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Abstract For a positive integer m, a bounded linear operator T on a Hilbert space H
is called an (A,m)-isometry, if �

(m)
A (T ) = ∑m

k=0(−1)m−k
(m
k

)
T ∗k AT k = 0, where

A is a positive (semi-definite) operator. In this paper we give a characterization of
(A,m)-isometric and strict (A,m)-isometric unilateralweighted shifts in termsof their
weight sequences, respectively.Moreover, we characterize (A, 2)-expansive unilateral
weighted shifts (i.e. operators satisfying �

(2)
A (T ) ≤ 0).

Keywords (A,m)-isometry · (A,m)-expansive operators · Unilateral weighted
shifts

Mathematics Subject Classification 46C05 · 47A05 · 47B37

1 Introduction and Preliminaries

Throughout the paper, H denotes a separable infinite dimensional complex Hilbert
space with inner product 〈· | ·〉 and {en}n≥0 is an orthonormal basis ofH. A represents
a nonzero (A �= 0) positive operator and denote I the identity operator onH. ByL(H)

we denote the Banach algebra of all linear operators on H. For every T ∈ L(H) its
range is denoted by R(T ), its null space by N (T ) and its adjoint by T ∗. The cone
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372 R. Rabaoui, A. Saddi

of positive (semi-definite) operators and the set of all T ∈ L(H) which admit an
A-adjoint are given, respectively, by

L(H)+ := {A ∈ L(H) : 〈Au | u〉 ≥ 0, ∀ u ∈ H},
LA(H) := {T ∈ L(H) : R(T ∗A) ⊂ R(A)}.

Any A ∈ L(H)+ defines a positive semi-definite sesquilinear form:

〈· | ·〉A : H × H −→ C, 〈u | v〉A := 〈Au | v〉.

By ‖ · ‖A we denote the semi-norm induced by 〈· | ·〉A, i.e. ‖u‖A = 〈u | u〉
1
2
A. Observe

that ‖u‖A = 0 if and only if u ∈ N (A). Then ‖ · ‖A is a norm if and only if A is an
injective operator.

Definition 1.1 For a positive operator A, we say that u, v ∈ H are A-orthogonal if

〈u | v〉A = 〈Au | v〉 = 0.

More general, a family of vectors (ui )i is A-orthogonal if 〈ui | u j 〉A = 0, for all
i �= j .

For any T ∈ L(H) and A ∈ L(H)+, define

�
(m)
A (T ) =

m∑

k=0

(−1)m−k
(
m

k

)

T ∗k AT k, m ≥ 1. (1)

We say that T is (A,m)-expansive if �
(m)
A (T ) ≤ 0 for some positive integer m. For

more details on such a family, we refer the readers to [11].
A detailed study of m-isometries was developed by Agler and Stankus [1–3].

Recently, Sid Ahmed et al. [8] generalized the concept of those operators on a Hilbert
space when an additional semi-inner product is considered. They introduced the
(A,m)-isometries as a special case of (A,m)-expansive operators. In [9], we gave
a detailed study concerning the behavior of the orbits of such a family. In fact, for
m ∈ N, an operator T ∈ L(H) is called an (A,m)-isometry if �

(m)
A (T ) = 0, or

equivalently,
m∑

k=0

(−1)m−k
(
m

k

)

‖T ku‖2A = 0 for all u ∈ H. (2)

Remark 1.1 1. An (A, 1)-isometry will be called an A-isometry.
2. T will be said a strict (A,m)-isometry if it is an (A,m)-isometry but not an

(A,m − 1)-isometry.

For T ∈ L(H) and k = 0, 1, 2, . . ., we consider the operator

βk(T ) = 1

k! �
(k)
A (T ).
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For n ≥ k, we denote

n(k) =
{
1, if n = 0 or k = 0;(n
k

)
k! = n(n − 1)(n − 2) . . . (n − k + 1), otherwise.

Observe that β0(T ) = A and if T is an (A,m)-isometry, then βk(T ) = 0 for every
k ≥ m. Hence, according to [9] we have

‖T nu‖2A =
m−1∑

k=0

n(k) 〈βk(T )u | u〉 for all u ∈ H. (3)

The A-covariance operator �A,T is defined by

�A,T := βm−1(T ) = 1

(m − 1)! �
(m−1)
A (T ). (4)

Theorem 2.1 [4] gives a useful characterization of m-isometries on a Hilbert space.
The same proof works for (A,m)-isometries. In fact, we show that if T is an (A,m)-
isometry then it is possible to explain the semi-norm ‖T nu‖A of T nu in terms of the
semi-norms of the vectors u, Tu, . . . , Tm−1u.

Theorem 1.1 An operator T ∈ L(H) is an (A,m)-isometry if and only if

‖T nu‖2A =
m−1∑

k=0

(−1)m−k−1 n(n − 1) . . .
︷ ︸︸ ︷
(n − k) . . . (n − m + 1)

k!(m − k − 1)! ‖T ku‖2A (5)

for all n ≥ 0 and all u ∈ H, where
︷ ︸︸ ︷
n − k denotes that the factor (n − k) is omitted.

Remark 1.2 For k = 0, 1, 2, . . . , (m−1), the coefficient of ‖T ku‖2A is a polynomial
in n of degree (m − 1).

The paper is organized as follows. In Sect. 2 we focus on unilateral weighted shifts
which are (A,m)-isometries. A characterization in terms of the weight sequence is
given for the forward shifts. Then, we describe the behavior of the weights for such a
family. Finally, in order that the paperwill be self-contained, we give a characterization
for backward shifts.

Generally, an (A,m)-isometry is not an (A,m − 1)-isometry (see [8]). Inspired
from that, the aim of Sect. 3 is the study of strict (A,m)-isometric unilateral weighted
forward shifts. A characterization for a particular operator A is also given. In Sect. 4
we focus on (A, 2)-expansive (or A-concave) operators. Some properties related to
unilateral weighted shifts are given.
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2 (A,m)-Isometric Unilateral Weighted Shifts

Theaimof this section is to give a characterizationof unilateralweighted shift operators
which are (A,m)-isometries in terms of their weight sequences. Before starting the
study, first we recall that a unilateral weighted shift T is unitarily equivalent to a
weighted shift operator with a non-negative weight sequence. So we can assume that
wn ≥ 0. Furthermore, if T is injective, it can be assumed that wn > 0 (see [6,10]).

