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Abstract On a manifold with affine connection, we introduce special pre-semi-
geodesic charts which generalize Fermi coordinates. We use a version of the
Peano’s–Picard’s-Cauchy-like Theorem on the initial values problem for systems of
ODSs. In a fixed pre-semigeodesic chart of a manifold with a symmetric affine con-
nection, we reconstruct, or construct, the connection in some neighborhood from the
knowledge of the “initial values”, namely the restriction of the components of con-
nection to a fixed surface S and from some of the components of the curvature tensor
R in the full coordinate domain. In Riemannian space, analogous methods are used to
retrieve (or construct) the metric tensor of a pseudo-Riemannian manifold in a domain
of semigeodesic coordinates from the known restriction of the metric to some non-
isotropic hypersurface and some of the components of the curvature tensor of type
(0, 4) in the ambient space.
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206 J. Mikeš, A. Vanžurová

1 Introduction

The problem of finding a Riemannian metric from various pieces of information is
of interest from both theoretical and practical point of view. Papers by many authors
are devoted to the possibility of finding the metric from the curvature tensor, [7, p.
135–136], or prove existence of metrics with the prescribed Ricci tensor, [2] etc. In
general, to solve the problemmeans to solve a relatively complicated non-linear system
of partial differential equations, the coefficients of which are expressed through the
components of the Riemannian curvature tensor. One possibility how to simplify the
situation is to find a convenient coordinate system with respect to which the system
of equations is simplified considerably. Our aim is to present and use such preferable
coordinates.

In [6], in a neighborhood of a (positive definite) Riemannian space in which special,
semigeodesic, coordinates are given, the metric tensor is calculated from its values
on a suitable hypersurface and some of components of the curvature tensor of type
(1, 3) in the coordinate domain. Semigeodesic coordinates are a generalization of the
well-known Fermi coordinates.

In the present paper, we consider a more general situation. We introduce spe-
cial pre-semigeodesic charts characterized both geometrically and in terms of the
connection. Then we apply a version of the Peano’s–Picard’s-Cauchy theorem on
existence and uniqueness of solutions of the initial values problems for systems of
first-order ODEs (ordinary differential equations). We use the apparatus in a fixed
pre-semigeodesic chart of a manifold equipped with the symmetric affine connec-
tion. Our aim is to reconstruct, or construct, the symmetric affine connection in some
neighborhood from the knowledge of the “initial conditions”: the restriction of the
connection to a fixed (n − 1)-dimensional surface S and some of the components
of the curvature tensor R in the ambient space (coordinate domain). By analogous
methods, we retrieve (or construct) the metric tensor of type (0, 4) of a pseudo-
Riemannian manifold in a domain of semigeodesic coordinates from the known
restriction of the metric to some non-isotropic hypersurface and some of the compo-
nents of the curvature tensor in the ambient space. In comparison to the authors of [6],
we give shorter proofs of constructive character based on classical results on first-order
ODEs.

Recall the so-called Fermi coordinates, named after the Italian physicist Enrico
Fermi [3], which were widely used in Minkowskian space, e.g. [9], and play an
important role in mechanics, physics, [1,10], and in differential geometry of Rie-
mannian spaces in general. Suppose γ : I → M is a geodesic on an n-dimensional
Riemannian manifold M , and p a point on γ . Then there exist local coordinates
(t, x2, . . . , xn) around p such that for small t , γ (t, 0, . . . , 0) represents the geo-
desic near p. The metric tensor is the Euclidean metric along γ , and again (only)
along γ , all Christoffel symbols vanish (all the above properties are only valid along
the distinguished geodesic). We will consider here a generalization of Fermi coor-
dinates, namely pre-semigeodesic and semigeodesic coordinates, which bring, at
the same time, special parametrization for all canonical geodesics in some tubular
neighborhood. The celebrated Fermi coordinates can be considered as a particular
case.
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2 Pre-semigeodesic Chart

Let (M,∇) be a (differentiable or smooth) n-dimensional manifold M equipped with
a symmetric linear connection ∇. Let �h

i j denote components of the connection ∇ in

a fixed chart (U, ϕ = (x1, . . . , xn)) in M ; U ⊆ M open.
If in the chart (U, (xi )) of M , �h

11(x) = 0 is valid for all h = 1, . . . , n, we say that
(U, (xi )) is a pre-semigeodesic chart1 related to the coordinate x1 with respect to the
connection ∇ or, that x1 is a geodesic coordinate in U . Obviously, it is quite natural
to prefer the first coordinate, and it means no loss of generality.

