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Abstract An associative ring is said to be right strongly Hopfian if the chain of
right annihilators rR(a) ⊆ rR(a2) ⊆ · · · stabilizes for each a ∈ R. In this article,
we are interested in the class of right strongly Hopfian rings and the transfer of this
property from an associative ring R to the Ore extension R[x;α, δ] and the monoid
ring R[M]. It is proved that if R is (α, δ)-compatible and R[x;α, δ] is reversible, then
the Ore extension R[x;α, δ] is right strongly Hopfian if and only if R is right strongly
Hopfian, and it is also shown that if M is a strictly totally ordered monoid and R[M]
is a reversible ring, then the monoid ring R[M] is right strongly Hopfian if and only
if R is right strongly Hopfian. Consequently, several known results regarding strongly
Hopfian rings are extended to a more general setting.

Keywords Strongly Hopfian ring · Ore extension · Monoid ring
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1 Introduction

Throughout this paper, all rings are associative with identity. For a nonempty subset
X of a ring R, lR(X) = {a ∈ R | aX = 0} and rR(X) = {a ∈ R | Xa = 0} denote
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the left and the right annihilators of X in R, respectively. Following A. Hmaimou et
al [5], a ring R is left strongly Hopfian if for every endomorphism f of R, the chain
ker f ⊆ ker f 2 ⊆ · · · stabilizes. Equivalently, R is left strongly Hopfian if the chain
of left annihilators lR(a) ⊆ lR(a2) ⊆ · · · stabilizes for each a ∈ R. The class of
left strongly Hopfian rings is very large. It contains Noetherian rings, Laskerian rings,
rings satisfying acc on d-annihilators, those satisfying acc on d-colons, and so on [4].
If R is a commutative ring, then a left strongly Hopfian ring is also called a strongly
Hopfian ring. A. Hmaimou et al [5] showed that for a commutative ring R, the ring
R is strongly Hopfian if and only if the polynomial ring R[x] is strongly Hopfian if
and only if the Laurent polynomial ring R[x; x−1] is strongly Hopfian. Let R be a
commutative ring. In [4], S. Hizem provided an example of a strongly Hopfian ring
R such that the power series ring R[[x]] is not necessarily strongly Hopfian, and also
gave some necessary and sufficient conditions for R[[x]] to be strongly Hopfian. For
more details and properties of left strongly Hopfian rings, see [2,4,5,7,8].

Let α be an endomorphism, and δ an α-derivation of R, that is, δ is an additive
map such that δ(ab) = δ(a)b + α(a)δ(b), for a, b ∈ R. According to Annin [1],
a ring R is said to be α-compatible if for each a, b ∈ R, ab = 0 ⇔ aα(b) = 0.
Clearly, this may only happen when the endomorphism α is injective. Moreover, R
is said to be δ-compatible if for each a, b ∈ R, ab = 0 ⇒ aδ(b) = 0. A ring R is
(α, δ)-compatible if it is both α-compatible and δ-compatible. Recall that a ring R is
reversible if ab = 0 ⇒ ba = 0 for all a, b ∈ R, and a ring R is semicommutative
if ab = 0 implies aRb = 0 for any a, b ∈ R. Clearly, any subring of a reversible
ring is also reversible, and if R is a reversible ring, then for any n ∈ N and any
permutation σ ∈ Sn , x1x2 · · · xn = 0 implies xσ(1)Rxσ(2)R · · · xσ(n)R = 0 for any
xi ∈ R, 1 ≤ i ≤ n. Reversible rings are semicommutative, but the reverse is not
true in general [6, Example 1.5]. Let f (x) = a0 + a1x + · · · + anxn ∈ R[x;α, δ],
{a0, a1, . . . , an} denote the subset of R that comprised the coefficients of f (x).

In this article, we are interested in the class of right strongly Hopfian rings and the
transfer of this property from an associative ring R to the Ore extension R[x;α, δ]
and the monoid ring R[M]. We first provide some examples of right strongly Hopfian
rings. We next show that (1) if R is (α, δ)-compatible and R[x;α, δ] is reversible,
then the Ore extension R[x;α, δ] is right strongly Hopfian if and only if R is right
strongly Hopfian; (2) if M is a strictly totally ordered monoid and R[M] a reversible
ring, then the monoid ring R[M] is right strongly Hopfian if and only if R is right
strongly Hopfian.

2 Extensions of Right Strongly Hopfian Rings

Definition 2.1 A ring R is right strongly Hopfian if the chain of right annihilators
rR(a) ⊆ rR(a2) ⊆ · · · stabilizes for each a ∈ R.

