

Ore Extensions Over Right Strongly Hopfian Rings

Ouyang Lunqun1 · Liu Jinwang1 · Xiang Yueming2

Received: 17 July 2012 / Revised: 26 August 2013 / Published online: 1 February 2016 © Malaysian Mathematical Sciences Society and Universiti Sains Malaysia 2016

Abstract An associative ring is said to be right strongly Hopfian if the chain of right annihilators $r_R(a) \subseteq r_R(a^2) \subseteq \cdots$ stabilizes for each $a \in R$. In this article, we are interested in the class of right strongly Hopfian rings and the transfer of this property from an associative ring *R* to the Ore extension $R[x; \alpha, \delta]$ and the monoid ring *R*[*M*]. It is proved that if *R* is (α, δ)-compatible and *R*[*x*; α, δ] is reversible, then the Ore extension $R[x; \alpha, \delta]$ is right strongly Hopfian if and only if R is right strongly Hopfian, and it is also shown that if *M* is a strictly totally ordered monoid and *R*[*M*] is a reversible ring, then the monoid ring $R[M]$ is right strongly Hopfian if and only if *R* is right strongly Hopfian. Consequently, several known results regarding strongly Hopfian rings are extended to a more general setting.

Keywords Strongly Hopfian ring · Ore extension · Monoid ring

Mathematics Subject Classification 16S99

1 Introduction

Throughout this paper, all rings are associative with identity. For a nonempty subset *X* of a ring *R*, $l_R(X) = \{a \in R \mid aX = 0\}$ and $r_R(X) = \{a \in R \mid Xa = 0\}$ denote

² Department of Mathematics and Applied Mathematics, Huaihua University, Huaihua 418000, People's Republic of China

Communicated by V. Ravichandran.

 \boxtimes Ouyang Lunqun ouyanglqtxy@163.com

¹ Department of Mathematics, Hunan University of Science and Technology, Xiangtan 411201, Hunan, People's Republic of China

the left and the right annihilators of *X* in *R*, respectively. Following A. Hmaimou et al [\[5\]](#page-14-0), a ring *R* is left strongly Hopfian if for every endomorphism f of R , the chain ker *f* ⊆ ker f^2 ⊆ ··· stabilizes. Equivalently, *R* is left strongly Hopfian if the chain of left annihilators $l_R(a) \subseteq l_R(a^2) \subseteq \cdots$ stabilizes for each $a \in R$. The class of left strongly Hopfian rings is very large. It contains Noetherian rings, Laskerian rings, rings satisfying acc on d-annihilators, those satisfying acc on d-colons, and so on [\[4](#page-14-1)]. If *R* is a commutative ring, then a left strongly Hopfian ring is also called a strongly Hopfian ring. A. Hmaimou et al [\[5](#page-14-0)] showed that for a commutative ring *R*, the ring *R* is strongly Hopfian if and only if the polynomial ring *R*[*x*] is strongly Hopfian if and only if the Laurent polynomial ring $R[x; x^{-1}]$ is strongly Hopfian. Let *R* be a commutative ring. In [\[4](#page-14-1)], S. Hizem provided an example of a strongly Hopfian ring *R* such that the power series ring *R*[[*x*]] is not necessarily strongly Hopfian, and also gave some necessary and sufficient conditions for *R*[[*x*]] to be strongly Hopfian. For more details and properties of left strongly Hopfian rings, see [\[2](#page-13-0)[,4](#page-14-1),[5,](#page-14-0)[7](#page-14-2)[,8](#page-14-3)].

Let α be an endomorphism, and δ an α -derivation of *R*, that is, δ is an additive map such that $\delta(ab) = \delta(a)b + \alpha(a)\delta(b)$, for *a*, $b \in R$. According to Annin [\[1](#page-13-1)], a ring *R* is said to be α -compatible if for each $a, b \in R$, $ab = 0 \Leftrightarrow a\alpha(b) = 0$. Clearly, this may only happen when the endomorphism α is injective. Moreover, *R* is said to be δ -compatible if for each $a, b \in R$, $ab = 0 \Rightarrow a\delta(b) = 0$. A ring R is (α, δ)-compatible if it is both α-compatible and δ-compatible. Recall that a ring *R* is reversible if $ab = 0 \Rightarrow ba = 0$ for all $a, b \in R$, and a ring R is semicommutative if $ab = 0$ implies $aRb = 0$ for any $a, b \in R$. Clearly, any subring of a reversible ring is also reversible, and if *R* is a reversible ring, then for any $n \in \mathbb{N}$ and any permutation $\sigma \in S_n$, $x_1x_2 \cdots x_n = 0$ implies $x_{\sigma(1)}Rx_{\sigma(2)}R \cdots x_{\sigma(n)}R = 0$ for any $x_i \in R$, $1 \le i \le n$. Reversible rings are semicommutative, but the reverse is not true in general [\[6,](#page-14-4) Example 1.5]. Let $f(x) = a_0 + a_1x + \cdots + a_nx^n \in R[x; \alpha, \delta],$ ${a_0, a_1, \ldots, a_n}$ denote the subset of *R* that comprised the coefficients of $f(x)$.

In this article, we are interested in the class of right strongly Hopfian rings and the transfer of this property from an associative ring *R* to the Ore extension $R[x; \alpha, \delta]$ and the monoid ring $R[M]$. We first provide some examples of right strongly Hopfian rings. We next show that (1) if *R* is (α , δ)-compatible and *R*[*x*; α , δ] is reversible, then the Ore extension $R[x; \alpha, \delta]$ is right strongly Hopfian if and only if *R* is right strongly Hopfian; (2) if *M* is a strictly totally ordered monoid and *R*[*M*] a reversible ring, then the monoid ring $R[M]$ is right strongly Hopfian if and only if R is right strongly Hopfian.

2 Extensions of Right Strongly Hopfian Rings

Definition 2.1 A ring *R* is right strongly Hopfian if the chain of right annihilators $r_R(a) \subseteq r_R(a^2) \subseteq \cdots$ stabilizes for each $a \in R$.

The next Lemma is known and very useful. We leave the proof for the reader.

