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Abstract An associative ring is said to be right strongly Hopfian if the chain of
right annihilators rg(a) C rg (a%) C --- stabilizes for each a € R. In this article,
we are interested in the class of right strongly Hopfian rings and the transfer of this
property from an associative ring R to the Ore extension R[x; «, §] and the monoid
ring R[M]. Itis proved that if R is (¢, §)-compatible and R[x; «, §] is reversible, then
the Ore extension R[x; «, 8] is right strongly Hopfian if and only if R is right strongly
Hopfian, and it is also shown that if M is a strictly totally ordered monoid and R[M]
is a reversible ring, then the monoid ring R[M] is right strongly Hopfian if and only
if R is right strongly Hopfian. Consequently, several known results regarding strongly
Hopfian rings are extended to a more general setting.

Keywords Strongly Hopfian ring - Ore extension - Monoid ring
Mathematics Subject Classification 16599
1 Introduction

Throughout this paper, all rings are associative with identity. For a nonempty subset
Xofaring R, Ig(X) ={a € R|aX =0}and rg(X) = {a € R | Xa = 0} denote
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the left and the right annihilators of X in R, respectively. Following A. Hmaimou et
al [5], aring R is left strongly Hopfian if for every endomorphism f of R, the chain
ker f Cker f2 C --- stabilizes. Equivalently, R is left strongly Hopfian if the chain
of left annihilators [g(a) € Ig(a®) C --- stabilizes for each a € R. The class of
left strongly Hopfian rings is very large. It contains Noetherian rings, Laskerian rings,
rings satisfying acc on d-annihilators, those satisfying acc on d-colons, and so on [4].
If R is a commutative ring, then a left strongly Hopfian ring is also called a strongly
Hopfian ring. A. Hmaimou et al [5] showed that for a commutative ring R, the ring
R is strongly Hopfian if and only if the polynomial ring R[x] is strongly Hopfian if
and only if the Laurent polynomial ring R[x; x~!] is strongly Hopfian. Let R be a
commutative ring. In [4], S. Hizem provided an example of a strongly Hopfian ring
R such that the power series ring R[[x]] is not necessarily strongly Hopfian, and also
gave some necessary and sufficient conditions for R[[x]] to be strongly Hopfian. For
more details and properties of left strongly Hopfian rings, see [2,4,5,7,8].

Let o be an endomorphism, and § an «a-derivation of R, that is, § is an additive
map such that §(ab) = §(a)b + a(a)d(b), for a, b € R. According to Annin [1],
aring R is said to be o-compatible if for each a,b € R,ab = 0 & aa(b) = 0.
Clearly, this may only happen when the endomorphism « is injective. Moreover, R
is said to be §-compatible if for each a,b € R,ab = 0 = ad(b) = 0. Aring R is
(o, 8)-compatible if it is both a-compatible and §-compatible. Recall that a ring R is
reversible if ab = 0 = ba = 0 for all @, b € R, and a ring R is semicommutative
if ab = 0 implies aRb = 0 for any a, b € R. Clearly, any subring of a reversible
ring is also reversible, and if R is a reversible ring, then for any n € N and any
permutation o € Sy, x1x2 - -x, = 0 implies x5 (1)Rx52)R - - - X5 ()R = 0 for any
xi € R, 1 < i < n. Reversible rings are semicommutative, but the reverse is not
true in general [6, Example 1.5]. Let f(x) = ap + a;x + -+ + a,x" € R[x; @, é],
{ao, a1, ..., a,} denote the subset of R that comprised the coefficients of f(x).

In this article, we are interested in the class of right strongly Hopfian rings and the
transfer of this property from an associative ring R to the Ore extension R[x; c, ]
and the monoid ring R[M]. We first provide some examples of right strongly Hopfian
rings. We next show that (1) if R is («, §)-compatible and R[x; «, §] is reversible,
then the Ore extension R[x; «, §] is right strongly Hopfian if and only if R is right
strongly Hopfian; (2) if M is a strictly totally ordered monoid and R[M] a reversible
ring, then the monoid ring R[M] is right strongly Hopfian if and only if R is right
strongly Hopfian.

2 Extensions of Right Strongly Hopfian Rings

Definition 2.1 A ring R is right strongly Hopfian if the chain of right annihilators
rr(@) € rr(a?) C --- stabilizes for each a € R.