The next Lemma is known and very useful. We leave the proof for the reader.

Lemma 2.2 Let a ∈ R. Then the chain rR(a) ⊆ rR(a2) ⊆ · · · stabilizes if and only
if there exists n > m such that rR(an) = rR(am).
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Lemma 2.3 Let A ⊂ B be an extension of rings. If B is right strongly Hopfian, then
so is A.

Proof Let a ∈ A. Then rA(a) = rB(a) ∩ A.

Proposition 2.4 Let Tn(R) denote the n× n upper triangular matrix ring over a ring
R. Then the following conditions are equivalent:

(1) R is right strongly Hopfian;
(2) Tn(R) is right strongly Hopfian.

Proof (1) ⇒ (2). Suppose R is right strongly Hopfian and let

A =

⎛
⎜⎜⎝
a11 a12 · · · a1n
0 a22 · · · a2n
· · · · · · · · · · · ·
0 0 · · · ann

⎞
⎟⎟⎠ ∈ Tn(R).

We proceed by induction on n to show that Tn(R) is right strongly Hopfian. Let n = 2.

Put α =
(
a b
0 c

)
∈ T2(R). Since R is right strongly Hopfian, there exists m ∈ N

such that for any n > m, rR(an) = rR(am) and rR(cn) = rR(cm). Now we show that

rT2(R)(α
2m+1) = rT2(R)(α

2m). If β =
(
x y
0 z

)
∈ rT2(R)(α

2m+1), then

α2m+1β

=
(
a2m+1 a2mb + a2m−1bc + · · · + ambcm + · · · + bc2m

0 c2m+1

) (
x y
0 z

)

=
(
a2m+1x a2m+1y + (a2mb + a2m−1bc + · · · + ambcm + · · · + bc2m)z
0 c2m+1z

)
=0.

Thus x ∈ rR(a2m+1) = rR(a2m) and z ∈ rR(c2m+1) = rR(c2m) = · · · = rR(cm).
Hence the equation

a2m+1y + (a2mb + a2m−1bc + · · · + ambcm + · · · + bc2m)z = 0

becomes

a2m+1y + (a2mb + a2m−1bc + · · · + am+1bcm−1)z

= am+1(am y + (am−1b + am−2bc + · · · + bcm−1)z) = 0.

Then

am y + (am−1b + am−2bc + · · · + bcm−1) z ∈ rR(am+1),
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and so

am y + (am−1b + am−2bc + · · · + bcm−1)z ∈ rR(am).

Hence

am(am y + (am−1b + am−2bc + · · · + bcm−1)z)

= a2m y + (a2m−1b + a2m−2bc + · · · + ambcm−1)z = 0.

Then

a2mβ

=
(
a2m a2m−1b + a2m−2bc + · · · + abc2m−2 + bc2m−1

0 c2m

) (
x y
0 z

)

=
(
a2mx a2m y + (a2m−1b + a2m−2bc + · · · + ambcm−1 + · · · + bc2m−1)z
0 c2mz

)

=
(
0 a2m y + (a2m−1b + a2m−2bc + · · · + ambcm−1)z
0 0

)
= 0.

Hence rT2(R)(α
2m+1) ⊆ rT2(R)(α

2m) and so rT2(R)(α
2m+1) = rT2(R)(α

2m). Therefore
T2(R) is right strongly Hopfian.

Next, we assume that the result is true for n − 1, n > 2, and let

A =

⎛
⎜⎜⎝
a11 a12 · · · a1n
0 a22 · · · a2n
· · · · · · · · · · · ·
0 0 · · · ann

⎞
⎟⎟⎠ ∈ Tn(R).

We show that rTn(R)(A) ⊆ rTn(R)(A2) ⊆ · · · stabilizes. Put

A =

⎛
⎜⎜⎝
a11 a12 · · · a1n
0 a22 · · · a2n
· · · · · · · · · · · ·
0 0 · · · ann

⎞
⎟⎟⎠ =

(
An−1 B
0 ann

)
.

By the induction hypothesis, we can find m ∈ N such that for any s > m,
rTn−1(R)(As

n−1) = rTn−1(R)(Am
n−1) and rR(asnn) = rR(amnn). Then using the same way

as above, we can show that rTn(R)(A2m+1) = rTn(R)(A2m) and so Tn(R) is right
strongly Hopfian by induction.

(2) ⇒ (1) This follows easily from Lemma 2.3.

Corollary 2.5 Let Ln(R) denote the lower triangular matrix ring over R. Then the
following conditions are equivalent:

(1) R is right strongly Hopfian;
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(2) Ln(R) is right strongly Hopfian.

