
WA (1) < —p()(1 — r(8(1)” [ 1 —h
= PO —reo) | gt R EYEONE
[P0 L AuAs Ka(t)z22(1)
= —p()(1 = r(3())” | e M) S ey
PO =GOV | PTOTEN T
2O L AuAs Ka(o ()24 (o (1))
—p()(1 = () | e —h
= —p0OA =r(@)) f:mﬁAu ®) a(t)(z2 (o (1))
5O (s 1 Auas\” o
- _p(t)(l B V(S(t)))y ftl t[]) a(u) UAS B Kh(t)h (t) (4.29)
I “

Now we prove that0 < h(t) ftt| As/a(s) < 1/K andlim;_, h(t) = Oon[t1, 0O)T.
By (4.29) we easily get that

hA (1) <

on [t{, o0)T, and so

hA (1)

(O (1)

a(t)

1 A
—) <
(-7) =

Integrating both sides from #; to ¢ we have

That is

t 1 A t
[ o=
n h(S) n

1

h(t)

Since h(t) > 0, we have that

1 t
+o—< —K/
h(t1) 1

. a(s)’

1 t
— > K
h(t) — /r.

As
a(s)’

B Kh(t)h° (1)

K
Ca()’

As
a(s)’

By the condition f;fo As/a(s) = oo, it is easy to see lim;_ h(f) = 0 and
h(t) fttl As/a(s) < 1/K on [t], co)T. Then we define f, by
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o "' As
[« ;= liminf h(z) —_— (4.30)
=00 n a(s)

Itis clear to see 0 < f, < 1/K. For any ¢ > 0, from the definition of f, there exists
t) € [t1, co)T such that for all € [£2, c0)T

t

wo [ 25 =g
1 a(s)

Now integrating (4.29) from ¢ to oo, and multiplying by f;l As/a(s),bylim;_ o h(t) =
0, we obtain

t
A
h([) _S
n a(s)
S(s) rv 1 4
rA o0 —— AulAv
- o (1= (37 p)As

n a(s) J, o) _1_ Ay

131 a(u)

+K/[£ RAlOLION
n a(s) Jq a(s)

3Gs) (v 1 v
t A o) ——AuAv
_/ s n__Jn aG (I =7(3()) p(s)As
t

o) 1
1 a(s) t f WAM
s A o(s) A
' As [ h(s) f,l ‘TL’:)h"(s) le le)
+XK (s5) s Au [o(s) Au As
n @8 a6 ey e an
S(s) rv 1 4
' As [ —— AulAv
> [ [ (1= (55 p(s)As
n a(s) t — Au

131 a(u)
A
+K(fo-? [ A () A
—-¢ — N s
' n aGs) Ji ;e

S(s) rv 1 v

A o —— AulAv

= / — n @ (1= r(3()) p(s)As + K(fu — &)?
1 a(s) Jq U(A)LAM

1 a(u)

(4.31)
for t € [ta, 0o)T. Therefore, taking the inferior limits of both sides of (4.11) gives
fezme+K(fi — o).
Since ¢ > 0 is arbitrary, we have

fr = my + Kr2.
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It means

, 1 1, 1
m*ff*—Kf*=R—(f*—ﬁ) SR'

Since K = y(zA(tl )Y~ !is a constant, we get a contradiction to (4.25).
If (ii) holds, by Lemma 2.5, we have lim;_, o, x(#) = 0. This completes the proof.
O

Theorem 4.6 Assume that y > 1, —1 < rg < r(t) < 0 and (2.20) holds. If

8(s) rv 1
" As 00 ——AulAv
m’, := lim inf / = 0y 7w p(s)As =00,  (4.32)
1 a(s) J; ta(s) ﬁAu
1

[—>00

then every solution x of (1.1) oscillates or lim;_, 5 x(¢) = 0.

Proof By using Lemmas 2.2, 2.4 and 2.6, the proof is similar to that of Theorem 4.5,
so we omit the details. O

5 Oscillation Criteria for the Sublinear Dynamic Equations with
0<y <1

In this section, we present some oscillation criteria for (1.1) with0 < y < 1.

