

*(A, m)***-Isometric Unilateral Weighted Shifts in Semi-Hilbertian Spaces**

R. Rabaoui1 · A. Saddi1

Received: 8 October 2015 / Revised: 29 December 2015 / Published online: 13 February 2016 © Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2016

Abstract For a positive integer *m*, a bounded linear operator *T* on a Hilbert space \mathbb{H} is called an (A, m) -isometry, if $\Theta_A^{(m)}(T) = \sum_{k=0}^m (-1)^{m-k} {m \choose k} T^{*k} A T^k = 0$, where *A* is a positive (semi-definite) operator. In this paper we give a characterization of (A, m) -isometric and strict (A, m) -isometric unilateral weighted shifts in terms of their weight sequences, respectively. Moreover, we characterize (*A*, 2)-expansive unilateral weighted shifts (i.e. operators satisfying $\Theta_A^{(2)}(T) \le 0$).

Keywords (A, m) -isometry \cdot (A, m) -expansive operators \cdot Unilateral weighted shifts

Mathematics Subject Classification 46C05 · 47A05 · 47B37

1 Introduction and Preliminaries

Throughout the paper, H denotes a separable infinite dimensional complex Hilbert space with inner product $\langle \cdot | \cdot \rangle$ and $\{e_n\}_{n\geq 0}$ is an orthonormal basis of H. *A* represents a nonzero $(A \neq 0)$ positive operator and denote *I* the identity operator on \mathbb{H} . By $\mathcal{L}(\mathbb{H})$ we denote the Banach algebra of all linear operators on \mathbb{H} . For every $T \in \mathcal{L}(\mathbb{H})$ its range is denoted by $R(T)$, its null space by $N(T)$ and its adjoint by T^* . The cone

Communicated by Rosihan M. Ali.

B R. Rabaoui rchid.rabaoui@fsg.rnu.tn A. Saddi adel.saddi@fsg.rnu.tn

¹ Department of Mathematics, Faculty of Sciences, 6072 Gabès, Tunisia

of positive (semi-definite) operators and the set of all $T \in \mathcal{L}(\mathbb{H})$ which admit an *A*-adjoint are given, respectively, by

$$
\mathcal{L}(\mathbb{H})^+ := \{ A \in \mathcal{L}(\mathbb{H}) : \langle A\,u \mid u \rangle \geq 0, \ \forall \, u \in \mathbb{H} \},
$$

$$
\mathcal{L}_A(\mathbb{H}) := \{ T \in \mathcal{L}(\mathbb{H}) : R(T^*A) \subset R(A) \}.
$$

Any $A \in \mathcal{L}(\mathbb{H})^+$ defines a positive semi-definite sesquilinear form:

$$
\langle \cdot | \cdot \rangle_A : \mathbb{H} \times \mathbb{H} \longrightarrow \mathbb{C}, \ \ \langle u | v \rangle_A := \langle Au | v \rangle.
$$

By $\|\cdot\|_A$ we denote the semi-norm induced by $\langle\cdot|\cdot\rangle_A$, i.e. $\|u\|_A = \langle u \mid u \rangle_A^{\frac{1}{2}}$. Observe that $||u||_A = 0$ if and only if $u \in N(A)$. Then $|| \cdot ||_A$ is a norm if and only if *A* is an injective operator.

Definition 1.1 For a positive operator *A*, we say that *u*, $v \in \mathbb{H}$ are *A*-orthogonal if

$$
\langle u \mid v \rangle_A = \langle Au \mid v \rangle = 0.
$$

More general, a family of vectors $(u_i)_i$ is *A*-orthogonal if $\langle u_i | u_j \rangle_A = 0$, for all $i \neq j$.

For any $T \in \mathcal{L}(\mathbb{H})$ and $A \in \mathcal{L}(\mathbb{H})^+$, define

$$
\Theta_A^{(m)}(T) = \sum_{k=0}^m (-1)^{m-k} \binom{m}{k} T^{*k} A T^k, \quad m \ge 1.
$$
 (1)

We say that *T* is (A, m) -expansive if $\Theta_A^{(m)}(T) \le 0$ for some positive integer *m*. For more details on such a family, we refer the readers to [\[11](#page-21-0)].

A detailed study of *m*-isometries was developed by Agler and Stankus [\[1](#page-21-1)[–3](#page-21-2)]. Recently, Sid Ahmed et al. [\[8\]](#page-21-3) generalized the concept of those operators on a Hilbert space when an additional semi-inner product is considered. They introduced the (A, m) -isometries as a special case of (A, m) -expansive operators. In [\[9](#page-21-4)], we gave a detailed study concerning the behavior of the orbits of such a family. In fact, for *m* ∈ N, an operator *T* ∈ $\mathcal{L}(\mathbb{H})$ is called an (A, m) -isometry if $\Theta_A^{(m)}(T) = 0$, or equivalently,

$$
\sum_{k=0}^{m} (-1)^{m-k} \binom{m}{k} ||T^k u||_A^2 = 0 \text{ for all } u \in \mathbb{H}.
$$
 (2)

Remark 1.1 1. An (*A*, 1)-isometry will be called an *A*-isometry.

2. *T* will be said a strict (A, m) -isometry if it is an (A, m) -isometry but not an $(A, m - 1)$ -isometry.

For $T \in \mathcal{L}(\mathbb{H})$ and $k = 0, 1, 2, \ldots$, we consider the operator

$$
\beta_k(T) = \frac{1}{k!} \Theta_A^{(k)}(T).
$$

 $\circled{2}$ Springer

For $n \geq k$, we denote

$$
n^{(k)} = \begin{cases} 1, & \text{if } n = 0 \text{ or } k = 0; \\ \binom{n}{k} k! = n(n-1)(n-2)\dots(n-k+1), \text{ otherwise.} \end{cases}
$$

Observe that $\beta_0(T) = A$ and if *T* is an (A, m) -isometry, then $\beta_k(T) = 0$ for every $k \geq m$. Hence, according to [\[9\]](#page-21-4) we have

$$
||T^n u||_A^2 = \sum_{k=0}^{m-1} n^{(k)} \langle \beta_k(T) u | u \rangle \quad \text{for all } u \in \mathbb{H}.
$$
 (3)

The *A*-covariance operator $\Delta_{A,T}$ is defined by

$$
\Delta_{A,T} := \beta_{m-1}(T) = \frac{1}{(m-1)!} \Theta_A^{(m-1)}(T). \tag{4}
$$

Theorem 2.1 [\[4\]](#page-21-5) gives a useful characterization of *m*-isometries on a Hilbert space. The same proof works for (A, m) -isometries. In fact, we show that if *T* is an (A, m) isometry then it is possible to explain the semi-norm $||T^n u||_A$ of $T^n u$ in terms of the semi-norms of the vectors $u, Tu, ..., T^{m-1}u$.

Theorem 1.1 An operator $T \in \mathcal{L}(\mathbb{H})$ is an (A, m) -isometry if and only if

$$
||T^n u||_A^2 = \sum_{k=0}^{m-1} (-1)^{m-k-1} \frac{n(n-1)\dots(n-k)\dots(n-m+1)}{k!(m-k-1)!} ||T^k u||_A^2 \quad (5)
$$

for all $n \geq 0$ *and all* $u \in \mathbb{H}$, *where* $n - k$ *denotes that the factor* $(n - k)$ *is omitted.*

Remark 1.2 For $k = 0, 1, 2, \ldots, (m-1)$, the coefficient of $||T^k u||_A^2$ is a polynomial in *n* of degree $(m - 1)$.

The paper is organized as follows. In Sect. [2](#page-3-0) we focus on unilateral weighted shifts which are (A, m) -isometries. A characterization in terms of the weight sequence is given for the forward shifts. Then, we describe the behavior of the weights for such a family. Finally, in order that the paper will be self-contained, we give a characterization for backward shifts.

Generally, an (A, m) -isometry is not an $(A, m - 1)$ -isometry (see [\[8\]](#page-21-3)). Inspired from that, the aim of Sect. [3](#page-13-0) is the study of strict (*A*, *m*)-isometric unilateral weighted forward shifts. A characterization for a particular operator *A* is also given. In Sect. [4](#page-17-0) we focus on (*A*, 2)-expansive (or *A*-concave) operators. Some properties related to unilateral weighted shifts are given.