Lemma 2.2 *Let a* ∈ *R. Then the chain* $r_R(a) ⊆ r_R(a^2) ⊆ \cdots$ *stabilizes if and only if there exists* $n > m$ *such that* $r_R(a^n) = r_R(a^m)$ *.*

Lemma 2.3 *Let* $A ⊂ B$ *be an extension of rings. If* B *is right strongly Hopfian, then so is A.*

Proof Let $a \in A$. Then $r_A(a) = r_B(a) \cap A$.

Proposition 2.4 Let $T_n(R)$ denote the $n \times n$ upper triangular matrix ring over a ring *R. Then the following conditions are equivalent:*

- *(1) R is right strongly Hopfian;*
- *(2) Tn*(*R*) *is right strongly Hopfian.*

Proof (1) \Rightarrow (2). Suppose *R* is right strongly Hopfian and let

$$
A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix} \in T_n(R).
$$

We proceed by induction on *n* to show that $T_n(R)$ is right strongly Hopfian. Let $n = 2$. Put $\alpha = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$ 0 *c* $\Big\} \in T_2(R)$. Since *R* is right strongly Hopfian, there exists $m \in \mathbb{N}$ such that for any $n > m$, $r_R(a^n) = r_R(a^m)$ and $r_R(c^n) = r_R(c^m)$. Now we show that $rr_{2}(R)(\alpha^{2m+1}) = rr_{2}(R)(\alpha^{2m}).$ If $\beta = \begin{pmatrix} x & y \\ 0 & z \end{pmatrix}$ 0 *z* $\left\{ \in r_{T_2(R)}(\alpha^{2m+1}), \text{ then} \right\}$

$$
\alpha^{2m+1}\beta
$$

= $\begin{pmatrix} a^{2m+1} & a^{2m}b + a^{2m-1}bc + \dots + a^mbc^m + \dots + bc^{2m} \\ 0 & c^{2m+1} \end{pmatrix} \begin{pmatrix} x & y \\ 0 & z \end{pmatrix}$
= $\begin{pmatrix} a^{2m+1}x & a^{2m+1}y + (a^{2m}b + a^{2m-1}bc + \dots + a^mbc^m + \dots + bc^{2m})z \\ 0 & c^{2m+1}z \end{pmatrix} = 0.$

Thus $x \in r_R(a^{2m+1}) = r_R(a^{2m})$ and $z \in r_R(c^{2m+1}) = r_R(c^{2m}) = \cdots = r_R(c^m)$. Hence the equation

$$
a^{2m+1}y + (a^{2m}b + a^{2m-1}bc + \dots + a^mbc^m + \dots + bc^{2m})z = 0
$$

becomes

$$
a^{2m+1}y + (a^{2m}b + a^{2m-1}bc + \dots + a^{m+1}bc^{m-1})z
$$

= $a^{m+1}(a^m y + (a^{m-1}b + a^{m-2}bc + \dots + bc^{m-1})z) = 0.$

Then

$$
a^m y + (a^{m-1}b + a^{m-2}bc + \dots + bc^{m-1}) \quad z \in r_R(a^{m+1}),
$$

and so

$$
a^m y + (a^{m-1}b + a^{m-2}bc + \dots + bc^{m-1})z \in r_R(a^m).
$$

Hence

$$
a^{m}(a^{m}y + (a^{m-1}b + a^{m-2}bc + \dots + bc^{m-1})z)
$$

= $a^{2m}y + (a^{2m-1}b + a^{2m-2}bc + \dots + a^{m}bc^{m-1})z = 0.$

Then

$$
a^{2m} \beta
$$

= $\begin{pmatrix} a^{2m} & a^{2m-1}b + a^{2m-2}bc + \dots + abc^{2m-2} + bc^{2m-1} \\ 0 & c^{2m} \end{pmatrix} \begin{pmatrix} x & y \\ 0 & z \end{pmatrix}$
= $\begin{pmatrix} a^{2m}x & a^{2m}y + (a^{2m-1}b + a^{2m-2}bc + \dots + a^mbc^{m-1} + \dots + bc^{2m-1})z \\ 0 & c^{2m}z \end{pmatrix}$
= $\begin{pmatrix} 0 & a^{2m}y + (a^{2m-1}b + a^{2m-2}bc + \dots + a^mbc^{m-1})z \\ 0 & 0 \end{pmatrix} = 0.$

Hence $r_{T_2(R)}(\alpha^{2m+1}) \subseteq r_{T_2(R)}(\alpha^{2m})$ and so $r_{T_2(R)}(\alpha^{2m+1}) = r_{T_2(R)}(\alpha^{2m})$. Therefore $T_2(R)$ is right strongly Hopfian.

Next, we assume that the result is true for $n - 1$, $n > 2$, and let

$$
A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix} \in T_n(R).
$$

We show that $r_{T_n(R)}(A) \subseteq r_{T_n(R)}(A^2) \subseteq \cdots$ stabilizes. Put

$$
A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix} = \begin{pmatrix} A_{n-1} & B \\ 0 & a_{nn} \end{pmatrix}.
$$

By the induction hypothesis, we can find $m \in \mathbb{N}$ such that for any $s > m$, $r_{T_{n-1}(R)}(A_{n-1}^s) = r_{T_{n-1}(R)}(A_{n-1}^m)$ and $r_R(a_{nn}^s) = r_R(a_{nn}^m)$. Then using the same way as above, we can show that $r_{T_n(R)}(A^{2m+1}) = r_{T_n(R)}(A^{2m})$ and so $T_n(R)$ is right strongly Hopfian by induction.

 $(2) \Rightarrow (1)$ This follows easily from Lemma [2.3.](#page-1-0)

Corollary 2.5 *Let Ln*(*R*) *denote the lower triangular matrix ring over R. Then the following conditions are equivalent:*

(1) R is right strongly Hopfian;

(2) Ln(*R*) *is right strongly Hopfian.*

Let

$$
S_n(R) = \left\{ \begin{pmatrix} a & a_{12} \cdots a_{1n} \\ 0 & a & \cdots a_{2n} \\ \cdots & \cdots & \cdots \\ 0 & 0 & \cdots a \end{pmatrix} \middle| a, a_{ij} \in R \right\},\,
$$

$$
G_n(R) = \left\{ \begin{pmatrix} a_1 & a_2 & \cdots & a_n \\ 0 & a_1 & \cdots & a_{n-1} \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & a_1 \end{pmatrix} \middle| a_i \in R, 1 \leq i \leq n \right\},\,
$$

and let $R \bowtie R$ denote the trivial extension of R by R .

