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Abstract A dominating set of a graph G = (V, E) is a set D of vertices of G such
that every vertex of V (G)\D has a neighbor in D. The domination number of a graph
G, denoted by γ (G), is the minimum cardinality of a dominating set of G. The non-
isolating bondage number of G, denoted by b′(G), is the minimum cardinality among
all sets of edges E ′ ⊆ E such that δ(G − E ′) ≥ 1 and γ (G − E ′) > γ (G). If
for every E ′ ⊆ E we have γ (G − E ′) = γ (G) or δ(G − E ′) = 0, then we define
b′(G) = 0, and we say that G is a γ -non-isolatingly strongly stable graph. First
we discuss various properties of non-isolating bondage in graphs. We find the non-
isolating bondage numbers for several classes of graphs. Next we show that for every
non-negative integer, there exists a tree having such non-isolating bondage number.
Finally, we characterize all γ -non-isolatingly strongly stable trees.
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1 Introduction

Let G = (V, E) be a graph. By the neighborhood of a vertex v of G, we mean the
set NG(v) = {u ∈ V (G) : uv ∈ E(G)}. The degree of a vertex v, denoted by dG(v),
is the cardinality of its neighborhood. Let δ(G) mean the minimum degree among all
vertices of G. By a leaf we mean a vertex of degree one, while a support vertex is a
vertex adjacent to a leaf. We say that a support vertex is strong (weak, respectively)
if it is adjacent to at least two leaves (exactly one leaf, respectively). The distance
between two vertices of a graph is the number of edges in a shortest path connecting
them. The eccentricity of a vertex is the greatest distance between it and any other
vertex. The diameter of a graph G, denoted by diam(G), is the maximum eccentricity
among all vertices of G. We denote the path (cycle, respectively) on n vertices by Pn
(Cn , respectively). A wheel Wn , where n ≥ 4, is a graph with n vertices, formed by
connecting a vertex to all vertices of a cycleCn−1. Let T be a tree, and let v be a vertex
of T . We say that v is adjacent to a path Pn if there is a neighbor of v, say x , of degree
two such that the tree resulting from T by removing the edge vx , and which contains
the vertex x , is a path Pn . Let Kp,q denote a complete bipartite graph the partite sets
of which have cardinalities p and q. By a star we mean a connected graph in which
exactly one vertex has degree greater than one.

A subset D ⊆ V (G) is a dominating set, abbreviated DS, of G if every vertex of
V (G)\D has a neighbor in D. The domination number of a graphG, denoted by γ (G),
is the minimum cardinality of a dominating set of G. For a comprehensive survey of
domination in graphs, see for example [5].

The bondage number b(G) of a graph G is the minimum cardinality among all sets
of edges E ′ ⊆ E such that γ (G − E ′) > γ (G). The concept of bondage in graphs
was introduced in [2] and further studied for example in [1,3,4,6–9].

We define the non-isolating bondage number of a graph G, denoted by b′(G), to be
the minimum cardinality among all sets of edges E ′ ⊆ E such that δ(G− E ′) ≥ 1 and
γ (G− E ′) > γ (G). Thus b′(G) is the minimum number of edges of G that have to be
removed in order to obtain a graph with no isolated vertices, and with the domination
number greater than that of G. If for every E ′ ⊆ E we have γ (G − E ′) = γ (G) or
δ(G − E ′) = 0, then we define b′(G) = 0, and we say that G is a γ -non-isolatingly
strongly stable graph.

First we discuss various properties of non-isolating bondage in graphs. We find
the non-isolating bondage numbers for several classes of graphs. Next we show that
for every non-negative integer, there exists a tree having such non-isolating bondage
number. Finally, we characterize all γ -non-isolatingly strongly stable trees.

2 Results

We begin with the following well known observations.
For every graph G of diameter at least two there exists a γ (G)-set that contains all

support vertices.
If H is a subgraph of G such that V (H) = V (G), then γ (H) ≥ γ (G).
If n is a positive integer, then γ (Pn) = �(n + 2)/3�.
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For every integer n ≥ 3 we have γ (Cn) = �(n + 2)/3�.
Observation 1 If n is a positive integer, then γ (Kn) = 1.

Observation 2 For every integer n ≥ 4 we have γ (Wn) = 1.

Observation 3 Let p and q be positive integers such that p ≤ q. Then

γ (Kp,q) =
{
1 if p = 1;
2 otherwise.

First we calculate the non-isolating bondage numbers of paths.