2.1 Unilateral Weighted Forward Shifts

An operator T ∈ L(H) is said to be a unilateral weighted forward shift, if there exists
an orthonormal basis {en}n≥0 and a sequence {wn}n≥0 of complex numbers such that
T en = wnen+1. It is well known and it is not difficult to see that T is a bounded
operator if and only if the weight sequence {wn}n≥0 is bounded. The iterates of T are
given by T 0 = I , and for k ≥ 1,

T ken =
(
k−1∏

i=0

wn+i

)

en+k, n ≥ 0. (6)

It was shown ([4], Proposition 3.1) that if T is an m-isometric unilateral weighted
forward shift operator with weight sequence {wn}n≥1, then wn �= 0 for all n ≥ 1. The
characterization related to (A,m)-isometric unilateral weighted shifts is given in the
following proposition.

Proposition 2.1 Let T be a unilateral weighted forward shift with weight sequence
{wn}n≥0. If T is an (A,m)-isometry and if there exists a nonnegative integer n0 such
that en0 /∈ N (A), then wn0 �= 0.

Proof Assume that there exists a nonnegative integer n0 such that ‖en0‖A �= 0. Equa-
tion (6) implies that

‖T ken0‖2A =
(
k−1∏

i=0

|wi+n0 |2
)

‖ek+n0‖2A, k ≥ 1.

Since T 0en0 = en0 , we obtain

(−1)m+1‖en0‖2A =
m∑

k=1

(−1)m−k
(
m

k

)

‖T ken0‖2A

=
m∑

k=1

(−1)m−k
(
m

k

)(k−1∏

i=0

|wi+n0 |2
)

‖ek+n0‖2A

= |wn0 |2
[
(−1)m−1

(
m

1

)

‖en0+1‖2A

+
m∑

k=2

(−1)m−k
(
m

k

)(k−1∏

i=1

|wi+n0 |2
)

‖ek+n0‖2A
]
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which gives

|wn0 |2 = (−1)m+1‖en0‖2A
(−1)m−1

(m
1

)‖en0+1‖2A +∑m
k=2(−1)m−k

(m
k

)
(
k−1∏

i=1

|wi+n0 |2
)

‖ek+n0‖2A
.

Thus, the proof is achieved. �
Corollary 2.1 Let T be a unilateral weighted forward shift with weight sequence
{wn}n≥0. The following assertions hold true.

1. If T is an A-isometry and if e0 /∈ N (A), then wn �= 0 for all n ≥ 0.
2. If T is an (A, 2)-isometry and e2p /∈ N (A) for all p ≥ 0, then wn �= 0 for all

n ≥ 0.

Proof 1. If T is an A-isometry then ‖Tu‖A = ‖u‖A for all u ∈ H. For u = en , we
obtain

|wn|‖en+1‖A = ‖en‖A

which implies that if e0 /∈ N (A), then wn �= 0 for all n ≥ 0.
2. To obtain the desired claim we restrict ourselves to prove that, for each n, if

en /∈ N (A) then wn �= 0 and wn+1 �= 0.
Since T is an (A, 2)-isometry, ‖T 2u‖2A − 2‖Tu‖2A + ‖u‖2A = 0 for all u ∈ H. For
u = en , we obtain

|wn|2
{
|wn+1|2‖en+2‖2A − 2‖en+1‖2A

}
= −‖en‖2A. (7)

If en /∈ N (A), then (7) implies that wn �= 0 and

|wn+1|‖en+2‖A ± √
2‖en+1‖A �= 0. (8)

Moreover, if we assume that wn+1 = 0, then the identity (8) gives en+1 /∈ N (A),
and hence wn+1 �= 0 which is a contradiction. �

In the following proposition we establish that if a unilateral weighted forward shift T

with weight sequence {wn}n≥0 is A-bounded then the sequence
{ ‖en+1‖A

‖en‖A wn, n ≥ 0
}

is bounded.

Proposition 2.2 Let T ∈ LA(H) be a unilateral weighted forward shift with weight
sequence {wk}k≥0. Assume that ek /∈ N (A) for all k ∈ N. Then, for all n ≥ 1

‖T n‖A ≥ sup
k∈N

{
( n−1∏

i=0

|wi+k |
) ‖ek+n‖A

‖ek‖A

}

. (9)

Proof Note first that if T ∈ LA(H), then T n ∈ LA(H) for all n ≥ 0 and, moreover,
we have
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‖T nu‖A ≤ ‖T n‖A‖u‖A for all u ∈ H, n ≥ 0.

Let n ≥ 1. Since (6) holds true, we have

(
n−1∏

i=0

|wi+k |
)

‖ek+n‖A = ‖T nek‖A ≤ ‖T n‖A‖ek‖A.

Thus taking supremum over all k ∈ N, we obtain

sup
k∈N

{
( n−1∏

i=0

|wi+k |
) ‖ek+n‖A

‖ek‖A

}

≤ ‖T n‖A.

Remark 2.1 Equality between the two parts of (9) does not holds true for every uni-
lateral weighted forward shift T and any positive operator A. For example, assume
that n = 1 and wk = 1 for all k ≥ 0. Let A be the operator given in the orthonormal
basis {ek}k≥0 by the matrix {a jk} j,k≥0 such that a j j = 1 for all j ≥ 0, a01 = a10 = 1

2 ,
and all other elements are equal to 0. It is easily seen that A is an invertible positive
operator.Moreover, T ∈ LA(H). Remark that the right part of (9) is equal to 1. Indeed,

‖ek‖2A = 〈Aek | ek〉 = akk = 1, for all k ≥ 0.