Corollary 2.6 *The following conditions are equivalent:*

- *(1) R is right strongly Hopfian;*
- *(2) Sn*(*R*) *is right strongly Hopfian;*
- *(3) Gn*(*R*) *is right strongly Hopfian;*
- *(4) R*[*x*]/(*xn*) *is right strongly Hopfian;*
- *(5)* $R \bowtie R$ *is right strongly Hopfian.*

Proof Note that $R[x]/(x^n) \cong G_n(R)$ and $R \bowtie R \cong G_2(R)$.

Let *R* be a ring. Immediately, we deduce that the lower triangular matrix ring over *R* is right strongly Hopfian if and only if the upper triangular matrix ring is right strongly

Hopfian. Let *R* be a ring, and let
$$
W(R) = \left\{ \begin{pmatrix} a_{11} & 0 & 0 \\ a_{21} & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{pmatrix} \middle| a_{ij} \in R \right\}
$$
. Then $W(R)$

is a 3 \times 3 subring of $M_3(R)$ under usual matrix addition and multiplication. A natural problem asks if the right strongly Hopfian property of such a ring coincides with that of *R*. This inspires us to consider the right strongly Hopfian property of *W*(*R*).

Proposition 2.7 *Let R be a ring. Then W*(*R*) *is right strongly Hopfian if and only if R is right strongly Hopfian.*

Proof Suppose *R* is right strongly Hopfian and let

$$
\alpha = \begin{pmatrix} a & 0 & 0 \\ x & b & y \\ 0 & 0 & c \end{pmatrix} \in W(R).
$$

Then there exists $m \in \mathbb{N}$ such that for any $n > m$, $r_R(a^n) = r_R(a^m)$, $r_R(b^n) = r_R(b^m)$, and $r_R(c^n) = r_R(c^m)$. Now we show that $r_{W(R)}(a^{2m+1}) = r_{W(R)}(a^{2m})$. If

$$
\beta = \begin{pmatrix} d & 0 & 0 \\ s & e & t \\ 0 & 0 & f \end{pmatrix} \in r_{W(R)}(\alpha^{2m+1}),
$$

 \mathcal{D} Springer

then

$$
\alpha^{2m+1}\beta = \begin{pmatrix} a^{2m+1}d & 0 & 0 \\ ud + b^{2m+1}s & b^{2m+1}e & b^{2m+1}t + vf \\ 0 & 0 & c^{2m+1}f \end{pmatrix} = 0,
$$

where

$$
u = xa^{2m} + bxa^{2m-1} + \dots + b^mxa^m + b^{m+1}xa^{m-1} + \dots + b^{2m-1}xa + b^{2m}x,
$$

and

$$
v = b^{2m}y + b^{2m-1}yc + b^{2m-2}yc^{2} + \dots + byc^{2m-1} + ye^{2m}.
$$

Hence

$$
d \in r_R(a^{2m+1}) = r_R(a^{2m}) = \dots = r_R(a^m),
$$

$$
e \in r_R(b^{2m+1}) = r_R(b^{2m}) = \dots = r_R(b^m),
$$

and

$$
f \in r_R(c^{2m+1}) = r_R(c^{2m}) = \cdots = r_R(c^m).
$$

Then

$$
0 = ud + b^{2m+1}s
$$

= $(xa^{2m} + bxa^{2m-1} + \dots + b^mxa^m + b^{m+1}xa^{m-1} + \dots + b^{2m}x)d + b^{2m+1}s$
= $(b^{m+1}xa^{m-1} + b^{m+2}xa^{m-2} + \dots + b^{2m}x)d + b^{2m+1}s$
= $b^{m+1}((xa^{m-1} + bxa^{m-2} + \dots + b^{m-1}x)d + b^ms),$

and

$$
0 = b^{2m+1}t + vf
$$

= $b^{2m+1}t + (b^{2m}y + b^{2m-1}yc + \dots + b^{m+1}yc^{m-1} + b^myc^m + \dots + vc^{2m})f$
= $b^{2m+1}t + (b^{2m}y + b^{2m-1}yc + \dots + b^{m+1}yc^{m-1})f$
= $b^{m+1}(b^mt + (b^{m-1}y + b^{m-2}yc + \dots + yc^{m-1})f).$

Hence

$$
(xa^{m-1} + bxa^{m-2} + \dots + b^{m-1}x)d + b^m s \in r_R(b^{m+1}) = r_R(b^m)
$$

and

$$
b^{m}t + (b^{m-1}y + b^{m-2}yc + \dots + y^{m-1})f \in r_{R}((b^{m+1}) = r_{R}(b^{m}).
$$

 $\underline{\textcircled{\tiny 2}}$ Springer

So

$$
b^m((xa^{m-1} + bxa^{m-2} + \dots + b^{m-1}x)d + b^m s)
$$

= $b^mxa^{m-1} + b^{m+1}xa^{m-2} + \dots + b^{2m-1}x)d + b^{2m} s = 0,$

and

$$
b^{m}(b^{m}t + (b^{m-1}y + b^{m-2}yc + \dots + xc^{m-1})f)
$$

= $b^{2m}t + (b^{2m-1}y + b^{2m-2}yc + \dots + b^{m}yc^{m-1})f = 0.$

Then by routine computations, we can show that $\alpha^{2m}\beta = 0$ and so $\beta \in r_{W(R)}(\alpha^{2m})$. Hence $r_{W(R)}(\alpha^{2m+1}) = r_{W(R)}(\alpha^{2m})$. Therefore $W(R)$ is right strongly Hopfian.

Conversely, if $W(R)$ is right strongly Hopfian, then by Lemma [2.3](#page-1-0) *R* is right strongly Hopfian.

Let α be an endomorphism and δ an α -derivation of *R*. We denote by $R[x; \alpha, \delta]$ the Ore extension whose elements are the polynomials over *R*, the addition is defined as usual, and the multiplication is subject to the relation $xa = \alpha(a)x + \delta(a)$ for any $a \in R$. From this rule, an inductive argument can be made in order to calculate an expression for $x^j a$, for all $j \in \mathbb{N}$ and $a \in R$. To recall this result, we shall use some convenient notation introduced in [\[9](#page-14-5)].

