
Bull. Malays. Math. Sci. Soc. (2017) 40:975–993
DOI 10.1007/s40840-016-0331-5

Sequential Rectifiable Spaces of Countable
cs∗-Character

Taras Banakh1,2 · Dušan Repovš3

Received: 16 September 2014 / Revised: 28 December 2014 / Published online: 18 February 2016
© Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2016

Abstract We prove that each non-metrizable sequential rectifiable space X of count-
able cs∗-character contains a clopen rectifiable submetrizable kω-subspace H and
admits a disjoint cover by open subsets homeomorphic to clopen subspaces of H .
This implies that each sequential rectifiable space of countable cs∗-character is either
metrizable or a topological sum of submetrizable kω-spaces. Consequently, X is sub-
metrizable and paracompact. This answers a question of Lin and Shen posed in 2011.

Keywords Rectifiable space · Sequential space · kω-Space · cs∗-Character ·
Topological loop · Topological left-loop · Topological lop
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1 Introduction and Main Results

In this paper we generalize to rectifiable spaces a result of Banakh and Zdomskyy
[3] on the structure of sequential topological groups of countable cs∗-character. They
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proved that any such group is either metrizable or contains an open submetrizable
kω-subgroup.

Rectifiable spaces were introduced by Arkhangel’skiı̆ as non-associative general-
izations of topological groups. We recall that a topological space X is rectifiable if
there exist a point e ∈ X and a homeomorphism h : X × X → X × X such that
h(x, e) = (x, x) and h({x} × X) ⊂ {x} × X for every x ∈ X . So, for every x ∈ X the
restriction h|{x} × X is a homeomorphism of {x} × X sending the point (x, e) onto
(x, x). This means that the rectifiable space X is topologically homogeneous.

Each topological group G is a rectifiable space, this is witnessed by the homeo-
morphism h : G × G → G × G, h : (x, y) �→ (x, xy). On the other hand, there are
examples of rectifiable spaces, which are not homeomorphic to topological groups.
The simplest example of such space is the 7-dimensional sphere S7 (see [1, p.13] or
[18, §3]).

Rectifiable spaces have many properties in common with topological groups. For
example, rectifiable spaces are topologically homogeneous, rectifiable T0-spaces are
regular, first countable rectifiable T0-spaces are metrizable, compact rectifiable spaces
are Dugundji, etc. These and many other basic properties of rectifiable spaces were
proved in [10], [18]. Some sequential and network properties of rectifiable spaces were
discussed in [13–15]. The rectifiability of a topological space X is equivalent to the
existence of a compatible structure of topological lop on X . This equivalence will be
discussed in Sect. 3. More information on rectifiable spaces can be found in the survey
[1, §4].

Having in mind that all rectifiable T0-spaces are regular, we will restrict ourselves
to regular spaces and will assume that all topological spaces in this paper are regular.

The aim of this paper is to recover the topological structure of sequential rectifiable
topological spaces of countable cs∗-character. Spaces of countable cs∗-character were
introduced and studied in [3]. They are defined by means of cs∗-networks. Next, we
recall the definition of cs∗-networks and some related notions.

Let X be a topological space and x ∈ X . A family N of subsets of X is called a
cs-network (resp. cs∗-network) at x ∈ X if for each neighborhood Ox ⊂ X of x and
sequence {xn}n∈ω ⊂ X that converges to x in X there exists a set N ∈ N such that
x ∈ N ⊂ Ox and N contains all but finitely many (resp. infinitely many) elements
of the sequence. It is clear that each cs-network at x is a cs∗-network at x while the
converse is in general not true. However, if N is a countable cs∗-network at x , then
the family ˜N = {⋃F : F ⊂ N , |F | < ω

}

is a countable cs-network at x (see
Lemma 2.3).

By the cs-character csχ (X, x) (resp. cs∗-character cs∗(X, x)) of a topological
space X at a point x ∈ X we understand the smallest cardinality |N | of a cs-network
(resp. cs∗-network) N at x . It is clear that cs∗χ (x, X) ≤ csχ (x, X). We know of
no examples of pointed topological spaces (X, x) with cs∗χ (X, x) < csχ (X, x) (see
Problem 1 in [3]). For a topological space X the cardinals csχ (X) = supx∈X csχ (X, x)
and cs∗χ (X) = supx∈X cs∗χ (X, x) are called the cs-character and the cs∗-character of
X , respectively. It was observed in [3] that a topological space X has a countable
cs∗-character (at a point x ∈ X ) if and only if X has countable cs-character (at x).
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Sequential Rectifiable Spaces of Countable cs∗-Character 977

It is clear that each first-countable space X has countable cs∗-character. Another
standard example of a space of countable cs∗-character is any submetrizable kω-space.
A topological space X is called

• submetrizable if X admits a continuous metric;
• a kω-space (resp. skω-space) if there exists a countable cover K of X by compact
(and metrizable) subspaces such that a set A ⊂ X is closed in X if and only if for
any K ∈ K the intersection A ∩ K is closed in K ;

• a k-space if a subset A ⊂ X is closed if and only if for any compact subset K ⊂ X
the intersection K ∩ A is closed in K ;

• sequential if for each non-closed subset A ⊂ U there is a sequence {an}n∈ω ⊂ A
that converges to a point x /∈ A in X ;

• Fréchet–Urysohn if for each subset A ⊂ X and a point a ∈ Ā there is a sequence
{an}n∈ω ⊂ A, converging to the point a.

It can be shown that a topological space X is an skω-space if and only if it is a
submetrizable kω-space. It is clear that each Fréchet–Urysohn space is sequential and
each sequential space is a k-space. Each skω-space is sequential (being a k-space with
metrizable compact subsets).

To see that any skω-space X has countable cs∗-character, fix a countable coverK of
X by compact metrizable subsets such that a subset A ⊂ X is closed if and only if for
every K ∈ K the intersection A∩K is closed in K . We can assume thatK = {Kn}n∈ω

for an increasing sequence (Kn)n∈ω of compact subsets of X . For every metrizable
compact space Kn fix a countable base Bn of its topology. Then the family

⋃

n∈ω Bn

is a countable cs-network at each point x ∈ X , which implies that X has countable
cs∗-character.

It turns out that in the class of sequential rectifiable spaces, metrizable spaces and
skω-spaces are the only sources of spaces of countable cs∗-character. The following
theorem is the main result of this paper. It follows immediately from Theorems 3.2,
3.4 and 7.1.

Theorem 1.1 Each non-metrizable sequential rectifiable space X of countable cs∗-
character contains a clopen rectifiable skω-subspace H and admits a disjoint open
cover by subspaces homeomorphic to clopen subspaces of H.

A subset of a topological space X is called clopen if it is closed and open. The-
orem 1.1 implies the following corollary, which answers Question 7.7 posed by Lin
and Shen [15].

Corollary 1.2 Each sequential rectifiable space X of countable cs∗-character is para-
compact and submetrizable.

Theorem 1.1 was proved for topological groups by Banakh and Zdomskyy [3] in
a bit stronger form: each non-metrizable sequential topological group G of countable
cs∗-character is homeomorphic to the product H × D of an skω-space H ⊂ G and a
discrete space D. We do not know if this result remains valid for rectifiable spaces.