Theorem 5.1 Assume that0 < y < 1,0 < r(t) < 1 and there is a constant ). > 0
such that (2.13) holds. Further assume (4(t)/a(t) is bounded on [ty, o). If

8(s) rv 1 v
tAs \? [ ——AuAv
1y :=lim inf (/ a ) / i ft' () (1=r(8(s))” p(s)As =00,
131 t

t—00 a(s) I‘IT(S) ﬁAu

(5.1

then every solution x of (1.1) oscillates or satisfies lim;_, o, x(¢) = 0.

Proof On the contrary, suppose that (1.1) has a nonoscillatory solution x. We may
assume without loss of generality that x(¢) > 0, x(z(z)) > 0, and x(5(¢)) > 0 for all
t € [tp, oo)t. Then by Lemma 2.1, 7 satisfies two cases. Assume that z satisfies case
(7). By proceeding as in the proof of Theorem 3.1, we get that (3.4) still holds. Define
the function /(¢) as in Theorem 4.5, using (3.4), we get that

@)z ))* @2 0)) — a2 O(E* @)

A _
A = A0 @@ 0)
B B a0 )V_ (OIS
<= =roon (ST5) 10 gy
5(t)fs ;AMAS 14 A VA
t 11 a(u) ((Z (t)) )
<—p@®1 —r(@@))” 1 G(I);Au —h(t)m. 5.2)

1 a(u)
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By Keller’s chain rule, we obtain

1
(@A =y / [sz22(0 (1)) + (1 — )z 222 (1)ds
0
>y o) 1228 0). (5.3)

By Lemma 2.3, note that z2(t)/( j;tl As/a(s)) is nonincreasing eventually. So for
t € [f2,00)T, 12 € [11, 00)T

)
ftz As fl As
toa(s) 11 a(s)

Moreover, by the assumption, (. (¢)/a(t) is bounded on [#y, c0)T, We can suppose that
w(t)/a(t) < B forall ¢ € [ty, o0)T, thus for ¢ € [t, cO)T

o(t) y—1
o))~ = (L / ﬂ)
11 a(s)
- fAas  u@)! _ tAs y—1
—_gvr—1 Las  pl yo1
- (/11 a(s)+a(t)) =L (/ (S)+B) L (5.5)

Since fttl As/a(s) = oo, we have

)
lim — —1.

t—)OO(ZAy+B) y—1

t1 a(s)

(5.4)

So there exists #3 > 1, such that
ras )t
t a(s)
t As y—l
I3l a(s)

fort € [t3, co)T. That is

-1 t y—1
Doy = 2 (/ ﬂ) . (5.6)
3 noa(s)

Substituting (5.3) and (5.6) into (5.2), we obtain for ¢ € [t3, 00)T

5(t)
ftl WAMAS

o) 1Ay

131 a(u)

t As ry—1 ZAA(t)
~L = hf)——2
1(/ a(s>) N ENEITY:

h8 (1) < —pO) (1 = r @)
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S() s 1
——AulAs
< —p)(1 — r(8(0)))” [ H—naw

o) _1
1 a(u) Au

t y—1 o
'y (/ ﬂ) hOR @) (5.7)
noa(s) a(r)

where L1 = 2y LY~ 1)/3.
Y
Next we claim that the function A (¢) ( flll As/a (s)) is bounded, especially 0 <

h() (f,’l As/a(s))y < 2/L, fort € [t4,00) C [t3, 00), and lim,_, o0 h(r) = O.
From (5.7), we easily get

W) < ~L, (/’ ﬂ)yl UQLMOS
=L aw a(t)

So
WA (1) ( 1 )A (/’ As)V‘l 1
— = <-L; — —
h(t)h (1) h(z) n a(s) a(r)
Integrating both sides from #3 to t we have
1 ! s A\ tas\' Tt As
o (L) weenlla) L
h(r) s n a(u) a(s) n a(s) 1 a(s)
tAs\ 7! L As B As
() ()
11 a(s) 11 a(s) 151 a(s)
Since ftloo As/a(s) = oo, we can find a #4 > t3 such that for ¢ € [#4, cO)T
(/t As /’3 As) L /’ As
L =/ =)=/ =
11 a(s) 51 a(s) 2 n (l(S)
So for t € [t4, 00)T, we obtain
I _ L (/f As)yl/’ As L (/f As)V
hw) = 2 \Jy als) qoa) 2 \Jya)
So 0 < h(t) (j;j As/a(s))y < 2/L, for t € [t,00)p. By the condition

f;l)o As/a(s) = oo, it is easy to see lim;_, o0 h(¢) = 0.
Then we define A, by

t As 14
hy = liminf h(z) (/ —) . (5.8)
t—00 fn a(s)
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Itiscleartosee 0 < hy < L% For any ¢ > 0, from the definition of A, there exists
t5 € [t4, 00)T such that for all ¢ € [t5, c0)T S