Notation 2.8 *Let* δ *be an* α *-derivation of R. For integers i, j with* $0 \le i \le j$, $f_i^j \in$ $End(R, +)$ *will denote the map which is the sum of all possible words in* α , δ *built with i letters* α *and* $j - i$ *letters* δ *. For instance,* $f_0^0 = 1$, $f_j^j = \alpha^j$, $f_0^j = \delta^j$, and $f_{j-1}^j = \alpha^{j-1}\delta + \alpha^{j-2}\delta\alpha + \cdots + \delta\alpha^{j-1}$. *Using recursive formulas for the f_i's and induction, as done in* [\[9](#page-14-5)]*, one can show with a routine computation that*

$$
x^j a = \sum_{i=0}^j f_i^j(a) x^i.
$$

The following Lemma is well known and we omit the proof (see [\[3,](#page-14-6) Lemma 2.1]).

Lemma 2.9 *Let R be an* (α, δ)*-compatible ring. Then we have the following:*

(1) *If ab* = 0*, then* $a\alpha^n(b) = \alpha^n(a)b = 0$ *for all positive integers n.*

(2) *If* $\alpha^{k}(a)b = 0$ *for some positive integer k, then ab* = 0*.*

(3) If $ab = 0$, then $\alpha^n(a)\delta^m(b) = 0 = \delta^m(a)\alpha^n(b)$ for all positive integers m, n.

(4) If $ab = 0$, then $af_i^j(b) = 0$ and $f_i^j(a)b = 0$ for all i, j.

Lemma 2.10 *Let R be an* α *-compatible ring. If* $\alpha^{k_1}(a_1)\alpha^{k_2}(a_2)\cdots \alpha^{k_n}(a_n) = 0$ *for some positive integers, then* $a_1 a_2 \cdots a_n = 0$.

Proof Using induction, for $n = 1$, the result is true by the injectivity of α . Now suppose $\alpha^{k_1}(a_1)\alpha^{k_2}(a_2)\cdots \alpha^{k_n}(a_n) = 0$. Then $\alpha^{k_1}(a_1)\alpha^{k_2}(a_2)\cdots \alpha^{k_{n-1}}(a_{n-1})a_n = 0$, and so $\alpha^{k_1}(a_1)\alpha^{k_2}(a_2)\cdots \alpha^{k_{n-1}}(a_{n-1}a_n) = 0$. Then $a_1a_2\cdots a_n = 0$.

Lemma 2.11 *Let R be an* (α , δ)*-compatible ring,* $f(x) = a_0 + a_1x + \cdots + a_nx^n$ *and* $g(x) = b_0 + b_1x + \cdots + b_mx^m$ *be two polynomials in* $R[x; \alpha, \delta]$. *Then we have the following:*

- (1) *If for all* $0 \le i \le n$ *and* $0 \le j \le m$, $a_i b_j = 0$, *then* $f(x)g(x) = 0$.
- (2) If R is semicommutative and $c \in R$ is such that for all $0 \le j \le m$, $cb_j = 0$, then $cf(x)g(x) = 0.$

Proof (1) We have

$$
f(x)g(x) = (a_0 + a_1x + \dots + a_nx^n)(b_0 + b_1x + \dots + b_mx^m)
$$

=
$$
\sum_{l=0}^{m+n} \left(\sum_{s+t=l} \left(\sum_{i=s}^n a_i f_s^i(b_i) \right) x^l.
$$

By Lemma [2.9,](#page-6-0) $a_i b_t = 0$ implies $a_i f_s^i(b_t) = 0$. Thus it is easy to see that $f(x)g(x) =$ θ .

(2) Since *R* is semicommutative, for all $0 \le i \le n$ and $0 \le j \le m$, $cb_i = 0$ implies $ca_ib_j = 0$. Thus by (1) we complete the proof.

For two polynomials $f(x)$ and $g(x)$ in $R[x; \alpha, \delta]$, in order to calculate an expression for $(f(x) + g(x))^n$, for all $n \in \mathbb{N}$, we denote by $[Q_i^n f(x)g(x)]$ the polynomial which is the sum of all possible terms, with each term being a product of *i* polynomials $f(x)$ and *n*−*i* polynomials *g*(*x*). Using this convenient notation, we have $(f(x)+g(x))^n$ = $f(x)^n + [Q_{n-1}^n f(x)g(x)] + [Q_{n-2}^n f(x)g(x)] + \cdots + [Q_1^n f(x)g(x)] + g(x)^n.$

Lemma 2.12 *Let R be an* (α, δ) -compatible semicommutative ring, ax^r , $f(x)$ = $b_0+b_1x+\cdots+b_mx^m$, $g(x)=c_0+c_1x+\cdots+c_ax^q$ *be three polynomials in* $R[x;\alpha,\delta]$ *. If* $c_j \in r_R(a^n)$ *for all* $0 \le j \le q$ *, then for any* $p > n$, $[Q_n^p(ax^r)f(x)]g(x) = 0$.

Proof It is easy to check that the coefficients of $[Q_n^p(ax^r)f(x)]$ can be written as sums of monomials of length *p* in $f_s^t(a)$ and $f_u^v(b_j)$, where $b_j \in \{b_0, b_1, \ldots, b_m\}$ and $t \ge s \ge 0$, $v \ge u \ge 0$ are nonnegative positive integers. Consider each monomial $f_{s_1}^{t_1}(v_1) f_{s_2}^{t_2}(v_2) \cdots f_{s_p}^{t_p}(v_p)$ where $v_1, v_2, \ldots, v_p \in \{a, b_0, b_1, \ldots, b_m\}$. It would contain *n* letters *a*. Suppose $v_{r_1} = v_{r_2} = \cdots = v_{r_n} = a$ for some $1 \le r_1 < r_2 < \cdots < r_n \le p$. Then we write the monomial $f_{s_1}^{t_1}(v_1) f_{s_2}^{t_2}(v_2) \cdots f_{s_p}^{t_p}(v_p)$ as

$$
f_{s_1}^{t_1}(v_1)\cdots f_{s_{r_1}}^{t_{r_1}}(a) f_{s_{r_1+1}}^{t_{r_1+1}}(v_{r_1+1})\cdots f_{s_{r_n-1}}^{t_{r_n-1}}(v_{r_n-1}) f_{s_{r_n}}^{t_{r_n}}(a) f_{s_{r_n+1}}^{t_{r_n+1}}(v_{r_n+1})\cdots f_{s_p}^{t_p}(v_p),
$$