Problem 1.3 Let X be a non-metrizable sequential rectifiable space of countable cs∗-
character. Is X homeomorphic to the product H ×D of an skω-space H and a discrete
space D?
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The answer to this problem is affirmative if the rectifiable space is locally connected.

Corollary 1.4 Any locally connected non-metrizable sequential rectifiable space X
of countable cs∗-character is homeomorphic to the product H × D of a connected
skω-space H and a discrete space D.

Proof ByTheorem 1.1, the space X contains a non-empty clopen skω-subspaceU . For
any point e ∈ H its connected component He is contained inU (by the connectedness
of He) and is clopen in X (by the local connectedness of X ). Being a closed subset of
the skω-space U , the component He is an skω-space, too.

The topological homogeneity of X implies that all connected component of X are
pairwise homeomorphic and open in X . Then the space X , being a topological sum of
its connected components, is homeomorphic to the product He × D for some discrete
space D (whose cardinality is equal to the number of connected components of X ). 	


An affirmative answer to the following problem would imply an affirmative answer
to Problem 1.3.

Problem 1.5 Let X be a non-metrizable rectifiable skω-space. Is then every non-empty
clopen subspace of X homeomorphic to X?

Next we briefly describe the structure of the paper. In Sect. 2 we develop some topo-
logical tools that are necessary for the proof of Theorem 1.1. In Sect. 3 we discuss the
interplay between rectifiable spaces and topological lops (which are “left” generaliza-
tions of topological groups and loops). In particular, in Sect. 3 we prove Theorem 3.4
on decomposition of locally cosmic topological lops into a direct topological sum of
cosmic spaces. In Sect. 4 we study properties of rectifiable spaces that contain closed
copies of the metric fan Mω and the Fréchet–Urysohn fan Sω, and prove that such rec-
tifiable spaces cannot simultaneously be sequential and have countable cs∗-character.
For normal topological groups this result was proved by Banakh [2], it was generalized
to arbitrary topological groups by Banakh and Zdomskyy [3] and to normal rectifiable
spaces by F. Lin, C. Liu, and S. Lin [14]. Sect. 5 contains Key Lemma 5.1, which is
technically the most difficult result of the paper. In Sect. 6 Key Lemma 5.1 is applied
to prove some metrizability criteria for rectifiable spaces of countable cs∗-network
and countably compact subsets in such spaces. In Sect. 7 we prove an algebraic ver-
sion of Theorem 1.1 showing that each non-metrizable sequential topological lop of
countable cs∗-character contains a clopen skω-sublop.

2 Some Topological Tools

In this section we will discuss some additional topological tools which will be used
in the proof of Theorem 1.1.

One of such instruments is the notion of a sequence tree. As usual, by a tree
we understand a partially ordered subset (T,≤) such that for each t ∈ T the set
↓ t = {τ ∈ T : τ ≤ t} is well-ordered by the order ≤. Given an element t ∈ T let
↑ t = {τ ∈ T : τ ≥ t} and let succ(t) = min(↑ t \ {t}) be the set of successors of t in
T . A maximal linearly ordered subset of a tree T is called a branch of T . We denote
the set of maximal elements of the tree T by max T .
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Definition 2.1 By a sequence tree in a topological space X we understand a tree
(T,≤) such that

• T ⊂ X ;
• T has no infinite branches;
• for each t /∈ max T the set succ(t) of successors of t is countable and converges
to t .

By saying that a subset S of a topological space X converges to a point x ∈ X we
mean that for each neighborhood Ox ⊂ X of x , the set S \ Ox is finite. In the sequel,
by a convergent sequence in a topological space X we will understand a compact
countable subset S ⊂ X with a unique non-isolated point, which will be denoted by
lim S.

The following lemma is well-known [3, Lemma 1] and can be easily proven by
transfinite induction (on the sequential height s(a, A) = min{α : a ∈ A(α)} of a point
a in the closure Ā of a subset A of a sequential space X ).

Lemma 2.2 A point a ∈ X of a sequential topological space X belongs to the closure
of a subset A ⊂ X if and only if there is a sequence tree T ⊂ X such thatmin T = {a}
and max T ⊂ A.

An important role in the theory of generalizedmetric spaces belongs to the following
three test spaces: the metric fan Mω, the Fréchet–Urysohn fan Sω and the Arens fan
S2 (see [8,16]). The first two spaces will play an important role in our considerations,
too.

The metric fan is the subspace

Mω = {(0, 0)} ∪ {( 1
n , 1

nm

) : n,m ∈ N
} ⊂ R

2

of the Euclidean plane. The metric fan is not locally compact at its unique non-isolated
point (0, 0). By [5, 8.3], a metrizable space is not locally compact if and only if it
contains a closed subspace homeomorphic to the metric fan Mω. Observe that for
every m ∈ N the compact set Im = {(0, 0} ∪ {( 1

n , 1
nm

) : n ∈ N
} ⊂ Mω converges to

(0, 0).
By the Fréchet–Urysohn fan we understand the union Sω = ⋃

m∈N Im endowed
with the strongest topology inducing the Euclidean topology on each convergent
sequence Im , m ∈ N. The space Sω is a standard example of a Fréchet–Urysohn
space which is not first-countable.

The Arens fan S2 is the kω-space

S2 = {(0, 0)} ∪ {( 1
n , 0

) : n ∈ N
} ∪ {( 1

n , 1
nm

) : n,m ∈ N
}

endowed with the strongest topology inducing the Euclidean topology on the conver-
gent sequences

{(0, 0)} ∪ {( 1
n , 0

) : n ∈ N
}

and {( 1n , 0
)} ∪ {( 1

n , 1
nm

) : m ∈ N
}

for all n ∈ N.
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The Arens fan S2 is a standard example of a sequential space which is not Fréchet–
Urysohn (see [6, 1.6.19]).

We will also need some information on sequential barriers and sb-networks. A
subset B of a topological space X is called a sequential barrier at a point x ∈ X if it
contains all but finitely many points of every sequence that converges to x . It is clear
that each neighborhood of x is a sequential barrier at x . The converse is true if X is
Fréchet–Urysohn at x . The latter means that each subset A ⊂ X with x ∈ Ā contains
a sequence that converges to x .

In general, sequential barriers need not be neighborhoods. For example, the
(nowhere dense) set B = {(0, 0)} ∪ {( 1n , 0) : n ∈ N} is a sequential barrier at the
point x = (0, 0) of the Arens fan S2.

A family B of sequential barriers at a point x of a topological space X is called an
sb-network at x if each neighborhood Ox ⊂ X of x contains some sequential barrier
B ∈ B.

A familyN of subsets of a topological space X is called a network if for each point
x ∈ X and neighborhood Ox ⊂ X of x there is a set N ∈ N such that x ∈ N ⊂ Ox .
The smallest cardinality of a network is called the network weight of X and is denoted
by nw(X). Regular spaces of countable network weight are called cosmic (see [9,
§10]).

Finally, let us recall that a topological space X is

• sequentially compact if each sequence in X contains a convergent subsequence;
• countably compact if each sequence in X has an accumulation point in X .

