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Abstract Let POn be the semigroup of all order-preserving partial transformations
on the finite set Xn = {1, 2, . . . , n}. For 1 ≤ r ≤ n − 1, set PO(n, r) = {α ∈
POn : | im(α)| ≤ r}. In this paper, we investigate the maximal regular subsemi-
groups and the maximal regular subsemibands of the semigroup PO(n, r). First, we
completely describe the maximal regular subsemigroups of the semigroup PO(n, r),
for 1 ≤ r ≤ n − 1. Secondly, we show that, for 2 ≤ r ≤ n − 2, any maximal regular
subsemigroup of the semigroup PO(n, r) is a semiband and obtain that the maxi-
mal regular subsemigroups and the maximal regular subsemibands of the semigroup
PO(n, r) coincide, for 2 ≤ r ≤ n − 2. Finally, we obtain the complete classification
of maximal regular subsemibands of the semigroup POn .
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1 Introduction

A subsetU of a finite semigroup S is a generating set for S if every element of S may
be written as a finite product of elements of U ; in this case we write S = 〈U 〉. An
element ε of S is said to be idempotent if ε2 = ε. If S has a generating set consisting
of idempotents, then S is said to be idempotent generated or semiband. The latter
term was introduced by Pastijn [1]. In the abstract theory of semigroups, idempotents
are extremely important in the structure theory of semigroups, both finite and infinite.
They help classify different types of semigroups, identify subgroups, determine left
or right ideals, and describe the general structure of a given semigroup. Our interest
in idempotents stems from the question whether some semigroups are semibands or
not.

A large body of work involving semibands arises in the context of the singular (non-
invertible) endomorphisms of a structured set. Erdos [2] proved that the semigroup of
singular endomorphisms of a finite dimensional vector space is a semiband. Fountain
and Lewin [3] proved that the semigroup of singular order-preserving endomorphisms
of an independence algebra of finite rank is a semiband, while Oliveira [4] proved a
similar result for order-independence algebras.

Let Xn be a finite chain with n elements, say Xn = {1 < 2 < · · · < n}. As usual,
we denote byPTn themonoid of all partial transformations of Xn (under composition)
and by Tn the submonoid of PTn of all full transformations of Xn .

We say that a transformation α ∈ PTn is order-preserving if x ≤ y implies xα ≤
yα, for all x, y ∈ dom(α). We denote by POn the subsemigroup of PTn of all
order-preserving partial transformations (excluding the identity map) and by On the
semigroup POn ∩ Tn of all full transformations that preserve the order. Let Mn ∈
{On,POn}. Set

M(n, r) = {α ∈ Mn : | im(α)| ≤ r}.

The sets M(n, r), with 0 ≤ r ≤ n − 1, together with the empty set (if necessary),
are the two-sided ideals of Mn and each is a regular subsemigroup of Mn . Various
properties of M(n, r) are known. In particular, Howie [5] showed that the semi-
group On = O(n, n − 1) is a semiband and later jointly with Gomes [6] proved that
POn = PO(n, n − 1) is also a semiband. Garba [7] proved that, for 2 ≤ r ≤ n − 2,
M(n, r) is a semiband. We observe that the semigroup On is a semiband but its
maximal (regular) subsemigroups in general need not be a semiband (see [8, Theo-
rem 3.1 and Theorem 4.1]). Dimitrova and Koppitz [9] classified completely maximal
regular subsemigroups of O(n, r), for 2 ≤ r ≤ n − 2. Zhao [10] showed that, for
2 ≤ r ≤ n − 2, any maximal regular subsemigroup of the semigroup O(n, r) is a
semiband and obtained that the maximal regular subsemigroups and the maximal reg-
ular subsemibands of O(n, r) coincide, for 2 ≤ r ≤ n − 2 (see [10, Theorem 2.26]).
In this paper, we investigate the maximal regular subsemigroups and the maximal reg-
ular subsemibands of PO(n, r). First, we completely describe the maximal regular
subsemigroups of the semigroup PO(n, r), for 1 ≤ r ≤ n − 1. Secondly, using a
similar approach from Zhao [10], we show that, for 2 ≤ r ≤ n − 2, any maximal
regular subsemigroup of the semigroup PO(n, r) is a semiband and obtain that the
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Maximal Regular Subsemibands of the Finite Order-Preserving… 1177

maximal regular subsemigroups and the maximal regular subsemibands of PO(n, r)
coincide, for 2 ≤ r ≤ n−2. Finally, we obtain the complete classification of maximal
regular subsemibands of POn .