2 *(A, m)***-Isometric Unilateral Weighted Shifts**

The aim of this section is to give a characterization of unilateral weighted shift operators which are (A, m) -isometries in terms of their weight sequences. Before starting the study, first we recall that a unilateral weighted shift *T* is unitarily equivalent to a weighted shift operator with a non-negative weight sequence. So we can assume that $w_n \geq 0$. Furthermore, if *T* is injective, it can be assumed that $w_n > 0$ (see [\[6](#page-21-6)[,10](#page-21-7)]).

2.1 Unilateral Weighted Forward Shifts

An operator $T \in \mathcal{L}(\mathbb{H})$ is said to be a unilateral weighted forward shift, if there exists an orthonormal basis $\{e_n\}_{n>0}$ and a sequence $\{w_n\}_{n>0}$ of complex numbers such that $Te_n = w_ne_{n+1}$. It is well known and it is not difficult to see that *T* is a bounded operator if and only if the weight sequence $\{w_n\}_{n>0}$ is bounded. The iterates of *T* are given by $T^0 = I$, and for $k > 1$,

$$
T^{k}e_{n} = \left(\prod_{i=0}^{k-1} w_{n+i}\right)e_{n+k}, \quad n \ge 0.
$$
 (6)

It was shown ([\[4\]](#page-21-5), Proposition 3.1) that if *T* is an *m*-isometric unilateral weighted forward shift operator with weight sequence $\{w_n\}_{n>1}$, then $w_n \neq 0$ for all $n \geq 1$. The characterization related to (*A*, *m*)-isometric unilateral weighted shifts is given in the following proposition.

Proposition 2.1 *Let T be a unilateral weighted forward shift with weight sequence* ${w_n}_{n>0}$. If T is an (A, m) -isometry and if there exists a nonnegative integer n_0 such *that* $e_{n_0} \notin N(A)$ *, then* $w_{n_0} \neq 0$ *.*

Proof Assume that there exists a nonnegative integer n_0 such that $||e_{n_0}||_A \neq 0$. Equation (6) implies that

$$
||T^{k}e_{n_{0}}||_{A}^{2} = \left(\prod_{i=0}^{k-1} |w_{i+n_{0}}|^{2}\right)||e_{k+n_{0}}||_{A}^{2}, \quad k \geq 1.
$$

Since $T^0e_{n_0}=e_{n_0}$, we obtain

$$
(-1)^{m+1} \|e_{n_0}\|_A^2 = \sum_{k=1}^m (-1)^{m-k} {m \choose k} \|T^k e_{n_0}\|_A^2
$$

$$
= \sum_{k=1}^m (-1)^{m-k} {m \choose k} \left(\prod_{i=0}^{k-1} |w_{i+n_0}|^2\right) \|e_{k+n_0}\|_A^2
$$

$$
= |w_{n_0}|^2 \left[(-1)^{m-1} {m \choose 1} \|e_{n_0+1}\|_A^2 + \sum_{k=2}^m (-1)^{m-k} {m \choose k} \left(\prod_{i=1}^{k-1} |w_{i+n_0}|^2\right) \|e_{k+n_0}\|_A^2\right]
$$

which gives

$$
|w_{n_0}|^2 = \frac{(-1)^{m+1} \|e_{n_0}\|_A^2}{(-1)^{m-1} {m \choose 1} \|e_{n_0+1}\|_A^2 + \sum_{k=2}^m (-1)^{m-k} {m \choose k} \left(\prod_{i=1}^{k-1} |w_{i+n_0}|^2\right) \|e_{k+n_0}\|_A^2}.
$$

Thus, the proof is achieved.

Corollary 2.1 *Let T be a unilateral weighted forward shift with weight sequence* {w*n*}*n*≥0*. The following assertions hold true.*

- *1. If T* is an A-isometry and if $e_0 \notin N(A)$, then $w_n \neq 0$ for all $n \geq 0$.
- *2. If T* is an (*A*, 2)*-isometry and* $e_{2p} \notin N(A)$ *for all* $p \ge 0$ *, then* $w_n \ne 0$ *for all* $n > 0$.
- *Proof* 1. If *T* is an *A*-isometry then $||Tu||_A = ||u||_A$ for all $u \in \mathbb{H}$. For $u = e_n$, we obtain

$$
|w_n|\|e_{n+1}\|_A=\|e_n\|_A
$$

which implies that if $e_0 \notin N(A)$, then $w_n \neq 0$ for all $n \geq 0$.

2. To obtain the desired claim we restrict ourselves to prove that, for each *n*, if $e_n \notin N(A)$ then $w_n \neq 0$ and $w_{n+1} \neq 0$. Since *T* is an $(A, 2)$ -isometry, $||T^2u||_A^2 - 2||Tu||_A^2 + ||u||_A^2 = 0$ for all $u \in \mathbb{H}$. For $u = e_n$, we obtain

$$
|w_n|^2 \left\{ |w_{n+1}|^2 \|e_{n+2}\|_A^2 - 2\|e_{n+1}\|_A^2 \right\} = -\|e_n\|_A^2. \tag{7}
$$

If $e_n \notin N(A)$, then [\(7\)](#page-4-0) implies that $w_n \neq 0$ and

$$
|w_{n+1}|\|e_{n+2}\|_A \pm \sqrt{2}\|e_{n+1}\|_A \neq 0. \tag{8}
$$

Moreover, if we assume that $w_{n+1} = 0$, then the identity [\(8\)](#page-4-1) gives $e_{n+1} \notin N(A)$, and hence $w_{n+1} \neq 0$ which is a contradiction.

In the following proposition we establish that if a unilateral weighted forward shift *T* with weight sequence $\{w_n\}_{n\geq 0}$ is *A*-bounded then the sequence $\left\{\frac{\|e_{n+1}\|_A}{\|e_n\|_A} w_n, n \geq 0\right\}$ is bounded.

Proposition 2.2 *Let* $T \in \mathcal{L}_A(\mathbb{H})$ *be a unilateral weighted forward shift with weight sequence* $\{w_k\}_{k>0}$ *. Assume that* $e_k \notin N(A)$ *for all* $k \in \mathbb{N}$ *. Then, for all* $n \geq 1$

$$
||T^n||_A \ge \sup_{k \in \mathbb{N}} \left\{ \left(\prod_{i=0}^{n-1} |w_{i+k}| \right) \frac{||e_{k+n}||_A}{||e_k||_A} \right\}.
$$
 (9)

Proof Note first that if $T \in \mathcal{L}_A(\mathbb{H})$, then $T^n \in \mathcal{L}_A(\mathbb{H})$ for all $n \geq 0$ and, moreover, we have

$$
||T^n u||_A \le ||T^n||_A ||u||_A \text{ for all } u \in \mathbb{H}, n \ge 0.
$$

Let $n \geq 1$. Since [\(6\)](#page-3-1) holds true, we have

$$
\left(\prod_{i=0}^{n-1} |w_{i+k}|\right) ||e_{k+n}||_A = ||T^n e_k||_A \leq ||T^n||_A ||e_k||_A.
$$

Thus taking supremum over all $k \in \mathbb{N}$, we obtain

$$
\sup_{k \in \mathbb{N}} \left\{ \left(\prod_{i=0}^{n-1} |w_{i+k}| \right) \frac{\|e_{k+n}\|_A}{\|e_k\|_A} \right\} \leq \|T^n\|_A.
$$

Remark 2.1 Equality between the two parts of [\(9\)](#page-4-2) does not holds true for every unilateral weighted forward shift *T* and any positive operator *A*. For example, assume that $n = 1$ and $w_k = 1$ for all $k \ge 0$. Let A be the operator given in the orthonormal basis $\{e_k\}_{k\geq 0}$ by the matrix $\{a_{jk}\}_{j,k\geq 0}$ such that $a_{jj} = 1$ for all $j \geq 0$, $a_{01} = a_{10} = \frac{1}{2}$, and all other elements are equal to 0. It is easily seen that *A* is an invertible positive operator. Moreover, $T \in \mathcal{L}_A(\mathbb{H})$. Remark that the right part of [\(9\)](#page-4-2) is equal to 1. Indeed,

$$
||e_k||_A^2 = \langle Ae_k | e_k \rangle = a_{kk} = 1, \text{ for all } k \ge 0.
$$

On the other hand, we have

$$
||e_0 - e_1||_A^2 = \langle A(e_0 - e_1) | (e_0 - e_1) \rangle
$$

= $a_{00} - 2a_{01} + a_{11} = 1$
and $||T(e_0 - e_1)||_A^2 = ||e_1 - e_2||_A^2$
= $\langle A(e_1 - e_2) | (e_1 - e_2) \rangle$
= $a_{11} - 2a_{12} + a_{22} = 2$.