where $v_s \in \{b_0, b_1, \ldots, b_m\}$ if $s \notin \{r_1, r_2, \ldots, r_n\}$. For each $0 \leq j \leq q$, since R is (α, δ) -compatible and semicommutative, $a^n c_j = a a \cdots a c_j = 0$ implies

$$
f_{s_{r_1}}^{t_{r_1}}(a) f_{s_{r_2}}^{t_{r_2}}(a) \cdots f_{s_{r_n}}^{t_{r_n}}(a) c_j = 0,
$$

and so

$$
f_{s_1}^{t_1}(v_1)\cdots f_{s_{r_1}}^{t_{r_1}}(a) f_{s_{r_1}+1}^{t_{r_1}+1}(v_{r_1+1})\cdots
$$

$$
f_{s_{r_n-1}}^{t_{r_n-1}}(v_{r_n-1}) f_{s_{r_n}}^{t_{r_n}}(a) f_{s_{r_n}+1}^{t_{r_n+1}}(v_{r_n+1})\cdots f_{s_p}^{t_p}(v_p)c_j = 0.
$$

Thus by Lemma [2.11](#page-6-1) we complete the proof.

The same idea can be used to prove the following.

Corollary 2.13 *Let R be an* (α, δ) -compatible semicommutative ring, ax^r , $f(x) =$ $b_0 + b_1x + \cdots + b_mx^m$, $g(x) = c_0 + c_1x + \cdots + c_qx^q$ *be three polynomials in* $R[x; \alpha, \delta]$ *. If* $c_i \in r_R(a^n)$ *for all* $0 \leq j \leq q$ *, Then we have the following:*

- (1) For any $p > n + l$, $[Q_{n+l}^p(ax^r)f(x)]g(x) = 0$.
- (2) $R[x; \alpha, \delta](a^{i_1}x^{n_1})R[x; \alpha, \delta](a^{i_2}x^{n_2})R[x; \alpha, \delta] \cdots (a^{i_k}x^{n_k})R[x; \alpha, \delta]g(x) = 0$ if $i_1 + i_2 + \cdots + i_k \geq n$.

Proposition 2.14 *Let R be* (α, δ)*-compatible and R*[*x*; α, δ] *be reversible. Then the following conditions are equivalent:*

- *(1) R is right strongly Hopfian;*
- *(2) R*[*x*; α, δ] *is right strongly Hopfian.*

Proof (1) \Rightarrow (2) Let $f(x) = a_0 + a_1x + \cdots + a_nx^n \in R[x; \alpha, \delta]$. Since *R* is right strongly Hopfian, there exists $k \in \mathbb{N}$ such that for all $l > k$ and all $0 \le i \le n$, $r_R(a_i^l) = r_R(a_i^k)$. Now we show that $r_{R[x;\alpha,\delta]}(f(x)^{(n+1)k+1}) = r_{R[x;\alpha,\delta]}(f(x)^{(n+1)k})$. If

$$
g(x) = b_0 + b_1 x + \dots + b_m x^m \in r_{R[x;\alpha,\delta]}(f(x)^{(n+1)k+1}),
$$

then

$$
0 = f(x)^{(n+1)k+1}g(x) = (a_0 + a_1x + \dots + a_nx^n)^{(n+1)k+1}(b_0 + b_1x + \dots + b_mx^m)
$$

= $a_n\alpha^n(a_n)\alpha^{2n}(a_n)\cdots\alpha^{(n+1)kn}(a_n)\alpha^{[(n+1)k+1]n}(b_m)x^{[(n+1)k+1]n+m}$ + lower terms.

Hence

$$
a_n\alpha^n(a_n)\alpha^{2n}(a_n)\cdots\alpha^{(n+1)kn}(a_n)\alpha^{\left[(n+1)k+1\right]n}(b_m)=0.
$$

By Lemma [2.10,](#page-6-2) we obtain $a_n^{(n+1)k+1}$ *b_m* = 0. Hence

$$
b_m \in r_R\left(a_n^{(n+1)k+1}\right) = r_R\left(a_n^k\right).
$$

From $f(x)^{(n+1)k+1}g(x) = 0$, we have $a_n^k f(x)^{(n+1)k+1}g(x) = 0$. Then by Lemma [2.11](#page-6-1) we obtain

$$
0 = a_n^k f(x)^{(n+1)k+1} g(x)
$$

= $a_n^k (a_0 + a_1x + \dots + a_nx^n)^{(n+1)k+1} (b_0 + b_1x + \dots + b_mx^m)$
= $a_n^k (a_0 + a_1x + \dots + a_nx^n)^{(n+1)k+1} (b_0 + b_1x + \dots + b_{m-1}x^{m-1})$
+ $a_n^k (a_0 + a_1x + \dots + a_nx^n)^{(n+1)k+1} b_mx^m$
= $a_n^k (a_0 + a_1x + \dots + a_nx^n)^{(n+1)k+1} (b_0 + b_1x + \dots + b_{m-1}x^{m-1})$
= $a_n^k a_n \alpha^n (a_n) \dots \alpha^{(n+1)kn} (a_n) \alpha^{[(n+1)k+1]n} (b_{m-1}) x^{[(n+1)k+1]n+m-1}$ + lower terms.

 \mathcal{D} Springer

Hence

$$
a_n^{k+1} \alpha^n (a_n) \alpha^{2n} (a_n) \cdots \alpha^{(n+1)kn} (a_n) \alpha^{[(n+1)k+1]n} (b_{m-1}) = 0
$$

and so

$$
b_{m-1} \in r_R\left(a_n^{(n+2)k+1}\right) = r_R\left(a_n^k\right).
$$

Using the same method repeatedly, we obtain

$$
b_j \in r_R(a_n^{(n+1)k+1}) = r_R(a_n^k)
$$
 for all $0 \le j \le m$.