Let α ∈ POn . As usual, we write im(α) and dom(α) for the image of α and
domain of α, respectively. The kernel of α is the equivalence ker(α) = {(x, y) ∈
dom(α) × dom(α) : xα = yα}. Given a subsetU of POn , we denote by E(U ) its set
of idempotents.We denote by V (α) the set of all inverses of α, and by Lα , Rα , Hα , and
Jα the L-class, R-class, H-class, and J-class, respectively, of an element α ∈ POn .
For general background on Semigroup Theory, we refer the reader to Howie’s book
[11].

2 Main Result

Recall that the Green’s relations on POn can be characterized as αLβ if and only
if im(α) = im(β), αRβ if and only if ker(α) = ker(β), and αJβ if and only if
| im(α)| = | im(β)|, for every transformations α and β. The semigroup POn has
trivialH-classes and has n J-classes: J0, J1, . . . , Jn−1, where J0 consists of the empty
mapping and Jr = {α ∈ POn : | im(α)| = r}. Clearly,PO(n, r) = J0∪ J1∪· · ·∪ Jr .

It is well known that POn is a regular semiband and PO(n, r) (2 ≤ r ≤ n − 1) is
generated by idempotents of rank r (see [7, Lemma 3.3 and Proposition of Page 195]
and [6, Lemma 3.14]). Notice thatPO(n, r) is an ideal ofPOn . From the result [[12],
Corollary 1.4] that every ideal of a regular semiband S is also a regular semiband, we
immediately deduce:

Lemma 1 Let 2 ≤ r ≤ n − 1. Then PO(n, r) is a regular subsemiband of POn and
PO(n, r) = 〈E(Jr )〉.

The following lemma is from Clifford and Preston [13, Theorems 2.17 and 2.18].

Lemma 2 (1) For any two elements a, b in a semigroup S, ab ∈ Ra ∩ Lb if and only
if E(Rb ∩ La) �= ∅. (2) Let a be a regular element of a semigroup S. (i) Every inverse
of a lies in Da. (ii) An H-class Hb contains an inverse of a if and only if both of the
H-classes Ra ∩ Lb and Rb ∩ La contain idempotents.

Let Q1, Q2, . . . , Qm be all subsets of Xn with cardinality r , where m = (n
r

)
, and

let

R(Qi ) = {α ∈ Jr : dom(α) = Qi },

where 1 ≤ i ≤ m. Then R(Q1), R(Q2), . . . , R(Qm) are some of the R-classes of
Jr . Clearly, |E(R(Q j ))| = 1 for all 1 ≤ j ≤ m. We denote the unique idempotent of
R(Q j ) by ζ j . Then ζ j is the identity mapping on Q j .

Lemma 3 Let 2 ≤ r ≤ n − 1. Let S be a regular subsemigroup of PO(n, r). If
S ∩ Rα �= ∅, for all α ∈ Jr , then S = PO(n, r).
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1178 P. Zhao et al.

Proof We claim that

S ∩ Lβ �= ∅, f or all β ∈ Jr . (2.1)

Otherwise, if there exist β ∈ Jr such that Lβ ⊆ Jr\S. Let im(β) = Qi , then ζi ∈
E(R(Qi )) ∩ Lβ and so ζi /∈ S. Notice that Rζi = R(Qi ) and |E(R(Qi ))| = 1. This
will yield S ∩ Rζi = ∅ (otherwise, since S is regular, we have ζi ∈ S). Notice that S
is regular. By condition and (2.1), we have

S ∩ E(Rα) �= ∅, S ∩ E(Lβ) �= ∅, for allα, β ∈ Jr . (2.2)

We show that E(Jr ) ⊆ E(S) and so S = PO(n, r) by Lemma 1. Suppose that
e ∈ E(Jr )\E(S). Notice that D = J in every finite semigroup. By (2.2), we can
choose f ∈ E(S) ∩ Le and g ∈ E(S) ∩ Re. Since e /∈ E(S), we have e �= f and
e �= g. By Lemma 2, we have f g ∈ S∩ R f ∩Lg (since e ∈ E(L f ∩ Rg)). As usual, by
LS ,RS denote Green relations of the subsemigroup S ofPO(n, r). Since S is regular,
we have that RS = R ∩ (S × S) and LS = L ∩ (S × S). Then fRS f gLSg (since
fR f gLg). Notice that f, g ∈ E(S) and f g ∈ S. By Lemma 2, there exist δ ∈ V ( f g)
such that δ ∈ LS

f ∩ RS
g . Since fLeRg, we have δ ∈ LS

f ∩ RS
g ⊆ S ∩ L f ∩ Rg =

S ∩ Le ∩ Re = S ∩ He. Then e = δ ∈ S (since every H-class of PO(n, r) is trivial),
which contradicts e ∈ E(Jr )\E(S). Thus E(Jr ) ⊆ E(S). ��

Let 2 ≤ r ≤ n − 1. A proper subsemigroup S of PO(n, r) is called a maximal
regular subsemigroup if S is a regular semigroup, and any regular subsemigroup of
PO(n, r) properly containing S must must be PO(n, r).

