BULLETIN of the

Bull. Malays. Math. Sci. Soc. (2016) 39:527-543 MALAYSIAN MATHENATICAL @ CrossMark

DOI 10.1007/s40840-015-0300-4 i spriner ot

esfjournali 40840

Hardy and Littlewood Inequalities on Time Scales

S. H. Saker! - Donal O’Regan?

Received: 28 August 2012 / Revised: 6 July 2013 / Published online: 5 January 2016
© Malaysian Mathematical Sciences Society and Universiti Sains Malaysia 2016

Abstract In this paper, we will prove some new dynamic inequalities of Hardy and
Littlewood type on time scales. The results as special cases contain the integral inequal-
ities due to Hardy and the discrete inequalities due to Hardy and Littlewood. The main
results will be proved by using some algebraic inequalities, the Holder inequality, and
a simple consequence of Keller’s chain rule on time scales.
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1 Introduction

The classical Hardy inequality states that for f > 0 and integrable over any finite
interval (0, x) and f7 is integrable and convergent over (0, co0) and p > 1, then

© /1 X p p P 00
/ (—/ f@) dt) dx < (—) / fP(x)dx. (1.1)
0 x Jo p—1 0
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528 S. H. Saker, D. O’Regan

The constant (p/ (p — 1))? is the best possible. This inequality was proved by Hardy
in 1925, and it is the continuous version of a discrete inequality from his work in 1920
([7]). The discrete version of the inequality (1.1) is given by the inequality

00 1 n p p o0
> (-2 ak) < (L) Sal, p>1. (1.2)
n p—1
n=1 k=1 n=1

Hardy’s inequality (1.1) has been generalized by Hardy himselfin [9]. There he showed
that, for any integrable function f(x) > 0 on (0, 00), p > 1, then

1 00 p p P 00 1
/ - (/ f(t)dt) dx < (—) / — fP(x)dx, m <1, (1.3)
o X" \Ux 1—m) Jo xm—p

and

0 q x P p \P > 1
/ o (/ f(t)df) dx < (—) / — fP(x)dx, m>1. (14
o X" o m—1 o xmP

Hardy and Littlewood [8] established the discrete versions of (1.3) and (1.4). In par-
ticular they proved that if p > 1 and q,, is a sequence of positive terms then

00 1 00 p 00 1
Z;(Zak) SMch_pa,f, c<1 (1.5)
k=n

n=1 n=1

and

00 1 n p 00 1 )
Z;(Zak) SMZnC_pan, c>1, (1.6)
n=1 k=1 n=1

where M is a positive constant (see [17,28]). For more contributions of Hardy-type
inequalities, we refer the reader to the books [14,15,20] and the papers [4,12,13,16,
18,19,22].

Over the last ten years a number of dynamic inequalities of Hardy’s type have been
established in [21,23,25,27] on a time scale T (which may be an arbitrary closed
subset of the real numbers R). The cases when the time scale is equal to the reals or to
the integers represent the classical theories of integral and of discrete inequalities. In
this paper, without loss of generality, we assume that sup T = oo, and define the time
scale interval [#y, oo)T by [#9, 00)T := [f9, 00) N T. The three most popular examples
of calculus on time scales are differential calculus, difference calculus, and quantum
calculus, i.e, when T =R, T = Nand T = ¢ = {¢’ : 1 € Np} where ¢ > 1. For
more details of time scale analysis, we refer the reader to the two books by Bohner
and Peterson [2], [3] which summarize and organize much of the time scale calculus.
For applications of time scale calculus on oscillation of dynamic equations on time
scales, we refer to the papers [5,11,26,29] and the book [24].