Consider the polynomial $f(x)$ as the sum of two polynomials $a_n x^n$ and $h(x) =$ $a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \cdots + a_0$. Then by Corollary [2.13](#page-8-0) we obtain

$$
0 = f(x)^{(n+1)k+1}g(x) = (a_nx^n + h(x))^{(n+1)k+1}g(x)
$$

\n
$$
= (a_nx^n)^{(n+1)k+1}g(x) + \left[Q_{(n+1)k}^{(n+1)k+1}(a_nx^n)h(x)\right]g(x) + \cdots
$$

\n
$$
+ \left[Q_k^{(n+1)k+1}(a_nx^n)h(x)\right]g(x) + \left[Q_{k-1}^{(n+1)k+1}(a_nx^n)h(x)\right]g(x)
$$

\n
$$
+ \cdots + \left[Q_1^{(n+1)k+1}(a_nx^n)h(x)\right]g(x) + h(x)^{(n+1)k+1}g(x)
$$

\n
$$
= \left[Q_{k-1}^{(n+1)k+1}(a_nx^n)h(x)\right]g(x) + \left[Q_{k-2}^{(n+1)k+1}(a_nx^n)h(x)\right]g(x) + \cdots
$$

\n
$$
+ \left[Q_1^{(n+1)k+1}(a_nx^n)h(x)\right]g(x) + h(x)^{(n+1)k+1}g(x).
$$
 (1)

Multiplying Eq. [\(1\)](#page-9-0) on the left side by $(a_n x^n)^{k-1}$, then by Lemma [2.12](#page-7-0) and Corollary [2.13,](#page-8-0) we obtain

$$
(a_n x^n)^{k-1} h(x)^{(n+1)k+1} g(x) = 0.
$$

Since $R[x; \alpha, \delta]$ is reversible, this implies

$$
\[Q_{k-1}^{(n+1)k+1}(a_nx^n)h(x)\]g(x)h(x)^{k-1} = 0.\tag{2}
$$

Multiplying Eq. [\(1\)](#page-9-0) on the right side by $h(x)^{k-1}$, we obtain

$$
\[Q_{k-2}^{(n+1)k+1}(a_n x^n)h(x)\]g(x)h(x)^{k-1} + \[Q_{k-3}^{(n+1)k+1}(a_n x^n)h(x)\]g(x)h(x)^{k-1} + \cdots + h(x)^{(n+1)k+1}g(x)h(x)^{k-1} = 0.\tag{3}
$$

Multiplying Eq. [\(3\)](#page-9-1) on the left side by $(a_n x^n)^{k-2}$, we obtain

$$
(a_n x^n)^{k-2} \left[Q_1^{(n+1)k+1} (a_n x^n) h(x) \right] g(x) h(x)^{k-1} + (a_n x^n)^{k-2} h(x)^{(n+1)k+1} g(x) h(x)^{k-1} = 0.
$$
 (4)

² Springer

By equation $(a_n x^n)^{k-1} h(x)^{(n+1)k+1} g(x) = 0$ and because $R[x; \alpha, \delta]$ is reversible, it is easy to see that $(a_n x^n)^{k-2} \left| Q_1^{(n+1)k+1} (a_n x^n) h(x) \right| g(x) h(x)^{k-1} = 0$. Hence Eq. [\(4\)](#page-9-2) becomes

$$
(a_n x^n)^{k-2} h(x)^{(n+1)k+1} g(x) h(x)^{k-1} = 0.
$$

Since $R[x; \alpha, \delta]$ is reversible, this implies

$$
\[Q_{k-2}^{(n+1)k+1}(a_nx^n)h(x)\]g(x)h(x)^{k-1}h(x)^{k-2}=0.
$$

Multiplying Eq. [\(3\)](#page-9-1) on the right side by $h(x)^{k-2}$, we obtain

$$
\[Q_{k-3}^{(n+1)k+1}(a_nx^n)h(x)\]g(x)h(x)^{k-1}h(x)^{k-2}+\cdots+h(x)^{(n+1)k+1}g(x)h(x)^{k-1}h(x)^{k-2}=0.
$$

Continuing this process yields that

$$
h(x)^{(n+1)k+1}g(x)h(x)^{k-1}h(x)^{k-2}\cdots h(x)=0,
$$

and so

$$
h(x)^{(n+1)k+1+\frac{k(k-1)}{2}}g(x)
$$

= $(a_0 + a_1x + \dots + a_{n-1}x^{n-1})^{(n+1)k+1+\frac{k(k-1)}{2}}(b_0 + b_1x + \dots + b_mx^m) = 0,$

since $R[x; \alpha, \delta]$ is reversible. Now by the same way as above, we obtain

$$
b_j \in r_R \left(a_{n-1}^{(n+1)k+1+\frac{k(k-1)}{2}} \right) = r_R \left(a_{n-1}^k \right)
$$

for all $0 \le j \le m$. Using induction on *n*, we obtain

$$
b_j \in r_R\left(a_i^{(n+1)k+1}\right) = r_R\left(a_i^k\right)
$$

for all $0 \le j \le m$ and $0 \le i \le n$. It is now easy to check that $f(x)^{(n+1)k}g(x) = 0$. Hence $r_{R[x;\alpha,\delta]}(f(x)^{(n+1)\overline{k}+1)} = r_{R[x;\alpha,\delta]}(f(x)^{(n+1)\overline{k}})$. Therefore $R[x;\alpha,\delta]$ is right strongly Hopfian.

 $(2) \Rightarrow (1)$ It is trivial.

Corollary 2.15 *We have the following:*

(1) If R is α -compatible and the skew polynomial ring R[x; α] is reversible, then the *skew polynomial ring R*[*x*; α] *is right strongly Hopfian if and only if R is right strongly Hopfian.*

(2) *If R is* δ*-compatible and the differential polynomial ring R*[*x*; δ] *is reversible, then the differential polynomial ring R*[*x*; δ] *is right strongly Hopfian if and only if R is right strongly Hopfian.*

Proof It is an immediate consequence of Proposition [2.14.](#page-8-1)

Corollary 2.16 ([\[5,](#page-14-0) Theorem 5.1])*. Let R be a commutative strongly Hopfian ring, then the polynomial ring R*[*x*] *is strongly Hopfian.*

Let *M* be a multiplicative monoid. In the following, *e* will always stand for the identity of M. Then $R[M]$ will denote the monoid ring over R consisting of all elements of the form $\sum_{i=1}^{n} r_i g_i$ with $r_i \in R$, $g_i \in M$, $i = 1, 2, ..., n$, where the addition is given naturally and the multiplication is given by

$$
\left(\sum_{i=1}^n r_i g_i\right) \left(\sum_{j=1}^m s_j h_j\right) = \sum_{i=1}^n \sum_{j=1}^m (r_i s_j) (g_i h_j).
$$

Recall that the ordered monoid (M, \leq) is a strictly ordered monoid if for any *g*, *g*['], $h \in M$, $g < g'$ implies that $gh < g'h$ and $hg < hg'$.