Let us give a geometric interpretation of the pre-semigeodesic charts. Recall that
the equations ∇ċ ċ = 0 for canonically paramerized geodesics c : I → U of the
connection ∇|U in local coordinates read (k = 2, . . . , n)

d2c1

ds2
+ �1

11

(
dc1

ds

)2

+
∑n

j=2
�1
1 j
dc1

ds

dc j

ds
+

∑n

i, j=2
�1
i j
dci

ds

dc j

ds
= 0,

d2ck

ds2
+ �k

11

(
dc1

ds

)2

+
∑n

j=2
�k
1 j
dc1

ds

dc j

ds
+

∑n

i, j=2
�k
i j
dci

ds

dc j

ds
= 0.

(1)

Lemma 1 The conditions �h
11 = 0, h = 1, . . . , n, are satisfied in U if and only if the

parametrized curves

c : I → U, c(s) = (s, a2, . . . , an), s ∈ I, ai ∈ R, i = 2, . . . , n, (2)

are canonically parametrized geodesics of ∇|U (I is some interval, ak are suitable
constants chosen so that c(I ) ⊂ U).

Proof Let�h
11 = 0 hold for h = 1, . . . , n. Then the local curves with parametrizations

(2) satisfy
dc(s)

ds
=

(
∂

∂x1

)
c(s)

,
d2c(s)

ds2
= 0, (3)

therefore are solutions to the system (1). Conversely, if the curves (2) are among
solutions to (1) then due to (3), we get �h

11 = 0 from (1). ��
Hence the pre-semigeodesic chart is fully characterized by the condition that the

curves x1 = s, xi = const, i = 2, . . . n belong to the geodesics of the given connection
in the coordinate neighborhood. The definition domainU of such a chart is “tubular”,
a tube along geodesics.

3 Reconstruction of Connection

Our aim is to show that a symmetric linear connection in a pre-semigeodesic coordinate
domainU (related to x1) can be uniquely constructed, or retrieved, in some subdomain

1 Similar coordinateswere used e.g. in [12], and called there, in English translation, “almost semigeodesic”.
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ofU if we know the restrictions �̃h
i j (x̃), x̃ ∈ S of the connection to the surface S defined

by x1 = 0 and prescribed components Rh
i1k of the curvature tensor in the given tubular

domain U . First recall that the components Rh
i jk of the curvature tensor are related to

the components �h
i j of the connection by the classical formula

Rh
i jk = ∂ j�

h
ik − ∂k�

h
i j + �m

ik�
h
mj − �m

i j�
h
mk . (4)

Now suppose that �h
11(x) = 0 is satisfied. Particularly, setting i = j = 1 in (4) we

get under this assumption

∂

∂x1
�h
1k +

∑
m

�m
1k�

h
1m − Rh

11k = 0 (5)

and plugging j = 1 in (4) we get, for each of the indices i = 2, . . . , n, the system

∂

∂x1
�h
ik +

∑
m

�m
ik�

h
m1 −

∑
m

�m
i1�

h
mk − ∂

∂xk
�h
i1 − Rh

i1k = 0. (6)

In R
n with standard coordinates (x1, x2, . . . , xn), let us identify the linear subspace

(hypersurface) defined by x1 = 0 with the space R
n−1, i.e. (x̃) = (x2, . . . , xn) are

standard coordinates in Rn−1. Let J = (0, 1) be the open unit interval and denote by
Km = J m the open standard m-cube. Denote

Dn(δ) = {x = (x1, . . . , xn) ∈ R
n | 0 ≤ x1 ≤ δ, 0 < xi < 1, i = 2, . . . , n}.