On the other hand, we have

‖e0 − e1‖2A = 〈A(e0 − e1) | (e0 − e1)〉
= a00 − 2a01 + a11 = 1

and ‖T (e0 − e1)‖2A = ‖e1 − e2‖2A
= 〈A(e1 − e2) | (e1 − e2)〉
= a11 − 2a12 + a22 = 2.

Consequently, ‖T ‖A ≥ √
2.

Every u ∈ H can be written as u =
∑

n≥0
αnen ; {αn}n≥0 ⊂ C. Hence, we have

m∑

k=0

(−1)m−k
(
m

k

)

‖T ku‖2A =
∑

i, j≥0

αiα j S
(m)
i, j,A,

where

S(m)
i, j,A =

m∑

k=0

(−1)m−k
(
m

k

)

〈AT kei | T ke j 〉, i, j ≥ 0.

Remark 2.2 If T is a unilateral weighted forward shift with weight sequence {wn}n≥0,
then we have
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S(m)
i, j,A =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(−1)m〈Aei | e j 〉 +
m∑

k=1

(−1)m−k
(
m

k

) ( k−1∏

p=0

wi+pw j+p

)
〈Aei+k | e j+k〉, (i �= j)

(−1)m‖ei‖2A +
m∑

k=1

(−1)m−k
(
m

k

) ( k−1∏

p=0

|wi+p|2
)
‖ei+k‖2A := S(m)

i,A , (i = j).

Let us begin with the following theorem.

Theorem 2.2 Let T be a unilateral weighted forward shift with weight sequence
{wn}n≥0. Then T is an (A,m)-isometry if and only if S(m)

i, j,A = 0 for all i, j ≥ 0.

Proof Assume that T is an (A,m)-isometry. For u = en , (2) implies that

0 =
m∑

k=0

(−1)m−k
(
m

k

)

‖T ken‖2A

= (−1)m‖en‖2A +
m∑

k=1

(−1)m−k
(
m

k

)( k−1∏

i=0

|wn+i |2
)

‖en+k‖2A.

Hence, for all n ∈ Nwe have S(m)
n,A = 0. As a consequence, for all sequence {αn}n ⊂ C,

it yields that
∑

i �= j αiα j S(m)
i, j,A = 0. Indeed, to prove such a claim we argue by

contradiction. If there exists {αn}n such that
∑

i �= j
αiα j S

(m)
i, j,A �= 0, then if we take

a nonzero v = ∑
i αi ei we obtain

m∑

k=0

(−1)m−k
(
m

k

)

‖T kv‖2A �= 0,

which contradicts the fact that T is an (A,m)-isometry. Moreover, assume that there
exists i0 �= j0 such that S(m)

i0, j0,A
�= 0. If we consider the sequence {βn}n defined by

βi0 �= 0, β j0 �= 0 and βi = 0 otherwise, then for s = βi0ei0 + β j0e j0 , we obtain

m∑

k=0

(−1)m−k
(
m

k

)

‖T ks‖2A = βi0β j0 S(m)
i0, j0,A

�= 0,

which contradicts the hypothesis. Hence, S(m)
i, j,A = 0 for all i �= j.

For the converse, suppose that S(m)
i, j,A = 0 for all i, j ≥ 0. Since every vector u ∈ H

can be written as u = ∑
i αi ei , it follows that

m∑

k=0

(−1)m−k
(
m

k

)

‖T ku‖2A =
∑

i, j

αiα j S
(m)
i, j,A = 0.

�
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In the following proposition we give some properties related to the coefficients S(m)
i, j,A

defined in Remark 2.2.

Proposition 2.3 Let T be an (A,m)-isometric unilateral weighted forward shift with
weight sequence {wn}n≥0. The following claims hold true.

1. If S(m−1)
0,A = 0, then S(m−1)

n,A = 0 for all −1 ≤ n − 1 < inf{n ≥ 0/wn = 0}, where
inf{n ≥ 0/wn = 0} = +∞ if {n ≥ 0/wn = 0} = �.

2. If en /∈ N (A) for all n ∈ N and S(m−1)
0,A = 0, then S(m−1)

n,A = 0 for all n ∈ N.

Proof 1. First of all, let us remark that

S(m−1)
n,A = (m − 1)! 〈�A,T en | en〉 for all n ≥ 0.

Since T is an (A,m)-isometry, then a simple computation shows that

�A,T = T ∗�A,T T .

Moreover,

〈�A,T en | en〉 = 〈T ∗�A,T T en | en〉
= 〈�A,T T en | T en〉
= |wn|2 〈�A,T en+1 | en+1〉.

This implies that
S(m−1)
n,A = |wn|2 S(m−1)

n+1,A. (10)

As a consequence of (10), we have

S(m−1)
0,A =

n∏

i=0

|wi |2 S(m−1)
n+1,A for all n ≥ 0.

Hence, we obtain the result.
2. The claim is a direct consequence of (10) and Proposition 2.1. �
Corollary 2.3 Let T be a unilateral weighted forward shift with weight sequence
{wn}n≥0. Let H

(m)
i, j,A be as

H (m)
i, j,A :=

⎛

⎝
i∏

p=0

wp

⎞

⎠

⎛

⎝
j∏

q=0

wq

⎞

⎠ S(m)
i, j,A, i, j ≥ 0. (11)

Then, we have

1. If T is an (A,m)-isometry, then
(a) H (m)

i,A := H (m)
i,i,A = 0 for all i ≥ 0.

(b)
∑

i, j H
(m)
i, j,A = 0 for all i, j ≥ 0.
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2. If, for all i, j ≥ 0 H (m)
i, j,A = 0, then either T is an (A,m)-isometry or there exists

k ≥ 0 such that wk = 0.

Proof 1. Assuming that T is an (A,m)-isometry, (a) and (b) follow immediately
from 1. and 2. of Proposition 2.3.