It is clear that each sequentially compact space is countably compact. A sequential
space is sequentially compact if and only if it is countably compact.

For a convenience of the reader we give a proof of the following simple fact, first
observed in [3].

Lemma 2.3 A topological space X has countable cs∗-character (at a point x ∈ X )
if and only if the space X has countable cs-character (at x).

Proof The “if” part is trivial. To prove the “only if” part, fix a countable cs∗-network
N at x . Replacing N by a larger family, we can assume that N is closed under finite
unions. We claim that in this caseN is a cs-network at x . Fix any neighborhood Ox ⊂
X of x and a sequence (xn)n∈ω converging to x . Consider the countable subfamily
M = {N ∈ N : N ⊂ Ox } of N and letM = {Nk}k∈ω be its enumeration. We claim
that for some n ∈ ω the set Mn = ⋃

k≤n Nk contains all but finitely many points of
the sequence (xk), which is equivalent to saying that the set �n = {k ∈ ω : xk /∈ Mn}
is finite. It follows from Mn ⊂ Mn+1 that �n ⊃ �n+1 for all n. Assuming that every
set �n , n ∈ ω, is infinite, we can find an infinite subset � ⊂ ω such that � \ �n is
finite for all n ∈ ω. Since N is a cs∗-network at the limit point x of the sequence
(xn)n∈�, there exists a set N ∈ N such that N ⊂ Ox and {n ∈ � : xn ∈ N }
is infinite. It follows that N ∈ M and hence N = Nk for some k ∈ ω. Since
� \ �k is finite, the set {n ∈ �k : xn ∈ N = Nk} is infinite. On the other hand,
{n ∈ �k : xn ∈ Nk} ⊂ {n ∈ �k : xn ∈ Mk} is empty by the definition of the set �k .
This contradiction completes the proof. 	
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3 Rectifiable Spaces and Topological Lops

In this section we discuss the relation of rectifiable spaces to topological-algebraic
structures called topological lops. They are generalizations of topological loops [12]
and are special kinds of topological magmas.

A magma is a set X endowed with a binary operation · : X × X → X . If this
operation is associative then the magma is called a semigroup. For two elements
x, y ∈ X of a magma their product ·(x, y) will be denoted by x · y or just xy. An
element e ∈ X of a magma X is called a left unit (resp. right unit) of X if ex = x
(resp. xe = x) for all x ∈ X . An element e ∈ X is a unit of X if xe = x = ex for
all x ∈ X (i.e., e is both left and right unit in X ). It easy to see that any two units of a
magma coincide, so a magma can have at most one unit.

For a point a ∈ X of a magma X the maps La : X → X , La : x �→ ax , and
Ra : X → X , Ra : x �→ xa, are called the left shift and the right shift of X by the
element a, respectively.

A magma X is called

• a loop if X has a unit e and for everya ∈ X the shifts La : X → X and Ra : X → X
are bijective;

• a left-loop if X has a right unit e and for every a ∈ X the left shift La : X → X
is bijective;

• an eleft-loop if X has a unit e and for every a ∈ X the left shift La : X → X is
bijective.

It can be shown that a left-loop has a unique right unit e. In an eleft-loop this right unit
is also a left unit. This justifies the prefix “eleft” – e is also a left unit. Since eleft-loops
are central instruments in our subsequent considerations, and the term “eleft-loop”
sounds a bit awkward, we will shorten it to “lop” (pretending that in “loop” the left
“o” is responsible for left shifts whereas the right “o” for right shifts — so, “lop” is a
“loop” with a removed right “o”).

Therefore, a lop is a magma with unit and bijective left shifts. Equivalently, a
lop can be defined as a magma with unit and bijective map X × X → X × X ,
(x, y) �→ (x, xy). On the other hand, a loop can be equivalently defined as a magma X
with unit and bijectivemaps X×X → X×X , (x, y) �→ (x, xy), and X×X → X×X ,
(x, y) �→ (x, yx).

These algebraic notions are related as follows:

associative left-loop group loop lop left-loop.

The first equivalence in this diagram is a standard exercise in group theory (see, e.g.
[17, 1.1.2]).

For any points a, b ∈ X of a lop X the left shift La : X → X is a bijection of X ,
which implies that the set a−1b = {x ∈ X : ax = b} coincides with the singleton
{L−1

a (b)}. Sometimes it will be convenient to identify the singleton a−1b with the
point L−1

a (b) thinking of a−1 in the expression a−1b as the bijection L−1
a acting on

the point b. Under this convention, for points a, b, x of a lop the expression a−1b−1x
means a−1(b−1(x)) which is actually equal to L−1

a (L−1
b (x)). Analogously, we will
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982 T. Banakh, D. Repovš

understand longer expressions a−1
1 a−1

2 · · · a−1
n x for points a1, . . . , an, x of a lop X .

Observe that x−1x = e for every x ∈ X .
The same convention concerns the multiplication of elements of a lop X : for

elements a1, a2, a3 ∈ X the expression a1a2a3 means a1(a2a3), and so on. More
precisely, for points a1, . . . , an ∈ X their product a1 · · · an is defined by induction as
a1(a2 · · · an) (since the multiplication of elements in a lop is not associative we should
be careful with parentheses).

For two sets A, B in a lop X we put AB = {ab : a ∈ A, b ∈ B} and A−1B =
{a−1b : a ∈ A, b ∈ B}. More precisely, A−1B = ⋃

a∈A b∈B a−1b.
A subset A ⊂ X of a lop X is called a sublop of X if for any elements a, b ∈ A we

get ab ∈ A and a−1b ∈ A. By analogy we define subloops of loops.
Now we define the topological versions of the above notions. By a topological

magma we will understand a topological space X endowed with a continuous binary
operation · : X × X → X . A topological magma X is called

• a topological left-loop if X has a right unit e and the map X × X → X × X ,
(x, y) �→ (x, xy), is a homeomorphism;

• a topological lop if X has a unit e and themap X×X → X×X , (x, y) �→ (x, xy),
is a homeomorphism;

• a topological loop if X has a unit and the maps X × X → X × X, (x, y) �→
(x, xy), and X × X → X × X , (x, y) �→ (x, yx), are homeomorphisms.

Remark 3.1 Topological loops are standard objects in (non-associative) topological
algebra [12] whereas topological left-loops were recently introduced by Hofmann and
Martin [11]. The notion of a topological lop seems to be new.

It follows that for a topological left-loop X with right unit e the homeomorphism
H : X × X → X × X , H : (x, y) �→ (x, y), witnesses that the topological space
X is rectifiable (since H(x, e) = x and H({x} × X) = {x} × X for every x ∈ X ).
We will show that the converse is also true: each rectifiable space is homeomorphic
to a topological left-loop and even to a topological lop. Moreover, the rectifiability is
equivalent to the continuous homogeneity defined as follows.

A topological space X is defined to be continuously homogeneous if for any points
x, y ∈ X there is a homeomorphism hx,y : X → X such that hx,y(x) = y and hx,y
continuously depends on x and y in the sense that the map H : X3 → X3 defined by
H(x, y, z) = (x, y, hx,y(z)) is a homeomorphism.