IAS Y
h el
® (/ a<s>) Z I

Now integrating (5.7) from ¢ to oo, and multiplying by ( fttl As /a(s))y, we obtain
t As Y t As Y
o] ) = ()
n a(s) n a(s)

S(s) 1Ay 14
5/ ( ié“? ) (1= r(3))7 p(s)As
t

—— Au

131 a(u)

[ ) [ )
! n a(s) t 1 a(u) a(s)

(5.9)

Note that

([ ) (] ) s
"\, a(s) a(u) as)

o(s) 4
~u(f ) o) @) ol
151 Ll( ) ( ) f a(u)
s Au\ a(s) Au s
X( 1 a(u)) ( 1 a(u)) As

a(s)
s au) 2 = (rs au )Y
Y oo E Y Du
> Li(hy —¢)? (/’ ﬂ) / ( n a(u)) (3) ( f a(u)) As
1 a(s) t a(s)
s —l-y
)" sy e (i)
-G " 2(/_)/ — A
1(3) ( ?) n a(s) . a(s)
2

—l-y —1-y

1 s A o(s) A

fo U( f a(:)) +d - U)( f a(:)) d”}
A

N

)
|

() o ([ 2 ([ )Y s
)

N\ 1
— L (— "l (hy — o) (5.10)
3 Y
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Substituting this into (5.9), we get for ¢ € [t5, o)

h(t)(/tﬁ)y>(/t£)y
noa)) T \Jy als)
o ) (v 1 ALA 4
< (" b mn BN poras L — o, (51
t 7 _L Ay

1 a(u)

where L, = Ly (2/ 3)% (1/y). Therefore, taking the inferior limits of both sides of
(5.11) gives

i = ny + La(hy — €)™
Since ¢ > 0 is arbitrary, we have
hy > ny + Loh?.

That is

< hy—Loh> < —.
Ny = N 2y, = 4L,
Since L, is a constant, we get a contradiction to (5.1).
If (if) holds, by Lemma 2.5, we have lim;_, », x(#) = 0. This completes the proof.
O

Remark 5.1 1t is easy to see that the condition “u(¢)/a(t) is bounded on [ty, co)1”
in Theorem 5.1 can be removed for the continuous case (1.2). And for the discrete
case (1.3), by the hypothesis ftso As/a(s) = oo, we have w(t)/a(t) is still bounded
on [#y, o) . So it also can be removed, and we get the following two corollaries.

Corollary 5.1 If T =R, 0 < ¥y < 1l and 0 < r(t) < 1. Assume that there is a
constant A > 0 such that (2.13) holds. Then every solution x of (1.1) oscillates or
lim; 00 x(2) =0 if

tods \Y [ I‘m) N alu)dudv 4
lim inf (/ —> / S @00 ) (1 - r(8(s)) pls)ds = oo.
11 a(s) 1 j;l

t—00 1) du

(5.12)

Corollary 5.2 If T = Z, 0 < y < land 0 < r(t) < 1. Assume that there is a
constant ). > 0 such that (2.13) holds and lim inf,_, »c a(t) # 0. Then every solution
x of (1.1) oscillates or lim;_, oo x(t) = 0 if

© Y o 3(t) zs (1) 4
.. s=ngy L=u=ng au
hgggf(z %) > j( e ) (1=rG@) p) = 0o (5.13)

t=ng t Zs:no a(s)
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Theorem 5.2 Assume that 0 < y < 1, —1 < rg < r(t) < 0 and (2.20) holds.
Further assume u(t)/a(t) is bounded on [ty, co)T. If

5(s) v 1 14
tAs \V [o© —— AuAv

", :=liminf(/ S)/ 0 atw P(s)As = 00, (5.14)
1 t

t—00 a(s) ttlf(s) ﬁAu

then every solution x of (1.1) oscillates or satisfies lim;_, oo x(t) = 0.