Consequently, $||T||_A \geq \sqrt{2}$.

Every $u \in \mathbb{H}$ can be written as $u = \sum_{n \geq 0} \alpha_n e_n$; $\{\alpha_n\}_{n \geq 0} \subset \mathbb{C}$. Hence, we have

$$
\sum_{k=0}^{m} (-1)^{m-k} \binom{m}{k} \|T^{k}u\|_{A}^{2} = \sum_{i,j \geq 0} \alpha_{i} \overline{\alpha}_{j} S_{i,j,A}^{(m)},
$$

where

$$
S_{i,j,A}^{(m)} = \sum_{k=0}^{m} (-1)^{m-k} {m \choose k} \langle AT^{k}e_i | T^{k}e_j \rangle, \quad i, j \ge 0.
$$

Remark 2.2 If *T* is a unilateral weighted forward shift with weight sequence $\{w_n\}_{n>0}$, then we have

 $\bigcircled{2}$ Springer

$$
S_{i,j,A}^{(m)} = \begin{cases} (-1)^m \langle Ae_i | e_j \rangle + \sum_{k=1}^m (-1)^{m-k} \binom{m}{k} \left(\prod_{p=0}^{k-1} w_{i+p} \overline{w}_{j+p} \right) \langle Ae_{i+k} | e_{j+k} \rangle, & (i \neq j) \\ (-1)^m \|e_i\|_A^2 + \sum_{k=1}^m (-1)^{m-k} \binom{m}{k} \left(\prod_{p=0}^{k-1} |w_{i+p}|^2 \right) \|e_{i+k}\|_A^2 := S_{i,A}^{(m)}, & (i = j). \end{cases}
$$

Let us begin with the following theorem.

Theorem 2.2 *Let T be a unilateral weighted forward shift with weight sequence* ${w_n}_{n\geq0}$. Then T is an (A, m) -isometry if and only if $S_{i,j,A}^{(m)} = 0$ for all i, $j \geq 0$.

Proof Assume that *T* is an (A, m) -isometry. For $u = e_n$, [\(2\)](#page-1-0) implies that

$$
0 = \sum_{k=0}^{m} (-1)^{m-k} {m \choose k} \|T^{k}e_{n}\|_{A}^{2}
$$

= $(-1)^{m} \|e_{n}\|_{A}^{2} + \sum_{k=1}^{m} (-1)^{m-k} {m \choose k} \left(\prod_{i=0}^{k-1} |w_{n+i}|^{2}\right) \|e_{n+k}\|_{A}^{2}.$

Hence, for all $n \in \mathbb{N}$ we have $S_{n,A}^{(m)} = 0$. As a consequence, for all sequence $\{\alpha_n\}_n \subset \mathbb{C}$, it yields that $\sum_{i \neq j} \alpha_i \overline{\alpha}_j$ $S_{i,j,A}^{(m)} = 0$. Indeed, to prove such a claim we argue by contradiction. If there exists $\{\alpha_n\}_n$ such that $\sum_{i \neq j} \alpha_i \overline{\alpha}_j S_{i,j,A}^{(m)} \neq 0$, then if we take a nonzero $v = \sum_i \alpha_i e_i$ we obtain

$$
\sum_{k=0}^{m} (-1)^{m-k} \binom{m}{k} \|T^k v\|_A^2 \neq 0,
$$

which contradicts the fact that T is an (A, m) -isometry. Moreover, assume that there exists $i_0 \neq j_0$ such that $S_{i_0,j_0,A}^{(m)} \neq 0$. If we consider the sequence $\{\beta_n\}_n$ defined by $\beta_{i_0} \neq 0$, $\beta_{j_0} \neq 0$ and $\beta_i = 0$ otherwise, then for $s = \beta_{i_0} e_{i_0} + \beta_{j_0} e_{j_0}$, we obtain

$$
\sum_{k=0}^{m} (-1)^{m-k} \binom{m}{k} \|T^{k} s\|_{A}^{2} = \beta_{i_{0}} \overline{\beta_{j_{0}}} S_{i_{0},j_{0},A}^{(m)} \neq 0,
$$

which contradicts the hypothesis. Hence, $S_{i,j,A}^{(m)} = 0$ for all $i \neq j$.

For the converse, suppose that $S_{i,j,A}^{(m)} = 0$ for all *i*, $j \ge 0$. Since every vector $u \in \mathbb{H}$ can be written as $u = \sum_i \alpha_i e_i$, it follows that

$$
\sum_{k=0}^{m} (-1)^{m-k} \binom{m}{k} ||T^k u||_A^2 = \sum_{i,j} \alpha_i \overline{\alpha}_j S_{i,j,A}^{(m)} = 0.
$$

In the following proposition we give some properties related to the coefficients $S_{i,j,A}^{(m)}$ defined in Remark [2.2.](#page-5-0)

Proposition 2.3 *Let T be an* (*A*, *m*)*-isometric unilateral weighted forward shift with weight sequence* {w*n*}*n*≥0*. The following claims hold true.*

- *1. If* $S_{0,A}^{(m-1)} = 0$ *, then* $S_{n,A}^{(m-1)} = 0$ *for all* −1 ≤ *n* − 1 < inf{*n* ≥ 0/*w_n* = 0}*, where* $\inf\{n \ge 0/w_n = 0\} = +\infty$ *if* $\{n \ge 0/w_n = 0\} = \Phi$.
- *2. If* $e_n \notin N(A)$ *for all* $n \in \mathbb{N}$ *and* $S_{0,A}^{(m-1)} = 0$ *, then* $S_{n,A}^{(m-1)} = 0$ *for all* $n \in \mathbb{N}$ *.*

Proof 1. First of all, let us remark that

$$
S_{n,A}^{(m-1)} = (m-1)! \langle \Delta_{A,T} e_n \mid e_n \rangle \text{ for all } n \ge 0.
$$

Since *T* is an (*A*, *m*)-isometry, then a simple computation shows that

$$
\Delta_{A,T} = T^* \Delta_{A,T} T.
$$

Moreover,

$$
\langle \Delta_{A,T} e_n | e_n \rangle = \langle T^* \Delta_{A,T} T e_n | e_n \rangle
$$

= $\langle \Delta_{A,T} T e_n | T e_n \rangle$
= $|w_n|^2 \langle \Delta_{A,T} e_{n+1} | e_{n+1} \rangle$.

This implies that

$$
S_{n,A}^{(m-1)} = |w_n|^2 S_{n+1,A}^{(m-1)}.
$$
 (10)

As a consequence of (10) , we have

$$
S_{0,A}^{(m-1)} = \prod_{i=0}^{n} |w_i|^2 S_{n+1,A}^{(m-1)}
$$
 for all $n \ge 0$.

Hence, we obtain the result.

2. The claim is a direct consequence of (10) and Proposition [2.1.](#page-3-2)

Corollary 2.3 *Let T be a unilateral weighted forward shift with weight sequence* ${w_n}_{n \geq 0}$ *. Let* $H_{i,j,A}^{(m)}$ *be as*

$$
H_{i,j,A}^{(m)} := \left(\prod_{p=0}^{i} w_p\right) \left(\prod_{q=0}^{j} \overline{w}_q\right) S_{i,j,A}^{(m)}, \quad i, j \ge 0.
$$
 (11)

Then, we have

1. If T is an
$$
(A, m)
$$
-isometry, then

- (a) $H_{i, A}^{(m)} := H_{i, i, A}^{(m)} = 0$ for all $i \ge 0$.
- *(b)* $\sum_{i,j} H_{i,j,A}^{(m)} = 0$ for all *i*, $j \ge 0$.
- 2. If, for all $i, j \ge 0$ $H_{i,j,A}^{(m)} = 0$, then either T is an (A, m) -isometry or there exists $k \geq 0$ *such that* $w_k = 0$.
- *Proof* 1. Assuming that *T* is an (*A*, *m*)-isometry, (*a*) and (*b*) follow immediately from 1. and 2. of Proposition [2.3.](#page-7-1)
- 2. Suppose that for all *i*, $j \ge 0$ $H_{i,j,A}^{(m)} = 0$, i.e

$$
\left(\prod_{p=0}^{i} w_p\right) \left(\prod_{q=0}^{j} \overline{w}_q\right) S_{i,j,A}^{(m)} = 0
$$

which implies that either there exists $0 \le k \le \max(i, j)$ such that $w_k = 0$ or $S_{i,j,A}^{(m)} = 0$ for all *i*, $j \ge 0$ and, hence, we can conclude.

