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Abstract In this paper, a classical of virus dynamics model with intracellular delay
and humoral immunity is introduced. By using suitable Lyapunov functionals and the
Lasalle invariant principle, the global stability of the equilibria is proved. Numerical
simulations are presented to illustrate our results. The effect of delay and humoral
immunity is also discussed.
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1 Introduction

The purpose of this paper is to study the following delay virus dynamics model:

X'(t) = A — dx(r) — O

_ Be " x(t—t)v(t—1)
V() =g —a®, (1.1)

V() = ky(t) —uv(r) — pz(t)v(r),
Z'(t) = qz(H)v(t) — bz(1),
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where x(¢) denotes the concentration of the un-infected target cells, y(#) denotes the
concentration of infected cells, v(¢) denotes the concentration of free virus particles,
z(t) denotes the density of the pathogens-specific lymphocytes. Un-infected cells are
produced at a constant rate A and die at rate dx(¢). Free virus infects un-infected
cells to produce infected cells at rate %)vv(f)) Infected cells die at rate ay(t). New
virus is produced from infected cells at rate ky(¢) and dies at rate uv(¢). The pathogens
are removed at rate pz(¢) by the immune system. The pathogens-specific lymphocytes
proliferate at rate g v(¢) in contact with the pathogens, and die atrate b. The average life-
time of un-infected cells, infected cells, free virus and pathogens-specific lymphocytes
are given by 1/d, 1/a, 1/, 1/b , respectively. The average number of virus particles
produced over the life-time of a single infected cell is given by k/a. The parameter
T accounts for the time between viral entry into a target cell and the production of
new virus particles. The recruitment of virus producing cells at time ¢ is given by the
number of cells that were newly infected at time  — 7 and are still alive at time ¢.
Here, m is assumed to be a constant death rate for infected but not yet virus-producing
cells. Thus, the probability of surviving the time period from ¢ — 7 to ¢ is e™"7.
When t = 0, (1.1) reduces to the following simple four-dimensional model:

x(0) = h — dx() - B,

y/(t) = fi)fl»((l)‘z)vv((ft)) - ay(t), (12)
V(1) = ky(t) — pv(t) — pz(H)v(?),
(1) = qz(t)v(t) — bz(1),

it has been studied in [1].

For the healthy cell infected with a virus and the virus reproduction cell, there is
an intracellular time delay between infection of a cell and production of new virus
particles called the latent period (see [2-5]). The delay describes the finite time interval
from the time when the infectious virus binds to the receptor of a target cell to the time
when the first virion is produced from the same target cell [2]. In reality, there is a time
delay between initial viral entry into a cell and subsequent viral production. There has
been much work on the effect of intracellular delay accounting for the time between
viral entry into a target cell and the production of new virus particles (see [6—13]).
Humoral immunity is the aspect of immunity that is mediated by secreted antibodies. In
malaria infection the humoral immunity is more effective than cell-mediated immunity
[14]. Murase and Kajiwara [12] and Huo et al. [1] consider the effect of the humoral
immunity. Many authors have studied the virus model (see [15,16]) . In this paper,
we incorporate the delay and the humoral immunity and study the global stability of
equilibria of (1.1).

The organization of this paper is as follows. In Sect. 2, the positivity and bounded-
ness of solutions of the system (1.1) are presented. The stability analysis for the three
equilibria are given in Sect. 3, and some numerical simulations are given in Sect. 4.
Finally, a brief discussion of effect of the humoral immunity and the intracellular delay
are given in Sect. 5.
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2 Positivity and Boundedness of Solutions

The initial conditions of (1.1) are given as

x(0) = ¢1(0), yO)=¢20), v(O)=ep30), z(0)=¢4(0), (2.1
9i0) >0, 6e[-1,0), ¢0)>0, i=1,2734,

where (¢1(0), 92(0), 93(0), pa(0)) € C ([—r, 01, Rio) , the Banach space of
continuous functions mapping the interval [—t, 0] into Rio, where Rio =
{(x1,x2,x3,x4) :x; > 0,i =1,2,3,4}. By the fundamental theory of FDEs [17],
we know that there is a unique solution (x(¢), y(¢), v(¢), z(¢)) of (1.1) with initial
condition (2.1).

The following theorem establishes the positivity and boundedness of solutions of

(1.1).
Theorem 1 Let (x(t), y(t), v(t), z(t)) be any solution of system (1.1) satisfying initial
condition (2.1). Then x(t), y(t), v(t) and z(t) are all positivity and bounded for all
t>0.