Hereafter we will deal with the pre-semigeodesic coordinate system in the domain
Dn(δ). The open (n − 1)-cube Kn−1 = J n−1, viewed as

Kn−1 = {x̃ = (x2, . . . , xn) ∈ R
n−1 | 0 < xi < 1, i = 2, . . . , n} ⊂ R

n−1,

will be identified with a hypersurface S in Dn(δ) determined by x1 = 0.
So in what follows let S be a hypersurface in Dn(δ) defined by x1 = 0. Now let

us modify for our purpose the Theorem on existence and uniqueness of solutions of
systems of ODEs:

Theorem 1 Let ∇̃ be a torsion-free linear connection in S (of the class at least C2)
with components �̃h

i j (x̃), x̃ ∈ S, h, i, j ∈ {2, . . . , n}, let �̃h
1 j (x̃) be functions in S

(at least C2), h, j ∈ {1, . . . , n}, where �̃h
11(x̃) = 0 for h ∈ {1, . . . , n}. Let Ah

i j ,

h, i, j ∈ {1, . . . , n} be functions (at least C0) in Dn(δ) such that each Ah
1k is at least C

1

in each of the variables x2, . . . , xn and at least C0 in x1. Moreover let the curvature
tensor R̃ of ∇̃ satisfy R̃h

i1k(x̃) = Ah
ik(x̃) in S. Then there exists a real number δ̂,

0 < δ̂ ≤ δ and there is a unique torsion-free linear connection ∇ in the neighborhood
Dn(δ̂) with components �h

i j such that the following holds: �h
11(x) = 0 in Dn(δ̂) for

h = 1, . . . , n (i.e. the coordinates are pre-semigeodesic), �h
i j (0, x̃) = �̃h

i j (x̃) for
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x̃ ∈ S, h, i, j ∈ {1, . . . , n} (hence ∇|S = ∇̃) and Rh
i1k = Ah

ik for all x ∈ Dn(δ̂) where
h, i, k = 1, . . . , n.

Proof Let the assumptions be satisfied.Analyzing the system (4) and the consequences
mentioned above we find that we can proceed step by step. In three main steps, we find
functions �h

i j in a certain subdomain of Dn(δ) such that �h
i j = �h

ji and the conclusion
of Theorem 1 is satisfied.
Step (1) Let us define �h

11(x) = 0 for x ∈ Dn(δ), h = 1, . . . , n.
Step (2) Let us solve the system

∂

∂x1
�h
1k(x) = −

∑
m

�m
1k(x)�

h
1m(x) + Ah

1k(x) (7)

for unknown functions �h
1k , h = 1, . . . , n, k = 2, . . . , n which we assume as a system

of ordinary differential equations of one variable x1 (while the remaining coordinates
(x̃) = (x2, . . . , xn) ∈ Kn−1 = S are considered as parameters) for the initial data

�h
1k(0, x

2, . . . , xn) = �̃h
1k(x

2, . . . , xn) for (x2, . . . , xn) ∈ S.

According to the theory, there exists δ1, 0 < δ1 ≤ δ, and there are uniquely
determined functions �h

1k(x
1, . . . , xn) of the class at least C1 in the domain Dn(δ1)

such that
�h
1k(0, x̃) = �̃h

1k(x̃), x̃ ∈ S. (8)

These functions together with their derivatives will be used in what follows.
Step (3) Now consider the system

∂

∂x1
�h
ik = −

∑
m

�m
ik�

h
m1 +

∑
m

�m
i1�

h
mk + ∂

∂xk
�h
i1 + Ah

ik = 0, (9)

where we plugged for �h
i1 from the above; h = 1, . . . , n, i, k = 2, . . . , n. We have

again a system of ordinary differential equations of one variable x1. According to
the existence and uniqueness theorem on systems of ODEs there is δ̂, 0 < δ̂ ≤ δ1
and there are uniquely determined functions �h

ik(x
1, . . . , xn) of the class at least C1,

i 
= 1 
= k in the domain Dn(δ̂) which satisfy the initial conditions

�h
ik(0, x

2, . . . , xn) = �̃h
ik(x

2, . . . , xn), (x2, . . . , xn) ∈ S. (10)

Moreover, comparing (5) and (7), (6) and (9) we can see that

Rh
i1k(x) = Ah

ik(x), x ∈ Dn(δ̂), h, i, k = 1, . . . , n, (11)

holds as required, and �h
ik are components of a connection of the above properties. ��

As a consequence, if we use prolongation of the solution, we obtain:
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Theorem 2 Let (U, ϕ = (x1, . . . , xn)) be a chart in M. Let S ⊂ U be a submanifold
in U defined by x1 = 0. Let ∇̃ be a torsion-free linear connection in S of the class at
least C2 with the components �̃h

i j and the curvature tensor R̃, and let A
h
i j be functions

in U such that R̃h
i1k = Ah

ik in S, Ah
ik , i = 2, . . . , n, are of the class at least C0, Ah

1k
are continuous in x1, and Ah

1k are at least C
1 in the remaining variables x2, . . . , xn.