In [23] the author applied the technique used by Elliott [6] to prove the inequality
(1.2) and established a time scale version of the Hardy inequality (1.1). In particular
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he proved that if p > 1 and g is a nonnegative and such that the delta integral
f aoo (g(1))P At exits as a finite number, then

oo( 1 o(x) p p P poo
/ —/ gAr ) Ax < (—) / g (x)Ax. 1.7)
a ox)—a g, p—1 a

If in addition u(r)/t — 0 as t — oo, then the constant is the best possible. In
the proof of the inequality (1.7), the author assumed that goA(t) > 0 where ¢(t) =
Jo F@&As/(t = a).

The paper is organized as follows. In Sect. 2, we prove some new dynamic inequal-
ities of Hardy and Littlewood type on time scales. The main results will be proved
by making use of the chain rule, Holder’s inequality and some algebraic inequalities.
These inequalities contain the integral and discrete inequalities (1.3)—(1.5) as special
caseswhen T=Rand T = N.

2 Main Results

In this section, we will prove the main results. For completeness, we recall the following
concepts related to the notion of time scales. A time scale T is an arbitrary nonempty
closed subset of the real numbers R. We assume throughout that T has the topology
that it inherits from the standard topology on the real numbers R. The forward jump
operator and the backward jump operator are defined by

o):=inf{s € T: s>1t}, p@):=sup{seT: s <t}

where sup ¥ = inf T. A point ¢ € T, is said to be left-dense if p(#) =t and ¢t > inf T,
is right-dense if o (t) = t, is left-scattered if p(¢) < ¢, and right-scattered if o' (¢) > ¢.
A function g : T — R is said to be right-dense continuous (rd-continuous) provided g
is continuous at right-dense points and at left-dense points in T, left-hand limits exist
and are finite. The set of all such rd-continuous functions is denoted by C.4(T).

The graininess function u for a time scale T is defined by u(¢) := o(t) — ¢, and
for any function f : T — R the notation f° () denotes f(o(¢)). Fixt € T and let
x : T — R. Define x*(t) to be the number (if it exists) with the property that given
any € > 0 there is a neighborhood U of ¢ with

[[x(o(t)) —x(s)] — xA(t)[o(t) —s]| <e€lo(t) —s|, foralls e U.

In this case, we say x” () is the (delta) derivative of x at # and that x is (delta)
differentiable at . We will frequently use the following results due to Hilger [10].
Throughout the paper will assume that g : T — Randlets € T.

(1) If g is differentiable at ¢, then g is continuous at 7.

(i1) If g is continuous at ¢ and ¢ is right-scattered, then g is differentiable at ¢ with
Ay — 80@®))—g@)
g == 5"
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(iii) If g is differentiable and ¢ is right-dense, then

¢8() = lim g(@) —g(S).
s—>t r—3S

(iv) If g is differentiable at 7, then g(o (1)) = g(t) + u()g*(t).
Note that if T = R then

b b
o) =1, u@)=0, fA10) = '), / f()Ar =/ f(®)dt,

if T = 7Z, then
b b1
=141 w0 =1, 20 =810, [ J0a=3 50,
ifT=hZ,h >0, thenc(t) =t+h, u() = h, and
YA = apy(n = D0, /abfmm - 1; f(a + kinh,

andif T={r:t=q* keNy g > 1}, theno(t) = qt, u(t) = (g — D,

w80 = 50 = LD T par= 3 fahuab,
(CI - l)t 10

k=ng
where typ = ¢"°, and if T = N% = {n?:n e Ny}, theno (1) = (V1 + 1),

Y((WVE+ D —y@)
1+ 247 ’

In this paper we will refer to the (delta) integral which we can define as follows.
If GA(r) = g(t), then the Cauchy (delta) integral of g is defined by fat g(s)As =
G(t) — G(a). It can be shown (see [2]) that if g € C,.4(T), then the Cauchy integral
G(t) = ft; g(s)As exists, fo € T, and satisfies G2 () = g(t), t € T. An infinite
integral is defined as [ f(1)Ar = limp_ oo fab f(t)At. We will make use of the
following product and quotient rules for the derivative of the product fg and the

quotient f/g (where gg® # 0, here g° = g o o) of two differentiable functions f
and g:

w(t) =142/t Ayy(@t) =

A
f) s ng' @

(f9)2 = Fo + f7g" = fg* + f2¢°. and (— !
8 88
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Hardy and Littlewood Inequalities 531

