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Abstract The composition of the distributions x* and xff_ is evaluated for A = —1,
—2,... > 0and An € Z~. Further results are deduced.
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1 Introduction

In the following, we let D be the space of infinitely differentiable functions with
compact support, let D[a, b] be the space of infinitely differentiable functions with
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support contained in the interval [a, b], and let D’ be the space of distributions defined
onD.
we define the locally summable function xi, for A > —1, by

o x* x>0,
+7 10 x<0O.

The distribution x* % is then defined inductively for A < —1 and A # =2, —=3,... by
(x_);_)’ = kx+ ! It follows that if s is a positive integer and —s — 1 < A < —s, then

00 s—1 (k)
kgt = [ M{mm—Zf}pGﬂm
0 !

k=0

for arbitrary ¢ in D. In particular, if ¢ has its support contained in the interval [—1, 1],
then

k) s—1 k)
A _ ¢ (0) ok Z ¢ (0)
(X, o) —/0 [ﬁﬂ(x) Z +k:0 Kl +k+1)
The distribution x* is defined by

s (=) nx)®
o (s — !

fors = 1,2, ... and not as in Gelfand and Shilov [5].
It is easily shown that if ¢ is an arbitrary function in D[—1, 1], then

. r s—19®0) ,
(x] »<P(x)>=/o g |:<p(x)_zk=0 T x

e (s - D 6
Zk O —k—Dkl  s-D17 ©). W

fors =1,2,..., where

Sk sz
¢ls) = [ = s:O.

The composition of a distribution and an infinitely differentiable function is
extended to distributions by continuity provided that the derivative of the infinitely
differentiable function is different from zero, see [1]. Fisher defined the composition
of a distribution F and a summable function f which has a single simple root in
the open interval (a, b) and it was recently generalized in [6] by allowing f to be a
distribution.

Now let p(x) be a function in D having the following properties:
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() pr) = 0for x| = 1, (i) p(xr) =0,
1
(iii) p() = p(=x), (i) /IMde=L

Putting §,,(x) = np(nx) forn =1, 2, ..., it follows that {5, (x)} is a regular sequence
of infinitely differentiable functions converging to the Dirac delta function 6 (x).
Further, if F is a distribution in D" and F,,(x) = (F(x — 1), 8,(x)), then {F,,(x)}
is a regular sequence of infinitely differentiable functions converging to F(x).
The following definition for the neutrix composition of distributions was given in
[3] and originally called the composition of distributions.

Definition 1.1 Let F be a distribution in D’ and let f be a locally summable function.
We say that the neutrix composition F'(f(x)) exists and is equal to 7 on the open
interval (a, b) if

Nn:liom/ Fu(f (0))e(x)dx = (h(x), ¢(x))

forall ¢ in Dla, b], where F,,(x) = F(x)*8,(x)forn = 1,2, ...and N is the neutrix,
see [2], having domain N’ the positive integers and range N the real numbers, with
negligible functions which are finite linear sums of the functions

)»1 r—1

n*In""'n, In" n: A>0,r=1,2,...

and all functions which converge to zero in the usual sense as n tends to infinity.

In particular, we say that the composition F (f (x)) exists and is equal to 4 on the open
interval (a, b) if

,g&/‘fuﬂMMQMx=mu»wm>

for all ¢ in Dla, b].

Note that if a function f(n) tends to « in the usual sense as n tends to infinity, it
converges to « in the neutrix sense. The reader may find the general definition of the
neutrix limit with some examples in [2].

2 Results

Nicholas and Fisher defined the composition (x, )™ as the neutrix limit of regular
sequence [(x, )], for r,s = 1,2,..., see [7]. Further Ozca§ et. al. consider the
case r = 0, in other words the s-th power of the Heaviside function H (x) defined by
[H(x)]™* = H(x), see [9]. Recently, some compositions such as (|x|"~1/2)~* and
(Jx]*)~* were defined in [4,8] respectively.