Then there is a unique symmetric linear connection∇ inU with components satisfying
�h
11 = 0 for h = 1, . . . , n (i.e. the given chart is pre-semigeodesic w.r.t. ∇) such that

∇|S = ∇̃, and Rh
j1k = Ah

jk in U.

4 Reconstruction of Metric

4.1 Semigeodesic Coordinates

For our purpose,we say that a chart (U, (xi )) of a pseudo-Riemannianmanifold (M, g)
is semigeodesic (or that (xi ) are semigeodesic coordinates) if in this chart, the metric
tensor has the coordinate expression

g = edx1 ⊗ dx1 + g̃i j (x
1, x2, . . . , xn)dxi ⊗ dx j , i, j = 2, . . . , n, (12)

where e = ±1 (the plus or minus sign is connected with the square of the integral of
the tangent vector to the x1-coordinate line).

The geometric interpretation is as follows, [12, p. 55].

Lemma 2 Local coordinates (xi ) in a pseudo-Riemannianmanifold are semigeodesic
if and only if the 1-net of x1-coordinate lines is formed by arclength parametrized
geodesicswhich are orthogonal to a non-isotropic hypersurface defined by x1 = const.

Note that coordinate hyperplanes defined by x j = const are orthogonal to the
distinguished system of geodesics. Obviously, semigeodesic coordinates are pre-
semigeodesic.

Semigeodesic coordinates can be introduced in a sufficiently small neighborhood
of any point of an arbitrary (positive) Riemannian manifold, and is fully characterized
by the coordinate form of the metric:

gi j = dx1 ⊗ dx1 + g̃i j (x
1, x2, . . . , xn)dxi ⊗ dx j , i, j = 2, . . . , n. (13)

E.g. on a cylinder, semigeodesic coordinates can be introduced globally.
Advantages of such coordinates are known since Gauss ([8, p. 201], “Geodätische

Parallelkoordinaten”), and are widely used in the two-dimensional case, particularly
in applications, [11] and the references therein, [13] etc. Note that geodesic polar
coordinates (“Geodätische Polarkoordinaten,” [8, pp. 197–204]) can be interpreted as
a “limit case” of semigeodesic coordinates (all geodesic coordinate lines φ = x2 =
const pass through one point called the pole, corresponding to r = x1 = 0, while
r = x1 = const are the geodesic circles).
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Reconstruction of an Affine Connection... 211

4.2 Reconstruction of Metric in Semigeodesic Coordinates

Recall that the components of the curvature tensor R (in type (0, 4)) of the semi-
Riemannian manifold Vn = (M, g) are related to the components of the metric by

Rhi jk = 1

2

(
∂i j ghk + ∂hkgi j − ∂ik ghj − ∂i j ghk

) + grs
(
�hkr�i js − �h jr�k js

)
, (14)

where �i jk = 1
2 (∂i g jk + ∂ j gik − ∂kgi j ) are Christoffel symbols of the first type in

Vn , and grs are components of the dual tensor to g. Hence gi j are functions rational
in components gi j of the metric.2

Now suppose that components of the metric satisfy g11 = e, g1 j = 0. Under these
assumptions, setting h = k = 1 we obtain from (14)

R1i j1 = 1

2
∂11gi j − 1

4
grs∂1gir∂1g js . (15)

Here we can suppose that the indices satisfy i, j, r, s > 1. Plugging

Gi j = ∂1gi j , (16)

we can write (15) as

ai j (x) = R1i j1 = 1

2
∂1Gi j − 1

4
grsGirGjs . (17)

Now we can prove the following.