Our first main result is:

Theorem 4 Let 2 ≤ r ≤ n − 1. Then any maximal regular subsemigroups of the
semigroup PO(n, r) are of the form: PO(n, r − 1) ∪ (Jr\Rα), for some α ∈ Jr .

Proof Let α ∈ Jr , and let Mα = PO(n, r − 1) ∪ (Jr\Rα). We shall show that Mα

is a maximal regular subsemigroup of PO(n, r). For any β, γ ∈ Jr , either βγRβ

or βγ ∈ PO(n, r − 1) by Lemma 2, so Mα is a subsemigroup of PO(n, r). From
Lemma 1, we know that PO(n, r − 1) is regular. Let β ∈ Jr\Rα . Suppose that
im(β) = {b1 < · · · < br }. Let e1 be the identity mapping on im(β), and let

e2 =
(
B1 B2 · · · Br
b1 b2 · · · br

)
,

where B1 = {1, . . . , b1}, Bi = {bi−1 + 1, . . . , bi }, for 2 ≤ i ≤ r − 1, and Br =
{br−1 + 1, . . . , n}. Clearly, e1, e2 ∈ E(Lβ) and (e1, e2) /∈ R. Since POn is regular,
we have |E(Rβ)| ≥ 1. Let f ∈ E(Rβ). Then eiLβR f . By Lemma 2, we have that
Rei ∩ L f contains inverse of α. Let γi ∈ Rei ∩ L f ∩ V (α), i = 1, 2, then eiRγiL f
and so (γ1, γ2) /∈ R. It follows that γ1 ∈ Jr\Rα ⊆ Mα or γ2 ∈ Jr\Rα ⊆ Mα . Then β

is regular and so Mα is a regular subsemigroup of PO(n, r).
Suppose T is a regular subsemigroup of PO(n, r) properly containing Mα . Then

T ∩ Rβ �= ∅, for all β ∈ Jr . Thus, by Lemma 3, T = PO(n, r) and so Mα is a
maximal regular subsemigroup of PO(n, r).
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Conversely, supposeM is amaximal regular subsemigroup ofPO(n, r). Then there
exist α ∈ Jr such that M∩ Rα = ∅ (otherwise, by Lemma 3, we have M = PO(n, r))
and soM ⊆ PO(n, r−1)∪(Jr\Rα) = Mα . Thus, by themaximality ofM ,M = Mα .

��
Let A be a subset of Xn . We say that a subset C of A is convex on A if

x, y ∈ C, z ∈ A and x ≤ z ≤ y ⇒ z ∈ C.

We shall refer to an equivalence π on the subset A of Xn as convex if its classes are
convex subsets of A, and we shall say that π is of weight r on A if |π/A| = r . Now, we
consider the top class Jr of PO(n, r). We denote by 	r the collection of all subsets
of Xn of cardinality r . Let A ∈ 	r . Then a typical L-class in Jr may be denoted by
L A = {α ∈ PO(n, r) : im(α) = A}. The number ofL-classes within Jr is the number
of image sets in Xn of cardinality r , namely,

(n
r

)
. We denote by 
r the collection of

all convex equivalences of weight r on all subsets of Xn . Let π ∈ 
r . Then a typical
R-class in Jr may be denoted by Rπ = {α ∈ PO(n, r) : ker(α) = π}. Thus, Jr has
�n

k=r

(n
k

)(k−1
r−1

)
) R-classes corresponding to the �n

k=r

(n
k

)(k−1
r−1

)
) convex equivalences of

weight r on all subsets of Xn , and
(n
r

)
L-classes corresponding to the

(n
r

)
subsets of

Xn of cardinality r . It follows that Jr has
(n
r

)
(�n

k=r

(n
k

)(k−1
r−1

)
) H-classes. Also we may

write H(π,A) for the H-class, which is the intersection of Rπ and L A. A is said to be
a transversal of π if |A ∩ x̃ | = 1 for every equivalence class x̃ of π . Then H(π,A) is
a group H-class if and only if A is a transversal of π . Notice that every H-class of
PO(n, r) is trivial. Thus every group H-class consists of an idempotent.