More formally, a continuously homogeneous space can be defined as a space
X admitting a homeomorphism H : X3 → X3 such that H(x, y, x) = y and
H({(x, y)} × X) = {(x, y)} × X for any points x, y ∈ X . The equivalence (1) ⇔ (4)
in the following characterization was established by Uspenskiı̆ [18, Proposition15].

Theorem 3.2 For a topological space X the following conditions are equivalent:

(1) X is rectifiable;
(2) X is homeomorphic to a topological left-loop;
(3) X is homeomorphic to a topological lop;
(4) X is continuously homogeneous.
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Proof (1) ⇒ (2) Assume that X is rectifiable. Then there exists a point e ∈ X and a
homeomorphism H : X×X → X×X such that H(x, e) = (x, x) and H({x}×X) =
{x}× X for all x ∈ X . Let pr2 : X × X → X , pr2 : (x, y) �→ y, denote the coordinate
projection. Then the space X endowed with the binary operation p = pr2 ◦ H :
X × X → X is a topological left-loop with the right unit e.

(2) ⇒ (3) Assume that X is a topological left-loop and let e be the right unit of
X . Define the continuous binary operations p : X × X → X and q : X × X → X
by the formulas p(x, y) = x(e−1y) and q(x, y) = e(x−1y) for any x, y ∈ X . We
claim that X endowed with the binary operation p is a topological lop. Indeed, the
map H : X × X → X × X , H : (x, y) �→ (x, p(x, y)), is a homeomorphism with
inverse H−1 : (x, y) �→ (x, q(x, y)). It remains to check that e is a unit of the magma
(X, p). For this observe that Le(e) = ee = e and hence e−1e = L−1

e (e) = e. Then
for every x ∈ X we get p(x, e) = x(e−1e) = xe = x and p(e, x) = e(e−1x) = x .

(3) ⇒ (4) Assume that X is a topological lop. The continuous homogeneity of X is
witnessed by the homeomorphism H : X3 → X3 defined by H(x, y, z) = y(x−1z)
for (x, y, z) ∈ X × X × X .

(4)⇒ (1) Assuming that X is continuously homogeneous, fix any homeomorphism
H : X3 → X3 such that H(x, y, x) = y and H({(x, y)} × X) = {(x, y)} × X for all
points x, y ∈ X . For any points x, y ∈ X let hx,y : X → X be the homeomorphism
of X such that H(x, y, z) = (x, y, hx,y(z)) for all z ∈ X .

Fix any point e ∈ X and observe that the homeomorphism h : X × X → X × X
defined by h(x, y) = he,x (y) for (x, y) ∈ X × X witnesses that the space X is
rectifiable. 	


It is well-known that each open subgroup of a topological group is closed. The
same fact holds for topological lops.

Proposition 3.3 Each open sublop H of a topological lop G is closed in G.

Proof Take any point x ∈ H̄ . Since x−1x = e ∈ H , the (separate) continuity of the
division operation yields a neighborhood Ux ⊂ X of x such that U−1

x x ⊂ H . Choose
any point u ∈ Ux ∩ H and observe that u−1x ∈ H and hence x ∈ uH ⊂ HH = H .

	

We will use this simple fact to prove the following structural result. Let us recall

that a topological space X is strongly paracompact if every open cover of X has a
star-finite open refinement. By Smirnov Theorem 3.12 in [4] each regular Lindelöf
space is strongly paracompact. Let us recall that for a topological space X its Lindelöf
number l(X) is defined as the smallest cardinal κ such that each open cover of X has
a subcover of cardinality ≤ κ . A regular space X is cosmic if it has countable network
weight (equivalently, is a continuous image of a separable metric space).

Theorem 3.4 If a topological lop X contains an open cosmic sublop H, then X
admits a disjoint open cover refining the open cover {xH : x ∈ X}. Consequently, X
is a topological sum of cosmic subspaces and hence X is submetrizable and strongly
paracompact.
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Proof By induction on cardinals α ≤ l(X) we will prove that each sublop G ⊂ X
with Lindelöf number l(G) ≤ α containing the open sublop H admits a disjoint open
cover refining the open cover {xH : x ∈ G}.

To start the induction, assume that G is a Lindelöf sublop of X containing the
open sublop H . Since the space G is Lindelöf, the open cover {xH : x ∈ G} has a
countable subcover {xnH}n∈ω for some sequence {xn}n∈ω ⊂ G. For every n ∈ ω put
Un = xnH \⋃

k<n xk H . By Proposition 3.3, the open sublop H is clopen in X , which
implies that Un ⊂ xnH is a clopen subset of X . So, U = {Un}n∈ω is a disjoint open
cover of X refining the cover {xH : x ∈ G}.

Now assume that for some uncountable cardinal κ ≤ l(X) we have proved that any
sublop G ⊂ X with l(G) < κ and H ⊂ G admits a disjoint open cover refining the
cover {xH : x ∈ G}.

Fix a sublop G ⊂ X containing H and having Lindelöf number l(G) = κ . Choose
a subset D ⊂ G of cardinality |D| ≤ l(G) ≤ κ such that G = ⋃

x∈D xH . Let
{xα}α<κ be an enumeration of the set D. For every ordinal α < κ denote by Hα the
smallest sublop of X containing the set Dα = H ∪ {xβ}β<α . Taking into account that
each point x ∈ Hα has open neighborhood xH ⊂ Hα in X , we conclude that the
sublop Hα is open in X . By Proposition 3.3, the sublop Hα is closed. Observe that
the space Dα has network weight nw(Dα) < κ . Since Hα is a continuous image of
the space

⋃

n∈ω Dn
α , we conclude that l(Hα) ≤ nw(Hα) ≤ max{ℵ0, nw(Dα)} < κ .

Then by the inductive assumption, the sublop Hα admits a disjoint open cover Uα

refining the cover {xH : x ∈ Hα}. Observe that the union H<α = ⋃

β<α Hβ is an
open sublop of X (being the union of the increasing chain of open sublops (Uβ)β<α).
By Proposition 3.3, the sublop H<α is closed in X . Then Vα = {U \H<α : U ∈ Uα} is
a disjoint open cover of the space Hα \ H<α refining the cover U . Unifying the covers
Vα , α < κ , we obtain the disjoint open cover V = ⋃

α<κ Vα of G refining the cover
{xH : x ∈ G} of G. 	


4 Closed Copies of the Metric and Fréchet–Urysohn Fans in Rectifiable
Spaces

Banakh [2] proved that a normal topological group G is not sequential if G contains
closed copies of the fans Mω and Sω. This result was extended in [3, Lemma 4] to
arbitrary topological groups and to all normal rectifiable spaces in [14, Theorem 3.1].
In this section we will further generalize this Banakh’s result to so-called e-normal
topological lops, in particular, all topological lops of countable cs∗-character.

Definition 4.1 A topological lop X is called e-normal if for any infinite closed discrete
set {xn}n∈ω in X and any sequence (ym)m∈ω in X converging to e there are increasing
number sequences (nk)k∈ω and (mk)k∈ω such that the set {xnk ynk }k∈ω is sequentially
closed in X .

Lemma 4.2 A topological lop X is e-normal if the topological space X is normal or
has countable cs∗-character at e.