The next Lemma is known and very useful. We leave the proof for the reader.

Lemma 2.2 Let a € R. Then the chain rg(a) C rg(a?) C -- - stabilizes if and only
if there exists n > m such that rg(a") = rg(a™).
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Ore Extensions Over Right Strongly Hopfian Rings 807

Lemma 2.3 Let A C B be an extension of rings. If B is right strongly Hopfian, then
so is A.

Proof Leta € A. Thenra(a) =rp(a) N A.

Proposition 2.4 Let T, (R) denote the n x n upper triangular matrix ring over a ring
R. Then the following conditions are equivalent:

(1) R isright strongly Hopfian;
(2) T,(R) is right strongly Hopfian.

Proof (1) = (2). Suppose R is right strongly Hopfian and let

aig an [237))
A=l @ e e,
0 0 S

We proceed by induction on n to show that 7,,(R) is right strongly Hopfian. Letn = 2.

Put o = (g [Z) € T>(R). Since R is right strongly Hopfian, there exists m € N

such that for any n > m, rg(a™) = rg(a™) and rg(c") = rr(c™). Now we show that

X
rrr) @) = rryy @) 168 = ( ;) € rry(ry (@), then
a2m+1ﬂ
a2m+1 a2mb+a2m_1bc+-~-+ambc’"+-~-+bc2’" Xy
=\o c2m+1 0z
a2m+1x a2m+1y + (aZmb + a2m—lbc 4 abe™ chm)Z
= 0 62m+lz =0.
Thus x € rr(@®*!) = rp(a*") and z € rp(c®*!) = rp(c®) = -+ = rr(c™).

Hence the equation
@y 4 @b +a®be + -4+ a"bc" + -+ bcP™)z =0
becomes
a 'y + @b+ a®" be+ -+ a" bz
=ad" T @y + @b+ a" e+ -+ b Hz) = 0.
Then

amy+(am_1b+am_2bc+"'+me_l) z € VR(am_l—l),
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and so
a"y+ @ '+ a" be+ -+ b Nz € rr@™).
Hence
am(amy+(am_lb+a’n_2bc+"'+bcm_l)Z)
:aZmy_i_(aZm—lb_i_aZm—Zbc_i_”._i_ambcm—l)Z —0.
Then
aZI’nﬂ
_ a2m a2m—lb+a2m—2bc+_,.+abc2m—2+bc2m—l Xy
—\0 c2m 0z
B a2mx aZmy+(a2m7]b+a2m72bc+.“_i_ambcmfl _i_“__}_chmfl)Z
—\0 2z
_ (0 aZmy+(a2m—lb+a2m—2bC+._.+ambcm—l)z) _0
—\0 0 o

Hence r7,(g) (@*" 1) C rpy(r) (@) and so rry gy (@?™ 1) = rry(r) (@>™). Therefore
T>(R) is right strongly Hopfian.
Next, we assume that the result is true forn — 1, n > 2, and let

aig an [237))
A= @ e e,
0 0o ... nn

We show that r7, g)(A) € r7,(r)(A%) C - - stabilizes. Put

ajl app - di

A 0 axn - ay :(AnlB)
“ e “ .. .« .. “ e O ann :
0 0 - ay

By the induction hypothesis, we can find m € N such that for any s > m,
(R (A _) =17, (R)(A)_)) and rr(a;,) = rr(ayy,). Then using the same way
as above, we can show that rz, (g (A*"*!1) = rz (g)(A*™) and so T,(R) is right
strongly Hopfian by induction.

(2) = (1) This follows easily from Lemma 2.3.

Corollary 2.5 Let L, (R) denote the lower triangular matrix ring over R. Then the
following conditions are equivalent:

(1) R is right strongly Hopfian;
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Ore Extensions Over Right Strongly Hopfian Rings 809

(2) L, (R) is right strongly Hopfian.

Let
a ap - ap
Sn(R) = 9...61..::'@” a,aij €RY,
00 ---a
a ar - ay
Guwy = {7 e e R sisa g
00 ---q

and let R o< R denote the trivial extension of R by R.

Corollary 2.6 The following conditions are equivalent:

(1) R is right strongly Hopfian;

(2) Sn(R) is right strongly Hopfian;

(3) G, (R) is right strongly Hopfian;

(4) R[x]/(x™) is right strongly Hopfian;
(5) R < R is right strongly Hopfian.