The following lemma is from G.U. Garba [7, Lemma 3.3 and Proposition of
Page 195]:

Lemma 5 There is awayof listing the subsets of Xn of cardinality r as A1, A2, . . . , Am

(where m = (n
r

)
and r ≥ 2) so that there exist distinct convex equivalences

π1, π2, . . . , πm of weight r with the property that Ai−1, Ai are both transversals
of πi (i = 2, . . . ,m) and Am, A1 are traversals of π1. EachH-class H(πi ,Ai ) consists
of an idempotent εi (i = 1, . . . ,m), H-class H(πi ,Ai−1) consists of an idempotent ηi
(i = 2, . . . ,m) and H-class H(π1,Am ) consists of an idempotent η1, and there exist
idempotents εm+1, . . . , εp (where p = �n

k=r

(n
k

)(k−1
r−1

)
) such that ε1, ε2, . . . , εp cover

all the R-classes in Jr and {ε1, ε2, . . . , εp} is a set of generators for PO(n, r).

Before presenting our next lemma, we introduce the following notation.
Let Ai , πi , εi , and ηi be as defined in Lemma 5, and let πi = ker(εi ), for

i = m + 1, . . . , p. Then 
r = {π1, π2, . . . , πp} (p = �n
k=r

(n
k

)(k−1
r−1

)
) and 	r =

{A1, A2, . . . , Am} (m = (n
r

)
). Let � = ∪m

i, j=1H(πi ,A j ), G
+(�) = {ε1, ε2, . . . , εm},

G−(�) = {η1, η2, . . . , ηm}, and G(�) = G+(�) ∪ G−(�).
As in [14], let k ∈ {0, 1, 2, . . . ,m} and define a total order≤k on the set {1, . . . ,m}

by

k + 1 ≤k k + 2 ≤k · · · ≤k m ≤k 1 ≤k · · · ≤k k,
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where i <k j if i ≤k j and i �= j . In the following lemma, it will always be clear
from context when additions are modular m.

Lemma 6 � ⊆ 〈G(�)〉.
Proof Let

αi j = ηiηi−1 · · · η j+1, 1 ≤ j < i ≤ m,

βi j = εiεi+1 · · · ε j , 1 ≤ i ≤ j ≤ m.

Then, by Lemmas 2 and 5, αi j ∈ 〈G−(�)〉 ∩ H(πi ,A j ) and βi j ∈ 〈G+(�)〉 ∩ H(πi ,A j ).
Since POn isH-trivial, we have

H(πi ,A j ) = {αi j } ⊆ 〈G−(�)〉, 1 ≤ j < i ≤ m,

H(πi ,A j ) = {βi j } ⊆ 〈G+(�)〉, 1 ≤ i ≤ j ≤ m.

Notice that � = ∪m
i, j=1H(πi ,A j ). It follows immediately that � ⊆ 〈G+(�) ∪

G−(�)〉 = 〈G(�)〉. ��
Lemma 7 �\Rπk ⊆ 〈E(Jr\Rπk )〉, for all 1 ≤ k ≤ m.

Proof Let πi , Ai , εi , and ηi be defined as before. Let

α
[k]
i, j = ηiηi−1 · · · η j , j ≤k i <k k,

β
[k]
i, j = εiεi+1 · · · ε j , i ≤k j <k k.

Notice that G(�)\{εk, ηk} ⊆ E(Jr\Rπk ). Then, by Lemmas 2 and 5,

α
[k]
i, j ∈ 〈G−(�)\{ηk}〉 ∩ H(πi ,A j−1) ⊆ 〈E(Jr\Rπk )〉 ∩ H(πi ,A j−1),

β
[k]
i, j ∈ 〈G+(�)\{εk}〉 ∩ H(πi ,A j ) ⊆ 〈E(Jr\Rπk )〉 ∩ H(πi ,A j ).

Since POn isH-trivial, we have

H(πi ,A j−1) = {α[k]
i, j } ⊆ 〈E(Jr\Rπk )〉, j ≤k i <k k,

H(πi ,A j ) = {β[k]
i, j } ⊆ 〈E(Jr\Rπk )〉, i ≤k j <k k.

It follows immediately that �\Rπk = m∪i, j=1
i �=k

H(πi ,A j ) = [(∪ j≤k i<kk H(πi ,A j−1)) ∪
(∪i≤k j<kk H(πi ,A j ))] ⊆ 〈E(Jr\Rπk )〉. ��
Lemma 8 Let 2 ≤ r ≤ n − 2. Then Jr\Rα = 〈E(Jr\Rα)〉 ∩ Jr , for all α ∈ Jr .