Proof By using Lemmas 2.2, 2.4 and 2.6, the proof is similar to that of Theorem 5.1,
so we omit the details. O

Corollary 5.3 If T=R, 0 <y < land —1 < r9 < r(t) < 0. Assume that (2.20)
holds. Then every solution x of (1.1) oscillates or lim;_, o, x(¢t) = 0 if

8(s) v 1 14
U ds \V [ ——dudv
lim inf (/ —S) / “f"—;’” p(s)ds = oo. (5.15)
t—00 f a(s) t fn mdu

Corollary54 If T = 7Z,0 < y < land —1 < r9g < r(t) < 0. Assume that
(2.20) holds and liminf;_, a(t) # 0. Then every solution x of (1.1) oscillates or
lim; o x(1) =01if

© Y o 8(1) ZS (1 5 4
. . S§=no u=no a(u
htrggéf( E M) E ( P ) p(t) = oo. (5.16)

t=ng t Zszno a(s)

6 Examples
In this section, we give the following examples to illustrate our main results.

Example 6.1 Consider the third-order neutral delay dynamic equations on time-scales

B

1 AAA / y
Z Pl % _
(x(l)—i- ZX(T(I))) + ; (hz((S(t),to)) xV(8(t)) =0, te€lt,o00)r, (6.1)

where §(t) = 1/t, 8 > 0,1 < y < 2 is a quotient of odd positive integers,
ha(8(1), to) < 12.

Leta(t) =1,r(t) = 1/2, p(t) = (B/1)(t/ h2(8(t), t))Y . First choosing a constant
A with0 < A < 219 — 1, we get that

[ee] 14 o [e%e] (1+)“) "
/ p(s)(l—(l+)»)r(8(s))) R? (s)As >/ p(s)(l— > )R () As=o00.
10 1o

S
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So that (2.13) holds. Also

S(s) rv o1
rA 00 ——AuAv
Pt = limiinf / = 0 _Jn awn (1 = r(3(s))” p(s)As
t—>o0 [, a(s) J; o) _L_ Ay

3] a(u)

. ° (hy(5(0), 1o) 1
1

=00 > —.
4

Hence by Theorem 4.1, every solution x of (6.1) is either oscillatory or lim;_, oo X () =
0.

Example 6.2 Consider the third-order neutral delay differential equation:
1 " el rol
(x(t) — gx(t — 3)) + (1 — ?)erZ(t) =0, te€ltn,o0). (6.2)

Lety = 1/2,a(t) = 1, r(t) = —1/5, p(t) = (1 — €2/10)e*. It is easy to see
that condition (2.20) holds, and of Corollary 5.3 hold. Then by Corollary 5.3, every
solution x of (6.2) is either oscillatory or satisfies lim;_, oo x(¢) = 0. In fact, e " is a
solution of (6.2).

Example 6.3 Consider the third-order delay g-difference equation:

1 AMA gyl
S ¥ —
(x(t) 2x(ﬂc(t))) + 20) xV(8(1)) =0, tell,o0)T, (6.3)

where T = ¢™0, 8 > 0, y > 1 is a quotient of odd positive integers.
For T = ¢, we have ha(8(1), 10) = ha(8(), 1) = (5(t) — D) — @)/(1 + ),

o(t) = qt. Letr(t) = —1/2, p(t) = Bt”~1/8%(¢). It is easy to see that (2.20) holds,
and

S(s) rv o 1 4
N 00 ——AulAv
m, : =liminf/ _s/ i ftl a() p(s)As
n a(s) J;

—00 o (s)
' 4] TIM)AM
[e%) Y
- liminf(t—to)/ (M) p(s)As
t—>00 t o(s)
. _ | 8(s) — D) — )\
_ Y _
= htnlgéfﬂq (t to)/t 5570 ( T+q ) As

= 00,

so (4.32) holds. By Theorem 4.6, every solution x of (6.3) is either oscillatory or
satisfies lim;_, oo x(¢) = 0.
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