Let

Sn(R) =

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝
a a12 · · · a1n
0 a · · · a2n
· · · · · · · · · · · ·
0 0 · · · a

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣
a, ai j ∈ R

⎫⎪⎪⎬
⎪⎪⎭

,

Gn(R) =

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝
a1 a2 · · · an
0 a1 · · · an−1
· · · · · · · · · · · ·
0 0 · · · a1

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣
ai ∈ R, 1 ≤ i ≤ n

⎫⎪⎪⎬
⎪⎪⎭

,

and let R 	
 R denote the trivial extension of R by R.

Corollary 2.6 The following conditions are equivalent:

(1) R is right strongly Hopfian;
(2) Sn(R) is right strongly Hopfian;
(3) Gn(R) is right strongly Hopfian;
(4) R[x]/(xn) is right strongly Hopfian;
(5) R 	
 R is right strongly Hopfian.

Proof Note that R[x]/(xn) ∼= Gn(R) and R 	
 R ∼= G2(R).

Let R be a ring. Immediately, we deduce that the lower triangular matrix ring over R
is right strongly Hopfian if and only if the upper triangular matrix ring is right strongly

Hopfian. Let R be a ring, and let W (R) =
⎧⎨
⎩

⎛
⎝
a11 0 0
a21 a22 a23
0 0 a33

⎞
⎠

∣∣∣∣∣∣
ai j ∈ R

⎫⎬
⎭. Then W (R)

is a 3× 3 subring of M3(R) under usual matrix addition and multiplication. A natural
problem asks if the right strongly Hopfian property of such a ring coincides with that
of R. This inspires us to consider the right strongly Hopfian property of W (R).

Proposition 2.7 Let R be a ring. Then W (R) is right strongly Hopfian if and only if
R is right strongly Hopfian.

Proof Suppose R is right strongly Hopfian and let

α =
⎛
⎝
a 0 0
x b y
0 0 c

⎞
⎠ ∈ W (R).

Then there existsm ∈ N such that for any n > m, rR(an) = rR(am), rR(bn) = rR(bm),
and rR(cn) = rR(cm). Now we show that rW (R)(α

2m+1) = rW (R)(α
2m). If

β =
⎛
⎝
d 0 0
s e t
0 0 f

⎞
⎠ ∈ rW (R)(α

2m+1),
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then

α2m+1β =
⎛
⎝
a2m+1d 0 0
ud + b2m+1s b2m+1e b2m+1t + v f
0 0 c2m+1 f

⎞
⎠ = 0,

where

u = xa2m + bxa2m−1 + · · · + bmxam + bm+1xam−1 + · · · + b2m−1xa + b2mx,

and

v = b2m y + b2m−1yc + b2m−2yc2 + · · · + byc2m−1 + yc2m .

Hence

d ∈ rR(a2m+1) = rR(a2m) = · · · = rR(am),

e ∈ rR(b2m+1) = rR(b2m) = · · · = rR(bm),

and

f ∈ rR(c2m+1) = rR(c2m) = · · · = rR(cm).

Then

0 = ud + b2m+1s

= (xa2m + bxa2m−1 + · · · + bmxam + bm+1xam−1 + · · · + b2mx)d + b2m+1s

= (bm+1xam−1 + bm+2xam−2 + · · · + b2mx)d + b2m+1s

= bm+1((xam−1 + bxam−2 + · · · + bm−1x)d + bms),

and

0 = b2m+1t + v f

= b2m+1t + (b2m y + b2m−1yc + · · · + bm+1ycm−1 + bm ycm + · · · + yc2m) f

= b2m+1t + (b2m y + b2m−1yc + · · · + bm+1ycm−1) f

= bm+1(bmt + (bm−1y + bm−2yc + · · · + ycm−1) f ).

Hence

(xam−1 + bxam−2 + · · · + bm−1x)d + bms ∈ rR(bm+1) = rR(bm)

and

bmt + (bm−1y + bm−2yc + · · · + ycm−1) f ∈ rR((bm+1) = rR(bm).
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So

bm((xam−1 + bxam−2 + · · · + bm−1x)d + bms)

= bmxam−1 + bm+1xam−2 + · · · + b2m−1x)d + b2ms = 0,

and

bm(bmt + (bm−1y + bm−2yc + · · · + ycm−1) f )

= b2mt + (b2m−1y + b2m−2yc + · · · + bm ycm−1) f = 0.

Then by routine computations, we can show that α2mβ = 0 and so β ∈ rW (R)(α
2m).