Proof Let πi , Ai , εi , and ηi be defined as before. Notice that 
r = {π1, π2, . . . , πp}
(p = �n

k=r

(n
k

)(k−1
r−1

)
) and 	r = {A1, A2, . . . , Am} (m = (n

r

)
). Let �̃ = Jr\�.

Then �̃ = ∪p
i=m+1 ∪m

j=1 H(πi ,A j ). Let α ∈ Jr and ker(α) = π , then there exist
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k ∈ {1, 2, . . . , p} such that π = πk . Clearly, Rα = Rπk and Jr\Rα = Jr\Rπk . We
first prove that Jr\Rα ⊆ 〈E(Jr\Rα)〉 ∩ Jr , i.e., Jr\Rπk ⊆ 〈E(Jr\Rπk )〉 ∩ Jr . We
distinguish two cases:

Case 1 1 ≤ k ≤ m. Clearly Jr\Rπk = (�\Rπk ) ∪ �̃. We shall show that �̃ ⊆
〈E(Jr\Rπk )〉. Let α ∈ �̃. Then α ∈ H(πi ,A j ) for some i ∈ {m + 1, . . . , p}, j ∈
{1, . . . ,m}. Notice that αRεi . Suppose that εi ∈ H(πi ,As ) for some s ∈ {1, . . . ,m}.
Let

σs =
{

ηs+1 s = k
εs s �= k.

Then εiLσs and σs ∈ �\Rπk . Let β ∈ Rσs ∩ Lα . Clearly σs ∈ E(Lεi ∩ Rβ) and
β ∈ �\Rπk . Notice that POn is H-trivial and εi ∈ E(�̃) ⊆ E(Jr\Rπk ). Then, by
Lemmas 2 and 7,

α = εiβ ∈ E(Jr\Rπk ) · �\Rπk ⊆ E(Jr\Rπk ) · 〈E(Jr\Rπk )〉 ⊆ 〈E(Jr\Rπk )〉

and so �̃ ⊆ 〈E(Jr\Rπk )〉. Thus, by Lemma 7, Jr\Rπk = (�\Rπk ) ∪ �̃ ⊆
〈E(Jr\Rπk )〉 and so Jr\Rπk = (Jr\Rπk ) ∩ Jr ⊆ 〈E(Jr\Rπk )〉 ∩ Jr .

Case 2 m + 1 ≤ k ≤ p. Clearly Jr\Rπk = � ∪ (�̃\Rπk ). We shall show that
�̃\Rπk ⊆ 〈E(Jr\Rπk )〉. Let α ∈ �̃\Rπk . Then α ∈ H(πi ,A j ) for some i ∈ {m +
1, . . . , p}\{k}, j ∈ {1, . . . ,m}. Notice that αRεi . Suppose that εi ∈ H(πi ,As ) for some
s ∈ {1, . . . ,m}. Then εiLεs and εs ∈ �. Let β ∈ Rεs ∩ Lα . Clearly εs ∈ E(Lεi ∩ Rβ)

and β ∈ �. Notice that εi ∈ E(�̃\Rπk ) ⊆ E(Jr\Rπk ), G(�) ⊆ E(Jr\Rπk ), and
POn isH-trivial. Then, by Lemmas 2 and 7,

α = εiβ ∈ E(Jr\Rπk ) · � ⊆ E(Jr\Rπk ) · 〈G(�)〉 ⊆ 〈E(Jr\Rπk )〉

and so �̃\Rπk ⊆ 〈E(Jr\Rπk )〉. Thus, by Lemma 6, Jr\Rπk = � ∪ (�̃\Rπk ) ⊆
〈G(�)〉 ∪ 〈E(Jr\Rπk )〉 ⊆ 〈E(Jr\Rπk )〉 and so Jr\Rπk = (Jr\Rπk ) ∩ Jr ⊆
〈E(Jr\Rπk )〉 ∩ Jr .

It remains to prove that 〈E(Jr\Rα)〉∩Jr ⊆ Jr\Rα . Let S = PO(n, r−1)∪(Jr\Rα).
From Theorem 4, we know that S is a subsemigroup of PO(n, r). It is obvious that
E(Jr\Rα) ⊆ S. Then 〈E(Jr\Rα)〉 ⊆ S and so 〈E(Jr\Rα)〉 ∩ Jr ⊆ S ∩ Jr = Jr\Rα .

��
Our next main result is:

Theorem 9 Let 2 ≤ r ≤ n−2. Then any maximal regular subsemigroup ofPO(n, r)
is a semiband.