Remark 2.3 Let $\{f_n\}_{n\geq 1}$ be an orthonormal basis (i.e $||f_n|| = 1 \neq 0$, $n \geq 1$) and $T f_n = w_n f_{n+1}$ for all $n \ge 1$. Assume that $A = I$. Then Proposition [2.1](#page-3-2) holds, that is $w_n \neq 0$ for all $n > 1$. Moreover, we consider

$$
\widetilde{H}_{i,j,A}^{(m)} := \left(\prod_{p=0}^{i-1} w_p\right) \left(\prod_{q=0}^{j-1} \overline{w}_q\right) S_{i,j,A}^{(m)}, \quad i,j \ge 1,
$$

where $w_0 := 1$. If $\widetilde{H}_{n,A}^{(m)} = 0$ for all $n \ge 1$, then assertion 2. of Proposition [2.3](#page-7-1) implies that T is an m -isometry. Hence, in that case we recover Proposition 3.2 ([\[4\]](#page-21-5)), that is *T* is an *m*-isometry if and only if

$$
\sum_{k=0}^{m} (-1)^{m-k} \binom{m}{k} \left(\prod_{i=0}^{n+k-1} |w_i|^2 \right) = 0 \text{ for all } n \ge 1.
$$

For a fixed sequence $\{w_k\}_{k>0}$, $n \geq 0$ and $m \geq 1$, let us denote

$$
R_{n,A}^{(m)} := (-1)^{m-1} \frac{(n-1)(n-2)\dots(n-m+1)}{(m-1)!} \left\|e_0\right\|_A^2
$$

$$
+ \sum_{k=1}^{m-1} (-1)^{m-k-1} \frac{n(n-1)\dots(n-k)\dots(n-m+1)}{k!(m-k-1)!} \left(\prod_{i=0}^{k-1} |w_i|^2\right) \left\|e_k\right\|_A^2,
$$

(12)

where $\widehat{n-k}$ denotes that the factor $(n - k)$ is omitted. Remark that $R_{0, A}^{(m)} = ||e_0||_A^2$ and for $j = 1, 2, ..., m - 1$,

$$
R_{j,A}^{(m)} = \left(\prod_{i=0}^{j-1} |w_i|^2\right) \|e_j\|_A^2 \quad (\ge 0).
$$
 (13)

 \mathcal{D} Springer

As it was shown in [\[4\]](#page-21-5) for *m*-isometric weighted shifts, in the following result we describe the behavior of a given unilateral weighted forward shift which is (*A*, *m*) isometric by means of his weight sequence sequence.

Theorem 2.4 *Let T be a unilateral weighted forward shift with weight sequence* {w*n*}*n*≥0*. The following claims hold true.*

1. Assume that there exists $0 \le n_0 \le m - 2$ such that $e_j \notin N(A)$, $0 \le j \le n_0 + 1$. *If T is an* (*A*, *m*)*-isometry then*

$$
|w_i|^2 = \frac{R_{i+1,A}^{(m)}}{R_{i,A}^{(m)}} \frac{\|e_i\|_A^2}{\|e_{i+1}\|_A^2} \quad (>0) \quad \text{for } 0 \le i \le n_0. \tag{14}
$$

2. Assume that there exists $n_0 \geq 0$ such that $e_i \notin N(A)$, $0 \leq i \leq n_0 + m$ and

$$
|w_p|^2 = \frac{R_{p+1,A}^{(m)}}{R_{p,A}^{(m)}} \frac{\|e_p\|_A^2}{\|e_{p+1}\|_A^2} \quad (>0) \quad \text{for } 0 \le p \le n_0 + m - 1. \tag{15}
$$

Then $H_{j,A}^{(m)} = 0$ *for all* $1 \le j \le n_0$ *.*

Proof 1. Assume that *T* is an (*A*, *m*)-isometry. From Proposition [2.1](#page-3-2) we obtain $w_i \neq 0$ for any $0 \leq i \leq n_0 + 1$. By Theorem [1.1](#page-2-0) we have that, for every $u \in \mathbb{H}$ and for all $n \geq 0$,

$$
||T^n u||_A^2 = \sum_{k=0}^{m-1} (-1)^{m-k-1} \frac{n(n-1)\dots(n-k)\dots(n-m+1)}{k!(m-k-1)!} ||T^k u||_A^2.
$$

For $u = e_0$ and for all $n \geq 1$, we obtain

$$
\left(\prod_{i=0}^{n-1} |w_i|^2\right) \|e_n\|_A^2 = (-1)^{m-1} \frac{(n-1)(n-2)\dots(n-m+1)}{(m-1)!} \|e_0\|_A^2
$$

+
$$
\sum_{k=1}^{m-1} (-1)^{m-k-1} \frac{n(n-1)\dots(n-k)\dots(n-m+1)}{k!(m-k-1)!}
$$

$$
\times \left(\prod_{i=0}^{k-1} |w_i|^2\right) \|e_k\|_A^2.
$$

The equalities [\(12\)](#page-8-0)–[\(13\)](#page-8-1) give $R_{k,A}^{(m)} \neq 0$ for all $0 \leq k \leq m-1$. Moreover, we have

$$
R_{j,A}^{(m)} \|e_{j+1}\|_A^2 |w_j|^2 = R_{j+1,A}^{(m)} \|e_j\|_A^2 \text{ for all } 0 \le j \le n_0.
$$

Consequently,

$$
|w_j|^2 = \frac{R_{j+1,A}^{(m)}}{R_{j,A}^{(m)}} \frac{\|e_j\|_A^2}{\|e_{j+1}\|_A^2} \quad (>0) \qquad (0 \le j \le n_0).
$$

2. Assume that [\(15\)](#page-9-0) is verified. First note that

$$
R_{j+k,A}^{(m)} = \left(\prod_{i=0}^{j+k-1} |w_i|^2\right) \|e_{j+k}\|_A^2 \neq 0 \quad (j \ge 1, k \ge 0).
$$

For $0 \le j \le n_0$, we have

$$
H_{j,A}^{(m)} = \left(\prod_{i=0}^{j} |w_i|^2\right) S_{j,A}^{(m)}
$$

=
$$
\left(\prod_{i=0}^{j} |w_i|^2\right) \left[(-1)^m ||e_j||_A^2 + \sum_{k=1}^{m} (-1)^{m-k} {m \choose k} \left(\prod_{i=0}^{k-1} |w_{i+j}|^2\right) ||e_{j+k}||_A^2\right]
$$

=
$$
(-1)^m \left(\prod_{i=0}^{j} |w_i|^2\right) ||e_j||_A^2 + |w_j|^2 \sum_{k=1}^{m} (-1)^{m-k} {m \choose k} \left(\prod_{i=0}^{j+k-1} |w_i|^2\right)
$$

$$
\times ||e_{j+k}||_A^2.
$$

Taking into account [\(13\)](#page-8-1) and for $1 \le j \le n_0$, we obtain

$$
H_{j,A}^{(m)} = |w_j|^2 \Big[\sum_{k=0}^m (-1)^{m-k} {m \choose k} R_{j+k,A}^{(m)} \Big]
$$

\n
$$
= |w_j|^2 \Big\{ \sum_{k=0}^m (-1)^{m-k} {m \choose k} (-1)^{m-1} \times \frac{(j+k-1)(j+k-2)\dots(j+k-m+1)}{(m-1)!} ||e_0||_A^2
$$

\n
$$
+ \sum_{k=0}^m (-1)^{m-k} {m \choose k} \times \Big[\sum_{h=1}^{m-1} (-1)^{m-h-1} \frac{(j+k)\dots(j+k-h)\dots(j+k-m+1)}{h!(m-h-1)!} \Big]
$$

\n
$$
\times \prod_{i=0}^{h-1} |w_i|^2 ||e_h||_A^2 \Big] \Big\}
$$

\n
$$
= |w_j|^2 (A + B),
$$

where,

$$
A = \sum_{k=0}^{m} (-1)^{m-k} {m \choose k} (-1)^{m-1}
$$

\n
$$
\times \frac{(j+k-1)(j+k-2)\dots(j+k-m+1)}{(m-1)!} ||e_0||_A^2
$$

\n
$$
= (-1)^{m-1} m ||e_0||_A^2
$$

\n
$$
\times \sum_{k=0}^{m} (-1)^{m-k} \frac{(j+k-1)(j+k-2)\dots(j+k-m+1)}{k!(m-k)!},
$$

\n
$$
B = \sum_{k=0}^{m} (-1)^{m-k} {m \choose k}
$$

\n
$$
\times \left[\sum_{h=1}^{m-1} (-1)^{m-h-1} \frac{(j+k)\dots(j+k-h)\dots(j+k-m+1)}{h!(m-h-1)!} \right]
$$

\n
$$
\times \prod_{i=0}^{h-1} |w_i|^2 ||e_h||_A^2
$$

\n
$$
= \sum_{h=1}^{m-1} (-1)^{m-h-1} \frac{m!}{h!(m-h-1)!} \prod_{i=0}^{h-1} |w_i|^2 ||e_h||_A^2
$$

\n
$$
\times \left[\sum_{k=0}^{m} (-1)^{m-k} \frac{(j+k)\dots(j+k-h)\dots(j+k-m+1)}{k!(m-k)!} \right].
$$

Taking into account equality (3.2) [\[4\]](#page-21-5), Lemma 3.3 we obtain $A = 0$ and $B = 0$. Hence, $H_{j,A}^{(m)} = 0$ for $1 \le j \le n_0$.