Proof Note that from (1.1), we have

v(E) ! v(©)
x(t) = elo _(d+'£T(5>)déx(O) +/ reh _(d+iT<f))dsdn,
0

x(m—1)v(n — T)e*’"fe*‘l(’*")dn,

t
- —ar [' B
_ at at
y(®) =y0)e™™ +e /0 I+ av—1)

t ot
U(t) — U(O)37 f(;(qupz(é))dS + efé 7(u+pz(5))d§/ ky(n)ejn —(M"FPZ(,E))dEdn’
0

z(1) = z(O)efS(qv(S)—b)dg.

Positivity immediately follows from the above integral forms and initial condition
2.1).
For boundedness of the solution, we define

1 1
G@t) = qgke™ x(t) + gky(t + 1) + Eqav(t + 1)+ Epaz(t + 1),

and y = min{d, %, u, b}. By positivity of the solution, it follows that

G'(t) = gke™" ()L —dx(t) — M) + gk (w

1+ av() 1+ av(?) _ay([H))

1
—i—Eqa(ky(t 4+ 1) —uv(t+1t)— pz(t + vt + 1))

1
+§pa(qz(t +1)v(t + 1) — bz(t + 1))
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1
= gkre ™" — gke " dx(t) — Eqkay(t + 1)
1 1
—Eqakuv(t +1)— Epabz(t + 1)
< gkle ™" —yG(2).
This implies that G (¢) is bounded, and so are x(¢), y(¢), v(¢) and z(¢). This completes

the proof of the theorem. O

3 Equilibria and Global Asymptotically Stability Analysis

From system (1.1), we know that the un-infected steady state is Eg = (xop, 0,0, 0) =

(%, 0, 0, 0). The basic reproduction number is Ry = kxg fl;mr . When Ry > 1, there is

only one un-immune infected steady state £y = (x1, y1, v, 0) defined by

x| = kﬁ ——— I +av), y1=

V1

u
-1, = Ro —1).
kv1 ﬂ+da( 0 )

. . . . mt .
The immune response reproductive ratio is R; = #‘W We will know

that if Ry > 1, there is only one positive equilibrium pomt E> = (x2,y2,v2,22),
where

g\ + bia birBe T
XY=, = s
27T g tbda+bB’ 7T audq + bda + bp)
b u
v=-, 22=—(R—1).
q p

Theorem 2 (i) The un-infected steady state Ey is globally asymptotically stable, if
Ry < 1;
(ii) The un-immune infected steady state E is globally asymptotically stable, if Ry >
IR <1;
(iii) The immune infected steady state E» is globally asymptotically stable, if Ry > 1.

Proof (i) Define a Lyapunov function V() as follows:

()

Voo(t) = x(t) — xo — xoln = + " y(r) + ") + 70 2P gm
X0

z(t)

where x¢ = d

Calculating the time derivative of Vo (¢) along the positive solution of model (1.1),
we obtain

Voo(t)—x(t)—?x )+ ety ’(t)+ MY (1) + Z "7 (1)

(1 - —0) (A —dx(t) — —ﬂx(r)”(’))
o I+ av(0)
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Lot (,Be_””x(t — )t —1) B ay(t))

14+ av(t —1)

F2eM (ky (1) — uv(t) — pz(Hv(t)) + Z " (qz(t)v(t) — bz(1))

a
k

Bx(t)v(r)
( x(t )) (dx‘) TR0 =T av(r))

Be " x(t — T)v(t — r)
te ( I+ av(—71) (t))

% " (ky(0) = wv(t) = pz(DV(1) + 7= ap AARCEOUORTE0)
C ) — g BP0 ﬁx(t — Dt — 1)
Tox@) 1 4+ av(t) 1 +av(—1)
lﬂf):zft(i) aku e o(e) - L2 ).