Proof Note that R[x]/(x") = G, (R) and R > R = G»(R).
Let R be aring. Immediately, we deduce that the lower triangular matrix ring over R
is right strongly Hopfian if and only if the upper triangular matrix ring is right strongly

a0 0
Hopfian. Let R be aring, and let W(R) = a1 ax a3 ||a;j € R . Then W(R)
0 0 asy

is a 3 x 3 subring of M3(R) under usual matrix addition and multiplication. A natural
problem asks if the right strongly Hopfian property of such a ring coincides with that
of R. This inspires us to consider the right strongly Hopfian property of W (R).

Proposition 2.7 Let R be a ring. Then W (R) is right strongly Hopfian if and only if
R is right strongly Hopfian.

Proof Suppose R is right strongly Hopfian and let
a 0 O
a=|x b y|eW(R).
0 0 ¢

Then there existsm € Nsuchthatforanyn > m,rg(a") = rg(a™),rgr(b") = rgr(d™),
and rg(c") = rr(c™). Now we show that ry gy (@>"*1) = ry () (@®™). If

0
t 2m+l)

0
e S "W (R) (Ol
0

=
Il
o v

f
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then
a2m+1d 0 0
a2m+1’3 — ud + b2m+1s b2m+le b2m+]l + Uf — O,
0 0 ch—Hf
where

u=xa* +bxa® '+ £ b"xa™ + " xa™ o B a4+ pPx,

and
v="b""y 4 b7 ye 4+ b2y o by 4y

Hence

d € rr(@"*) = rg@™) = - = rr(a"),

e € rp®™ ) = rp®™) = = rg(®™),
and

ferr(@™y = rp(c®) = - = rg(c™).
Then

0= ud + b*"*ls
— (vam +bxa2m71 4o +bmxam +bm+1xam71 4o +b2mx)d +b2m+ls
— (bm+1xam—1 + b2 g2 N mex)d + prmtlg
=" ((xa™ " + bxa™ 2 4+ -+ D" X)d + D),

and

0=b"*r 4of
=¥ Py 0P ye £ Ty T B e ey f
=" Gy + 0 ye 4 D T f
=" B By + 6" Pyt ye" T f).

Hence
(xd™ V4 bxa™r 4+ B0 + B € rp(PY = rp(™)
and

B+ "y + " Py 4y T f e rp("T) = rr().

@ Springer



Ore Extensions Over Right Strongly Hopfian Rings 811

So

P ((xa" '+ bxa" 4+ DT 1x)d+bms)
= b xa™™ 1 bm+l m— 2 b2m lx)d+b2m — ’

and

BBt + "y + " 2y 4+ oy )
— bzmt + (me—ly +b2m_2yc 4. —i—bmycm_l)f =0.

Then by routine computations, we can show that o B =0andso B € ry) (o®™).
Hence rw (g) (a?mtly = W (R) («?™). Therefore W (R) is right strongly Hopfian.

Conversely, if W (R) isright strongly Hopfian, then by Lemma 2.3 R is right strongly
Hopfian.

Let o be an endomorphism and § an «-derivation of R. We denote by R[x; «, §]
the Ore extension whose elements are the polynomials over R, the addition is defined
as usual, and the multiplication is subject to the relation xa = «(a)x + é(a) for any
a € R. From this rule, an inductive argument can be made in order to calculate an
expression for x/a, for all j € Nand a € R. To recall this result, we shall use some
convenient notation introduced in [9].

Notation 2.8 Let § be an a-derivation of R. For integers i, j with0 < i < j, f; /e
End(R, +) will denote the map which is the sum of all possible words in a, § bmlt
with i letters o and j — i letters 5. For instance, f0 =1, fj =al fJ = 8/, and
fjj_1 =a/ 18+ o/ 28a + - - + 8o/~ Using recursive formulas for the fij s and
induction, as done in [9], one can show with a routine computation that

J ) ‘
a= Z fi] (a)x".
i=0

The following Lemma is well known and we omit the proof (see [3, Lemma 2.1]).

Lemma 2.9 Let R be an («, §)-compatible ring. Then we have the following:

(1) Ifab = 0, then aa” (b) = o" (a)b = 0 for all positive integers n.

(2) If e (a)b = 0 for some positive integer k, then ab = 0.