We first of all need the following Lemma which can be easily proved by induction.
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Lemma 2.1
1 .
/ v p® () dv = [ 0 0 =i <, 2)
1 =

and because v" p") is an even function, we have

0 1
/ v p (v) dv =/ v p () dv = l(—1)’r! 3)
1 o 2

and

0 1
/ v In v|p" (v) dv —/ v In v|p" (v) dv
0

~1
1
= 5(—1)rr!¢(r) + (=D"rle(p) “)
forr=0,1,2, ... where c(p) = fol Intp(t) dt.
We now prove the following theorem.

Theorem 2.2 The distribution (xﬁ)_m exists and

() = ot D 2e0) + ¢s(7z — DI +s6(s — 1)

85 D) (5)

foru >0, m=1,2,...and um = s(s € Z™1).
In particular, we have

(x;) = 7' = (1P 2e(p) + B — DIS() ©)
forr=1,2,....
Proof We first put

(=" = DU ™ = i S, It — 118 @ if x =0

7
fj{7n1n|t|5,§’”>(z)dt, if x<O. ™
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Then
1 1 1/n
(=" Ym — 1)!/ KL ™™, dx =/ xk/ In|x — 1189 (t)dtdx
—1 —1 —

1/n
1/n n=Wr
=/ 5};”)(;)/ Kn |x* — 1] dx dt
— 0

1/n
1/n 1 0 1/n
+/ 5};“(:)/ K n|x* — ¢ dx dt +/ xk/ In |¢189™ (1) dx dt
—1/n n=lnr -1 —1/n
m—(k+1)/n 1 1
= [ o [ gy vy o
18 -1 0
nm—(k+1)/;}, 1 n
+ —/ p(m)(v)/ y—l+(k+1)/# In|y — v|dydv
M -1 1
—(k+1)/ 1
+ —nm " lnn/ 0™ (v) dv /n y &L/ gy,
M -1 0
-1 k+1,m 1
+ (k)Tln /—1 In|v/n|p"™ (v) dv
=L+ DL+ 1+ 1, (8)
on using the substitutions y = nx* and v = nt.
It follows immediately that
N—-lim/3=0 and N-limly=0 )
n—o0 n— oo
fork=0,1,...and
N—-lim/; =0 (10)
n—oQ

forallk =0,1,2,...,s — 2.
Further

n n
/ y71+(k+])/u 1n|y _ U|dy :/ y71+(k+])//t lnydy

1 1

n

+/ y—1+(k+l)/ﬂ In|l —v/y|dy
1
= Ié—}—lé’, (11D
where

;L ’un(k—i-l)/u Inn N /’Lz[l _n(k—i-l)/u]
T (k+D (k + 1)

12)
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and

— v " 1—i+(k+1)
4 —l—i+(k+
12:_27/1y D gy
i=1

_ i Ui/,L[I’l_i+(k+l)/”’ —1] 03
STk 1 )

k=0,1,2,...,5 —2.
It follows from Lemma 2.1 and Egs. (11), (12), and (13) that

N —liml = ED"em — D! (14)

n—o00 s—k—1

fork =0,1,...,s — 2, and it then follows from Eqgs. (8), (9), (10), and (14) that

1
1
: k¢ By— _
N e e = mrmy as)
k=0,1,2,...,s — 2.
When k£ = s — 1, then we have

1 1 1

n=- [ o™ [y iy - vidyas
nJ-1 0
1 1 v 1

= —/ 0" (v) |:/ +/ y" njy — v|dy} dv
nJo 0 v
1 0 —v 1
+—/ o™ (v) [/ +/ ym11n|y—v|dy} dv
nJ-1 0 —v
=Ji+ N+ 3+ Js (16)
Now making the substitution y = uv

1 1 1

Jp = _/ vmp(m)(v)/ " Inv +In(1 — )] dudv, (17)
®Jo 0

and using Lemma 2.1, we have

1 1
/ V" ™ (v) lnv/ " Vdudv = (—=1)"(m — 1)! |:c(,0)+%¢(m):| (18)