Define Vo = Voo + B ftl—r )lcjf;l;((?)d

,__d 2y Bx(u() | Bx(t—ow—1)  Bxov(n)

Yo = (z)( x(®) = x0) 1+av(z)+ 1+av(t—1) +1+au(z)
aum .. @ me x(t)v(r) _x(t—t)v(t—t)

T TR Z(’Hﬂ[u o() 1+av(t—t)]

,onv(t) au

— Ly - w0 +
T ox * 0 1+ v(t) k

b
mr (t) mr (t)
kq

< —E(X(t) — x0)% + Brov(t) — L emTy(s) — apb
X k k

em‘fz(t)
d 2 mrt pb MT

= ——(x(1) —x0)” + 2 (Ro — Dv(r) — z(1).
by k kq

Since, Ry < 1, it follows from LaSalle invariance principle [18, 19] that the uninfected
steady state Eq is globally asymptotically stable, if Ry < 1.
(ii) Define a Lyapunov functional Vj1(¢) as follows:

Vi) = x(1) —x1 — xllnﬂ + et (y(t) -y ylln&)
X1 Vi
a ( v(t)) ap .
" (v(@) — v —viln——) + —e""z(1).
k V1 kq

Calculating the time derivative of V() along the positive solution of model (1.1),
we obtain

Vi = (1-220) ¥ (0 +e™ (1 - ﬂ(t)) ¥(0)

a mt vl p mr /
+2e" (1= 20) o' + o2
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_ (1 - x—l(t)) (x —dx(t) — M)
X

1+ av(t)
e Vi Be"tx(t — t)v(t — 1) B
e (1 Ty (”) ( [Favi—1) “y(t))
+2e" (1= 20) (y(0) = wv(e)
_qemt (1 ﬂ(r)) 2Ov(@0) + L (g2t (t) — bz(1))
k€ ( v )P kg¢ M '

Since E| is a equilibrium point of (1.1), we have

_ Bxivi
A=dx + o
u _ J
kK~ v p

mt __ pxivi
ae — l4oav;

Therefore,

Vo) = (1= S dexn - x) - PO P (12
Bx(t —t)v(t —1)
14+ av(t—1)
B Bxivy (14 avy) lx(t — vt — 1)
1+avy xv1 y@) (I 4+av(i —1))
Bxivi v()  Bxivi y()v
1 + avg v_1 1 + avy yrv(t)

2Bx1v1 ap .z b
_ = t -—).
+1—|—av1+ ke dn v q

Define,

_ P x(s)vls)  xpu xjvp , (I+avp)x(s)v(s)
Vl(t)_vll(t)+'8/t_r |:1+ozv(s) - 14+avy B l—i—avlln x1v1(1 + av(s)) i|ds

Therefore,
ren (1 XY, oy Brx@v@)
Vi@) = (1 x([))( d(x(r) — x1)) T+ oo
n Bx1v1 (1 B x71) Bx(t — vt — 1)
1+ avy x(t) I+ av(—1)

_ Bxivg (A 4oavp) y1 x(—1v@ —1)
l+av; xjvp y() (L+av( —1))
_ Bxivp v Bxivy y(O)vy
1 +av) v 1+ avy y1v(t)

2Bx1vq ap ¢ b
[ —— —_— z —_
14+ avy k e\ q
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n |:x(t)v(t) x(t—tv@E—1) x1v] / (1+av(t))x(t—r)v(t—r)]
Plidev®  1tavi—1) Tran ™ x@p0dtast 1)

= —g(x(t)—xl)z—m[ W B ]

Tav X0 x®
B Bxivg [(1+av])y1x(z—r)v(t—1:) L ny1(1+av1)x(t—r)v(t—r)i|
Itav; [ xpupy@)(1+av(@—1)) y®xivi(1+av(t — 1))

_apxu (v —vy)?
vi(1+av)?(1 + av())
Bxivy |:1 + av(r) _q lnl—l—av(t)] B Bxivy [vly(t) 1y v]y(t)]

_1+av1 1+ avy B 1+ av; 1+ av;

b
+@emrz(t) (vl — 7) .
k q

Since the function h(i) = 1 —i +1Ini (i > 0),h'(i)) = =1+ L, h" (i) = ~-% <o,
soh(i) <0Oandonlyi =1, k(i) = 0. Itis clear that

n
yiv() yiv()

b
Ry <1,sov; —— <0O.
q

It follows from LaSalle invariance principle [18,19] that the un-immune infected
steady state £ is globally asymptotically stable if Ry > 1, Ry < 1. O

(iii) Define a Lyapunov functional V() as follows:

X mf y
— _ _ mt _ _ -
Voo(t) =x —x2 / B 20t e (y Y2 — y2ln yz)

2 T¥a v2

a . o [Tae"y
+ze (1+av2)(v v /U2 iyt dt

14at

Z

2P g (z — 22— Zzln—)
kq 22

Calculating the time derivative of V»;(¢) along the positive solution of model (1.1),
we obtain

pmr/

Vi (1) = x' (1) + "7 y'(1) + "1+ av)v'(0) + =" (1)
me. Ltoavy ot 32
—ae y2—ﬁx(t)v2x () — (t)y ()
a mt mt 1 + av(t) / ap m‘r
¢ (1 4+ avy)ae }QWU () — kq (l‘) (1)