Remark 2.4 Let *T* be the unilateral weighted forward shift with weight sequence $\{w_n\}_{n>0}$. From Theorem [2.4](#page-9-1) we obtain the following characterizations:

1. Assume that $(e_n)_{n\geq 0}$ is *A*-orthogonal, $e_n \notin N(A)$ for all $n \geq 0$ and $S_{0,A}^{(m)} = 0$. Then, *T* is an (*A*, *m*)-isometry if and only if

$$
R_{n,A}^{(m)} = \left(\prod_{i=0}^{n-1} |w_i|^2\right) ||e_n||_A^2 > 0 \text{ for every } n \ge 1.
$$

If $A = I$, then we obtain a conclusion similar to that of Remark 3.5 ([\[4\]](#page-21-5)).

2. Assume that there exists $0 \le n_0 \le m - 2$ such that $e_j \notin N(A)$, $0 \le j \le n_0 + 1$. We have:

(a) If *T* is an *A*-isometry, then

$$
\|e_i\|_A = |w_i| \|e_{i+1}\|_A \text{ for every } i \ge 0.
$$

(b) If *T* is an (*A*, 2)-isometry, then

$$
|w_i|^2 = \frac{(i+1)|w_0|^2 - i\frac{\|e_0\|_A^2}{\|e_1\|_A^2}}{i|w_0|^2 - (i-1)\frac{\|e_0\|_A^2}{\|e_1\|_A^2}} \frac{\|e_i\|_A^2}{\|e_{i+1}\|_A^2} \quad (0 \le i \le n_0)
$$

$$
= \frac{i\left(|w_0|^2 - \frac{\|e_0\|_A^2}{\|e_1\|_A^2}\right) + |w_0|^2}{(i-1)\left(|w_0|^2 - \frac{\|e_0\|_A^2}{\|e_1\|_A^2}\right) + |w_0|^2} \frac{\|e_i\|_A^2}{\|e_{i+1}\|_A^2}.
$$

Moreover, observe that

$$
|w_0| \ge \frac{\|e_0\|_A}{\|e_1\|_A} \Longleftrightarrow |w_i| > 0 \quad (0 \le i \le n_0).
$$

In particular, if $|w_0| > \frac{\|e_0\|_A}{\|e_1\|_A}$, then *T* is a strict (*A*, 2)-isometry.

2.2 Unilateral Weighted Backward Shifts

A unilateral weighted backward shift B_w with weight sequence $\{w_n\}_{n\geq 1}$ is defined by $B_w e_n = w_n e_{n-1}$ if $n \ge 1$ and by $B_w e_0 = 0$. The iterates of B_w are given by

$$
B_w^k e_n = \begin{cases} \left(\prod_{i=0}^{k-1} w_{n-i}\right) e_{n-k} & \text{if } 1 \le k \le n; \\ 0 & \text{otherwise.} \end{cases}
$$
 (16)

Let $u = \sum^{\infty} \alpha_n e_n \in \mathbb{H}$. We have *n*=0 $\sum_{ }^{m}$ *k*=0 $(-1)^{m-k}$ $\binom{m}{k}$ *k* $\Big)$ $||B_w^k u||_A^2$ $=$ \sum^{∞} *n*=0 $|\alpha_n|^2 \left\{ (-1)^m \ \|e_n\|_A^2 + \sum^m \right\}$ *k*=1 $(-1)^{m-k}$ $\binom{m}{k}$ *k* $\left\{ \|B^k_w e_n\|^2_A \right\}$ $+ \sum$ $i \neq j$ $\alpha_i \overline{\alpha}_j \left\{ (-1)^m \langle Ae_i | e_j \rangle + \sum^m \right\}$ *k*=1 $(-1)^{m-k}$ $\binom{m}{k}$ *k* $\Bigg\{\langle AB^k_w e_i \mid B^k_w e_j \rangle\Bigg\},$

where

$$
\langle AB_w^k e_i | B_w^k e_j \rangle = \begin{cases} \left(\prod_{p=0}^{k-1} w_{i-p} \overline{w}_{j-p} \right) \langle Ae_{i-k} | e_{j-k} \rangle & \text{if } 1 \le k \le i < j; \\ 0 & \text{if } k > \min(i, j). \end{cases} \tag{17}
$$

 \mathcal{D} Springer

Unilateral weighted backward shifts cannot be *m*-isometric for any positive integer number *m*, since B_w does not satisfies Eq. [\(2\)](#page-1-0) for the vector e_0 . We prove in the following result that they cannot also be (*A*, *m*)-isomeric.

Theorem 2.5 *A unilateral weighted backward shift can not be an* (*A*, *m*)*-isometry for any positive integer m.*

Proof Let B_w be a unilateral weighted backward shift with weight sequence $\{w_n\}_{n>1}$. Assume that B_w is an (A, m) -isometry. Then $e_n \in N(A)$ for all $n \ge 0$. Indeed, we use an induction argument to prove such a claim. Since B_w is an (A, m) -isometry, Eq. [\(2\)](#page-1-0) gives

$$
(-1)^m \|e_n\|_A^2 + \sum_{k=1}^m (-1)^{m-k} \binom{m}{k} \|B_w^k e_n\|_A^2 = 0 \text{ for all } n \ge 0.
$$
 (18)

Since $B_w^k e_0 = 0$ for all $k \ge 1$, we obtain

$$
0 = \sum_{k=1}^{m} (-1)^{m-k} \binom{m}{k} \|B_w^k e_0\|_A^2 = (-1)^{m+1} \|e_0\|_A^2,
$$
 (19)

which implies that $e_0 \in N(A)$ and, hence, the property is satisfied for $n = 0$. Assume that for $p = 0, 1, 2, \ldots, n - 1$ ($n \ge 1$), $e_p \in N(A)$ and let us show the property for the step *n*. Taking (17) and (18) into account, we deduce

$$
(-1)^m \|e_n\|_A^2 + \sum_{k=1}^n (-1)^{m-k} \binom{m}{k} \left(\prod_{i=0}^{k-1} |w_{n-i}|^2\right) \|e_{n-k}\|_A^2 = 0 \text{ if } 1 \le n \le m,
$$

$$
(-1)^m \|e_n\|_A^2 + \sum_{k=1}^m (-1)^{m-k} \binom{m}{k} \left(\prod_{i=0}^{k-1} |w_{n-i}|^2\right) \|e_{n-k}\|_A^2 = 0 \text{ if } n \ge m+1,
$$

and the claim follows from that. On the other hand, every $u \in \mathbb{H}$ can be written as $u = \sum_{i=0}^{\infty} \alpha_i e_i$. Hence,

$$
\langle Au | u \rangle = \sum_{i=0}^{\infty} |\alpha_i|^2 ||e_i||_A^2 + \sum_{0 \le i \ne j} \alpha_i \overline{\alpha_j} \langle Ae_i | e_j \rangle = 0.
$$

According to Proposition 2.15, [\[5\]](#page-21-8), we obtain $A = 0$ which is impossible.