Proof To prove that X is e-normal, fix an infinite closed discrete set D = {xn}n∈ω in
X and a sequence (ym)m∈ω in X converging to e. We lose no generality by assuming
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that the points xn , n ∈ ω, are pairwise distinct. If the set {m ∈ ω : ym = e} is infinite,
then we can choose an increasing number sequence (mk)k∈ω such that {mk}k∈ω =
{m ∈ ω : ym = e} and conclude that the set {xk, ymk }k∈ω = D is (sequentially) closed
in X . So, we can assume that ym �= e for all m ∈ ω.

1. If the space X is normal, then by the Tietze–Urysohn Theorem [6, 2.1.8], the
(continuous) map f : D → ω ⊂ R, f : xn �→ n, extends to a continuous map f̄ :
X → R. Since for every k ∈ ω the sequence

(

f (xk ym)
)

m∈ω
converges to f (xk) = k,

we can choose a number mk ∈ ω such that | f (xk ymk ) − k| < 1
3 and moreover

mk > mk−1 if k > 0. The continuity of the function f guarantees that the sequence
(xk ymk )k∈ω has no accumulation points in X (since its image

(

f (xk ymk )
)

k∈ω
has no

accumulation points in R). Consequently, the set {xk ymk : k ∈ ω} is (sequentially)
closed in X .

2. Now assume that the space X has countable cs∗-character at e and fix a countable
cs∗-network N at e such that each set N ∈ N contains the point e. Let {(Al , Bl)}l∈ω

be an enumeration of the countable family N × N . For numbers k,m, l ∈ ω let
((xk ym)Al)Bl be the closure of the set ((xk ym)Al)Bl in the topological lop X .

Since the (non-trivial) sequence (x0ym)m∈ω converges to x0, we can find a number
m0 ∈ ω such that x0ym0 /∈ D. For every k ∈ N choose by induction a number
mk > mk−1 such that the point xk ymk does not belong to the closed set

Dk = D ∪
⋃

{

((xi ymi )Al)Bl : i < k, l ≤ k, xk /∈ ((xi ymi )Al)Bl
}

.

We claim that the set D′ = {xk ymk }k∈ω is sequentially closed in X . Assuming the
converse, we can find a convergent sequence S ⊂ X such that S \ {lim S} ⊂ D′
but lim S /∈ D′. Let a = lim S be the limit point of S. Since the set D is closed
and discrete in the regular space X , the point a has a closed neighborhood Wa ⊂ X
such that Wa ∩ D ⊂ {a}. Since (ae)e = a ∈ Wa we can use the continuity of the
multiplication in the topological lop X and find two open sets Ua � a and Ue � e in
X such that (UaUe)Ue ⊂ Wa . Since the sequence a−1S converges to e, there is a set
B ∈ N such that B ⊂ Ue and the set a−1S ∩ B is infinite. Replacing the sequence
S by its subsequence S ∩ aB, we can assume that S ⊂ aB. Observe that for each
z ∈ S \ {a} we get z−1a �= e (in the opposite case, a = ze = z, which contradicts the
choice of z). This implies that S−1a is an infinite sequence convergent to e. Then the
cs∗-networkN contains a set A ⊂ Ue that has infinite intersection with the sequence
S−1a. Since S converges to a ∈ Ua , we can select a point z = xi ymi ∈ Ua ∩ S \ {a}
such that z−1a ∈ A ⊂ Ue and hence a ∈ zA ⊂ UaUe. Then S ⊂ aB ⊂ (zA)B ⊂
(UaUe)Ue ⊂ Wa and hence (zA)B ⊂ Wa = Wa ⊂ X \ (D \ {a}). Find a number
l ∈ ω such that (A, B) = (Al , Bl). Since S \ {a} ⊂ D′ is infinite, we can find a
number k > max{i, l} such that xk �= a and xk ymk ∈ S ⊂ (zA)B = ((xi ymi )Al)Bl
but this contradicts the (inductive) choice of the numbermk (as xk /∈ (zA)B and hence
xk ymk /∈ (zA)B ). This contradiction completes the proof of e-normality of X . 	


The following theorem generalizes Theorem 4 of [2], Lemma 4 of [3] and Theorem
3.1 of [14] to e-normal topological lops.
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Theorem 4.3 If an e-normal topological lop X contains closed copies of the fans Mω

and Sω, then X is not sequential.

Proof To derive a contradiction, assume that the space X is sequential. By our assump-
tions, there are closed topological embeddings ϕ : Mω → X and ψ : Sω → X .
Since X is topologically homogeneous, we can additionally assume that ϕ(0, 0) =
e = ψ(0, 0). For every n,m ∈ N consider the points xn,m = ϕ

( 1
n , 1

nm

)

and
yn,m = ψ

( 1
m , 1

nm

)

. It follows that for every n ∈ ω, the sequence (xn,m)m∈ω has
no accumulation point in X whereas the sequence (yn,m)m∈ω converges to e.

Using the regularity of the space X , we can choose for every n,m ∈ N a neigh-
borhood O(xn,m) ⊂ X \ {e} of the points xn,m such that the family

(

O(xn,m)
)

n,m∈ω
is disjoint. Replacing each sequence (yn,m)m∈N by a suitable subsequence, we can
assume that xn,m · yn,k ∈ O(xn,m) for every n,m ∈ N and k ≥ m.

Using the e-normality of the topological lop X , we can select for every n ∈ ω an
infinite subset �n ⊂ ω and an increasing function fn : �n → ω such that the set
An = {xn,k · yn, fn(k) : k ∈ �n} has finite intersection with any convergent sequence
in X . Since xn,k · yn, fn(k) ∈ O(xn,k) the points xn,k yn, fn(k), n, k ∈ N, are pairwise
distinct and not equal to e.

Consider the subset A = ⋃

n∈ω An . Using the continuity of the multiplication in
X , one can show that e /∈ A is a cluster point of A in X . Consequently, the set A is not
closed and by the sequentiality of X , there is a sequence S ⊂ A converging to a point
a = lim S /∈ A. Since every set An has finite intersection with S, we may replace S
by a subsequence, and assume that |S ∩ An| ≤ 1 for every n ∈ N. Consequently, S
can be written as S = {xni ,mi · yni ,mi : i ∈ ω} for some number sequences (mi ) and
(ni ) with ni+1 > ni for all i . It follows (from the topological structure of the metric
fan Mω) that the sequence (xni ,mi )i∈ω converges to e and consequently, the sequence
T = {yni ,mi }i∈ω = {x−1

ni ,mi
xnimi yni ,mi }i∈ω converges to e−1(a) = e−1(ea) = a. The

definition of the topology of the Fréchet–Urysohn fan Sω guarantees that the sequence
T does not converge to e. Since ψ(Sω) \ {e} is a discrete space, the point a does not
belong to ψ(Sω), which means that ψ(Sω) is not closed in X . But this contradicts the
choice of the closed embedding ψ . 	


Lemma 4.2 and Theorem 4.3 imply the following

Corollary 4.4 If a topological lop X has countable cs∗-character and contains closed
copies of the fans Mω and Sω, then the space X is not sequential.