(3) Ifab = 0, then a" (a)8™ (b) = 0 = §" (a)a" (b) for all positive integers m, n.
(4) Ifab =0, then af! (b) = 0 and f; (a)b =0 for all i, j.

Lemma 2.10 Let R be an a- compatible ring. Ifozk1 (DX (ap) - - - ok (ay) = 0 for
some positive integers, then ayas - - - a, = 0.

Proof Usinginduction, forn = 1, theresultis true by the injectivity of . Now suppose
ok (a))ak? (@) - - - &k (a,) = 0. Then ok (ay)a*? (an) - - - &*~1 (a,—1)a, = 0, and so
ok (a1)0{k2 (ap) - - - akn-1 (ap—1a,) = 0. Thenajay ---a, = 0.
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812 O. Lunqun et al.

Lemma 2.11 Let R be an («, §)-compatible ring, f(x) = ap+aix +-- -+ a,x" and

g(x) =by+bix + -+ + byux™ be two polynomials in R[x; «, 8]. Then we have the

following:

(1) Ifforall0 <i <nand0 < j <m, a;b; =0, then f(x)g(x) =0.

(2) If R is semicommutative and ¢ € R is such that for all0 < j < m, cbj =0, then
cf(x)gx) = 0.

Proof (1) We have

f(0)g(x) = (ap +arx + -+ + anx")(bo + b1x + -+ - + by x™)

- mzﬂ( > (Zn:aif;‘ (bt)))xl.

=0 \s+t=I] \i=s

By Lemma 2.9, a;b; = 0 implies a; fY’ (by) = 0. Thus it is easy to see that f(x)g(x) =
0.

(2) Since R is semicommutative, for all0 < i <nand 0 < j < m, ch; =0
implies ca;b; = 0. Thus by (1) we complete the proof.

For two polynomials f(x) and g(x) in R[x; «, 8], in order to calculate an expression
for (f(x) + g(x))", foralln € N, we denote by [Q} f (x)g(x)] the polynomial which
is the sum of all possible terms, with each term being a product of i polynomials f (x)
and n —i polynomials g (x). Using this convenient notation, we have (f (x)+g(x))" =
SO +10, 1 f()g)T+10, »f(X)g)]+---+[Q] f(x)g(x)] + g(x)".
Lemma 2.12 Let R be an («, §)-compatible semicommutative ring, ax”, f(x) =
bo+bix+- - -+byx™, g(x) = co+crx+- - -4c4x? be three polynomials in R[x; a, 5].
Ifcj e rr(a") forall 0 < j < q, then for any p > n, [QF (ax") f(x)]g(x) = 0.
Proof Tt is easy to check that the coefficients of [QF (ax") f(x)] can be written as
sums of monomials of length p in fj(a) and f;(b;), where b; € {bo, b1, ..., by}
andz > s > 0, v > u > 0 are nonnegative positive integers. Consider each monomial

Stll (vl)ffz2 (v2) - -- fsl;’(vp) where vy, v2,...,v, € {a, by, b1, .., by }. It would contain
nletters a. Suppose v, = v, = -+ =v,, =aforsomel <rj <rp <---<r, <p.
Then we write the monomial £, (v1) fy2(v2) - - - f;l‘,’ (vp) as

P t Ir +1 try—1 t Irp+1 !
fsll (v1) -+~ fs:ll (a)ff:1]+1 (Ur1+1) ce fs,r:_l (Ur,,—l)fs,:;1 (a)fsr',’;_tl (vrn+l) ce fs: (Up)y

where vs; € {bo, b1,...,by}ifs & {r1,r2,...,r,}. Foreach O < j < g, since R is
(@, 8)-compatible and semicommutative, a”c; = aa - - -ac; = 0 implies

f @ fy? @) fir @)ej =0,
and so
f?tll (vr) - St:1l (a)f;r‘r::ll (Ur1+1) T
L (V=) f (@) 5 r1) -+ fil (up)ej = 0.

Thus by Lemma 2.11 we complete the proof.
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Ore Extensions Over Right Strongly Hopfian Rings 813

The same idea can be used to prove the following.