2. Suppose that for all i, j ≥ 0 H (m)
i, j,A = 0, i.e

⎛

⎝
i∏

p=0

wp

⎞

⎠

⎛

⎝
j∏

q=0

wq

⎞

⎠ S(m)
i, j,A = 0

which implies that either there exists 0 ≤ k ≤ max(i, j) such that wk = 0 or
S(m)
i, j,A = 0 for all i, j ≥ 0 and, hence, we can conclude. �

Remark 2.3 Let { fn}n≥1 be an orthonormal basis (i.e ‖ fn‖ = 1 �= 0, n ≥ 1) and
T fn = wn fn+1 for all n ≥ 1. Assume that A = I . Then Proposition 2.1 holds, that is
wn �= 0 for all n ≥ 1. Moreover, we consider

H̃ (m)
i, j,A :=

⎛

⎝
i−1∏

p=0

wp

⎞

⎠

⎛

⎝
j−1∏

q=0

wq

⎞

⎠ S(m)
i, j,A, i, j ≥ 1,

where w0 := 1. If H̃ (m)
n,A = 0 for all n ≥ 1, then assertion 2. of Proposition 2.3 implies

that T is an m-isometry. Hence, in that case we recover Proposition 3.2 ([4]), that is
T is an m-isometry if and only if

m∑

k=0

(−1)m−k
(
m

k

)(n+k−1∏

i=0

|wi |2
)

= 0 for all n ≥ 1.

For a fixed sequence {wk}k≥0, n ≥ 0 and m ≥ 1, let us denote

R(m)
n,A := (−1)m−1 (n − 1)(n − 2) . . . (n − m + 1)

(m − 1)! ‖e0‖2A

+
m−1∑

k=1

(−1)m−k−1 n(n − 1) . . .
︷ ︸︸ ︷
(n − k) . . . (n − m + 1)

k!(m − k − 1)!

(
k−1∏

i=0

|wi |2
)

‖ek‖2A,

(12)

where
︷ ︸︸ ︷
n − k denotes that the factor (n − k) is omitted. Remark that R(m)

0,A = ‖e0‖2A
and for j = 1, 2, . . . ,m − 1,

R(m)
j,A =

⎛

⎝
j−1∏

i=0

|wi |2
⎞

⎠ ‖e j‖2A (≥ 0). (13)
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As it was shown in [4] for m-isometric weighted shifts, in the following result we
describe the behavior of a given unilateral weighted forward shift which is (A,m)-
isometric by means of his weight sequence sequence.

Theorem 2.4 Let T be a unilateral weighted forward shift with weight sequence
{wn}n≥0. The following claims hold true.

1. Assume that there exists 0 ≤ n0 ≤ m − 2 such that e j /∈ N (A), 0 ≤ j ≤ n0 + 1.
If T is an (A,m)-isometry then

|wi |2 = R(m)
i+1,A

R(m)
i,A

‖ei‖2A
‖ei+1‖2A

(> 0) for 0 ≤ i ≤ n0. (14)

2. Assume that there exists n0 ≥ 0 such that ei /∈ N (A), 0 ≤ i ≤ n0 + m and

|wp|2 = R(m)
p+1,A

R(m)
p,A

‖ep‖2A
‖ep+1‖2A

(> 0) for 0 ≤ p ≤ n0 + m − 1. (15)

Then H (m)
j,A = 0 for all 1 ≤ j ≤ n0.

Proof 1. Assume that T is an (A,m)-isometry. From Proposition 2.1 we obtain
wi �= 0 for any 0 ≤ i ≤ n0 + 1. By Theorem 1.1 we have that, for every u ∈ H

and for all n ≥ 0,

‖T nu‖2A =
m−1∑

k=0

(−1)m−k−1 n(n − 1) . . .
︷ ︸︸ ︷
(n − k) . . . (n − m + 1)

k!(m − k − 1)! ‖T ku‖2A.

For u = e0 and for all n ≥ 1, we obtain

( n−1∏

i=0

|wi |2
)
‖en‖2A = (−1)m−1 (n − 1)(n − 2) . . . (n − m + 1)

(m − 1)! ‖e0‖2A

+
m−1∑

k=1

(−1)m−k−1 n(n − 1) . . .
︷ ︸︸ ︷
(n − k) . . . (n − m + 1)

k!(m − k − 1)!

×
(
k−1∏

i=0

|wi |2
)

‖ek‖2A.

The equalities (12)–(13) give R(m)
k,A �= 0 for all 0 ≤ k ≤ m−1. Moreover, we have

R(m)
j,A‖e j+1‖2A|w j |2 = R(m)

j+1,A‖e j‖2A for all 0 ≤ j ≤ n0.
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Consequently,

|w j |2 = R(m)
j+1,A

R(m)
j,A

‖e j‖2A
‖e j+1‖2A

(> 0) (0 ≤ j ≤ n0).

2. Assume that (15) is verified. First note that

R(m)
j+k,A =

⎛

⎝
j+k−1∏

i=0

|wi |2
⎞

⎠ ‖e j+k‖2A �= 0 ( j ≥ 1, k ≥ 0).

For 0 ≤ j ≤ n0, we have

H (m)
j,A =

⎛

⎝
j∏

i=0

|wi |2
⎞

⎠ S(m)
j,A

=
⎛

⎝
j∏

i=0

|wi |2
⎞

⎠

[

(−1)m‖e j‖2A +
m∑

k=1

(−1)m−k
(
m

k

) (
k−1∏

i=0

|wi+ j |2
)

‖e j+k‖2A
]

= (−1)m

⎛

⎝
j∏

i=0

|wi |2
⎞

⎠ ‖e j‖2A + |w j |2
m∑

k=1

(−1)m−k
(
m

k

)
⎛

⎝
j+k−1∏

i=0

|wi |2
⎞

⎠

×‖e j+k‖2A.

Taking into account (13) and for 1 ≤ j ≤ n0, we obtain

H (m)
j,A = |w j |2

[ m∑

k=0

(−1)m−k
(
m

k

)

R(m)
j+k,A

]

= |w j |2
{ m∑

k=0

(−1)m−k
(
m

k

)

(−1)m−1

× ( j + k − 1)( j + k − 2) . . . ( j + k − m + 1)

(m − 1)! ‖e0‖2A

+
m∑

k=0

(−1)m−k
(
m

k

)

×
[ m−1∑

h=1

(−1)m−h−1 ( j + k) . . .
︷ ︸︸ ︷
( j + k − h) . . . ( j + k − m + 1)

h!(m − h − 1)!