0 0
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and

1 1
/ vm,o(m)(v)/ " MIn(1 = u)du dv
0 0

1
= l(—l)m(m - 1)!/ In(1 —u)d@w™ — 1)
0

2
- 2 " ) 0 ] —Uu “
1
= 5(—1>"’—1<m— 1)lg (m), (19)

and it follows from Eqs. (17), (18), and (19) that

N — lim jy = D= Do) 20)

n—oo M

Similarly, using the substitution y = uv again we have

1 0 0
J3 = ——/ vmp(’”)(v)/ u"n [v] 4+ In(1 — u)] du dv. 21
MJ—1 -1

Thus

0 0 (_l)mfl 0
/ vmp(m)(v)ln|v|/ W Vdudv = —/ V" p" (v) In |v] dv
—1 -1 -1

m

1
=—(m—-D! [C(p) + 545("1)} . (22)

and

0 0
/ vm,o('")(v)/ W n(1 = u)du dv
—1 —1

0
= l(—1)'”(m - 1)!/ In(1 — w)d@m™ — 1)
1

2 B

= ey — = im2 = Ly — 1)!/0 “wrl
2 2 L -

- 1[(—1)’"—1](m—1)!ln2+1(—1)m(m—1)!ii. (23)
2 2 ik
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It follows from Egs. (21), (22), and (23) that

N —lim J; = _ U= EDTIm = Dy 2+M¢(m)+
n—00 21 21

DI (=1 -1
_(m )Z(i)JF(mM)C(P)' (24)

2“ i=1
Further

1

1 1
Jz=;/ P [y iy in(t = v/ dy do
0 v

1 1 1 1 o0 1 1 . 1 .
= —/ p(m)(v)/ y’"_llnydydv——zf/ v’p(’”)(v)/ y" it dy dv
" Jo v HizvJo v

=D"m—-n! 1 [t

! Z /(v —v"™)p"™ (v) dv
B i1 m l(m_l)
_1\m _ (m—1) —1)" — !
_ 1>2<m PO E D 20 0n - 1) — g
pm 2
1 / P (w) dv
lLl 1175 l(m_l)
(m—1) _1\m _
Iy 2(0)+( D7 1)!</>(m—1)+
wm 2u
00 1
BLE / v o™ (v) dv (25)
K m im —=1) Jo

because

i L 2pm—1)—¢0m) _¢m—1) 1
i(m o

-0 m m

3

i=1,i#m
Finally, we have
1[0 1 )
Jy = */ P(m)(v) y*" ' [Iny +1In(1 —v/y)] dydv
—v
*/ p™ (v) ym Ynydydv — —Z / 2™ (1) ym_i_ldydv
—v

:l/ |:(_U)m_l _ (_U) ln|vli|pm)(v)dv+7/ 'Umlnl'U',O(m)(U)dU
1 wm J_

wJ_ m? m
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- 1 0. ,
— > — / [V = "o 0 w) dv
“i:l,i;éml(m_l) -1
- pm=bo 1= (=D)™m!
_m=D' »p 2()_[ (=D"1m [6(m) + 2¢(p)] +
2um wm 2
o0 0 . _1\m _
_l z i 1 i vlp(m)(v) dv — W
£ i#ml(’"—’) . jum
(m - 1)! (— 1)m+l [1— (=1)™](m — 1)!In2
; - » (26)
because
> 1 (D" 1S (=D [ = (=D
_ L _ In2.
i_lz#mi(m—i) m? +m ; i m f

Next, we similarly have

1 n
L = &/ p(m)(v)/ y" Hny +In(1 —v/y)] dydv
= l/ <m>(v)/ "n(1 —v/y)dydv
"
=_—Z / (’")(v)/ y" =l dy dv
1

o B oo 1 . .
_( l) (m 1)'11’1]’1 _ l Z _ 1 / (nm—z _ 1)Ulp(m)(v)dv7
n Kol 1= m)

and so

N—limbh=—— Z i m) vl p™ (v) dv. (27)

n— 00
i=m+1

It now follows from Egs. (8), (9), (16), (20), and (24)—(27) that

: _ (=)™ m — 1)

N—lim [ X' [)H™™], dx = [2¢(p) + ¢ (m — 1)]