Corollary 2.13 Let R be an (a, §)-compatible semicommutative ring, ax”, f(x) =
bo + bix + - + bypx™, g(x) = co + c1x + -+ + cqx9 be three polynomials in
Rlx;a, 8] Ifcj € rr(a") for all 0 < j < q, Then we have the following:

(1) Forany p > n+1, [0V (ax") f(x)]g(x) = 0.
(2) R[x;a,81(a"x™)R[x; a, 81(a2x™)R[x; o, 8] - - - (a’*x"*)R[x; a, 8]g(x) = 0 if
i1+i+--+ip>n

Proposition 2.14 Let R be («, §)-compatible and R[x; «, §] be reversible. Then the
following conditions are equivalent:

(1) R is right strongly Hopfian;

(2) Rl[x;«a, 8] is right strongly Hopfian.

Proof (1) = (2) Let f(x) = ap + aijx + -+ + a,x" € R[x;«,d]. Since R is
right strongly Hopfian, there exists k € N such that forall/ > kand all0 <i < n,

rr(al) = rg(ak). Now we show that rg(y.q 51 (f () "FDEFLY = rpre g 5 (f () DR,
If

g(x) = bO + b1x +---+ bmxm S }’R[X;a)g](f(x)(n—’_l)k_l—l)’
then

0= f)" e = (a0 +arx+ - +ax) "V By + bra+ -+ bya™)
— anan(an)a2n (an) . a("+l)k”(an)a[(n+l)k+l]"(bm)x[("+l)k+1]n+m +10Wer terms.

Hence
an" (an)o™ (ay) - - - " TR (@) DRI gy = 0,

By Lemma 2.10, we obtain a1

by, € TR (a,(,"“)k"'l) =rg (a,/;) .

n = 0. Hence

From f (x)"+Dk+lg(x) = 0, wehave a® f (x)"TDk+1g(x) = 0. Thenby Lemma2.11
we obtain

0 = a f(x)" Dk (x)
= a,(a0+arx + - +ax) TV By 4 bix 4 4 byx™)
— a'nc(ao +aix + -+ apx T B L b 4o 4 by x™
+ak(ag + arx + -+ auxm) TR m
= ay(ao+arx + -+ +apx) T by 4 bix 4 4 by

— ailjanan (an) . a(ﬂ-‘rl)kn (an)a[(n-l-l)k-‘rl]n (bm_l).x[(n+l)k+l]n+m_l +lower terms.
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814 O. Lunqun et al.

Hence

k-‘rl n(an)aZn(a ) (n-‘rl)kn(an)a[(l’l-‘rl)k-‘rl]n(bm_l) — 0

and so

bu_1 €rR (a,(l”"'z)k“) =rr (a,li) .

Using the same method repeatedly, we obtain

(n+1)k+1 )

bj € rr(an rr(ak) forall0 < j < m.

Consider the polynomial f(x) as the sum of two polynomials a,x" and h(x) =
ap—1x""" 4+ a,_2x""2 + ... 4 ag. Then by Corollary 2.13 we obtain

0= f@ " g(x) = (" +h() " g)
= (@) ") + [ QU @) | g @) + -
+ [Qi”“)"“mnx")h(x)] g + | 0" @ | g )
+ [0 @] g0 + hen ™ g ()
[Q(”*”"+1 @] g0 + [ 005 @] g0+

+ I:an‘l’l)k‘f'l(a”xn)h(x)] g(x) + h(x)(n+1)k+1g(x). (1)

Multiplying Eq. (1) on the left side by (a,x™)*~!, then by Lemma 2.12 and Corol-
lary 2.13, we obtain

(a,,xn)k_lh(x)(n+1)k+1g(x) — 0
Since R[x; «, 8] is reversible, this implies
[0 @ | gone*! = 0. @

Multiplying Eq. (1) on the right side by 4 (x)*~!, we obtain

[0 @nxh () | gn ey =" + [ 5 @ | gom(ot !
o )T (0 = 0. 3)

Multiplying Eq. (3) on the left side by (a,x")*~2, we obtain

@ 2 [ 01 @) | g ey
+(anxn)k—2h(x)(i‘l+1)k+1g(x)h(x)k—l — 0 (4)
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Ore Extensions Over Right Strongly Hopfian Rings 815

By equation (a,x™)*~1h(x)"+Dk+1g(x) = 0 and because R[x; a, 8] is reversible, it
is easy to see that (a,x")f2 [QY’H)H] (anx")h(x)] g(x)h(x)*~! = 0. Hence Eq.
(4) becomes

(@™ 20 () DL g (1 p(e)k = = 0.