×
h−1∏

i=0

|wi |2‖eh‖2A
]}

= |w j |2(A + B),
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where,

A =
m∑

k=0

(−1)m−k
(
m

k

)

(−1)m−1

× ( j + k − 1)( j + k − 2) . . . ( j + k − m + 1)

(m − 1)! ‖e0‖2A
= (−1)m−1m‖e0‖2A

×
m∑

k=0

(−1)m−k ( j + k − 1)( j + k − 2) . . . ( j + k − m + 1)
︷ ︸︸ ︷
( j + k − m)

k!(m − k)! ,

B =
m∑

k=0

(−1)m−k
(
m

k

)

×
[ m−1∑

h=1

(−1)m−h−1 ( j + k) . . .
︷ ︸︸ ︷
( j + k − h) . . . ( j + k − m + 1)

h!(m − h − 1)!

×
h−1∏

i=0

|wi |2‖eh‖2A
]

=
m−1∑

h=1

(−1)m−h−1 m!
h!(m − h − 1)!

h−1∏

i=0

|wi |2‖eh‖2A

×
[ m∑

k=0

(−1)m−k ( j + k) . . .
︷ ︸︸ ︷
( j + k − h) . . . ( j + k − m + 1)

k!(m − k)!
]
.

Taking into account equality (3.2) [4], Lemma 3.3 we obtain A = 0 and B = 0.
Hence, H (m)

j,A = 0 for 1 ≤ j ≤ n0. �
Remark 2.4 Let T be the unilateral weighted forward shift with weight sequence
{wn}n≥0. From Theorem 2.4 we obtain the following characterizations:

1. Assume that (en)n≥0 is A-orthogonal, en /∈ N (A) for all n ≥ 0 and S(m)
0,A = 0.

Then, T is an (A,m)-isometry if and only if

R(m)
n,A =

(
n−1∏

i=0

|wi |2
)

‖en‖2A > 0 for every n ≥ 1.

If A = I , then we obtain a conclusion similar to that of Remark 3.5 ([4]).
2. Assume that there exists 0 ≤ n0 ≤ m − 2 such that e j /∈ N (A), 0 ≤ j ≤ n0 + 1.

We have:
(a) If T is an A-isometry, then

‖ei‖A = |wi | ‖ei+1‖A for every i ≥ 0.
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(b) If T is an (A, 2)-isometry, then

|wi |2 =
(i + 1)|w0|2 − i

‖e0‖2A
‖e1‖2A

i |w0|2 − (i − 1)
‖e0‖2A
‖e1‖2A

‖ei‖2A
‖ei+1‖2A

(0 ≤ i ≤ n0)

=
i
(
|w0|2 − ‖e0‖2A

‖e1‖2A

)
+ |w0|2

(i − 1)
(
|w0|2 − ‖e0‖2A

‖e1‖2A

)
+ |w0|2

‖ei‖2A
‖ei+1‖2A

.

Moreover, observe that

|w0| ≥ ‖e0‖A

‖e1‖A
⇐⇒ |wi | > 0 (0 ≤ i ≤ n0).

In particular, if |w0| >
‖e0‖A‖e1‖A , then T is a strict (A, 2)-isometry.

2.2 Unilateral Weighted Backward Shifts

A unilateral weighted backward shift Bw with weight sequence {wn}n≥1 is defined by
Bwen = wnen−1 if n ≥ 1 and by Bweo = 0. The iterates of Bw are given by

Bk
wen =

⎧
⎪⎨

⎪⎩

( k−1∏

i=0

wn−i

)
en−k if 1 ≤ k ≤ n;

0 otherwise.

(16)

Let u =
∞∑

n=0

αnen ∈ H. We have

m∑

k=0

(−1)m−k
(
m

k

)

‖Bk
wu‖2A

=
∞∑

n=0

|αn|2
{
(−1)m ‖en‖2A +

m∑

k=1

(−1)m−k
(
m

k

)

‖Bk
wen‖2A

}

+
∑

i �= j

αiα j

{
(−1)m〈Aei | e j 〉 +

m∑

k=1

(−1)m−k
(
m

k

)

〈ABk
wei | Bk

we j 〉
}
,

where

〈ABk
wei | Bk

we j 〉 =

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎝
k−1∏

p=0

wi−pw j−p

⎞

⎠ 〈Aei−k | e j−k〉 if 1 ≤ k ≤ i < j;

0 if k > min(i, j).

(17)
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Unilateral weighted backward shifts cannot be m-isometric for any positive integer
number m, since Bw does not satisfies Eq. (2) for the vector e0. We prove in the
following result that they cannot also be (A,m)-isomeric.

Theorem 2.5 A unilateral weighted backward shift can not be an (A,m)-isometry
for any positive integer m.

Proof Let Bw be a unilateral weighted backward shift with weight sequence {wn}n≥1.
Assume that Bw is an (A,m)-isometry. Then en ∈ N (A) for all n ≥ 0. Indeed, we
use an induction argument to prove such a claim. Since Bw is an (A,m)-isometry, Eq.
(2) gives

(−1)m ‖en‖2A +
m∑

k=1

(−1)m−k
(
m

k

)

‖Bk
wen‖2A = 0 for all n ≥ 0. (18)

Since Bk
we0 = 0 for all k ≥ 1, we obtain

0 =
m∑

k=1

(−1)m−k
(
m

k

)

‖Bk
we0‖2A = (−1)m+1 ‖e0‖2A, (19)

which implies that e0 ∈ N (A) and, hence, the property is satisfied for n = 0. Assume
that for p = 0, 1, 2, . . . , n − 1 (n ≥ 1), ep ∈ N (A) and let us show the property for
the step n. Taking (17) and (18) into account, we deduce

(−1)m ‖en‖2A +
n∑

k=1

(−1)m−k
(
m

k

) (
k−1∏

i=0

|wn−i |2
)

‖en−k‖2A = 0 if 1 ≤ n ≤ m,

(−1)m ‖en‖2A +
m∑

k=1

(−1)m−k
(
m

k

) (
k−1∏

i=0

|wn−i |2
)

‖en−k‖2A = 0 if n ≥ m + 1,

and the claim follows from that. On the other hand, every u ∈ H can be written as

u =
∑∞

i=0
αi ei . Hence,

〈Au | u〉 =
∞∑

i=0

|αi |2‖ei‖2A +
∑

0≤i �= j

αiα j 〈Aei | e j 〉 = 0.