_ &D"m! 1)’"
[2 (0) +¢(m —1D]. (28)
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We now consider the case k = s. If x < 0 and v is an arbitrary continuous function,
then

0
(=" m — 1)!/1x‘v [} ™™], ¥ (x)dx
0 1/n
=/ xsl//(x)/ In |£18™) () dt dx
-1 —1/n

0 1
=nm/ xsw(x)dx/ In|v/n|p"™ (v) dv,

—1 —1
where v = nt. Thus
0
N—lim [ x*[(})7™"] ¥ (x)dx =0. (29)

n—o0

Next with k = s in 1|, we see that

nl/n -l gl 1
/0 ()™, dx = . / 1p“’”(v) /0 Y YR In | (y — v)/nldy dv

and if ¥ is any continuous function, then

n—l/n
lim | )™, w(x) dx =0. (30)
If x#* > %, then we have
1/n
(D" e = DD, =/ In |x* — 1189 (1) dt
—1/n

1
= n"/ In|x* — v/n|p™ (v) dv
-1
o

1 i
v
— m wo_ (m)
=n [1 |:1n |x -21 in"xl“'j| o (v)dv

1 Ui (m)
= z :/1 inii ‘xuip (’U) dv,
i=m"

and it follows that

[m = DY [y, | = Z / o
K
= Z ini—’Zx“i ’
=m
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where «,,, = f_ll o™ ()| dv form =1,2,....
Ifnown '/t < <1

n
(m — 1)!/_W \xs [(xi)_m]n| dx < Kkp Z

0 m—i
n .
/ xR dx
— l n—1/n
0 1/ papgh
n .
= km ) — / YR gy
wi )y

i=m

-1/ i
Km D iom —/u(m l+1///.) [RK i+1/n 1], w1
)m—i-‘rl _ 1] + Kmn_l In(nn) W= 1.

m—+1 ’

—1
Km Zi:m,i;ﬁm-ﬁ-l i(m—i+1) [(nn
It follows that
i py—m] | _
Tim ([ "], = 0w

form = 1,2, ... and if ¥ is any continuous function then

n
i ‘/ L, v x| = o G1)

n—00

form =1,2,....Now let ¢(x) € D[—1, 1]. By Taylor’s theorem, we have

s=1 (k) 0
o) =3 E O

k=0

+=¢VE0  0<E<D.

Then

-1

py—m k(O) YT
(™™, ) = Z [(f)™], dx

k=0
- / [, 0 (Ex) dx

1
Tl e, 0 (Ex) dx

s!
1 7 s HN—m (s) d
L, e ™, e En d

1

1
+5 AT e (Ex) dx.
)
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Using Egs. (15) and (28)~(31) and noting that the sequence {[(x/)™"] } converges
uniformly to x ~* on the interval [7, 1], it follows that

(=D"m!

220 L 1
RS IO
—~ ki(s —k — 1) +/77 e (Ex)dx + O().

Because 7 can be arbitrarily small, it follows that

N-— gom<[(xi)—'"]n L)

_(=hm! 1)'" S (V)
EUI o)+ pim — 10y - > 2D
£ els —k — 1)

1
+/ e (Ex)dx + O().
n

1 52 (k)
- a <°> ok 7O
_/0 x [‘p(x) Z } ;k!(s—k— D

( 1)’"

[2 (p) +d(m — 11" D(0)

= <x+ ,QO(X))
=1y’ (=D"m![2c(p) + p(m — D] +s¢(s — 1)

s!

D), p(x))

on using Eq. (1). This proves Eq. (5) on the interval [—1, 1]. However, Eq. (5) clearly
holds on any interval not containing the origin, and the proof is complete. O

Note that if & € Z*, then Theorem 1 is in agreement with the Theorem 3 given in

[7].

Corollary 2.3 The distribution (x")™™ exists and

5 (=D"m![2c(p) + ¢(m — D] +s¢(s — 1)

§ D)y (32)

(7" = :
S

foru >0, m=1,2,...andum =s € Z+.

Proof Equation (32) follows after replacing x by —x in Eq. (5). O
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