Hence rW (R)(α
2m+1) = rW (R)(α

2m). Therefore W (R) is right strongly Hopfian.

Conversely, ifW (R) is right stronglyHopfian, then byLemma2.3 R is right strongly
Hopfian.

Let α be an endomorphism and δ an α-derivation of R. We denote by R[x;α, δ]
the Ore extension whose elements are the polynomials over R, the addition is defined
as usual, and the multiplication is subject to the relation xa = α(a)x + δ(a) for any
a ∈ R. From this rule, an inductive argument can be made in order to calculate an
expression for x ja, for all j ∈ N and a ∈ R. To recall this result, we shall use some
convenient notation introduced in [9].

Notation 2.8 Let δ be an α-derivation of R. For integers i, j with 0 ≤ i ≤ j , f j
i ∈

End(R,+) will denote the map which is the sum of all possible words in α, δ built
with i letters α and j − i letters δ. For instance, f 00 = 1, f j

j = α j , f j
0 = δ j , and

f j
j−1 = α j−1δ + α j−2δα + · · · + δα j−1. Using recursive formulas for the f j

i ’s and
induction, as done in [9], one can show with a routine computation that

x j a =
j∑

i=0

f j
i (a)xi .

The following Lemma is well known and we omit the proof (see [3, Lemma 2.1]).

Lemma 2.9 Let R be an (α, δ)-compatible ring. Then we have the following:

(1) If ab = 0, then aαn(b) = αn(a)b = 0 for all positive integers n.
(2) If αk(a)b = 0 for some positive integer k, then ab = 0.
(3) If ab = 0, then αn(a)δm(b) = 0 = δm(a)αn(b) for all positive integers m, n.
(4) If ab = 0, then a f j

i (b) = 0 and f j
i (a)b = 0 for all i , j .

Lemma 2.10 Let R be an α-compatible ring. If αk1(a1)αk2(a2) · · · αkn (an) = 0 for
some positive integers, then a1a2 · · · an = 0.

Proof Using induction, for n = 1, the result is true by the injectivity ofα. Now suppose
αk1(a1)αk2(a2) · · · αkn (an) = 0. Then αk1(a1)αk2(a2) · · · αkn−1(an−1)an = 0, and so
αk1(a1)αk2(a2) · · · αkn−1(an−1an) = 0. Then a1a2 · · · an = 0.
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812 O. Lunqun et al.

Lemma 2.11 Let R be an (α, δ)-compatible ring, f (x) = a0 +a1x +· · ·+anxn and
g(x) = b0 + b1x + · · · + bmxm be two polynomials in R[x;α, δ]. Then we have the
following:

(1) If for all 0 ≤ i ≤ n and 0 ≤ j ≤ m, aib j = 0, then f (x)g(x) = 0.
(2) If R is semicommutative and c ∈ R is such that for all 0 ≤ j ≤ m, cb j = 0, then

c f (x)g(x) = 0.

Proof (1) We have

f (x)g(x) = (a0 + a1x + · · · + anx
n)(b0 + b1x + · · · + bmx

m)

=
m+n∑
l=0

( ∑
s+t=l

(
n∑

i=s

ai f
i
s (bt )

))
xl .

By Lemma 2.9, aibt = 0 implies ai f is (bt ) = 0. Thus it is easy to see that f (x)g(x) =
0.

(2) Since R is semicommutative, for all 0 ≤ i ≤ n and 0 ≤ j ≤ m, cb j = 0
implies caib j = 0. Thus by (1) we complete the proof.

For two polynomials f (x) and g(x) in R[x;α, δ], in order to calculate an expression
for ( f (x) + g(x))n , for all n ∈ N, we denote by [Qn

i f (x)g(x)] the polynomial which
is the sum of all possible terms, with each term being a product of i polynomials f (x)
and n−i polynomials g(x). Using this convenient notation, we have ( f (x)+g(x))n =
f (x)n + [Qn

n−1 f (x)g(x)] + [Qn
n−2 f (x)g(x)] + · · · + [Qn

1 f (x)g(x)] + g(x)n .

Lemma 2.12 Let R be an (α, δ)-compatible semicommutative ring, axr , f (x) =
b0+b1x+· · ·+bmxm, g(x) = c0+c1x+· · ·+cq xq be three polynomials in R[x;α, δ].
If c j ∈ rR(an) for all 0 ≤ j ≤ q, then for any p > n, [Qp

n (axr ) f (x)]g(x) = 0.