Since R[x; «, 8] is reversible, this implies
[ 005 @nxh ) | g n ey o)k = 0.
Multiplying Eq. (3) on the right side by (x)*~2, we obtain
[ 085 @) | g ey ot

Foe )R (R )k 2 = 0,

Continuing this process yields that
h() " g ()R @) @) 2 - () = 0,

and so

k(k—1)
h(x)(n+l)k+l+ 5

g(x)
k(k—1
= (ap + arx + - - 4 a,_1x" "1 PFOEFIE . )(bo +bix 4+ bpx™) =0,

since R[x; «, 8] is reversible. Now by the same way as above, we obtain

(n+Dk+1+58-D
bj erg (an_l o )=rr (aﬁfl)
for all 0 < j < m. Using induction on n, we obtain
bj erg (ai(nﬂ)kﬂ) =rg (a{‘)

forall0 < j <mand 0 < i < n.Itis now easy to check that f(x)"+D*g(x) = 0.
Hence 7grpx:a.s1(f () PV = rpr g5 (f () FDK) Therefore R[x; a, 8] is right
strongly Hopfian.

2) = (1) Itis trivial.

Corollary 2.15 We have the following:

(1) If R is a-compatible and the skew polynomial ring R[x; o] is reversible, then the
skew polynomial ring R[x; o] is right strongly Hopfian if and only if R is right
strongly Hopfian.
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816 O. Lunqun et al.

(2) If R is 5-compatible and the differential polynomial ring R[x; §] is reversible,
then the differential polynomial ring R[x; 8] is right strongly Hopfian if and only
if R is right strongly Hopfian.

Proof 1t is an immediate consequence of Proposition 2.14.

Corollary 2.16 ([5, Theorem 5.1]). Let R be a commutative strongly Hopfian ring,
then the polynomial ring R[x] is strongly Hopfian.

Let M be a multiplicative monoid. In the following, e will always stand for the
identity of M. Then R[M] will denote the monoid ring over R consisting of all elements
of the form >/ | rig; withr; € R, gi € M, i = 1,2,...,n, where the addition is
given naturally and the multiplication is given by

(Zrigi) Zsjhj ZZZ(ViSj)(gihj)-

i=1 j=1 i=1 j=I

Recall that the ordered monoid (M, <) is a strictly ordered monoid if for any g, g/,
heM,g < g implies that gh < g’h and hg < hg'.

For two elements @ and 8 in R[M], in order to calculate an expression for (« + 8)",
foralln € N, we denote by [ Q7 «8] the sum of all possible terms with each term being
a product of i elements o and n — i elements B. Using this convenient notation, we
have (o + 8)" = o +[Q!_ af] + [Ql_,a] + - + [Q}ap] + .

Lemma 2.17 Let (M, <) be a strictly totally ordered monoid and R a semicommuta-
tivering, o« = ag, f = bih1+byho+---+byhy,andy = civi+cova+- - -+ vy be
three elements in R[ M. If there exists a positive integer n € Z such that c; € rg(a")
forall 1 < j <m, then for any p > n, [QFaBly = 0.

Proof The coefficients of [ QF «f] can be written as sums of monomials of length p in
aand b, where b; € {b1, ba, ..., b,}. Consider one of such monomials, d1d; - - - d,,
whered; € {a, b1, b2, ...,b,},0 <i < p.Itwould contain n letters a. Suppose d,;, =
dr, =d,, =aforsomel <r; <r; <--- <r, < p.Thenwe can write the monomial
asdydy ---dy,1ady y1---dy,1ady, 11 - - dp. Since R is semicommutative and ¢; €
rr(a™) forall1 < j <m,a"c; =aa---ac; =0 implies

didy -+ -dy,_1ady 41 -+ dy,_1ady, 41 - - dpcj =0

forall I < j < m. Hence each monomial appearing in [QFaB]y is equal to 0.
Therefore [Q,fozﬂ]y =0.

The same idea can be used to prove the following.

Corollary 2.18 Let (M, <) be a strictly totally ordered monoid and R a semicommu-
tativering, o = ag, B = bih1+bxha+- - -+byhyandy = civi+crva+- - -+Ci vy be
three elements in R[ M. If there exists a positive integer n € Z such that c; € rg(a")
forall 1 < j < m, then for any p > n + [, we have the following:
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(1) [QF,,eBly = 0.
(2) R[M](ag)"' R[M](ag)"*RIM]---(ag)"*RIM]yRIM] =0 ifni +ny+ -+
ng = n.