_ me ! amr/ pmt/_ I +oav ,
=x(t)+e (t)+k (t)+ (1) —ae™ ﬂ(t)v

S0y - Z (t) (1) - p e 2(r>z )

x (1)

mr »2
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Since E» is a equilibrium point of (1.1), we have

kyy = uvy + pzova,
Bxavy
I+avy *

A=dxy+ae™y,,
aety) =
Therefore,

Bx()v(t) Px(t —1)v(E —r1) _au pab

) =4 - auv _pav e
E I+av(r) I+av(t — 1) k¢ v) kq ezt
—ae"Ty, 1 +avy (A—dx(t) B ﬂx(t)v(t))
vz 1+ av(r)

_2 (ﬂe—mrx(z — vt — 1) _ay(t))

y(®) I+av(t—1)
_g Wlfvi _ _ _ ﬁ mT£ 3

2 v(t)(ky(t) uv(r) — pz(n)v(r)) kqe 20 (qz(t)v(t) — bz(1))

dx (2_ x(@) xiz) 4 Prava B
2 X2 x(t) 1+avy 14 av()
Bx( —t)v(t —1) _au

ety
1 +av(t—1) k
pab .. X2 mr mt M 1 +avy
T O T TR T T e
_&emr (,Be*mrx(t — vt —1) B ay(t))
y(@®) 1 +av(t — 1)
_g m-[v72 _ _ _ pa e 22 3
2 50 (ky(t) — uv(t) — pz(t)v(t)) kqe =0 (qz(t)o(t) — bz())
=dxp (2 NEION xiz) + pxavy (1 - Xi) _ Bx@v()
X2 x(t) 1+ avy x() 1+ av()

Bx( —t)v(t—1) PByrx(t — ) — 1)
l+avit—1)  yOA +av —1))

12
+ae"Ty, + d g (—uv(t) —kvgﬁ +uv2) - %emrzy)(t)—{— %emtqu

k v(t)
— dxs (2_ x(0) xiz) 4 Prm (1 B xiz) _ Bx@v()
X2 x(1) 1+ avp x(t) 14+ av(r)

Bx(t —tv( —1)  Bxpvp (L+avy) y2 x(t—1)v(t—7)  2Bxov)

l+av(—1) a 1+avy xvp m (I +av(t —1)) 1+ av
Bxovy v(t)  Pxovy y(H)vy
Tl4avy va 1+av @)

Define,

X)) | xv  xw ln<1+avz>x(s)v<s)} e

t
VZ(t):V”(”"Lﬁ/t_,[1+av(s) Fav, 1tam " oundtars)

@ Springer



A Viral Model with Intracellular Delay and Humoral Immunity 1019

Therefore,

(0 = (1= 22 cdei) — m)) — )
V2<z>—(1 )( R T T G0

x(1)
Bx(t —t)v(t — 1)
14+ av( —1)
_ Bravy (I +avy) Bx(t —t)v(r — 1)
1+av; X202 y(&)(1 4+ av(t — 1))
Bxava v(t)  Pxovz y(H)vo
1 + avy v_z 1 + avy yrv(t)
2Bx2v2 ap .. b
+ I oo, +7e z(t) (U2_6_1)
|:x(t)v(t) _x(t—r)v(t—r) X In +av)x(t — 1)v( — t)]
14+av() 14+av(t—1) 14+ov; x(v()(14+av(t — 1))

Bx(t)v(t) n Bxova (1 X2)

d
= ———(x(t) — x2)*

x(1)
_ Prw [x_z 1) x_z}
1+ avy | x(¢) x(1)

Bxavy [y2(1 4 vp)x(t — Dv(t — 1)
14an [ X0y () (1 + av(t — 1))
y2(l +avp)x(t — Do(t — 1)
xov2y (@) (1 +av(t — 1)) }
apxava(v(t) — v2)?
~u(l +a)2(1+av(r)

—1—In

_ Brovy |:1 +av(t) 1— lnl +otv(t):|
1+ avy 14+ av 14+ avy
_ Bravy |:v2y(t) 1—In Uzy(l)] .
1+ avy | y2v(0) y2u(1)

It follows from LaSalle invariance principle [18,19] that the immune infected steady
state E5 is globally asymptotically stable, if Ry > 1. This completes the proof of the
theorem.