We say that a function p : T — R is regressive provided 1 + u(t)p(t) #0,t € T.
The chain rule formula that we will use in this paper is

1

(x ()" = y/ [hx” + (1 = )x]" ™" dhx? (o), 2.2)
0

which is a simple consequence of Keller’s chain rule [2, Theorem 1.90]. Using the
fact that g% (1) = g(t) + u(1)g> (¢), we obtain

1
(xy(t))A =y / [x + hu(t)xA(t)]y_l dhx®(1). (2.3)
0
The integration by parts formula is given by

b b
/u(r)vA(t)At:[u(;)v(:)]g—/ u®(1)v° (1) At. (2.4)

To prove the main results, we will use the following Holder inequality [2, Theo-
rem 6.13]. Leta, b € T. Foru, v € C,4(T, R), we have

b b i b 3
/|u(r)v(r)|ms[/ |u(r)|qAr} [/ |v(r>|f’Ar} . @)

where p > 1and%+l=1.

Throughout the paper, we will assume that the functions in the statements of the
theorems are nonnegative and the integrals considered are assumed to exist.

Now, we are ready to state and prove the main results in this paper. Our first two
results, Theorem 2.1 (respectively Theorem 2.2) are the time scale version of (1.3)
[respectively (1.4)].

Theorem 2.1 Let T be a time scale witha € (0, co)T and p, q > O suchthat p/q > 1
andy < 1. Furthermore assume that g is a nonnegative and such that the delta integral

r_
[ (o (1)1 " gPl(t) At exists. Let

Q1) = /OO g(s)As, forany t € [a, o0)T. (2.6)
t

. 2 pla oo i
/ IO ( P ) / _8'0 @7
« oV (D) q(1-y) a (o) e

Then
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532 S. H. Saker, D. O’Regan

Proof Integrating the left-hand side of (2.7) by the parts formula (2.4) with VA1) =
1/oY (t), and u(r) = (2(1))P/? , we obtain

% (Q(1)7 b o
/a o7 (1) At = v(t)Q‘i(t)‘a +/a (v (1)) (_Qp/q(,))AAt, (2.8)

where v(t) = fat (1/07 (s)) As. Using the chain rule (2.2) and the fact that o (s) > s
we have

A 1
(s‘*V) =(l—y)/ [ho(s) + (1 — h)s]~dh
0

! dh
o [ho(s)+ (1 —h)s]”
>(1_y)/ dh :(l—y).
B o [ho(s)+ (A —h)a()]Y o7 (s)

=(1-y)

This implies that

o(t) 1 1 o(t) 1 A

o

v (t):/ As < / ( 1) At
a 07(s) 1=y Ja sV

- S S 2.9)
=y (@)t l—yarl T 1-y ' '

Combining (2.8), (2.9) and using the facts that 2 (co0) = 0 and v(a) = 0, we get that

® @k 8(0) ey
/a o’ (1) (1_)/)/ (o)~ 1 — (2 (t)) )At. (2.10)

Applying the chain rule £2(g(1)) = f (g(c))g™ (1), where ¢ € [, o'(1)], we see that
there exists ¢ € [t, o (¢)] such that

_ (QP/q(I))A - _ (5) 7_l(c)(QA(t)) (2.11)
Since Q2(r) = —g(¢r) < 0and ¢ > ¢, we have
- (Q"’/q(t))A < (g) (Q(l))gflg(l)- (2.12)

Substituting (2.12) into (2.10), we have

1

00 / 00 5*
/ (Q(l))”qm < p / (€2(2)) 2() At
a a¥(t) g =y)Ja (@)1
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This implies