For two elements α and β in $R[M]$, in order to calculate an expression for $(\alpha + \beta)^n$, for all $n \in \mathbb{N}$, we denote by $[Q_i^n \alpha \beta]$ the sum of all possible terms with each term being a product of *i* elements α and $n - i$ elements β . Using this convenient notation, we have $(\alpha + \beta)^n = \alpha^n + [Q_{n-1}^n \alpha \beta] + [Q_{n-2}^n \alpha \beta] + \cdots + [Q_1^n \alpha \beta] + \beta^n$.

Lemma 2.17 *Let* (M, \leq) *be a strictly totally ordered monoid and R a semicommutative ring,* $\alpha = ag$, $\beta = b_1h_1 + b_2h_2 + \cdots + b_nh_n$ *and* $\gamma = c_1v_1 + c_2v_2 + \cdots + c_mv_m$ *be three elements in R[M]. If there exists a positive integer* $n \in \mathbb{Z}$ *such that* $c_j \in r_R(a^n)$ *for all* $1 \leq j \leq m$ *, then for any* $p > n$ *,* $[Q_n^p \alpha \beta] \gamma = 0$ *.*

Proof The coefficients of $[Q_n^p \alpha \beta]$ can be written as sums of monomials of length *p* in *a* and *b_i*, where $b_j \in \{b_1, b_2, \ldots, b_n\}$. Consider one of such monomials, $d_1 d_2 \cdots d_p$, where $d_i \in \{a, b_1, b_2, \ldots, b_n\}, 0 \le i \le p$. It would contain *n* letters *a*. Suppose $d_{r_1} =$ $d_{r_2} = d_{r_n} = a$ for some $1 \le r_1 < r_2 < \cdots < r_n \le p$. Then we can write the monomial as $d_1d_2 \cdots d_{r_1-1}ad_{r_1+1} \cdots d_{r_n-1}ad_{r_n+1} \cdots d_p$. Since *R* is semicommutative and $c_i \in$ $r_R(a^n)$ for all $1 \le j \le m$, $a^n c_j = aa \cdots ac_j = 0$ implies

$$
d_1d_2\cdots d_{r_1-1}ad_{r_1+1}\cdots d_{r_n-1}ad_{r_n+1}\cdots d_p c_j=0
$$

for all $1 \leq j \leq m$. Hence each monomial appearing in $[Q_n^p \alpha \beta]$ is equal to 0. Therefore $\overline{[Q_n^p \alpha \beta]} \gamma = 0$.

The same idea can be used to prove the following.

Corollary 2.18 *Let* (M, \leq) *be a strictly totally ordered monoid and R a semicommutative ring,* $\alpha = ag$, $\beta = b_1h_1 + b_2h_2 + \cdots + b_nh_n$ *and* $\gamma = c_1v_1 + c_2v_2 + \cdots + c_mv_m$ *be three elements in R[M]. If there exists a positive integer* $n \in \mathbb{Z}$ *such that* $c_i \in r_R(a^n)$ *for all* $1 \leq j \leq m$, then for any $p > n + l$, we have the following:

- (1) $[Q_{n+l}^p \alpha \beta] \gamma = 0.$
- (2) $R[M](ag)^{n_1}R[M](ag)^{n_2}R[M]\cdots (ag)^{n_k}R[M]\gamma R[M] = 0$ *if* $n_1 + n_2 + \cdots +$ $n_k \geq n$.

Proposition 2.19 *Let M be a strictly totally ordered monoid and R*[*M*] *a reversible ring. Then the following conditions are equivalent:*

- (1) *R is a right strongly Hopfian ring;*
- (2) *R*[*M*] *is a right strongly Hopfian ring.*

Proof (1) \Rightarrow (2). Let $\alpha = a_1g_1 + a_2g_2 + \cdots + a_ng_n \in R[M]$ with $g_i < g_j$ if $i < j$. Since *R* is right strongly Hopfian, there exists $k \in \mathbb{N}$ such that for all $l > k$ and all $1 \leq i \leq n$, $r_R(a_i^l) = r_R(a_i^k)$. Now we show that $r_{R[M]}(\alpha^{nk+1}) = r_{R[M]}(\alpha^{nk})$. If $\beta = b_1h_1 + b_2h_2 + \cdots + b_mh_m \in r_{R[M]}(\alpha^{nk+1})$ with $h_s < h_t$ if $s < t$, then

$$
0 = \alpha^{nk+1}\beta = (a_1g_1 + a_2g_2 + \cdots + a_ng_n)^{nk+1}(b_1h_1 + b_2h_2 + \cdots + b_mh_m).
$$

Considering the coefficient of the largest element $g_n^{nk+1}h_m$ in $\alpha^{nk+1}\beta$, we obtain $a_n^{nk+1}b_m = 0$. Hence $b_m \in r_R(a_n^{nk+1}) = r_R(a_n^k)$. From $\alpha^{nk+1}\beta = 0$, we have

$$
0 = (a_n^k e) \alpha^{nk+1} \beta = (a_n^k e) (a_1 g_1 + a_2 g_2 + \dots + a_n g_n)^{nk+1} (b_1 h_1 + b_2 h_2 + \dots + b_m h_m)
$$

= $(a_n^k e) (a_1 g_1 + a_2 g_2 + \dots + a_n g_n)^{nk+1} (b_1 h_1 + b_2 h_2 + \dots + b_{m-1} h_{m-1})$
+ $(a_n^k e) (a_1 g_1 + a_2 g_2 + \dots + a_n g_n)^{nk+1} b_m h_m$
= $(a_n^k e) (a_1 g_1 + a_2 g_2 + \dots + a_n g_n)^{nk+1} (b_1 h_1 + b_2 h_2 + \dots + b_{m-1} h_{m-1})$
= $(a_n^k e) \alpha^{nk+1} (\beta - b_m h_m).$