3 Strict *(A, m)***-Isometric Unilateral Weighted Forward Shifts**

Generally, an (*A*, *m*)-isometry is not an (*A*, *m* − 1)-isometry. Sid Ahmed et al. (The-orem 2.1 [\[8](#page-21-3)]) proved that if *T* is an (A, m) -isometry satisfying $N(\Delta_{A,T})$ is invariant for *A*, then $T|_{N(\Delta_{A,T})}$ is an $(A|_{N(\Delta_{A,T})}, m-1)$ -isometry. Moreover we can see that if *T* is an invertible (*A*, *m*)-isometry and *m* is even, then it is an (*A*, *m* −1)-isometry. In the following we describe when a unilateral weighted shift operator is a strict (*A*, *m*) isometry in terms of the weights sequence. To be precise we define

$$
Z_n := |w_n|^2 S_{n+1,A}^{(m-1)} = \sum_{k=0}^{m-1} (-1)^{m-1-k} {m-1 \choose k} \left(\prod_{i=0}^k |w_{n+i}|^2 \right) \|e_{n+k+1}\|_A^2, \text{ for all } n \ge 0.
$$

Theorem 3.1 *Let T be an* (*A*, *m*)*-isometric unilateral weighted forward shift with weight sequence* $\{w_n\}_{n>0}$ *. If there exists* $n_0 \in \mathbb{N}$ *such that* $Z_{n_0} \neq 0$ *then* $w_{n_0} \neq 0$ *and T is a strict* (*A*, *m*)*-isometry.*

Proof Two proofs for this theorem will be given.

First proof Since there exists $n_0 \in \mathbb{N}$ such that $Z_{n_0} \neq 0$, we have $w_{n_0} \neq 0$ and $S_{n_0+1,A}^{(m-1)} \neq 0$. Hence, Theorem [2.2](#page-6-0) allows to conclude.

Second proof Let us prove the converse. Assume that *T* is an (*A*, *m*)-isometry and an $(A, m - 1)$ -isometry. Then, for $u = e_n$, the identity [\(2\)](#page-1-0) gives

$$
0 = (-1)^m \|e_n\|_A^2 + \sum_{k=1}^m (-1)^{m-k} \binom{m}{k} \left(\prod_{i=0}^{k-1} |w_{n+i}|^2\right) \|e_{n+k}\|_A^2,\tag{20}
$$

$$
0 = (-1)^m \|e_n\|_A^2 + \sum_{k=1}^{m-1} (-1)^{m-k} \binom{m-1}{k} \left(\prod_{i=0}^{k-1} |w_{n+i}|^2\right) \|e_{n+k}\|_A^2. \tag{21}
$$

Remarking that $\binom{m}{k} - \binom{m-1}{k} = \binom{m-1}{k-1}$, the identities [\(20\)](#page-14-0) and [\(21\)](#page-14-0) give $Z_n = 0$ for all *n* ≥ 0. As a consequence, if there exists n_0 ∈ N such that Z_{n_0} ≠ 0 then either *T* is an (A, m) -isometry and not an $(A, m - 1)$ -isometry or *T* is not an (A, m) -isometry and it is an $(A, m - 1)$ -isometry. The second conclusion is impossible since it is well known that every $(A, m - 1)$ -isometry is an (A, m) -isometry. Hence *T* is a strict (A, m) -isometry. (*A*, *m*)-isometry.

We have the following result.

Theorem 3.2 *Let T be a unilateral weighted forward shift with weight sequence* ${w_n}_{n>0}$ ($w_n \neq 0$ *for all* $n \in \mathbb{N}$). Assume that $(e_n)_{n>0}$ *is A-orthogonal. If T is a strict* (A, m) -isometry then for every nonnegative integer n, $S_{n,A}^{(m)} = 0$ and $S_{n,A}^{(m-1)} \neq 0$.

Proof Note that if $(e_n)_{n\geq 0}$ is *A*-orthogonal, then $S_{i,j,A}^{(m-1)} = 0$ for all $i \neq j \geq 0$. Suppose that *T* is a strict (A, m) -isometry. Then, Eq. [\(2\)](#page-1-0) gives

$$
S_{n,A}^{(m)} = (-1)^m \|e_n\|_A^2 + \sum_{k=1}^m (-1)^{m-k} \binom{m}{k} \left(\prod_{i=0}^{k-1} |w_{n+i}|^2\right) \|e_{n+k}\|_A^2 = 0 \text{ for all } n \ge 0.
$$

Let us prove now that $S_{n,A}^{(m-1)} \neq 0$ for all $n \geq 0$. Assume the contrary, that n_0 is the smallest non-negative integer such that $S_{n_0,A}^{(m-1)} = 0$. Our aim is to prove that $n_0 = 0$. If $n_0 \geq 1$ we obtain $S_{n_0-1,A}^{(m-1)} \neq 0$, which is impossible from [\(10\)](#page-7-0). Furthermore, Proposition [2.3](#page-7-1) yields *T* is an (*A*, *m* − 1)-isometry. Hence we obtain the desired \Box result.

As an immediate corollary to Theorem [3.2,](#page-14-1) we characterize unilateral weighted forward shifts that are strictly (*A*, *m*)-isometric.

Corollary 3.3 *Let T be a unilateral weighted forward shift with weight sequence* {w*n*}*n*≥0*. Assume that* (*en*)*n*≥⁰ *is A-orthogonal. Then, the following assertions are equivalent:*

- *1. T is a strict* (*A*, *m*)*-isometry.*
- *2. For every* $n \in \mathbb{N}$ *, we have*
	- (a) $S_{n,A}^{(m)} = 0.$
	- (b) $S_{n,A}^{(m-1)} \neq 0.$

Proof Suppose that *T* is a strict (*A*, *m*)-isometry. Then Theorem [3.2](#page-14-1) shows that 2. holds. Suppose, now, that (*a*) and (*b*) hold true. Since $(e_n)_{n\geq 0}$ is an orthonormal basis, then every $u \in \mathbb{H}$ can be written as $u = \sum_{i=0}^{\infty} \alpha_i e_i$. According to (a) , we have

$$
\sum_{k=0}^{m} (-1)^{m-k} \binom{m}{k} ||T^k u||_A^2 = \sum_{i=0}^{\infty} |\alpha_i|^2 S_{i,A}^{(m)} = 0.
$$

This implies that [\(2\)](#page-1-0) holds for every $u \in \mathbb{H}$ and hence *T* is an (A, m) -isometry. On the other hand, for all $n \geq 0$,

$$
\sum_{k=0}^{m-1} (-1)^{m-k} \binom{m-1}{k} \|T^k e_n\|_A^2 = S_{n,A}^{(m-1)} \neq 0.
$$

Thus, *T* is not an $(A, m - 1)$ -isometry.

We now apply Corollary [3.3](#page-15-0) to investigate the following example.

Example 3.1 Let \mathbb{H} be a separable Hilbert space with an orthonormal basis $\{e_n\}_{n>0}$. Let *T*, $A \in \mathcal{L}(\mathbb{H})$ where *T* is the unilateral weighted shift defined by

$$
Te_n = \sqrt{\frac{n+3}{n+1}} e_{n+1}, \quad n \ge 0
$$

and *A* is the positive operator given by $Ae_n = \frac{n+1}{n+2} e_n$, $n \ge 0$. It is not difficult to verify that

$$
S_{n,A}^{(3)} = 0, \qquad S_{n,A}^{(2)} = \frac{2}{(n+1)(n+2)}, \quad n \ge 0
$$

and hence *T* is an (*A*, 3)-isometry which is not an (*A*, 2)-isometry.

$$
\Box
$$

In general, (*A*, *m*)-isometries are not *A*-isometries. Theorem 2.3 [\[9\]](#page-21-4) gives a first characterization of (*A*, *m*)-isometric operators which are *A*-isometries. In the same way, we will describe in the following result the related characterization for a family of unilateral weighted shifts.

Proposition 3.1 *Let T be a unilateral weighted forward shift with weight sequence* ${w_n}_{n>0}$ ($w_n \neq 0$ *for all* $n \in \mathbb{N}$). Assume that $(e_n)_{n>0}$ *is A-orthogonal. If T is an* (A, m) -isometry and if, for some nonzero $u \in \mathbb{H}$, we have

$$
||u||_A = ||T^k u||_A, \quad 1 \le k \le m - 1,
$$
\n(22)

then T is an A-isometry.