Proof It is easy to check that the coefficients of [Qp
n (axr ) f (x)] can be written as

sums of monomials of length p in f ts (a) and f v
u (b j ), where b j ∈ {b0, b1, . . . , bm}

and t ≥ s ≥ 0, v ≥ u ≥ 0 are nonnegative positive integers. Consider each monomial
f t1s1 (v1) f

t2
s2 (v2) · · · f tpsp (vp)where v1, v2, . . ., vp ∈ {a, b0, b1, …̧, bm}. It would contain

n letters a. Suppose vr1 = vr2 = · · · = vrn = a for some 1 ≤ r1 < r2 < · · · < rn ≤ p.

Then we write the monomial f t1s1 (v1) f
t2
s2 (v2) · · · f tpsp (vp) as

f t1s1 (v1) · · · f tr1sr1
(a) f

tr1+1
sr1+1 (vr1+1) · · · f trn−1

srn−1 (vrn−1) f
trn
srn (a) f

trn+1
srn+1 (vrn+1) · · · f tpsp (vp),

where vs ∈ {b0, b1, . . . , bm} if s /∈ {r1, r2, . . . , rn}. For each 0 ≤ j ≤ q, since R is
(α, δ)-compatible and semicommutative, anc j = aa · · · ac j = 0 implies

f
tr1
sr1

(a) f
tr2
sr2

(a) · · · f trnsrn (a)c j = 0,

and so

f t1s1 (v1) · · · f tr1sr1
(a) f

tr1+1
sr1+1 (vr1+1) · · ·

f
trn−1
srn−1 (vrn−1) f

trn
srn (a) f

trn+1
srn+1 (vrn+1) · · · f tpsp (vp)c j = 0.

Thus by Lemma 2.11 we complete the proof.
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Ore Extensions Over Right Strongly Hopfian Rings 813

The same idea can be used to prove the following.

Corollary 2.13 Let R be an (α, δ)-compatible semicommutative ring, axr , f (x) =
b0 + b1x + · · · + bmxm, g(x) = c0 + c1x + · · · + cq xq be three polynomials in
R[x;α, δ]. If c j ∈ rR(an) for all 0 ≤ j ≤ q, Then we have the following:

(1) For any p > n + l, [Qp
n+l(ax

r ) f (x)]g(x) = 0.
(2) R[x;α, δ](ai1xn1)R[x;α, δ](ai2xn2)R[x;α, δ] · · · (aik xnk )R[x;α, δ]g(x) = 0 if

i1 + i2 + · · · + ik ≥ n.

Proposition 2.14 Let R be (α, δ)-compatible and R[x;α, δ] be reversible. Then the
following conditions are equivalent:

(1) R is right strongly Hopfian;
(2) R[x;α, δ] is right strongly Hopfian.
Proof (1) ⇒ (2) Let f (x) = a0 + a1x + · · · + anxn ∈ R[x;α, δ]. Since R is
right strongly Hopfian, there exists k ∈ N such that for all l > k and all 0 ≤ i ≤ n,
rR(ali ) = rR(aki ). Nowwe show that rR[x;α,δ]( f (x)(n+1)k+1) = rR[x;α,δ]( f (x)(n+1)k).

If

g(x) = b0 + b1x + · · · + bmx
m ∈ rR[x;α,δ]( f (x)(n+1)k+1),

then

0 = f (x)(n+1)k+1g(x)= (a0 + a1x+ · · · + anx
n)(n+1)k+1(b0 + b1x + · · · + bmx

m)

= anα
n(an)α

2n(an) · · · α(n+1)kn(an)α
[(n+1)k+1]n(bm)x [(n+1)k+1]n+m+lower terms.

Hence

anα
n(an)α

2n(an) · · · α(n+1)kn(an)α
[(n+1)k+1]n(bm) = 0.

By Lemma 2.10, we obtain a(n+1)k+1
n bm = 0. Hence

bm ∈ rR
(
a(n+1)k+1
n

)
= rR

(
akn

)
.

From f (x)(n+1)k+1g(x) = 0,wehaveakn f (x)
(n+1)k+1g(x) = 0.ThenbyLemma2.11

we obtain

0 = akn f (x)
(n+1)k+1g(x)

= akn(a0 + a1x + · · · + anx
n)(n+1)k+1(b0 + b1x + · · · + bmx

m)

= akn(a0 + a1x + · · · + anx
n)(n+1)k+1(b0 + b1x + · · · + bm−1x

m−1)

+akn(a0 + a1x + · · · + anx
n)(n+1)k+1bmx

m

= akn(a0 + a1x + · · · + anx
n)(n+1)k+1(b0 + b1x + · · · + bm−1x

m−1)

= aknanα
n(an) · · · α(n+1)kn(an)α

[(n+1)k+1]n(bm−1)x
[(n+1)k+1]n+m−1+lower terms.