00 / 00 (r—a)/ -1
/ (Q(t))’”’mS q(lp_y)/ @V ()P~ D/ Pg(t) (Q(1)) A (2.13)

a¥(1) (o(n)r—! (UV(I))@

Applying the Holder inequality (2.5) on the term

00 Y (r—q)/p p—q p_
/ [%gm} [(ay(r»‘(ﬂ)(sz(t))q 1]Ar,

with indices p/q and p/(p — q), we see that

o0 (r—a)/ _ .,
/ [%gm} (07 )~ 7 (@) T ar

4
%0 (r=a)/ Pl T e 15
S| [ reo| s [T ]

Substituting (2.14) into (2.13), we have

0 (Q(1))P/4 p pla poo i, 2
/a @) Ati(q(l—y)) /u(“(”“ grnAL (215

The proof is complete. O

Remark 1 At the end of the proof above if in addition we use the fact that QA (1) <0,
we see that

T (1))P/4 pla
/a o) (7 @)"TAL = /a TG Q)P AL,

and this and (2.15) imply that

/oo 1 (Qg(t))p/qu < (L)p/q /OO ;gg(t)At_
a (@) T \g(=y) a (o(t) 4

Remark 2 As a special case of Theorem 2.1 when T = R and p/g = A > 1 and
y < 1, we have the following Hardy inequality

ooi( ” ()d)de( * )A L oy
L] swe) a=(5) [ aasow
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534 S. H. Saker, D. O’Regan

Let G(t) = ftoo g(s)ds. Thus, we have (note that G(oc0) = 0)

/mi(c(t))A dt<( - )A/OO ! (G (1)t dt
a 17 “\1l-vy « T ’

which can be considered as a generalization of Wirtinger’s inequality (see [1]).

Remark 3 Assume that T = N in Theorem 2.1, p/g = A > l,a = land y < 1.
In this case the inequality in Remark 1 becomes the following discrete Hardy and
Littlewood inequality

s
2. 0+ 7 (Hz+lg(k)) = (—1 _y) ng m.  (2.16)

n=1 n=1
For the rest of the paper, we will assume that there exists a constant K > 0, with

) 1
>

—, for s > a. (2.17)
o(s) K

Theorem 2.2 Let T be a time scale witha € (0, co)T and p, q > Osuchthat p/q > 1
andy > 1. Furthermore assume that g is a nonnegative and such that the delta integral

p_
faoo ta~ " gPla(t) At exists. Let

t
A(t) :=/ g(s)As, for any t € la, co)T. (2.18)

Then

1 pKV r/q o0 1
(A / /
/a 7 (A (r))PiAr < (q = 1)) /a tyigg” 9(t)At. (2.19)

Proof Integrating the left-hand side of (2.19) using the parts formula (2.4) with

ut(t) = & and v7 (1) = (A7 (1))"/%, we have

© (AT / o
/ AT fayarian][~ + / (—u(@) (AP4(0)" Ar,  (2.20)

Y
A |

u(t) = / (—) As. (2.21)
t 24

where
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Hardy and Littlewood Inequalities 535

Using the chain rule (2.3), we have that

—1\2 1 1
(sy_l) Z(y_l)/o o (5) + (1 =1 "
1 1

o [ho(s)+(1 —h)U(S)]th
1 _ _
:/ (7’ l)dhzu. (2.22)
o \av(s) a?(s)sY

From (2.17) and (2.22), we see that

-1\ _ =D
sr—1 - Kvsv '

=y -0

Then

oo

© 1 —KV [®( —1)\2 K? 1
/ —As > As =
¢ sY y—0J; sv1 (y =1 571 ¢

—K?Y 1
= oD (ty_l) (2.23)

- (t)——/oo(_—l)A < K (L) (2.24)
u(t) = z v S_y—l ) B .