Theorem 3 Let ai j be (at least) continuous functions in Dn(δ), let g̃i j be functions
of the class (at least) C2 in Kn−1 and G̃i j functions of the class (at least) C1 in
Kn−1, i, j = 2, . . . , n, such that the matrices (g̃i j ) and (G̃i j ) are symmetric3 and
det(g̃i j ) 
= 0 in Kn−1. Fix an element e ∈ {−1, 1}. Then there is δ̂, 0 < δ̂ ≤ δ and
there exists exactly one non-degenerate metric tensor4 g of the class (at least) C2 in
Dn(δ̂)with components g11 = e, g1 j = 0, j = 2, . . . , n, such that for i, j = 2, . . . , n,

gi j (0, x̃) = g̃i j (x̃),
∂+

∂x1
gi j (0, x̃) = G̃i j (x̃), x̃ ∈ Kn−1 (18)

where ∂+
∂x1

means the partial derivative from the right, and

ai j (x) = R1i j1(x), x ∈ Dn(δ̂). (19)

2 gi j = 1/ det(gi j ) · A ji where A ji is the algebraic complement of the matrix element g ji .
3 g̃ j i = g̃i j , G̃ ji = G̃i j .
4 det(gi j ) 
= 0 in Dn(δ̂).
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212 J. Mikeš, A. Vanžurová

Proof Step (1) Let us define g11 = e, g1 j = 0 in Dn(δ), j = 2, . . . , n.
Step (2) Let us solve the system

∂1gi j = Gi j ,

∂1Gi j = 1

2
grsGirG js + 2ai j

(20)

under the initial values

gi j (0, x̃) = g̃i j (x̃),
∂+

∂x1
gi j (0, x̃) = G̃i j (x̃), x̃ ∈ Kn−1, i, j = 2, . . . , n. (21)

Note that since the determinant as well as the algebraic complements are continuous
functions in the entries gi j , and we demand det(g̃i j )(0, x̃) = det(g̃i j )(x̃) 
= 0, it is
guaranteed that grs will be well-defined and well-behaved functions of gi j , similarly
as in [6]. So (20) can be considered as a system of first-order ordinary differential equa-
tions in the variable x1 for the unknown functions gi j and Gi j with the initial values
(21); the remaining coordinates x2, . . . , xn ∈ Kn−1 are supposed to be parameters.
The right sides in (20) satisfy the conditions of the existence and uniqueness theorem
[4, p. 263] in the domain Dn(δ̃) and have continuous derivatives with respect to gi j
andGi j . The initial value problem (20) and (21) has precisely one solution gi j (x). The
functions gi j are components of a metric tensor in Dn(δ̃), and comparing (20) and (17)
we find easily that the components of its curvature tensor satisfy R1i j1(x) = ai j (x)
as required.

Since the matrices (gi j ) and (Gi j ) are symmetric we may assume i ≤ j in (20) and
(21). As a consequence, we get

Theorem 4 Let ai j be continuous functions in some coordinate neighborhood U,
g̃i j C2-functions in S̃ = U ∩ S where S is the hypersurface S : x1 = 0 in Rn, and
G̃i j C1-functions in S̃, i, j = 2, . . . , n such that the matrices (g̃i j ) and (G̃i j ) are
symmetric and det(g̃i j ) 
= 0 in S̃. Fix an element e ∈ {−1, 1}. Then there is δ̂ > 0 and
there exists precisely one non-degenerate metric tensor g, det(gi j ) 
= 0, of the class
C2 in Ũ = 〈−δ̂, δ̂〉 × S̃ with components g11 = e, g1 j = 0, j = 2, . . . , n (i.e. Ũ is
semigeodesic) such that for i, j = 2, . . . , n,

gi j (0, x̃) = g̃i j (x̃),
∂+

∂x1
gi j (0, x̃) = G̃i j (x̃), x̃ ∈ S̃ (22)

and
ai j (x) = R1i j1(x), x ∈ Ũ . (23)

Provided ai j (x) = R1i j1(x) the solution of the system (20) answers the problem of
finding the metrics with the prescribed components R1i j1(x) of the (0, 4)-Riemannian
curvature tensor. Substituting the obtained components of metric we get the relation-
ship to the components of the (1, 3)-curvature as follows:
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Reconstruction of an Affine Connection... 213

R1i j1 = eR1
i j1 = −eR1

i1 j = gim Rm
11 j = −gim Rm

1 j1. (24)

Hence our results generalize the results of [5,6].
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