Proof Suppose that $\{e_n\}_{n>0}$ is an orthonormal basis for H and $Te_n = w_ne_{n+1}$ for all $n \ge 0$. Put $u = \sum_{n=0}^{\infty} \alpha_n e_n$. Then, [\(22\)](#page-16-0) gives

$$
\sum_{k=0}^{m-1} (-1)^{m-k-1} \binom{m-1}{k} \|T^k u\|_A^2 = \sum_{k=0}^{m-1} (-1)^{m-k-1} \binom{m-1}{k} \|u\|_A^2
$$

$$
= \|u\|_A^2 \left(\sum_{k=0}^{m-1} \binom{m-1}{k} (-1)^{m-k-1}\right)
$$

$$
= \|u\|_A^2 \left(1 + (-1)\right)^{m-1}
$$

= 0.

Moreover, since $(e_n)_{n>0}$ is *A*-orthogonal, [\(4\)](#page-2-1) implies that

$$
\sum_{k=0}^{m-1} (-1)^{m-k-1} \binom{m-1}{k} ||T^k u||_A^2 = \sum_{n=0}^{\infty} |\alpha_n|^2 \left[(-1)^{m-1} ||e_n||_A^2 + \sum_{k=1}^{m-1} (-1)^{m-1-k} \binom{m-1}{k} \times \left(\prod_{i=0}^{k-1} |w_{n+i}|^2 \right) ||e_{n+k}||_A^2 \right]
$$

$$
= \sum_{n=0}^{\infty} |\alpha_n|^2 S_{n,A}^{(m-1)}
$$

$$
= \sum_{n=0}^{\infty} |\alpha_n|^2 \left((m-1)! \langle \Delta_{A,T} e_n | e_n \rangle \right).
$$

According to Theorem 2.1 [\[8\]](#page-21-3), $\Delta_{A,T}$ is a positive operator (i.e $\langle \Delta_{A,T} e_n | e_n \rangle \ge 0$, for all $n \geq 0$). Since *u* is non-zero, $\alpha_{n_0} \neq 0$ for some n_0 , then

² Springer

$$
S_{n_0,A}^{(m-1)} = (m-1)!\langle \Delta_{A,T}e_{n_0} | e_{n_0} \rangle = 0.
$$

Thus, condition (*b*) in Corollary [3.3](#page-15-0) does not occur and so *T* must be an $(A, m - 1)$ isometry. Now, applying an argument similar to the above and using Corollary [3.3,](#page-15-0) $(m-1)$ times, we conclude that *T* must be an *A*-isometry.

Remark [3.1](#page-16-1) The conclusion of Proposition 3.1 is not valid, in general, for any operator *T* and any operator *A*. Indeed, let $\mathbb{K} = \mathbb{C}^2$ be equipped with the norm $\|(x, y)\|^2 =$ $|x|^2 + |y|^2$ and consider the operators

$$
A = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}, \qquad T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.
$$

Note that $A \in \mathcal{L}(\mathbb{H})^+$ and $T \in \mathcal{L}(\mathbb{H})$. Moreover, by direct computation, we see that

$$
||(x, y)||_A^2 = x^2 + 2xy + 2y^2,
$$

\n
$$
||T(x, y)||_A^2 = x^2 + 4xy + 5y^2,
$$

\n
$$
||T^2(x, y)||_A^2 = x^2 + 6xy + 10y^2,
$$

\n
$$
||T^3(x, y)||_A^2 = x^2 + 8xy + 17y^2.
$$

Consequently,

$$
||T^{3}(x, y)||_{A}^{2} - 3||T^{2}(x, y)||_{A}^{2} + 3||T(x, y)||_{A}^{2} - ||(x, y)||_{A}^{2} = 0,
$$

\n
$$
||T^{2}(x, y)||_{A}^{2} - 2||T(x, y)||_{A}^{2} + ||(x, y)||_{A}^{2} = 2y^{2} \neq 0
$$

\nand
$$
||T(x, y)||_{A}^{2} - ||(x, y)||_{A}^{2} = 2xy + 3y^{2} \neq 0.
$$

Thus, *T* is an (*A*, 3)-isometry but is nor an (*A*, 2)-isometry neither an *A*-isometry. Furthermore, if $u = (1, 0)$ then $||u||_A = ||Tu||_A = ||T^2u||_A = 1$.

4 *(A,* **2***)***-Expansive Weighted Shift Operators**

An operator $T \in \mathcal{L}(\mathbb{H})$ is said to be $(A, 2)$ -expansive (also A-concave), if it satisfies the inequality

$$
\Theta_A^{(2)}(T) = T^{*2}AT^2 - 2T^*AT + A \le 0
$$

or, equivalently,

$$
||T^2u||_A^2 - 2||Tu||_A^2 + ||u||_A^2 \le 0 \quad \text{for all } u \in \mathbb{H}.
$$
 (23)

As a matter of fact,(*A*, 2)-isometries and *A*-isometries are (*A*, 2)-expansive operators. In addition, it was shown in [\[11\]](#page-21-0), Proposition 3.9 that all powers of an (*A*, 2)-expansive operator is also (*A*, 2)-expansive.

In this section we give some properties of (*A*, 2)-expansive operators that generalizes those described in [\[7](#page-21-9)].

The *A*-covariance operator for an $(A, 2)$ -expansive operator is given by $\Delta_{A,T}$ $T^*AT - A$. We begin with the following preliminary result.

Lemma 4.1 *Let* $T \in \mathcal{L}(\mathbb{H})$ *. Then,*

T is $(A, 2)$ -expansive if and only if $T^* \Delta_{A,T} T \leq \Delta_{A,T}$.

Proof Let $u \in \mathbb{H}$. We have

$$
\langle (T^* \Delta_{A,T} T - \Delta_{A,T}) u, u \rangle = ||T^2 u||_A^2 - 2||Tu||_A^2 + ||u||_A^2
$$

thus the claim follows from that.

Jung et al. proved in [\[11\]](#page-21-0), Theorem 3.10 that the *A*-covariance operator for an (*A*, 2)-expansive operator is positive. In the following theorem we show the same claim using different approach.

Theorem 4.1 *Let* $T \in \mathcal{L}(\mathbb{H})$ *. If* T *is* $(A, 2)$ *-expansive, then:*

- *1.* $\Delta_{A,T}$ *is a positive operator.*
- *2. If A is injective then T is also injective.*
- *3. If T* is invertible, then T^{-1} is $(A, 2)$ -expansive.

Proof 1. Let $u \in \mathbb{H}$. We have

$$
\langle \Delta_{A,T} u, u \rangle = \langle (T^*AT - A)u, u \rangle = ||Tu||_A^2 - ||u||_A^2.
$$

To obtain the claim let us suppose on the contrary that $||Tu_0||_A < ||u_0||_A$ for some $u_0 \in \mathbb{H}$. By using on induction argument we obtain

$$
||T^n u_0||_A^2 < ||T^{n-1} u_0||_A^2 < \cdots < ||u_0||_A^2
$$

for each positive integer number *n*. We deduce that the sequence $\{\|T^n u_0\|_A^2\}_{n\geq 0}$ is strictly decreasing, bounded and hence it is convergent. Moreover we have

$$
0 = \lim_{n \to +\infty} (\|T^{n+1}u_0\|_A^2 - \|T^n u_0\|_A^2) < 0
$$

which is a contradiction. Thus $\langle \Delta_{A,T} u, u \rangle \ge 0$ for all $u \in \mathbb{H}$.

- 2. If $T \in \mathcal{L}(\mathbb{H})$ is $(A, 2)$ -expansive and $u \in N(T)$ thus $Tu = 0$. Moreover, $||Tu||_A^2 =$ $||T^2u||_A^2 = 0$. Since *T* is *A*-concave, $||u||_A = 0$ which is equivalent to the fact that $u \in N(A)$.
- 3. By hypothesis, *T* is (*A*, 2)-expansive. Then, we have

$$
\sum_{k=0}^{2} (-1)^{k} {2 \choose k} \|T^{2-k}u\|_{A}^{2} \le 0 \text{ for all } u \in \mathbb{H}.
$$
 (24)

 \mathcal{L} Springer

Replacing *u* by $(T^{-1})^2 u$ in [\(24\)](#page-18-0), we deduce that

$$
\sum_{k=0}^{2} (-1)^{k} {2 \choose k} \|T^{2-k}((T^{-1})^{2}u)\|_{A}^{2} = \sum_{k=0}^{2} (-1)^{k} {2 \choose 2-k} \|T^{-k}u\|_{A}^{2}
$$

=
$$
\sum_{k=0}^{2} (-1)^{2-k} {2 \choose k} \| (T^{-1})^{2-k}u \|_{A}^{2}
$$

=
$$
\sum_{k=0}^{2} (-1)^{k} {2 \choose k} \| (T^{-1})^{2-k}u \|_{A}^{2}.
$$

Proposition 4.1 *Let* $T \in \mathcal{L}(\mathbb{H})$ *be an A-isometry and* $S \in \mathcal{L}(\mathbb{H})$ *with* $ST = TS$ *, then ST is* (*A*, 2)*-expansive if and only if S is* (*A*, 2)*-expansive.*

Proof Since *T* is an *A*-isometry, we have

$$
||T^k S^k u||_A = ||S^k u||_A, \quad k = 0, 1, 2.
$$

On the other hand, we have

$$
\sum_{k=0}^{2} (-1)^{k} {2 \choose k} ||(ST)^{2-k}u||_{A}^{2} = \sum_{k=0}^{2} (-1)^{k} {2 \choose k} ||(TS)^{2-k}u||_{A}^{2}
$$

=
$$
\sum_{k=0}^{2} (-1)^{k} {2 \choose k} ||T^{2-k}S^{2-k}u||_{A}^{2}
$$

=
$$
\sum_{k=0}^{2} (-1)^{k} {2 \choose k} ||S^{2-k}u||_{A}^{2}
$$

which allows us to conclude.