From (2.18), (2.20), (2.21), and (2.24), we have (note that u(co) = 0 and A(a) = 0)
that

Hence

/ T (AT0) A < q(l;K_yn / TS )t a2

Applying the chain rule ([2, Theorem 1.87])

FAe) = £ (g()g 1), where ¢ € [1, ()],

we see that there exists ¢ € [¢, o (t)] such that

(AP/9(1))" = (5) AT OAL ). (2.26)
Since A2(¢) > 0 and o (¢) > ¢, we have

(AP/1(1)" < (g) (A% ()7 g(0). (227)
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Substituting (2.27) into (2.25), we have

/oo (Ao(t))p/q Ap < pK? /oo (A”(t))f—
a - q (V - 1) a

tY ty—1

This implies that

124 ty—1

g(t)At.

00 o / o) (p—q)/ p—q P
/ AT@)P (t))pqm < q(l;K_Vl)/ [ﬁ = pg(t)] |:t_y(p)(Aa(t))q_l] At.

Applying the Holder inequality (2.5) on the term

oo | ¥ (p=q)/p V) r=q
—— g f@ |t (A% (D) T At
171
a

with indices p/q and p/(p — q), we see that

e ¢} ( - )/ —q D —
/ [—(ﬂ)p ’ pf(t):| @)~ 5T (A () T A

tr=1

q
o [y r—a)/p r/4 Pr oo (A (1)) P4
< /a [—(I )ﬂ_l g(t)] At [/a 0 YV)) A

Substituting (2.29) into (2.28), we have

tr—l1

/Oo Lacwyriaar < _PKT /oo (GoNi
a 1V T q a

(r =D

00 (A (1))\P/ 5
X[/ Mm] .
a 124

This gives us that

© 1 KV r/q 9] p_
_(AU(t))P/th < _pr tf; ygp/q(t)At,
a 17 q a

y—1

which is the desired inequality (2.19). The proof is complete.

Remark 4 Let G(t) = fa[ g(s)Ag. Then from (2.19) we have (note o (¢) > t)

o rlqg poo
a oY) gy —1 a V7 q

@ Springer
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Remark 5 As a special case of Remark 4, whenT =Rand p/g =X > land y < 1,
we have the following Hardy inequality

L oo(d))\dt< AV *ryde
[ ([ eos) (i) [ mmeon

LetG(t) = fat g(s)ds. Thus, we have (note that G(a) = 0)

| N AN e
| seores () [T ohGore

which can be considered as a generalization of Wirtinger’s inequality (see [1]). When
y = A > 1, we have the classical Hardy inequality (1.1)

© 71 t A A A oo
/ (;/ g(s)ds) dti(m) / gh(n)de, A > 1.

In Theorem 2.2 if we replace the left-hand side by

o0 1
_ (A° r/q
/a ) (A° ()P 1AL,

and proceeding as in the proof of Theorem 2.2, we get the following result (note (2.17)
is not assumed).

Corollary 2.1 Let T be a time scale with a € (0,00)T and p, q > 0 such that
p/q > 1 and y > 1. Furthermore assume that g is a nonnegative and such that the

p_ ply—1
delta integral faoo O’Z Y (1) (Ug—l)) gP!a(t) At exists. Let A(t) be as defined in
Theorem 2.2. Then

/oo (Ad(l))p/th<( p )P/q/oo gp/q(t) (&)Z(VU A
« @y T " \gy-D a o' i@y \ 1 '

Remark 6 Assume that T = N in Theorem 2.2, p/g = A > l,a = 1,and y > 1.
Furthermore assume that > 7 | g’ (n) is convergent. Note crl(1_n) = n”? SO % < n"? <
1. In this case, we have the following discrete Hardy and Littlewood inequality (with

K =2)
00 n A )
1 220 1
S (Zew) < () Tihew

n=1 k=1 n=1

In the following, we will apply the chain rules (2.2) and (2.3) to obtain new inequal-
ities of Hardy and Littlewood type on time scales. These inequalities are not as general
as the results in Theorems 2.1 and 2.2. However, we include these results and proofs
since they provide a strategy which can be used in other situations.
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538 S. H. Saker, D. O’Regan

Theorem 2.3 Let T be a time scale witha € (0, co)T and p, q > O suchthat p/q > 2
andy > 1. Furthermore assume that g is a nonnegative and such that the delta integral

faoo tg_yg”/q (t) At exists . Let A(t) be as defined in (2.18). Then

q

2 4
/oo i(A"(t))l’/th - opr/q pK? |:/oo 1 i g”/q(t)At}p
a 1 gy —1D a V7 q

(g(1)P At.