4 Numerical Simulations

In this section, some numerical simulations of system (1.1) are presented for sup-
porting our analytic results. Based on biological meanings of virus dynamics model
from papers [5,8,10,11,16], we have estimated the values of our model parame-
ters as follows: » = 09,d = 02,8 = 03, « = 0.2,a = 03,k = 0.5,
u=0.1,p =0.05qg =02,b =03. m = 0.3, r = 15. It is obvious that the
parameters satisfy (i) of Theorem 2. Then Ej is globally asymptotically stable (see
Fig. 1).
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1020 H. Xiang et al.

the uninfected equilibria E0

Population density
'

0 20 40 60 80 100
t

Fig.1 When v = 15, Ry < 1, the un-infection steady state E( is globally asymptotically stable

the unimmune infected equilibria E1
9 T

Population density

0 ! ! ! !

0 20 40 60 80 100
t

Fig.2 Whent =7, Ryg > 1, Ry < 1, the un-immune infected equilibrium E7 is globally asymptotically
stable

Secondly, we assume that . = 0.9,d = 02,8 = 03, = 0.2,a = 03,k =
0.5,u =0.1, p =0.05,g =0.2,b = 03. m = 0.3, t = 7. Itis obvious that the
parameters satisfy (ii) of Theorem 2. Then E is globally asymptotically stable (see
Fig. 2).

Finally, we assume that A = 0.9,d = 0.2, 8 = 0.3, a0 = 0.2,a = 03,k =
05,u=0.1,p=0.0549 =02,b=03. m = 0.3, = 5. It is obvious that the

@ Springer
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the immune infected equilibria E2

25
x(t)
y(t)
v(t)
20F | z(t) |4
=
2 151 i
3 |
c |
o
ﬁ |
g 10f 1
e
sb |
0 I — = —
0 20 40 60 80 100 120

Fig.3 When v =5, Ry > 1, the immune infected equilibrium E is globally asymptotically stable

parameters satisfy (iii) of Theorem 2. Then E; is globally asymptotically stable (see
Fig. 3).

5 Discussion

In this paper, we consider a delay mathematical model with saturation infection and
humoral immunity. The global stability of the three equilibria of system (1.1) have
been completely established by using suitable Lyapunov functionals and the Lasalle
invariant principle. By the (i) of Theorem 2, we see that if Ry < 1, the un-infection
steady state Ey is globally asymptotically stable, in this case, the virus is cleared up.
By the (ii) of Theorem 2, we see that if Ry > 1, Ry < 1, the un-immune infected
equilibrium E is globally asymptotically stable. By the (iii) of Theorem 2, we see
that if R; > 1, the immune infected equilibrium E» is globally asymptotically stable.
We know that the global dynamical properties of the model (1.1) depend on the basic
reproductive ratio.

The reproductive ratio plays a crucial role for virus infection dynamics. Actually,
in model (1.1), the basic reproductive ratio Ry is a decreasing function on time delay
T (see Fig. 4a), the R; is also decreasing function on time delay t (see Fig. 4b). When
all other parameters are fixed and delay 7 is sufficiently large, Ry becomes to be
less than one, which makes the un-infection steady state Eq globally asymptotically
stable. The humoral immune does help reduce the virus load and increase the healthy
cell population. This can be seen by comparing the virus load components and the
healthy cell population components in the un-immune infected equilibrium E; =
(x1, ¥1, v1, 0) and the immune infected equilibrium Ey = (x2, y2, v2, z2). when Ry >
1, simple calculations show that:
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25 035
—
0.3
20
025
15 0.2
o ~—
o o
10 0.15
0.1
5
0.05
0 0
0 5 10 15 20 25 30 0 5 10 15 20 25 830
T T
(a) (b)

Fig.4 a Ry is a decreasing function on time delay 7, b Ry is a decreasing function on time delay ©

d (ﬂAN’ 1) b
Np=—-"-—"—=1)>vy=—,
: B+da \ du 2 q

and

uw—+aBN - g’ + bra
= In=———",:
'S NB+da) ST dg + bda + b

By biological meanings, intracellular delay plays a positive role in virus infection
process in order to eliminate virus. Sufficiently large intracellular delay makes the
virus development slower and the virus has been controlled and disappeared. So this
gives us some suggestions on new drugs to prolong the time of infected cells producing
virus and to control the load of virus.
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