Proof From Theorem 4, we know that each maximal regular subsemigroup of
PO(n, r) must be in the following form: PO(n, r − 1) ∪ (Jr\Rα), for some α ∈ Jr .
By Lemmas 1 and 8, we have

PO(n, r − 1) ∪ (Jr\Rα) = 〈E(Jr−1)〉 ∪ (〈E(Jr\Rα)〉 ∩ Jr ) = 〈E(Jr−1) ∪ E(Jr\Rα)〉.

Then any maximal regular subsemigroup of PO(n, r) is a semiband. ��
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1182 P. Zhao et al.

As in [7], we shall refer to an element α inPOn as being of type (k, r) or belonging
to the set [k, r ] if | dom(α)| = k, | im(α)| = r . Clearly Jr = ∪n

i=r [i, r ] and Jn−1 =
[n, n − 1] ∪ [n − 1, n − 1]. We draw attention to the J -class Jn−1. Gomes and
Howie [6] used the notation [i → i + 1] for the increasing idempotent ε defined
by iε = i + 1, xε = x (x �= i) and the notation [i → i − 1] for the decreasing
idempotent η defined by iη = i − 1, xη = x (x �= i). They also used the notation δk
for the identity mapping on Xn\{k}. Let E+

n−1 = {[i → i + 1] : 1 ≤ i ≤ n − 1} and
E−
n−1 = {[i → i − 1] : 2 ≤ i ≤ n} be the increasing and decreasing idempotent sets

of [n, n − 1], respectively. Let En−1 = E+
n−1 ∪ E−

n−1, and let Fn−1 = {δ1, . . . , δn}.
Then E([n, n − 1]) = En−1 and E([n − 1, n − 1]) = Fn−1. For convenience, we use
[n → n + 1] or [1 → 0] to denote θ (the empty mapping).

For any i, j ∈ Xn , let

Mi, j = {α ∈ On : (∀x, y ∈ Xn) x ≤ i �⇒ xα ≤ i, y ≥ j �⇒ yα ≥ j}, (2.3)

PMi, j = {α ∈ POn : (∀x, y ∈ dom(α)) x ≤ i �⇒ xα ≤ i, y ≥ j �⇒ yα ≥ j} ∪ J0.

(2.4)

Let α ∈ On and fix some i ∈ Xn . It is easy to prove that

iα ≤ i ⇔ (x ∈ Xn)x ≤ i ⇒ xα ≤ i,

iα ≥ i ⇔ (y ∈ Xn)y ≥ i ⇒ yα ≥ i.

Notice that [n, n − 1] = On ∩ Jn−1. From the above fact and [15, Lemma 2.5], we
easily deduce the following:

Lemma 10 Let n ≥ 3. Then Mi, j = 〈E([n, n− 1])\{[i → i + 1], [ j → j − 1]}〉, for
all i, j ∈ Xn.

Let 1Xn be the identitymappingon Xn , and letO1
n = On∪{1Xn }. For a strictly partial

transformation β =
(
A
a

)
∈ POn , let c = min(A ∪ {a}) and d = max(A ∪ {a}).

Now, we define the completion β∗ of β in O1
n as follows:

xβ∗ =
{
a, c ≤ x ≤ d,

x, otherwise.

Clearly β∗ = 1Xn if and only if A = {a}.

Lemma 11 Let n ≥ 3. Then PMi, j = 〈E(Jn−1)\{[i → i + 1], [ j → j − 1]}〉, for
all i, j ∈ Xn.

Proof Let Ẽ = E(Jn−1)\{[i → i+1], [ j → j−1]}.Wefirst show that PMi, j ⊆ 〈Ẽ〉.
It is obvious that θ = δ1δ2 · · · δn . Notice that Fn−1 ⊆ Ẽ . Thus J0 = {θ} ⊆ 〈Ẽ〉. Let
α ∈ PMi, j\J0. We distinguish three cases.
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Case 1 α ∈ On . Clearly α ∈ Mi, j . By Lemma 10, we have

α ∈ Mi, j = 〈E([n, n − 1])\{[i → i + 1], [ j → j − 1]}〉 ⊆ 〈Ẽ〉.

Case 2 α is an identity mapping in [r, r ], where 1 ≤ r ≤ n − 1. Now, put

Xn\ dom(α) = {x1, x2, . . . , xn−r },

and define ek to be the identity mapping on Xn\{xk}, then ek ∈ Fn−1 ⊆ Ẽ , for all
k ∈ {1, . . . , n − r}. It is obvious that α = e1e2 · · · en−r . Thus α ∈ 〈Ẽ〉.

Case 3 α is in [r, s] (1 ≤ s ≤ r ≤ n−1), but α is not an identity mapping. Suppose
that

α =
(
A1 A2 · · · As

a1 a2 · · · as
)

∈ [r, s].