5 The Key Lemma

In this sectionweprove the key lemma thatwill be used in the proof of Theorem1.1.We
will say that a topological space X is Sω-vacuous if X contains no closed topological
copy of the Fréchet–Urysohn fan Sω.

Key Lemma 5.1 Let G be a topological lop and F ⊂ G be a subset containing the
unit e of G. Put F1 = F and Fn+1 = F−1

n Fn for n ∈ N.

(1) If F is an Sω-vacuous sequential space and each space Fn, n ∈ N, has a countable
cs-network at e, then F has a countable sb-network at e.
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(2) If F is sequential and each space Fn, n ∈ N, has countable sb-network at e, then
F is first countable at e.

(3) If every space Fn, n ∈ N, is an Sω-vacuous sequential space of countable cs∗-
character at e, then F is first countable at e.

Proof 1. Assume that F is an Sω-vacuous sequential space and each space Fn , n ∈ N,
has countable cs-network at e. Then we can find a countable family A of subsets of
G, which is a cs-network at e for each space Fn , n ∈ N. We can enlarge the family
A to a countable family which contains all sets Fn , n ∈ N, and is closed under finite
intersections, finite unions and taking products in the lop G.

We claim that the countable collection A|F = {A ∈ A : A ⊂ F} is a sb-network
at e in F . Assuming the opposite, we could find an open neighborhood U ⊂ G of e
such that no set A ∈ A|F with A ⊂ U is a sequential barrier at e in F .

Consider the countable subfamilyA′ = {A ∈ A : A∩F ⊂ U } and let {An : n ∈ ω}
be an enumeration of A′. For every n ∈ ω put Bn = ⋃

k≤n Ak .
Let m0 = 0 and U0 ⊂ U be any closed neighborhood of e in G. By induction, for

every k ∈ N find a number mk > mk−1, a closed neighborhood Uk ⊂ Uk−1 of e in
G, and a sequence (xk,i )i∈N converging to e such that for every k ∈ N the following
conditions are satisfied:

(a) {xk,i : i ∈ N} ⊂ Uk−1 ∩ F \ Bmk−1 ;
(b) the set Ek = {xn,i : n ≤ k, i ∈ N} \ Bmk is finite;
(c) Uk ∩ (Ek ∪ {xi, j : i, j ≤ k}) = ∅ and UkUk ⊂ Uk−1. 	


By induction we will prove that for every k ∈ N and every i ≤ k we getUi · · ·Uk ⊂
Ui−1. For i = k this follows from the inclusion Uk = eUk ⊂ UkUk ⊂ Uk−1.
Assume that for some i < k we have proved thatUi+1 · · ·Uk ⊂ Ui . ThenUi · · ·Uk =
Ui (Ui+1 · · ·Uk) ⊂ UiUi ⊂ Ui−1 by the inductive assumption and the choice of Ui .
Consequently,

U1 · · ·Uk ⊂ U0 ⊂ U.

It follows that the subspace X = {xk,i : k, i ∈ N} of F is discrete and hence open
in its closure X̄ in F . Therefore the remainder X̄ \ X is closed in F .

Claim 5.2 The point e is isolated in X̄ \ X.

Proof Assuming the converse and applying Lemma 2.2 we could find a sequence tree
T ⊂ X̄ such that min T = {e}, max T ⊂ X , and succ(e) ⊂ X̄ \ X .

By induction, we will construct a (necessarily, finite) branch (tk)k≤n+1 of the tree
T , a sequence {Ck : k ≤ n} of elements of the family A, and a sequence of points
(ck)

n+1
k=1 of G such that for every k ≤ n the following conditions are satisfied:

(d) ck ∈ Ck ⊂ Fk ∩Uk+1;
(e) tk = c1 · · · ck ∈ succ(tk−1);
(f) c1 · · · ckCk+1 contains almost all points of the sequence succ(tk).

We start the inductive construction by letting t0 = e. Since the sequence succ(t0) ⊂
F converges to t0, we can find an element C0 ∈ A of the cs-network such that
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C0 ⊂ F ∩ U1 and succ(t0) \ C0 is finite. Assume that for some k ≥ 0 the point
tk = c1 · · · ck ∈ T ∩ U has been chosen. If tk is a maximal point of the tree T , then
we stop the construction. So, we assume that tk is not maximal and hence succ(tk) is
an infinite sequence in T ⊂ X̄ ⊂ F tending to tk .

Since c−1
k · · · c−1

1 (tk) = e, the sequence c−1
k · · · c−1

1 (succ(tk)) tends to e. We will
show by induction that for every i ∈ {1, . . . , k} we get c−1

i · · · c−1
1 (succ(tk)) ⊂ Fi+1.

For i = 1 this follows from c−1
1 (succ(tk)) ⊂ C−1

1 F ⊂ F−1F = F2. Assume that for
some i ≤ k we have proved that c−1

i−1 · · · c−1
1 (succ(tk)) ⊂ Fi . Then

c−1
i · · · c−1

1 (succ(tk)) = c−1
i (c−1

i−1 · · · c−1
1 (succ(tk))) ⊂ C−1

i Fi ⊂ F−1
i Fi = Fi+1.

Then for i = k we get the desired inclusion c−1
k · · · c−1

1 (succ(tk)) ⊂ Fk+1.
Since A is a cs-network at e in Fk+1 ∈ A, there is a set Ck+1 ∈ A which is

contained in Fk+1 ∩ Uk+1 and contains all but finitely many points of the sequence
c−1
k · · · c−1

1 (succ(tk)). Fix any point tk+1 ∈ succ(tk) such that the point ck+1 :=
c−1
k · · · c−1

1 (tk+1) belongs to Ck+1. It follows that tk+1 = c1 · · · ck+1 and succ(tk) \
c1 · · · ckCk+1 is finite. This completes the inductive step.

After completing the inductive construction, we obtain a branch (tk)k≤n+1 of the
tree T satisfying the conditions (d)–(f). Consider the (last by one) point tn in the
branch (tk)k≤n+1. It follows that succ(tn) ⊂ max T ⊂ X . Since succ(e) ⊂ X̄ \ X ,
the sequence succ(tn) converges to the point tn �= e. By the inductive assumption,
the set σ := succ(tn) ∩ c1 · · · cnCn+1 contains all but finitely many points of the
sequence succ(tn). Consequently, σ converges to tn as well. On the other hand, σ ⊂
c1 · · · cnCn+1 ⊂ C1C2 · · ·Cn+1 ⊂ U1U2 · · ·Un+1 ⊂ U0 ⊂ U . It follows from the
choice of A that C1 · · ·Cn+1 ∈ A′ and hence (C1 · · ·Cn+1) ∩ F ⊂ Bmk for some k.
Consequently, σ ⊂ X ∩ Bmk and σ ⊂ {x j,i : j ≤ k, i ∈ N} by the item (a) of the
construction of X . Since e is a unique cluster point of the set {x j,i : j ≤ k, i ∈ N},
the sequence σ cannot converge to tn �= e, which is a contradiction completing the
proof of Claim 5.2. 	