123



814 O. Lunqun et al.

Hence

ak+1
n αn(an)α

2n(an) · · · α(n+1)kn(an)α
[(n+1)k+1]n(bm−1) = 0

and so

bm−1 ∈ rR
(
a(n+2)k+1
n

)
= rR

(
akn

)
.

Using the same method repeatedly, we obtain

b j ∈ rR(a(n+1)k+1
n ) = rR(akn) for all 0 ≤ j ≤ m.

Consider the polynomial f (x) as the sum of two polynomials anxn and h(x) =
an−1xn−1 + an−2xn−2 + · · · + a0. Then by Corollary 2.13 we obtain

0 = f (x)(n+1)k+1g(x) = (
anx

n + h(x)
)(n+1)k+1

g(x)

= (anx
n)(n+1)k+1g(x) +

[
Q(n+1)k+1

(n+1)k (anx
n)h(x)

]
g(x) + · · ·

+
[
Q(n+1)k+1

k (anx
n)h(x)

]
g(x) +

[
Q(n+1)k+1

k−1 (anx
n)h(x)

]
g(x)

+ · · · +
[
Q(n+1)k+1

1 (anx
n)h(x)

]
g(x) + h(x)(n+1)k+1g(x)

=
[
Q(n+1)k+1

k−1 (anx
n)h(x)

]
g(x) +

[
Q(n+1)k+1

k−2 (anx
n)h(x)

]
g(x) + · · ·

+
[
Q(n+1)k+1

1 (anx
n)h(x)

]
g(x) + h(x)(n+1)k+1g(x). (1)

Multiplying Eq. (1) on the left side by (anxn)k−1, then by Lemma 2.12 and Corol-
lary 2.13, we obtain

(anx
n)k−1h(x)(n+1)k+1g(x) = 0.

Since R[x;α, δ] is reversible, this implies
[
Q(n+1)k+1

k−1 (anx
n)h(x)

]
g(x)h(x)k−1 = 0. (2)

Multiplying Eq. (1) on the right side by h(x)k−1, we obtain

[
Q(n+1)k+1

k−2 (anx
n)h(x)

]
g(x)h(x)k−1 +

[
Q(n+1)k+1

k−3 (anx
n)h(x)

]
g(x)h(x)k−1

+ · · · + h(x)(n+1)k+1g(x)h(x)k−1 = 0. (3)

Multiplying Eq. (3) on the left side by (anxn)k−2, we obtain

(anx
n)k−2

[
Q(n+1)k+1

1 (anx
n)h(x)

]
g(x)h(x)k−1

+(anx
n)k−2h(x)(n+1)k+1g(x)h(x)k−1 = 0. (4)
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By equation (anxn)k−1h(x)(n+1)k+1g(x) = 0 and because R[x;α, δ] is reversible, it
is easy to see that (anxn)k−2

[
Q(n+1)k+1

1 (anxn)h(x)
]
g(x)h(x)k−1 = 0. Hence Eq.

(4) becomes

(anx
n)k−2h(x)(n+1)k+1g(x)h(x)k−1 = 0.

Since R[x;α, δ] is reversible, this implies

[
Q(n+1)k+1

k−2 (anx
n)h(x)

]
g(x)h(x)k−1h(x)k−2 = 0.

Multiplying Eq. (3) on the right side by h(x)k−2, we obtain

[
Q(n+1)k+1

k−3 (anx
n)h(x)

]
g(x)h(x)k−1h(x)k−2

+ · · · + h(x)(n+1)k+1g(x)h(x)k−1h(x)k−2 = 0.

Continuing this process yields that

h(x)(n+1)k+1g(x)h(x)k−1h(x)k−2 · · · h(x) = 0,

and so

h(x)(n+1)k+1+ k(k−1)
2 g(x)

= (a0 + a1x + · · · + an−1x
n−1)(n+1)k+1+ k(k−1)

2 (b0 + b1x + · · · bmxm) = 0,

since R[x;α, δ] is reversible. Now by the same way as above, we obtain

b j ∈ rR

(
a

(n+1)k+1+ k(k−1)
2

n−1

)
= rR

(
akn−1

)

for all 0 ≤ j ≤ m. Using induction on n, we obtain

b j ∈ rR
(
a(n+1)k+1
i

)
= rR

(
aki

)

for all 0 ≤ j ≤ m and 0 ≤ i ≤ n. It is now easy to check that f (x)(n+1)kg(x) = 0.
Hence rR[x;α,δ]( f (x)(n+1)k+1) = rR[x;α,δ]( f (x)(n+1)k). Therefore R[x;α, δ] is right
strongly Hopfian.