Let α∗
k be a completion of

(
Ak

ak

)
in O1

n . We shall prove that

α∗
1 , α

∗
2 , . . . , α

∗
s ∈ Mi, j ∪ {1Xn }.

Suppose that α∗
k �= 1Xn . Notice that (∀x ∈ Xn) xα∗

k ∈ {x, ak}. Let x ∈ Xn such
that x ≥ j . (i) If ak ≥ j , then xα∗

k ≥ j . (i i) If ak < j , then x > ak . Suppose
that xα∗

k = ak . By the definition of α∗
k and x > ak , we have x ≤ max Ak and so

j ≤ max Ak . Since max Ak ∈ Ak ⊆ dom(α) and α ∈ PMi, j\J0, we have j ≤
(max Ak)α = ak , a contradiction. Then xα∗

k = x and so xα∗
k ≥ j . Similarly, we can

prove that x ≤ i ⇒ xα∗
k ≤ i . Thus α∗

k ∈ Mi, j .
Let α0 be an identity mapping on dom(α). It is easy to prove that

α = α0α
∗
1 · · · α∗

s .

From Case 2 above, we know that α0 ∈ 〈Ẽ〉. By Lemma 10, we have

α∗
k ∈ Mi, j = 〈E([n, n − 1]}\{[i → i + 1], [ j → j − 1]}〉 ⊆ 〈Ẽ〉.

Thus α ∈ 〈Ẽ〉.
It remains to prove that 〈Ẽ〉 ⊆ PMi, j . Notice that Fn−1 ⊆ PMi, j and Ẽ =

(E([n, n − 1])\{[i → i + 1], [ j → j − 1]}) ∪ Fn−1. By Lemma 10, we have

E([n, n − 1])\{[i → i + 1], [ j → j − 1]} ⊆ Mi, j ⊆ PMi, j .

Then Ẽ ⊆ PMi, j . It is easy to prove that PMi, j is a subsemigroup of POn . Thus
〈Ẽ〉 ⊆ PMi, j . ��
Lemma 12 Let 1 ≤ i ≤ n − 1. Then PMi,i+1 is a regular subsemiband of POn.
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Proof From Lemma 11, we know that PMi,i+1 is a subsemiband of POn . Let α ∈
PMi,i+1. If | im(α)| = 0, then clearly α = θ . Then α = α2 and so α is regular. If
| im(α)| ≥ 1, suppose that

α =
(
A1 A2 · · · Ar

a1 a2 · · · ar

)
.

Let ck ∈ Ak , 1 ≤ k ≤ r . Notice that if ak ≤ i , then ck ≤ i (otherwise, since
α ∈ PMi,i+1, we have ak = Akα = ckα ≥ i + 1, a contradiction); if ak ≥ i + 1,
then ck ≥ i + 1 (otherwise, since α ∈ PMi,i+1, we have ak = Akα = ckα ≤ i , a
contradiction). Let

β =
(
A1 A2 · · · Ar

c1 c2 · · · cr

)
.

Then clearly β ∈ PMi,i+1 and α = αβα. Thus α is regular. ��
Let 2 ≤ r ≤ n−1. A proper subsemigroup S ofPO(n, r) is called amaximal regu-

lar subsemiband ofPO(n, r) if S is a regular semiband, and any regular subsemiband
of PO(n, r) properly containing S must be PO(n, r).

Lemma 13 Let 1 ≤ i ≤ n − 1. Then PO(n, n − 2) ∪ PMi,i+1 is a maximal regular
subsemiband of POn.

Proof Let Bi = PO(n, n − 2) ∪ PMi,i+1. From Lemmas 1 and 12, we easily deduce
that Bi is a regular subsemigroup of POn . By Lemmas 1 and 10, we have Bi =
PO(n, n − 2) ∪ PMi,i+1 = 〈E(Jn−2)〉 ∪ 〈E(Jn−1)\{[i → i + 1], [i + 1 → i]}〉 =
〈E(Jn−2)∪ (E(Jn−1)\{[i → i +1], [i +1 → i]})〉. Then Bi is a regular subsemiband
of POn .