Proposition 2.19 Let M be a strictly totally ordered monoid and R[M] a reversible
ring. Then the following conditions are equivalent:

(1) R is a right strongly Hopfian ring;
(2) R[M]is a right strongly Hopfian ring.

Proof (1) = (2).Leta =a1g1 +axga+---+angn € R[M] with g; < g;ifi < j.
Since R is right strongly Hopfian, there exists k € N such that for all / > k and all
1 <i <n, rR(af) = rR(af‘). Now we show that rR[M](a"k+1) = rR[M](a”k). If
B = bihy + bahy + - - - byhy € rrpy (@) with hy < hy if s < ¢, then

0=0a"""g = (a181 +arga + -+ angn)™ ' (bih1 + boha + - buhi).

Considering the coefficient of the largest element g:l’k“hm in ™*18, we obtain
a™+1p,, = 0. Hence by, € rr(a™*1) = rg(a¥). From a"**18 = 0, we have

0 = (@ e)a™ ' B= (dFe)(argi+argr + - + angn)™ 1 (b1hy + bohy + -+ - byhy)
= (aye)(arg1 +azgo + -+ + angn)" T (brhy + bohy + - by 1hm—1)
+(ake)aigr +argr + -+ angn) ™ T byhm
= (aye)(arg1 + azgo + -+ + angn)" T (brhy + bohy + - by_1hm—1)
= (@)™ (B — byhy).

Considering the coefficient of the largest element g”k“hm 1 in (a,’ie)a”k“(ﬁ -
by h,y,), we obtain

bu—1 €rg ( (n+l)k+l) =TrR (Clﬁ) .

Continuing this process yields that b; € rR(aflk“) = rR(afl) forall 1 < j < m.
Consider the element « as the sum of two elements a,g, and y = a1g1 + axg>» +
-+ a,—18,—1- Then by Lemma 2.17 and Corollary 2.18 we obtain

0=a"*p = (angn +y)"t'p
= (@ngn)™ ' B+ ] 0o @ngny | B+ - [Q”k“(angn)y] Bt +yp

= [0 @y | B+ [ 01t @ugnv | B+ -+ v, )

Multiplying Eq. (5) on the left side by (angn)*~!, and by Corollary 2.18, we obtain
(angn )k 1 "k“,B = 0 and so [an+ (angn)y]ﬂyk I' = 0 since R[M] is reversible.

Multiplying Eq. (5) on the right side by %!, we obtain
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I:an-H(angn)V:I ﬁ [an-H(angn)V:I /3 k=l +o 4+ Vnk+1/3yk71 =0.
(6)

Multiplying Eq. (6) on the left side by (a, g,,)k_z, we obtain
(angn)k -2 [Q"k+1(angn)y] ﬁyk—l + (angn)k—zynk+lﬂyk—l —o.
Since R[M] is reversible, (a,g,)*~'y™ 18 = 0 implies
(@) 2 [ 1+ (@ng)v | Br* ! =00

Hence we obtain (ang,,)k 2 ”k“ﬂyk l'=0,and so [ Q"k+1(ang,,)y ,Byk 1 k 2=

0 since R[M] is reversible. Then multiplying Eq. (6) on the right side by yk 2, we
obtain
[0 @y | B 1742+ [ 0 @ngny | 4142
okl gy kol k=2 g
. . okl . KD nk+14 56D
Continuing this process, we obtain y By 7 =0andsoy B =0.

Using the same way as above, we can show that

nk+1+k(k;')

bj€rr(a,_ )ZVR(G,]i_l)

for all 1 < j < m. Using induction on n, we obtain

bjerg ( "kH) =7rR (a{‘)

forall 1 < j <mand 1 < i < n. Then it is easy to check that a"k,B = 0. Hence
B € rrim (o), and so TRIM] (™) = FR[M] (o). Therefore R[M] is right strongly
Hopfian.

(2) = (1) Itis trivial.

Corollary 2.20 ([5, Corollary 5.4]) Let R be a commutative strongly Hopfian ring,
then R(x, x~ '] is strongly Hopfian.
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