(2) ⇒ (1) It is trivial.

Corollary 2.15 We have the following:

(1) If R is α-compatible and the skew polynomial ring R[x;α] is reversible, then the
skew polynomial ring R[x;α] is right strongly Hopfian if and only if R is right
strongly Hopfian.
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(2) If R is δ-compatible and the differential polynomial ring R[x; δ] is reversible,
then the differential polynomial ring R[x; δ] is right strongly Hopfian if and only
if R is right strongly Hopfian.

Proof It is an immediate consequence of Proposition 2.14.

Corollary 2.16 ([5, Theorem 5.1]). Let R be a commutative strongly Hopfian ring,
then the polynomial ring R[x] is strongly Hopfian.

Let M be a multiplicative monoid. In the following, e will always stand for the
identity ofM . Then R[M]will denote themonoid ring over R consisting of all elements
of the form

∑n
i=1 ri gi with ri ∈ R, gi ∈ M , i = 1, 2, . . . , n, where the addition is

given naturally and the multiplication is given by

(
n∑

i=1

ri gi

) ⎛
⎝

m∑
j=1

s j h j

⎞
⎠ =

n∑
i=1

m∑
j=1

(ri s j )(gih j ).

Recall that the ordered monoid (M,≤) is a strictly ordered monoid if for any g, g′,
h ∈ M , g < g′ implies that gh < g′h and hg < hg′.

For two elements α and β in R[M], in order to calculate an expression for (α+β)n ,
for all n ∈ N, we denote by [Qn

i αβ] the sum of all possible terms with each term being
a product of i elements α and n − i elements β. Using this convenient notation, we
have (α + β)n = αn + [Qn

n−1αβ] + [Qn
n−2αβ] + · · · + [Qn

1αβ] + βn .

Lemma 2.17 Let (M,≤) be a strictly totally ordered monoid and R a semicommuta-
tive ring, α = ag, β = b1h1+b2h2+· · ·+bnhn and γ = c1v1+c2v2+· · ·+cmvm be
three elements in R[M]. If there exists a positive integer n ∈ Z such that c j ∈ rR(an)
for all 1 ≤ j ≤ m, then for any p > n, [Qp

nαβ]γ = 0.

Proof The coefficients of [Qp
nαβ] can be written as sums of monomials of length p in

a and b j , where b j ∈ {b1, b2, . . . , bn}. Consider one of such monomials, d1d2 · · · dp,
where di ∈ {a, b1, b2, . . . , bn}, 0 ≤ i ≤ p. It would contain n letters a. Suppose dr1 =
dr2 = drn = a for some1 ≤ r1 < r2 < · · · < rn ≤ p. Thenwe canwrite themonomial
as d1d2 · · · dr1−1adr1+1 · · · drn−1adrn+1 · · · dp. Since R is semicommutative and c j ∈
rR(an) for all 1 ≤ j ≤ m, anc j = aa · · · ac j = 0 implies

d1d2 · · · dr1−1adr1+1 · · · drn−1adrn+1 · · · dpc j = 0

for all 1 ≤ j ≤ m. Hence each monomial appearing in [Qp
nαβ]γ is equal to 0.

Therefore [Qp
nαβ]γ = 0.

The same idea can be used to prove the following.

Corollary 2.18 Let (M,≤) be a strictly totally ordered monoid and R a semicommu-
tative ring,α = ag,β = b1h1+b2h2+· · ·+bnhn and γ = c1v1+c2v2+· · ·+cmvm be
three elements in R[M]. If there exists a positive integer n ∈ Z such that c j ∈ rR(an)
for all 1 ≤ j ≤ m, then for any p > n + l, we have the following:
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(1) [Qp
n+lαβ]γ = 0.

(2) R[M](ag)n1R[M](ag)n2R[M] · · · (ag)nk R[M]γ R[M] = 0 if n1 + n2 + · · · +
nk ≥ n.

Proposition 2.19 Let M be a strictly totally ordered monoid and R[M] a reversible
ring. Then the following conditions are equivalent:

(1) R is a right strongly Hopfian ring;
(2) R[M] is a right strongly Hopfian ring.