According to Proposition 2.15, [5], we obtain A = 0 which is impossible. �

3 Strict (A,m)-Isometric Unilateral Weighted Forward Shifts

Generally, an (A,m)-isometry is not an (A,m − 1)-isometry. Sid Ahmed et al. (The-
orem 2.1 [8]) proved that if T is an (A,m)-isometry satisfying N (�A,T ) is invariant
for A, then T |N (�A,T ) is an (A|N (�A,T ),m − 1)-isometry. Moreover we can see that if
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T is an invertible (A,m)-isometry and m is even, then it is an (A,m − 1)-isometry. In
the following we describe when a unilateral weighted shift operator is a strict (A,m)-
isometry in terms of the weights sequence. To be precise we define

Zn := |wn |2S(m−1)
n+1,A =

m−1∑

k=0

(−1)m−1−k
(
m − 1

k

)
⎛

⎝
k∏

i=0

|wn+i |2
⎞

⎠ ‖en+k+1‖2A, for all n ≥ 0.

Theorem 3.1 Let T be an (A,m)-isometric unilateral weighted forward shift with
weight sequence {wn}n≥0. If there exists n0 ∈ N such that Zn0 �= 0 then wn0 �= 0 and
T is a strict (A,m)-isometry.

Proof Two proofs for this theorem will be given.
First proof Since there exists n0 ∈ N such that Zn0 �= 0, we have wn0 �= 0 and
S(m−1)
n0+1,A �= 0. Hence, Theorem 2.2 allows to conclude.

Second proof Let us prove the converse. Assume that T is an (A,m)-isometry and an
(A,m − 1)-isometry. Then, for u = en , the identity (2) gives

0 = (−1)m‖en‖2A +
m∑

k=1

(−1)m−k
(
m

k

)(k−1∏

i=0

|wn+i |2
)

‖en+k‖2A, (20)

0 = (−1)m‖en‖2A +
m−1∑

k=1

(−1)m−k
(
m − 1

k

)(k−1∏

i=0

|wn+i |2
)

‖en+k‖2A. (21)

Remarking that
(m
k

)− (m−1
k

) = (m−1
k−1

)
, the identities (20) and (21) give Zn = 0 for all

n ≥ 0. As a consequence, if there exists n0 ∈ N such that Zn0 �= 0 then either T is
an (A,m)-isometry and not an (A,m − 1)-isometry or T is not an (A,m)-isometry
and it is an (A,m − 1)-isometry. The second conclusion is impossible since it is well
known that every (A,m − 1)-isometry is an (A,m)-isometry. Hence T is a strict
(A,m)-isometry. �

We have the following result.

Theorem 3.2 Let T be a unilateral weighted forward shift with weight sequence
{wn}n≥0 (wn �= 0 for all n ∈ N). Assume that (en)n≥0 is A-orthogonal. If T is a strict
(A,m)-isometry then for every nonnegative integer n, S(m)

n,A = 0 and S(m−1)
n,A �= 0.

Proof Note that if (en)n≥0 is A-orthogonal, then S(m−1)
i, j,A = 0 for all i �= j ≥ 0.

Suppose that T is a strict (A,m)-isometry. Then, Eq. (2) gives

S(m)
n,A = (−1)m‖en‖2A+

m∑

k=1

(−1)m−k
(
m

k

)(k−1∏

i=0

|wn+i |2
)

‖en+k‖2A = 0 for all n≥0.

Let us prove now that S(m−1)
n,A �= 0 for all n ≥ 0. Assume the contrary, that n0 is the

smallest non-negative integer such that S(m−1)
n0,A

= 0. Our aim is to prove that n0 = 0.
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If n0 ≥ 1 we obtain S(m−1)
n0−1,A �= 0, which is impossible from (10). Furthermore,

Proposition 2.3 yields T is an (A,m − 1)-isometry. Hence we obtain the desired
result. �

As an immediate corollary to Theorem 3.2, we characterize unilateral weighted
forward shifts that are strictly (A,m)-isometric.

Corollary 3.3 Let T be a unilateral weighted forward shift with weight sequence
{wn}n≥0. Assume that (en)n≥0 is A-orthogonal. Then, the following assertions are
equivalent:

1. T is a strict (A,m)-isometry.
2. For every n ∈ N, we have

(a) S(m)
n,A = 0.

(b) S(m−1)
n,A �= 0.

Proof Suppose that T is a strict (A,m)-isometry. Then Theorem 3.2 shows that 2.
holds. Suppose, now, that (a) and (b) hold true. Since (en)n≥0 is an orthonormal basis,

then every u ∈ H can be written as u =
∑∞

i=0
αi ei . According to (a), we have

m∑

k=0

(−1)m−k
(
m

k

)

‖T ku‖2A =
∞∑

i=0

|αi |2S(m)
i,A = 0.

This implies that (2) holds for every u ∈ H and hence T is an (A,m)-isometry. On
the other hand, for all n ≥ 0,

m−1∑

k=0

(−1)m−k
(
m − 1

k

)

‖T ken‖2A = S(m−1)
n,A �= 0.

Thus, T is not an (A,m − 1)-isometry. �
We now apply Corollary 3.3 to investigate the following example.