P—q
/oo (Ao(t))Ap/q Ar ? N oplq=2gy [0 Mp/q—l(t)
x a 124 (V - 1) a ty71
(2.31)

Proof We proceed as in the proof of Theorem 2.2 to obtain using the chain rule (2.2)
that

/ tiy(A"(t))”/q At < q(’:K_yl)/ ty{I(Ap/q(t)AAt. 2.32)

1
Applying the chain rule (2.3), we see that (A”/9(1)2 = (p/q)g(1) 1A+ th]f—l
0

dh. Applying the inequality
a +b* < (@+b) <2 +bY), ifa, b>0, 1> 1, (2.33)

on the term [A + hug]?/9~! | we see for p/q > 2 that

Ldn

1

(AP0 = (p/q)g(t)/ [A + hugld™
0

= (S) 2719 -2g(1) (A% () 1 + 2719 2g(1)(ug)T " (234)

Substituting (2.34) into (2.32), we have

/OO (AJ(I))p/q Ap < p (2[’/q_2) KY /oo (Ag(t))ﬂ/q—l

1) At
v T oqy -1 TR
L2PITRY % P g
Yy — 1 a ty_l ’
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Hardy and Littlewood Inequalities 539

This implies that

/u %(A"(r))f’/mr

2PIa=2 gy o0 |:(ty)(p—q)/p
<
a

g(t)} [(ty)‘(”‘q)/l’(m(;))(p—q/q)] At

gy =1 =1
apla—2gy oo 5!
L / M:y_ft)(fa))"/qm. (2.35)

Applying the Holder inequality (2.5) on the term

/oo |:([V)(P—q)/l7f(t)i| [(ty)_(p_q)/p (Ag(t))(p—q/q)] At,

tr—1

with indices p/q and p/(p — q), we see that

q
/4 »
0 1 2wla=2 kv | oo [ (qvyp—a)/p P
/ — (AT @pPlaar < =P / 7| ar
a 124 q (V - 1) a 124

00 o / e
X[/ (A (t))’”’m] ?
a ty

opla=2gy /00 uP/4=1 ()
Y — 1 a ty_l

(g(1))P/1At,

which is the desired inequality (2.31). The proof is complete. O

As a special case of Theorem2.3 when T = R, we have the following Hardy-type
inequality.

Corollary 2.2 Assume that g > 0, integrable and £ g isintegrable and convergent
over (0,00). If . > 2 and y > 1, then

© 1 t A 2)\—2)\ A roo 1 N
— d dr < ——g"(r)dr.
[ ([ewa)as(G=) [ 7o

Theorem 2.4 Let T be a time scale witha € (0, co)T and p, g > O suchthat p/q > 2
andy > 1. Furthermore assume that g is a nonnegative and such that the delta integral

foo Ly p/q . .
. 197 gPla(t) At exists. Let A(t) be as defined in (2.18). Then

P
< 207 kv e
— (AT @pPiar < | ——— / PI (1) At. 2.36
/a tV( () ti((y_l)) ; t”_gg (A1 (2.36)
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Proof Proceeding as in the proof of Theorem 2.2, we get that

1 K o0 (AP/9(1))A
(A r/q
/a o (A ()PIAr < = 1)/a prv At.

From the chain rule (2.3) and (2.33), we see that

1
(AP (1))D < 25—22/[(;”\0)5—1 el _hﬁ—lAf—l] dh A% (1)
0

p_
ql

q
=202 [(A")g’1 S PO
| + @i g0).