Proof (1) ⇒ (2). Let α = a1g1 + a2g2 + · · · + angn ∈ R[M] with gi < g j if i < j .
Since R is right strongly Hopfian, there exists k ∈ N such that for all l > k and all
1 ≤ i ≤ n, rR(ali ) = rR(aki ). Now we show that rR[M](αnk+1) = rR[M](αnk). If
β = b1h1 + b2h2 + · · · bmhm ∈ rR[M](αnk+1) with hs < ht if s < t , then

0 = αnk+1β = (a1g1 + a2g2 + · · · + angn)
nk+1(b1h1 + b2h2 + · · · bmhm).

Considering the coefficient of the largest element gnk+1
n hm in αnk+1β, we obtain

ank+1
n bm = 0. Hence bm ∈ rR(ank+1

n ) = rR(akn). From αnk+1β = 0, we have

0 = (akne)α
nk+1β = (akne)(a1g1+ a2g2 + · · · + angn)

nk+1(b1h1 + b2h2 + · · · bmhm)

= (akne)(a1g1 + a2g2 + · · · + angn)
nk+1(b1h1 + b2h2 + · · · bm−1hm−1)

+(akne)(a1g1 + a2g2 + · · · + angn)
nk+1bmhm

= (akne)(a1g1 + a2g2 + · · · + angn)
nk+1(b1h1 + b2h2 + · · · bm−1hm−1)

= (akne)α
nk+1(β − bmhm).

Considering the coefficient of the largest element gnk+1
n hm−1 in (akne)α

nk+1(β −
bmhm), we obtain

bm−1 ∈ rR
(
a(n+1)k+1
n

)
= rR

(
akn

)
.

Continuing this process yields that b j ∈ rR(ank+1
n ) = rR(akn) for all 1 ≤ j ≤ m.

Consider the element α as the sum of two elements angn and γ = a1g1 + a2g2 +
· · · + an−1gn−1. Then by Lemma 2.17 and Corollary 2.18 we obtain

0 = αnk+1β = (angn + γ )nk+1β

= (angn)
nk+1β+

[
Qnk+1

nk (angn)γ
]
β+ · · · +

[
Qnk+1

k−1 (angn)γ
]
β + · · · + γ nk+1β

=
[
Qnk+1

k−1 (angn)γ
]
β +

[
Qnk+1

k−2 (angn)γ
]
β + · · · + γ nk+1β. (5)

Multiplying Eq. (5) on the left side by (angn)k−1, and by Corollary 2.18, we obtain
(angn)k−1γ nk+1β = 0 and so [Qnk+1

k−1 (angn)γ ]βγ k−1 = 0 since R[M] is reversible.
Multiplying Eq. (5) on the right side by γ k−1, we obtain
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[
Qnk+1

k−2 (angn)γ
]
βγ k−1 +

[
Qnk+1

k−3 (angn)γ
]
βγ k−1 + · · · + γ nk+1βγ k−1 = 0.

(6)

Multiplying Eq. (6) on the left side by (angn)k−2, we obtain

(angn)
k−2

[
Qnk+1

1 (angn)γ
]
βγ k−1 + (angn)

k−2γ nk+1βγ k−1 = 0.

Since R[M] is reversible, (angn)k−1γ nk+1β = 0 implies

(angn)
k−2

[
Qnk+1

1 (angn)γ
]
βγ k−1 = 0.

Hence we obtain (angn)k−2γ nk+1βγ k−1 = 0, and so [Qnk+1
k−2 (angn)γ ]βγ k−1γ k−2 =

0 since R[M] is reversible. Then multiplying Eq. (6) on the right side by γ k−2, we
obtain

[
Qnk+1

k−3 (angn)γ
]
βγ k−1γ k−2 +

[
Qnk+1

k−4 (angn)γ
]
βγ k−1γ k−2

+ · · · + γ nk+1βγ k−1γ k−2 = 0.

Continuing this process, we obtain γ nk+1βγ
k(k−1)

2 = 0 and so γ nk+1+ k(k−1)
2 β = 0.

Using the same way as above, we can show that

b j ∈ rR(a
nk+1+ k(k−1)

2
n−1 ) = rR(akn−1)

for all 1 ≤ j ≤ m. Using induction on n, we obtain

b j ∈ rR
(
ank+1
i

)
= rR

(
aki

)

for all 1 ≤ j ≤ m and 1 ≤ i ≤ n. Then it is easy to check that αnkβ = 0. Hence
β ∈ rR[M](αnk), and so rR[M](αnk+1) = rR[M](αnk). Therefore R[M] is right strongly
Hopfian.

(2) ⇒ (1) It is trivial.

Corollary 2.20 ([5, Corollary 5.4]) Let R be a commutative strongly Hopfian ring,
then R[x, x−1] is strongly Hopfian.
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