Let T be a regular semiband ofPOn properly containing Bi . Then E(Bi ) ⊂ E(T ).
Notice that PO(n, n − 2) ⊆ Bi ⊂ T and E(PMi,i+1 ∩ Jn−1) = E(Jn−1)\{[i →
i + 1], [i + 1 → i]}. Thus

E(Jn−1)\{[i → i + 1], [i + 1 → i]} = E(PMi,i+1 ∩ Jn−1)

= E(Bi ∩ Jn−1) ⊂ E(T ∩ Jn−1),

whence E−
n−1 ∪ Fn−1 ⊆ E(Jn−1)\{[i → i + 1]} ⊆ T or E+

n−1 ∪ Fn−1 ⊆
E(Jn−1)\{[i + 1 → i]} ⊆ T . Notice that E−

n−1 ∪ Fn−1 (E+
n−1 ∪ Fn−1) contains

exactly one (idempotent) element from each R-class of POn of rank n − 1. It follows
that T ∩ E(Rα) �= ∅, for all α ∈ Jn−1. Thus, by Lemma 3, T = POn . ��
Lemma 14 Let 1 ≤ i ≤ n − 1. Then PO(n, n − 2) ∪ 〈E(Jn−1\{δi }〉 = PO(n, n −
2) ∪ {α ∈ POn : i ∈ dom(α)}.
Proof Let Si = {α ∈ POn : i ∈ dom(α)}, and let Wi = PO(n, n − 2) ∪ Si . It is
obvious that Wi = PO(n, n − 2) ∪ (Si ∩ Jn−1). For any α, β ∈ Wi , either αβ ∈
PO(n, n − 2) or αβ ∈ Jn−1. If αβ ∈ Jn−1, then α, β ∈ Wi ∩ Jn−1 = Si ∩ Jn−1 ⊆ Si
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and αRαβ. Thus ker(α) = ker(αβ) and so αβ ∈ Si . Hence Wi is a subsemigroup
of POn . It is obvious that E(Jn−1)\{δi } ⊆ Si ⊆ Wi . Then 〈E(Jn−1)\{δi }〉 ⊆ Wi

and so PO(n, n − 2) ∪ 〈E(Jn−1)\{δi }〉 ⊆ Wi . From [16, Lemma 3.6], we know that
〈Si 〉 = 〈E(Jn−1)\{δi }〉. It follows that Wi ⊆ PO(n, n − 2) ∪ 〈Si 〉 = PO(n, n − 2) ∪
〈E(Jn−1\{δi }〉. ��

Our final main result is:

Theorem 15 Let n ≥ 3. Then each maximal regular subsemiband of POn must be in
one of the following forms:
(A) Ai = PO(n, n − 2) ∪ {α ∈ POn : i ∈ dom(α)}, 1 ≤ i ≤ n.
(B) Bi = PO(n, n − 2) ∪ PMi,i+1, 1 ≤ i ≤ n − 1.

Proof Let Si = {α ∈ POn : i ∈ dom(α)}. From Lemma 13, we know that Bi is a
maximal regular subsemiband of POn . By the definition of Si , we easily deduce that
Si ∩ Jn−1 = Jn−1\Rδi and so Ai = PO(n, n−2)∪ (Jn−1\Rδi ). Then, by Theorem 4,
Ai is a maximal regular subsemigroup of POn . To show that Ai is a maximal regular
subsemiband of POn , it is enough to verify that Ai is a semiband. By Lemmas 1 and
14, we have

Ai = PO(n, n − 2) ∪ Si = 〈E(Jn−2)〉 ∪ 〈E(Jn−1)\{δi }〉 = 〈E(Jn−2) ∪ (E(Jn−1)\{δi })〉.

Conversely, let S be an arbitrary maximal regular subsemiband of POn not of the
form Ai or Bi . Notice that

E(Ai ∩ Jn−1) = E(Si ∩ Jn−1) = E(Jn−1)\{δi },
E(Bi ∩ Jn−1) = E(PMi,i+1 ∩ Jn−1) = E(Jn−1)\{[i → i + 1], [i + 1 → i]}.

We claim that S satisfies

S ∩ E(Rα) �= ∅, f or all α ∈ Jn−1. (2.5)

Otherwise, there exists Ai or Bi for some i ∈ Xn such that E(S∩Jn−1) ⊆ E(Ai∩Jn−1)

or E(S ∩ Jn−1) ⊆ E(Bi ∩ Jn−1). Notice that PO(n, n − 2) ⊆ Ai , Bi . Then E(S) ⊆
E(Ai ) or E(S) ⊆ E(Bi ). It follows that S ⊆ Ai or S ⊆ Bi , since S, Ai , and Bi are
semibands. Thus, by the maximality of S, S = Ai or S = Bi

By Lemma 3 and (2.5), We have S = POn and this is a contradiction. ��
From Theorem 4 and Theorem 15, we know that the maximal regular and the

maximal regular subsemibands ofPOn do not coincide.As an immediate consequence
of Theorem 4 and Theorem 9, we have the following:

Corollary 16 Let 2 ≤ r ≤ n − 2. Then the maximal regular subsemigroups and
maximal regular subsemibands of PO(n, r) coincide.
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