Example 3.1 Let H be a separable Hilbert space with an orthonormal basis {en}n≥0.
Let T , A ∈ L(H) where T is the unilateral weighted shift defined by

T en =
√
n + 3

n + 1
en+1, n ≥ 0

and A is the positive operator given by Aen = n+1
n+2 en , n ≥ 0. It is not difficult to

verify that

S(3)
n,A = 0, S(2)

n,A = 2

(n + 1)(n + 2)
, n ≥ 0

and hence T is an (A, 3)-isometry which is not an (A, 2)-isometry.

123



(A,m)-Isometric Unilateral Weighted Shifts… 387

In general, (A,m)-isometries are not A-isometries. Theorem 2.3 [9] gives a first char-
acterization of (A,m)-isometric operators which are A-isometries. In the same way,
we will describe in the following result the related characterization for a family of
unilateral weighted shifts.

Proposition 3.1 Let T be a unilateral weighted forward shift with weight sequence
{wn}n≥0 (wn �= 0 for all n ∈ N). Assume that (en)n≥0 is A-orthogonal. If T is an
(A,m)-isometry and if, for some nonzero u ∈ H, we have

‖u‖A = ‖T ku‖A, 1 ≤ k ≤ m − 1, (22)

then T is an A-isometry.

Proof Suppose that {en}n≥0 is an orthonormal basis for H and T en = wnen+1 for all

n ≥ 0. Put u =
∑∞

n=0
αnen . Then, (22) gives

m−1∑

k=0

(−1)m−k−1
(
m − 1

k

)

‖T ku‖2A =
m−1∑

k=0

(−1)m−k−1
(
m − 1

k

)

‖u‖2A

= ‖u‖2A
(

m−1∑

k=0

(
m − 1

k

)

(−1)m−k−1

)

= ‖u‖2A
(
1 + (−1)

)m−1

= 0.

Moreover, since (en)n≥0 is A-orthogonal, (4) implies that

m−1∑

k=0

(−1)m−k−1
(
m − 1

k

)

‖T ku‖2A =
∞∑

n=0

|αn|2
[

(−1)m−1‖en‖2A

+
m−1∑

k=1

(−1)m−1−k
(
m − 1

k

)

×
(

k−1∏

i=0

|wn+i |2
)

‖en+k‖2A
]

=
∞∑

n=0

|αn|2S(m−1)
n,A

=
∞∑

n=0

|αn|2
(
(m − 1)!〈�A,T en | en〉

)
.

According to Theorem 2.1 [8], �A,T is a positive operator (i.e 〈�A,T en | en〉 ≥ 0, for
all n ≥ 0). Since u is non-zero, αn0 �= 0 for some n0, then
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S(m−1)
n0,A

= (m − 1)!〈�A,T en0 | en0〉 = 0.

Thus, condition (b) in Corollary 3.3 does not occur and so T must be an (A,m − 1)-
isometry. Now, applying an argument similar to the above and using Corollary 3.3,
(m − 1) times, we conclude that T must be an A-isometry. �
Remark 3.1 The conclusion of Proposition 3.1 is not valid, in general, for any operator
T and any operator A. Indeed, let K = C

2 be equipped with the norm ‖(x, y)‖2 =
|x |2 + |y|2 and consider the operators

A =
(
1 1
1 2

)

, T =
(
1 1
0 1

)

.

Note that A ∈ L(H)+ and T ∈ L(H). Moreover, by direct computation, we see that

‖(x, y)‖2A = x2 + 2xy + 2y2,

‖T (x, y)‖2A = x2 + 4xy + 5y2,

‖T 2(x, y)‖2A = x2 + 6xy + 10y2,

‖T 3(x, y)‖2A = x2 + 8xy + 17y2.

Consequently,

‖T 3(x, y)‖2A − 3‖T 2(x, y)‖2A + 3‖T (x, y)‖2A − ‖(x, y)‖2A = 0,

‖T 2(x, y)‖2A − 2‖T (x, y)‖2A + ‖(x, y)‖2A = 2y2 �= 0

and ‖T (x, y)‖2A − ‖(x, y)‖2A = 2xy + 3y2 �= 0.

Thus, T is an (A, 3)-isometry but is nor an (A, 2)-isometry neither an A-isometry.
Furthermore, if u = (1, 0) then ‖u‖A = ‖Tu‖A = ‖T 2u‖A = 1.

4 (A, 2)-Expansive Weighted Shift Operators

An operator T ∈ L(H) is said to be (A, 2)-expansive (also A-concave), if it satisfies
the inequality

�
(2)
A (T ) = T ∗2AT 2 − 2T ∗AT + A ≤ 0

or, equivalently,

‖T 2u‖2A − 2‖Tu‖2A + ‖u‖2A ≤ 0 for all u ∈ H. (23)

As amatter of fact, (A, 2)-isometries and A-isometries are (A, 2)-expansive operators.
In addition, it was shown in [11], Proposition 3.9 that all powers of an (A, 2)-expansive
operator is also (A, 2)-expansive.
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In this section we give some properties of (A, 2)-expansive operators that general-
izes those described in [7].

The A-covariance operator for an (A, 2)-expansive operator is given by �A,T =
T ∗AT − A. We begin with the following preliminary result.

Lemma 4.1 Let T ∈ L(H). Then,
T is (A, 2)-expansive if and only if T ∗�A,T T ≤ �A,T .

Proof Let u ∈ H. We have

〈(T ∗�A,T T − �A,T )u, u〉 = ‖T 2u‖2A − 2‖Tu‖2A + ‖u‖2A
thus the claim follows from that. �

Jung et al. proved in [11], Theorem 3.10 that the A-covariance operator for an
(A, 2)-expansive operator is positive. In the following theorem we show the same
claim using different approach.

Theorem 4.1 Let T ∈ L(H). If T is (A, 2)-expansive, then:

1. �A,T is a positive operator.
2. If A is injective then T is also injective.
3. If T is invertible, then T−1 is (A, 2)-expansive.

Proof 1. Let u ∈ H. We have

〈�A,T u, u〉 = 〈(T ∗AT − A)u, u〉 = ‖Tu‖2A − ‖u‖2A.