This implies that

AP/ (1) <257 (A% (0) 1" g(0).

Hence
<1 o r/q 25_1[()’ * o 21
| mararian< TS [T (arw) T ewar,
and thus
-1
/oo i(AU(l‘))p/qu < W—I(V
a ty ()/ - 1)

r—9)

00 tV » - . =g
/ ﬂ,—_lg(l) [(ly) P (A%(1)) }Al-

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

Applying the Holder inequality (2.5) on the right-hand side with indices p/q and

p/(p — q), we see that

/a %(A“(r))l’/qm

orla=tgy | oo [ vp—a)/p r/4
<[ | S| A
y —1 a 24

Sk

This implies that

1—-2=4

/q
o | orla=tgy | oo [ v(p=a)/p b
[/ t—y(A”(t))”/th} ’ 5—/ [—g(t) At
a a

y—1 tv-1
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Then
1

P L
el | 207 KV \? > 1 )
/ Laroyriaar < (220 / =" ),
a 124 Y -1 a [y q

which is the desired inequality (2.36). The proof is complete. O

In the following, we consider the case when p/g < 2 and prove new inequalities
of Hardy and Littlewood type on time scales. To prove these results, we need the
inequality

2@ +b) < @+b) < (a +b"), wherea,b>0and0<r < 1. (242)

Applying this inequality (2.42) whenr = p/q — 1 < 1, we see that

1

E/ [A+hua®]P 7 an < (1) AP+ (ue)P! 7 plg < 2.
q
0

Proceeding as in the proof of Theorem 2.3, we have the following result.

Theorem 2.5 Let T be a time scale witha € (0, co)T and p, q > Osuchthat p/q <2
andy > 1. Furthermore assume that g is a nonnegative and such that the delta integral

P
faoo ta~ Y gPla(t) At exists. Assume that g is nonnegative function and let A(t) be as
defined in (2.18). Then

r/q

fe's] o oo /q—1
/ %At—KV/ u(g(t))P/th

ty—1

q r—q
pKY i S N OO L
5—[/ Jg' q(t)At — At .
qty = 1) L/a tV T4 a 124

As in the proof of Theorem 2.4, we have the following theorem.

Theorem 2.6 Let T be a time scale witha € (0, co)T and p, g > Osuchthatp/q <2
andy > 1. Assume that g is nonnegative function and let A(t) be as defined in ( 2.18).

Then )
S| 2KV \a [ 1
/ —(A"(r))"/qms( ) / _gP/4 (1) At.
a 1Y y—1 a tY7q

In the following, we prove a new class of inequalities when y < 1 by using
the function Q(¢) defined in (2.6). Applying the inequality (2.42) on the term

[hQ° + (1 — Q)1

1, when p/q — 1 < 1, we see that
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1
/[hQ” + (1 —m] " dn
0

ESHlan]

1

< E/[ﬁ*l @) +a —ma~'ei an
1 0
=[(@)i " +i ] <20 o). (2.43)

This implies that

/ vl (Q(0))P/1 At

o’ (1)

2 0o Y (1)) P—a)/p - p_
[ e | [ o @t a

<
_1—]/

Proceeding as in the proof of Theorem 2.1, we have the following theorem (note (2.17)
is not assumed).

Theorem 2.7 Let T be a time scale witha € (0, oo)t and p, q > Osuchthatp/q <2
andy < 1. Furthermore assume that g is a nonnegative and such that the delta integral

faoo(G (t))g_ygp/" (t) At exists. Then

> 1 o0 plq > \Pla oo 1 »
A At < | — s At
/a a? (1) (/t 8(s) s) t < (1 — y) /a P (g(1) t

Remark 7 It is worth mentioning here that the above results are valid also if the upper
bound of integration oo is replaced by any finite number b, i.e., if we replace the time
scale interval [a, co)T with [a, b]T.
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