Considering the coefficient of the largest element $g_n^{nk+1}h_{m-1}$ in $(a_n^ke)\alpha^{nk+1}(\beta$ $b_m h_m$), we obtain

$$
b_{m-1} \in r_R\left(a_n^{(n+1)k+1}\right) = r_R\left(a_n^k\right).
$$

Continuing this process yields that $b_j \in r_R(a_n^{nk+1}) = r_R(a_n^k)$ for all $1 \le j \le m$. Consider the element α as the sum of two elements $a_n g_n$ and $\gamma = a_1 g_1 + a_2 g_2 +$ $\cdots + a_{n-1}g_{n-1}$. Then by Lemma [2.17](#page-11-0) and Corollary [2.18](#page-11-1) we obtain

$$
0 = \alpha^{nk+1} \beta = (a_n g_n + \gamma)^{nk+1} \beta
$$

= $(a_n g_n)^{nk+1} \beta + \left[Q_{nk}^{nk+1} (a_n g_n) \gamma \right] \beta + \dots + \left[Q_{k-1}^{nk+1} (a_n g_n) \gamma \right] \beta + \dots + \gamma^{nk+1} \beta$
= $\left[Q_{k-1}^{nk+1} (a_n g_n) \gamma \right] \beta + \left[Q_{k-2}^{nk+1} (a_n g_n) \gamma \right] \beta + \dots + \gamma^{nk+1} \beta.$ (5)

Multiplying Eq. [\(5\)](#page-12-0) on the left side by $(a_n g_n)^{k-1}$, and by Corollary [2.18,](#page-11-1) we obtain $(a_n g_n)^{k-1} \gamma^{nk+1} \beta = 0$ and so $[Q_{k-1}^{nk+1} (a_n g_n) \gamma] \beta \gamma^{k-1} = 0$ since $R[M]$ is reversible. Multiplying Eq. [\(5\)](#page-12-0) on the right side by γ^{k-1} , we obtain

$$
\[Q_{k-2}^{nk+1}(a_n g_n)\gamma\]\beta\gamma^{k-1} + \left[Q_{k-3}^{nk+1}(a_n g_n)\gamma\right]\beta\gamma^{k-1} + \dots + \gamma^{nk+1}\beta\gamma^{k-1} = 0.\tag{6}
$$

Multiplying Eq. [\(6\)](#page-13-2) on the left side by $(a_n g_n)^{k-2}$, we obtain

$$
(a_n g_n)^{k-2} \left[Q_1^{nk+1} (a_n g_n) \gamma \right] \beta \gamma^{k-1} + (a_n g_n)^{k-2} \gamma^{nk+1} \beta \gamma^{k-1} = 0.
$$

Since *R*[*M*] is reversible, $(a_n g_n)^{k-1} \gamma^{nk+1} \beta = 0$ implies

$$
(a_n g_n)^{k-2} \left[\mathcal{Q}_1^{nk+1} (a_n g_n) \gamma \right] \beta \gamma^{k-1} = 0.
$$

Hence we obtain $(a_n g_n)^{k-2} \gamma^{nk+1} \beta \gamma^{k-1} = 0$, and so $[Q_{k-2}^{nk+1} (a_n g_n) \gamma] \beta \gamma^{k-1} \gamma^{k-2} =$ 0 since *R*[*M*] is reversible. Then multiplying Eq. [\(6\)](#page-13-2) on the right side by γ^{k-2} , we obtain

$$
\[Q_{k-3}^{nk+1}(a_n g_n)\gamma\] \beta \gamma^{k-1} \gamma^{k-2} + \[Q_{k-4}^{nk+1}(a_n g_n)\gamma\] \beta \gamma^{k-1} \gamma^{k-2} + \cdots + \gamma^{nk+1} \beta \gamma^{k-1} \gamma^{k-2} = 0.
$$

Continuing this process, we obtain $\gamma^{nk+1} \beta \gamma^{\frac{k(k-1)}{2}} = 0$ and so $\gamma^{nk+1+\frac{k(k-1)}{2}} \beta = 0$. Using the same way as above, we can show that

$$
b_j \in r_R(a_{n-1}^{nk+1+\frac{k(k-1)}{2}}) = r_R(a_{n-1}^k)
$$

for all $1 \le j \le m$. Using induction on *n*, we obtain

$$
b_j \in r_R\left(a_i^{nk+1}\right) = r_R\left(a_i^k\right)
$$

for all $1 \leq j \leq m$ and $1 \leq i \leq n$. Then it is easy to check that $\alpha^{nk}\beta = 0$. Hence $\beta \in r_{R[M]}(\alpha^{nk})$, and so $r_{R[M]}(\alpha^{nk+1}) = r_{R[M]}(\alpha^{nk})$. Therefore $R[M]$ is right strongly Hopfian.

 $(2) \Rightarrow (1)$ It is trivial.

Corollary 2.20 ([\[5,](#page-14-0) Corollary 5.4]) *Let R be a commutative strongly Hopfian ring, then* $R[x, x^{-1}]$ *is strongly Hopfian.*

Acknowledgments The authors wish to express their hearty thanks to the referees for their helpful comments and suggestions that greatly improved the exposition.

References

- 1. Annin, S.: Associated primes over skew polynomials. Commun. Algebr. **30**(5), 2511–2528 (2002)
- 2. Gilmer, R., Heinzer, W.: The Laskerian property, power series rings, and Noetherian spectra. Proc. Am. Math. Soc. **79**(1), 13–16 (1980)
- 3. Hashemi, E., Moussavi, A.: Polynomial extensions of quasi-Baer rings. Acta Math. Hung. **107**(3), 207–224 (2005)
- 4. Hizem, S.: Formal power series over strongly Hopfian rings. Commun. Algebr. **39**, 279–291 (2011)
- 5. Hmaimou, A., Kaidi, A., Sanchez, E.: Campos, generalized fitting modules and rings. J. Algebr. **308**, 199–214 (2007)
- 6. Kim, N.K., Lee, Y.: Extensions of reversible rings. J. Pure Appl. Algebr. **185**, 207–223 (2003)
- 7. Chin-Pi, Lu: Modules satisfying acc on certain type of colons. Pac. J. Math. **131**(2), 303–318 (1988)
- 8. Chin-Pi, Lu: Modules and rings satisfying (accr). Proc. Am. **117**(1), 5–10 (1993)
- 9. Lam, T.Y., Leroy, A., Matczuk, J.: Primeness, semiprimeness and prime radical of ore extensions. Commun. Algebr. **25**(8), 2459–2506 (1997)