By Claim 5.2, e is an isolated point of X̄ \ X . Consequently, we can find a closed
neighborhoodW of e in G such that the set Xe = ({e} ∪ X)∩W is closed in F . Since
the space X is discrete, the closed subspace Xe has a unique non-isolated point e.Write
the Fréchet–Urysohn fan Sω as the union Sω = {(0, 0)} ∪ ⋃

n∈N In of the convergent
sequences In = {( 1

i ,
1
in

) : i ∈ N
}

. Next, take any bijective map h : Sω → Xe such
that h(0, 0) = e and for every n ∈ N the image h(In) coincides with the sequence
Jn = Xe ∩ {xn,i : i ∈ N}. By the choice of the topology on Sω, the bijective map
h : Sω → Xe is continuous. Since the space F is Sω-vacuous, the map h is not a
homeomorphism, which allows us to find a closed set D ⊂ Sω whose image h(D) is
not closed in Xe. By the sequentiality of Xe, there exists a sequence S ⊂ {s} ∪ h(D)

converging to a point s /∈ h(D). Since h(D) is not closed in Xe and e is a unique
non-isolated point of Xe, we get e = s /∈ h(D) and hence (0, 0) /∈ D. Then the
set D, being closed in Sω has finite intersection with each sequence In = h−1(Jn).
Consequently the sequence S ⊂ {e} ∪ h(D) ⊂ ⋃

n∈N Jn has finite intersection with
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each convergent sequence Jn , n ∈ N. Since S is infinite it must meet infinitely many
sequences Jn , n ∈ N.

On the other hand, the cs-network A′ at e contains a set An containing almost all
points of the sequence S. Since Jm ∩ (Jk ∪ An) = ∅ for m > k ≥ n, the sequence S
cannot meet infinitely many sequences Jm . This is a contradiction showing that A|F
is a sb-network at e in F .

2. Assume that the space F is sequential and each space Fn , n ∈ N, has countable
sb-network at e.

Claim 5.3 For each sequential barrier U ⊂ F−1F at e the intersection U ∩ F is a
neighborhood of e in F.

Proof Assuming that for some sequential barrier U ⊂ F−1F the set U ∩ F is not a
neighborhood of e at F , we can apply Lemma 2.2 and find a sequence tree T ⊂ F such
that min T = {e} and max T ⊂ F \ U . To get a contradiction it suffices to construct
an infinite branch of T .

Let S1 = U ∩ F . By induction we will construct for every n > 1 a sequential
barrier Sn at e in the space Fn such that SnSn ∩ Fn−1 ⊂ Sn−1. Assume that for some
n > 0 a sequential barrier Sn−1 ⊂ Fn−1 has been constructed.

By our assumption, the space Fn has countable sb-character at e and hence admits
a decreasing sb-network {Bm}m∈ω at e. We claim that BmBm ∩ Fn−1 ⊂ Sn−1 for some
m ∈ ω. In the opposite case for everym ∈ ωwe can find points xm, ym ∈ Bm such that
xm ym ∈ Fn−1 \ Sn−1. Taking into account that limm→∞ xm = limm→∞ ym = e, we
get limm→∞ xm ym = e. Since Sn−1 is a sequential barrier at e, there is a numbermwith
xm ym ∈ Sn−1, which contradicts the choice of the points xm, ym . This contradiction
shows that BmBm ∩ Fn−1 ⊂ Sn−1 for some m and we can put Sn = Bm .

Now we are ready to construct an infinite branch (ti )i∈ω of the tree T . Put t0 = e ∈
T . By induction we will construct sequences of points (tn)n∈ω and (sn)n∈N in G such
that the following conditions are satisfied for every n ∈ N:

(g) tn ∈ succ(tn−1);
(h) sn ∈ Sn+1 ∩ Fn ;
(i) tn = s1 · · · sn ∈ U ∩ T .

Assume that for some n > 0 the point tn = s1 · · · sn ∈ U ∩ T has been constructed.
Since tn ∈ U ∩ T and max(T ) ⊂ F \ U , the point tn is not maximal in T and hence
the convergent sequence succ(tn) ⊂ T is well-defined. Since s−1

n · · · s−1
1 (tn) = e, the

sequence s−1
n · · · s−1

1 (succ(tn)) converges to e. By induction it can be shown that this
sequence is contained in the set Fn+1. Since Sn+2 ∩ Fn+1 is a sequential barrier at e
in Fn+1, there is a point tn+1 ∈ succ(tn) such that the point sn+1 := s−1

n · · · s−1
1 (tn+1)

belongs to the barrier Sn+2. Multiplying this equality by sn, . . . , s1 from the left, we
get the equality s1 · · · sn+1 = tn+1. It remains to show that tn+1 ∈ U .

By induction on k ≤ n+1wewill prove that sk · · · sn+1 ⊂ Fk . For k = 1 this is true
as tn+1 = s1 · · · sn+1 ∈ F = F1. Assume that the inclusion sk · · · sn+1 ∈ Fk has been
proved for some k < n+ 1. Then sk+1 · · · sn+1 = s−1

k (sk · · · sn+1) ∈ F−1
k Fk = Fk+1.

Next, we will show by induction on k ∈ {n + 1, . . . , 1} that sk · · · sn+1 ∈ Sk . For
k = n + 1 this follows by the choice of the point sn+1 ∈ Sn+2 ∩ Fn+1 ⊂ Sn+1.
Assume that for some k ≤ n + 1 we have proved that sk+1 · · · sn+1 ∈ Sk+1. The
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choice of sk ∈ Sk+1 and the inductive assumption guarantee that sk(sk+1 · · · sn+1) ∈
Fk ∩ (Sk+1Sk+1) ⊂ Sk . So, tn+1 = s1 · · · sn+1 ∈ S1 ⊂ U .

Therefore we have constructed an infinite branch {ti : i ∈ ω} of the sequence tree
T which is impossible. 	


Fix any countable sb-network B at e in the space F−1F . Claim 5.3 implies that
{B ∩ F : B ∈ B} is a countable neighborhood base at e in the space F .

3. Assume that for every n ∈ N the space Fn is an Sω-vacuous sequential space
with countable cs∗-network at e. For every n ∈ N put E = Fn , E1 = E and Em+1 =
E−1
m Em form ≥ 1. It can be shown by induction that Em = Fn+m−1 for everym ∈ N.

So, the spaces Em , m ∈ N, have countable cs∗-network at e. By Lemma 2.3, these
spaces have countable cs-network at e. Applying Lemma 5.1(1) to the Sω-vacuous
space E = Fn and the sequence (Em)m∈N, we conclude that Fn = E has countable
sb-network at e. By Lemma 5.1(2), the space F is first countable at e.

6 Metrizability Criteria for Subsets of Rectifiable Spaces

In this section we will derive some corollaries from Key Lemma 5.1, which can be
interesting on their own. The first of them generalizes several metrizability criteria
proved in [13, §4] and [15, §4].

Theorem 6.1 A rectifiable space X is metrizable if and only if it is sequential, has
countable cs∗-character, and contains no closed copy of the Fréchet–Urysohn fan Sω.

Proof The “only if” part is trivial. To prove that “if” part, assume that X is a rectifiable
sequential Sω-vacuous space of countable cs∗-character. By Theorem 3.2, we can
assume that X is a topological lop. By Lemma 5.1(3), the topological lop X is first
countable at e. By [10], the rectifiable space X , being first countable, is metrizable. 	