Corollary 4.2 *Let* $T \in \mathcal{L}(\mathbb{H})$ *be an inversible* $(A, 2)$ *-expansive operator and* $S \in$ $\mathcal{L}(\mathbb{H})$ *with* $ST = TS$ *, then* ST *is* $(A, 2)$ *-expansive if and only if* S *is* $(A, 2)$ *-expansive.*

Proof It suffises to prove that *T* is an *A*-isometry. If *T* is an invertible (*A*, 2)-expansive operator, then T^{-1} is also (*A*, 2)-expansive. Hence, by (1.)-Theorem [4.1](#page-18-1) $\Delta_{A,T} \ge 0$ and

$$
\Delta_{A,T^{-1}} = T^{-1*} A T^{-1} - A \ge 0.
$$

On the other hand,

$$
\Delta_{A,T} = T^*AT - A = -T^*(T^{-1*}AT^{-1} - A)T \le 0,
$$

² Springer

$$
\qquad \qquad \Box
$$

which implies that T is an A -isometry. Thus we complete the proof by involving Proposition [4.1.](#page-19-0)

Now, we specify the study to unilateral weighted shifts. We give results generalizing those described in [\[7](#page-21-9)].

Theorem 4.3 *Let T be a unilateral weighted forward shift with weights* $\{w_n\}_{n>0}$ *. Assume that for all* $n \in \mathbb{N}$, $e_n \notin N(A)$. If T is $(A, 2)$ *-expansive, then the following assertions holds.*

- *1.* $S_{n,A}^{(2)} = |w_n|^2 |w_{n+1}|^2 ||e_{n+2}||_A^2 2|w_n|^2 ||e_{n+1}||_A^2 + ||e_n||_A^2 \leq 0$ *for each n*;
- 2. $\{V_n\}_n = \left\{\|w_n\|\frac{\|e_{n+1}\|_A}{\|e_n\|_A}\right\}$ $\|e_n\|_A$ *ⁿ is a decreasing sequence of real numbers converging to* 1*;* 3. $\frac{\|e_n\|_A}{\|e_{n+1}\|_A} \leq |w_n| < \sqrt{2} \frac{\|e_n\|_A}{\|e_{n+1}\|_A}$, *for all n* ≥ 0.

Proof 1. Applying [\(23\)](#page-17-1) for $u = e_n$ we obtain the claim.

2. Let $V_n = |w_n| \frac{\|e_{n+1}\|_A}{\|e_n\|_A}$. To prove the assertion let us assume the contrary that V_n < V_{n+1} for some non-negative integer *n*. Therefore,

$$
0 \leq \left(|w_n|^2 \frac{\|e_{n+1}\|_A^2}{\|e_n\|_A} - \|e_n\|_A \right)^2 < S_{n,A}^{(2)} \leq 0,
$$

which is a contradiction. Hence ${V_n}_n$ is a decreasing sequence of non-negative numbers. On the other hand, by Theorem [4.1](#page-18-1) the operator $\Delta_{A,T}$ is positive, that is

$$
\langle \Delta_{A,T} u, u \rangle = \|T u\|_{A}^{2} - \|u\|_{A}^{2} \ge 0 \quad \text{for all } u \in \mathbb{H}.
$$
 (25)

Thus for $u = e_n$ the identity [\(25\)](#page-20-0) gives

$$
||Te_n||_A = |w_n|||e_{n+1}||_A \geq ||e_n||_A,
$$

which implies that $V_n \geq 1$ for all $n \geq 0$. Since the sequence $\{V_n\}_n$ is decreasing, it must be convergent. Let $l = \lim_{n \to \infty} V_n$. Our aim now is to prove that $l = 1$. Taking into account that $S_{n,A}^{(2)} \leq 0$, it is easily seen that V_n satisfies

$$
V_n^2 V_{n+1}^2 - 2V_n^2 + 1 \le 0 \quad \text{for all } n \ge 0. \tag{26}
$$

It holds that

$$
\lim_{n \to +\infty} (V_n^2 V_{n+1}^2 - 2V_n^2 + 1) = (l^2 - 1)^2 \le 0
$$

and hence $l = 1$.

3. The identity [\(26\)](#page-20-1) implies

$$
V_{n+1}^2 - 2 = (V_{n+1} - \sqrt{2})(V_{n+1} + \sqrt{2}) \le -\frac{1}{V_n^2} < 0,
$$

so $1 \le V_n \le \sqrt{2}$, for each $n \ge 0$, which allows us to conclude.

Theorem 4.4 *A unilateral weighted backward shift cannot be* (*A*, 2)*-expansive.*

Proof We argue by contradiction. Assume that B_w is $(A, 2)$ -expansive. Since B_w is a unilateral weighted backward shift, $B_w e_n = w_n e_{n-1}$ for all $n \ge 1$ and $B_w e_0 = 0$. On the other hand, (23) gives

$$
||B_w^2 e_n||_A^2 - 2||B_w e_n||_A^2 + ||e_n||_A^2 \le 0 \quad \text{for all } n \ge 0.
$$
 (27)

It is easily seen that for $i = 0, 1, e_i \in N(A)$. Using [\(27\)](#page-21-10) we prove by an induction argument that $e_n \in N(A)$ for all $n \ge 2$. Hence $A = 0$ which is impossible. argument that $e_n \in N(A)$ for all $n \geq 2$. Hence $A = 0$ which is impossible.

Acknowledgements We would like to thank the referee for his/her useful comments in order to ameliorate the contents of the paper.

References

- 1. Agler, J., Stankus, M.: *m*-Isometric transformations of Hilbert spaces I. Integral Equ. Oper. Theory **21**(4), 383–429 (1995)
- 2. Agler, J., Stankus, M.: *m*-Isometric transformations of Hilbert space II. Integral Equ. Oper. Theory **23**(1), 1–48 (1995)
- 3. Agler, J., Stankus, M.: *m*-Isometric transformations of Hilbert space III. Integral Equ. Oper. Theory **24**(4), 379–421 (1996)
- 4. Bermúdez, T., Martinón, A., Negrín, E.: Weighted shift operators which are m-isometries. Integral Equ. Oper. Theory **68**, 301–312 (2010)
- 5. Conway, J.B.: A Course in Functional Analyss, 2nd edn. Springer, Berlin (1994)
- 6. Conway, J.B.: The Theory of Subnormal Operators. American Mathematical Society, Providence (1991)
- 7. Karimi, L.: Concave weighted shift operators. Int. J. Math. Anal. **6**(60), 2957–2961 (2012)
- 8. Sid Ahmed, O.A.M., Saddi, A.: *A*–*m*-Isometric operators in semi-Hilbertian spaces. Linear Algebra Appl. **436**(10), 3930–3942 (2012)
- 9. Rabaoui, R., Saddi, A.: On the orbit of an *A*–*m*-isometry. Annales Mathematicae Silesianae **26**, 75–91 (2012)
- 10. Shields, A.L.: Weighted Shift Operators and Analytic Function Theory, Math. Surveys., vol. 13. American Mathematical Society, Providence (1974)
- 11. Jung, S., Kim, Y., Ko, E., Lee, J.E.: On (*A*, *m*)-expansive operators. Stud. Math. **213**, 3–23 (2012)