To obtain the claim let us suppose on the contrary that ‖Tu0‖A < ‖u0‖A for some
u0 ∈ H. By using on induction argument we obtain

‖T nu0‖2A < ‖T n−1u0‖2A < · · · < ‖u0‖2A
for each positive integer number n. We deduce that the sequence {‖T nu0‖2A}n≥0
is strictly decreasing, bounded and hence it is convergent. Moreover we have

0 = lim
n−→+∞(‖T n+1u0‖2A − ‖T nu0‖2A) < 0

which is a contradiction. Thus 〈�A,T u, u〉 ≥ 0 for all u ∈ H.
2. If T ∈ L(H) is (A, 2) -expansive andu ∈ N (T ) thus Tu = 0.Moreover, ‖Tu‖2A =

‖T 2u‖2A = 0. Since T is A-concave, ‖u‖A = 0 which is equivalent to the fact that
u ∈ N (A).

3. By hypothesis, T is (A, 2)-expansive. Then, we have

2∑

k=0

(−1)k
(
2

k

)

‖T 2−ku‖2A ≤ 0 for all u ∈ H. (24)
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Replacing u by (T−1)2u in (24), we deduce that

2∑

k=0

(−1)k
(
2

k

)

‖T 2−k((T−1)2u)‖2A =
2∑

k=0

(−1)k
(

2

2 − k

)

‖T−ku‖2A

=
2∑

k=0

(−1)2−k
(
2

k

)

‖(T−1)2−ku‖2A

=
2∑

k=0

(−1)k
(
2

k

)

‖(T−1)2−ku‖2A.

�
Proposition 4.1 Let T ∈ L(H) be an A-isometry and S ∈ L(H) with ST = T S, then
ST is (A, 2)-expansive if and only if S is (A, 2)-expansive.

Proof Since T is an A-isometry, we have

‖T k Sku‖A = ‖Sku‖A, k = 0, 1, 2.

On the other hand, we have

2∑

k=0

(−1)k
(
2

k

)

‖(ST )2−ku‖2A =
2∑

k=0

(−1)k
(
2

k

)

‖(T S)2−ku‖2A

=
2∑

k=0

(−1)k
(
2

k

)

‖T 2−k S2−ku‖2A

=
2∑

k=0

(−1)k
(
2

k

)

‖S2−ku‖2A

which allows us to conclude. �
Corollary 4.2 Let T ∈ L(H) be an inversible (A, 2)-expansive operator and S ∈
L(H) with ST = T S, then ST is (A, 2)-expansive if and only if S is (A, 2)-expansive.

Proof It suffises to prove that T is an A-isometry. If T is an invertible (A, 2)-expansive
operator, then T−1 is also (A, 2)-expansive. Hence, by (1.)-Theorem 4.1 �A,T ≥ 0
and

�A,T−1 = T−1∗AT−1 − A ≥ 0.

On the other hand,

�A,T = T ∗AT − A = −T ∗(T−1∗AT−1 − A)T ≤ 0,
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which implies that T is an A-isometry. Thus we complete the proof by involving
Proposition 4.1. �

Now,we specify the study to unilateral weighted shifts.We give results generalizing
those described in [7].

Theorem 4.3 Let T be a unilateral weighted forward shift with weights {wn}n≥0.
Assume that for all n ∈ N, en /∈ N (A). If T is (A, 2)-expansive, then the following
assertions holds.

1. S(2)
n,A = |wn|2|wn+1|2‖en+2‖2A − 2|wn|2‖en+1‖2A + ‖en‖2A ≤ 0 for each n;

2. {Vn}n =
{
|wn| ‖en+1‖A

‖en‖A
}

n
is a decreasing sequence of real numbers converging to

1;
3. ‖en‖A‖en+1‖A ≤ |wn| <

√
2 ‖en‖A‖en+1‖A , for all n ≥ 0.

Proof 1. Applying (23) for u = en we obtain the claim.
2. Let Vn = |wn| ‖en+1‖A

‖en‖A . To prove the assertion let us assume the contrary that
Vn < Vn+1 for some non-negative integer n. Therefore,

0 ≤
(
|wn|2 ‖en+1‖2A

‖en‖A
− ‖en‖A

)2
< S(2)

n,A ≤ 0,

which is a contradiction. Hence {Vn}n is a decreasing sequence of non-negative
numbers. On the other hand, by Theorem 4.1 the operator �A,T is positive, that is

〈�A,T u, u〉 = ‖Tu‖2A − ‖u‖2A ≥ 0 for all u ∈ H. (25)

Thus for u = en the identity (25) gives

‖T en‖A = |wn|‖en+1‖A ≥ ‖en‖A,

which implies that Vn ≥ 1 for all n ≥ 0. Since the sequence {Vn}n is decreasing,
it must be convergent. Let l = limn−→+∞ Vn . Our aim now is to prove that l = 1.
Taking into account that S(2)

n,A ≤ 0, it is easily seen that Vn satisfies

V 2
n V

2
n+1 − 2V 2

n + 1 ≤ 0 for all n ≥ 0. (26)

It holds that

lim
n−→+∞(V 2

n V
2
n+1 − 2V 2

n + 1) = (l2 − 1)2 ≤ 0

and hence l = 1.
3. The identity (26) implies

V 2
n+1 − 2 = (Vn+1 − √

2)(Vn+1 + √
2) ≤ − 1

V 2
n

< 0,
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so 1 ≤ Vn <
√
2, for each n ≥ 0, which allows us to conclude. �

Theorem 4.4 A unilateral weighted backward shift cannot be (A, 2)-expansive.

Proof We argue by contradiction. Assume that Bw is (A, 2)-expansive. Since Bw is a
unilateral weighted backward shift, Bwen = wnen−1 for all n ≥ 1 and Bwe0 = 0. On
the other hand, (23) gives

‖B2
wen‖2A − 2‖Bwen‖2A + ‖en‖2A ≤ 0 for all n ≥ 0. (27)

It is easily seen that for i = 0, 1, ei ∈ N (A). Using (27) we prove by an induction
argument that en ∈ N (A) for all n ≥ 2. Hence A = 0 which is impossible. �
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