Another corollary of Lemma5.1 concernsmetrizability of countably or sequentially
compact subsets in rectifiable spaces of countable cs∗-character.

Theorem 6.2 Let X be a sequential rectifiable space of countable cs∗-character. Then
each countably compact subset of X is metrizable.

Proof By Theorem 3.2, we can assume that X is a topological lop. Fix any countably
compact subset F ⊂ X . Since the space X is sequential, F is sequentially compact.
Put F1 = F and Fn+1 = F−1

n Fn ⊂ X for n ≥ 1. Since the sequential compactness is
preserved under finite products and continuous images, the spaces Fn are sequentially
compact for all n ∈ N. For every n ∈ N the sequential compactness of Fn and the
sequentiality of X imply the sequentiality of the space Fn . Then Lemma 5.1 implies
that all spaces Fn are first countable at e. In particular, the space F2 = F−1F is first
countable at e. The continuity of the division q : F×F → F−1F , q : (x, y) �→ x−1y,
implies that the square F × F has Gδ-diagonal 
F = {(x, t) ∈ F × F : x = y} =
q−1(e). By Chaber’s Theorem [7, 2.14], the countably compact space F is metrizable.
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The sequentiality of the rectifiable space X in the preceding corollary can be
replaced by the sequentiality and compactness of the space F .

Theorem 6.3 Let X be a rectifiable space of countable cs∗-character. Then each
compact sequential subspace of X is metrizable.

Proof Let F ⊂ X be a compact sequential space. Put F = F1 and Fn+1 = F−1
n Fn

for n ≥ 1. By induction we will prove that every space Fn is compact and sequential.
For n = 1 this follows from the sequentiality and compactness of F . Assume that for
some n ∈ N we have proved that the space Fn is compact and sequential. Then each
closed subset of Fn is sequentially compact and hence the square Fn ×Fn is a compact
sequential space (see [6, 3.10.I(b)]). Taking into account that the space Fn × Fn is
compact and the map q : Fn × Fn → F−1

n Fn , q : (x, y) �→ x−1y is continuous, we
conclude that the image Fn+1 = F−1

n Fn = q(Fn × Fn) is compact and the map q is
closed and thus quotient. Since the sequentiality is preserved by quotient maps ([6,
2.4.G]), the space Fn+1 is sequential. Therefore all spaces Fn , n ∈ ω, are sequential
and, being compact, are sequentially compact and Sω-vacuous. Now it is possible to
apply Key Lemma 5.1 to conclude that the space F2 = F−1F is first countable at e,
which implies that the compact space F has Gδ-diagonal and hence is metrizable by
[7, 2.13]. 	


7 The Structure of Non-metrizable Topological Lops of Countable
cs∗-Character

In this section we establish an algebraic analogue of Theorem 1.1. More precisely, to
deduce Theorem 1.1 we need to combine Theorems 3.2 and 3.4 with the following
theorem. For a topological lop X an skω-sublop is a sublop of X which is an skω-space.

Theorem 7.1 Each non-metrizable sequential topological lop X of countable cs∗-
character contains a clopen skω-sublop U.

Proof Since X is not metrizable, we can apply Theorem 6.1 and conclude that the
sequential space X contains a closed topological copy of the Fréchet–Urysohn fan Sω.
Then by Corollary 4.4, the space X contains no closed copy of the metric fan Mω.

Fix a countable cs∗-networkN at e, closed under finite unions, finite intersections,
and consisting of closed subspaces of X . By (the proof of) Lemma 2.3, the familyN is
a cs-network at e. Consider the collectionK ⊂ N of all countably compact subspaces
N ∈ N . 	

Claim 7.2 The family K is a cs-network at e.

Proof Given any neighborhood U ⊂ X of e and sequence {xn}n∈ω ⊂ X converging
to e, we should find a countably compact set K ∈ N with K ⊂ U , containing all
but finitely many points the sequence. Let A = {Ak : k ∈ ω} be the collection of all
elements N ⊂ U ofN containing almost all points xn . Now it suffices to find a number
n ∈ ω such that the intersection K = ⋂

k≤n Ak is countably compact. Suppose to the
contrary, that for every n ∈ ω the set

⋂

k≤n Ak is not countably compact. Then there
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exists a countable closed discrete subspace D0 ⊂ A0 with D0 �� e. Fix a neighborhood
W0 of e such that W0 ∩ D0 = ∅. Since N is a cs-network at e, there exists k1 ∈ ω

such that Ak1 ⊂ W0.
It follows from our hypothesis that there is a countable closed discrete subspace

D1 ⊂ ⋂

k≤k1 Ak with D1 �� e. Proceeding in this fashion we construct by induction an
increasing number sequence (kn)n∈ω ⊂ ω, a sequence (Dn)n∈ω of countable closed
discrete subspaces of G, and a sequence (Wn)n∈ω of open neighborhoods of e such
that Dn ⊂ ⋂

k≤kn Ak , Wn ∩ Dn = ∅, and Akn+1 ⊂ Wn for all n ∈ ω.
It follows from the above construction that M = {e} ∪ ⋃

n∈ω Dn is a closed topo-
logical copy of the metric fan Mω which is impossible.

So, the family K is a cs-network at e. By Theorem 6.2, each countably compact
subspace of X is metrizable (and hence compact). Therefore, K is a cs-network at
e consisting of compact metrizable subsets. Replacing K by a larger family, we can
assume that K is closed under finite unions, finite intersections, and for any sets
A, B ∈ K the (compact metrizable) sets AB and A−1B belong to K. Then the union
U = ⋃K is a σ -compact sublop of the lop X .

Let us show that for each point u ∈ U the set U is a sequential barrier at u. Take
any sequence (xn)n∈ω in X , converging to the point u in X . Since the left shift by u is a
homeomorphism of X sending e to u, the sequence (u−1xn)n∈ω converges to the unit
e of X . The familyK, being a cs-network at e, contains a set K ∈ K containing all but
finitely many points of the sequence (u−1xn)n∈ω. Then the set uK ⊂ U contains all
but finitely many points of the sequence (xn)n∈ω, which means that U is a sequential
barrier at u. Since X is sequential, the set U is open in X . By Proposition 3.3, the
sublop U is closed in X .

We claim that U is an skω-space (whose topology is generated by the cover K).
Indeed, consider any subset F ⊂ U such that for each compact set K ∈ K the
intersection F ∩ K is closed in K . We need to check that F is relatively closed in U .
Assuming that F is not closed in U , we conclude that F ∪ (X \U ) is not closed in X
and by the sequentiality of X , we could find a sequence (xn)n∈ω ⊂ F convergent to
a point x ∈ U \ F . It follows that there are elements K1, K2 ∈ K such that x ∈ K1
and K2 contains almost all members of the sequence {x−1xn}n∈ω. Then the product
K = K1K2 ∈ K contains all points xn , n ≥ n0, for some number n0. Since the set
F ∩ K is closed, the limit point x of the sequence {xn}n≥n0 ⊂ F ∩ K belongs to
F ∩ K ⊂ F , which is a desirable contradiction showing that U is an skω-space. 	
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