Lemma 4 For any positive integer n we have

b′(Pn) =

⎧⎪⎪⎨
⎪⎪⎩
0 if n = 1, 2, 3, 4, 5, 7;
1 if n ≥ 6 and n 	= 3k + 1;
2 if n ≥ 10 and n = 3k + 1.

Proof Let us observe that if a path has at most five or exactly seven vertices, then
removing any edges does not increase the domination number, or gives an isolated
vertex. Assume that n = 6 or n ≥ 8. First assume that n = 3k. We have γ (Pn) =
�(n + 2)/3� = �(3k + 2)/3� = k. We also have γ (Pn−2) + γ (P2) = �n/3� + 1 =
k+1 > γ (Pn). Thus b′(Pn) = 1 if n = 3k and n ≥ 6.Nowassume that n = 3k+2.We
have γ (Pn) = �(n+2)/3� = �(3k+4)/3� = k+1.We also have γ (Pn−4)+γ (P4) =
�n/3� + 2 = k + 2 > γ (Pn). Thus b′(Pn) = 1 if n = 3k + 2 and n ≥ 8. Now assume
that n = 3k + 1. We have γ (Pn) = �(n + 2)/3� = �(3k + 3)/3� = k + 1. Let us
observe that removing any edge does not increase the domination number. We have
γ (Pn−6)+ γ (P4)+ γ (P2) = �(n− 4)/3�+ 3 = �(3k − 3)/3�+ 3 = k + 2 > γ (Pn).
Therefore b′(Pn) = 2 if n = 3k + 1 and n ≥ 10. 
�

We now investigate the non-isolating bondage in cycles.

Lemma 5 For every integer n ≥ 3 we have

b′(Cn) =
{
0 if b′(Pn) = 0;
b′(Pn) + 1 if b′(Pn) 	= 0.

Proof We have γ (Pn) = γ (Cn). Clearly, Cn − e = Pn . This implies that b′(Cn) = 0
if b′(Pn) = 0, while b′(Cn) = b′(Pn) + 1 if b′(Pn) 	= 0. 
�

We now find the non-isolating bondage numbers of complete graphs.

Proposition 6 If n is a positive integer, then

b′(Kn) =
{
0 for n = 1, 2, 3;
�(n + 1)/2� for n ≥ 4.
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Proof Obviously, b′(K1) = 0 and b′(K2) = 0.We have K3−e = C3 and b′(C3) = 0.
This implies that b′(K3) = 0. Now assume that n ≥ 4. By Observation 1 we have
γ (Kn) = 1. Let us observe that the domination number of a graph equals one if and
only if the graph has a universal vertex. Given a complete graph, we increase the
domination number if and only if for every vertex we remove at least one incident
edge. If n is even, then we remove n/2 = �(n + 1)/2� edges. If n is odd, then we
remove (n − 1)/2 + 1 = (n + 1)/2 = �(n + 1)/2� edges. 
�

We now calculate the non-isolating bondage numbers of wheels.

Proposition 7 For integers n ≥ 4 we have

b′(Wn) =
{
2 if n = 4;
1 if n ≥ 5.

Proof Since W4 = K4, using Proposition 6 we get b′(W4) = b′(K4) = �5/2� = 2.
Now assume that n ≥ 5. By Observation 2 we have γ (Wn) = 1. The domination
number of a graph equals one if and only if it has a universal vertex. Removing an
edge ofWn incident to the vertex of maximum degree gives a graph without universal
vertices. Therefore b′(Wn) = 1 for n ≥ 5. 
�

We now investigate the non-isolating bondage in complete bipartite graphs.

Proposition 8 Let p and q be positive integers such that p ≤ q. Then

b′(Kp,q) =

⎧⎪⎪⎨
⎪⎪⎩
0 if p = 1, 2;
4 if p = 3;
p otherwise.

Proof Let E(Kp,q) = {aib j : 1 ≤ i ≤ p and 1 ≤ j ≤ q}. If p = 1, then obviously
b′(Kp,q) = 0 as removing any edge produces an isolated vertex. Now assume that
p ≥ 2. By Observation 3 we have γ (Kp,q) = 2. Let E ′ be a subset of the set of edges
of K2,q such that δ(K2,q − E ′) ≥ 1. Each vertex bi is adjacent to a1 or a2 in the graph
K2,q − E ′. Observe that the vertices a1 and a2 form a dominating set of K2,q − E ′.
Therefore b′(K2,q) = 0. Now assume that p = 3. It is not very difficult to verify
that removing any three edges does not increase the domination number while not
producing an isolated vertex. We have γ (K3,q − a1b2 − a1b3 −a2b1 − a3b1) = 3 >

2 = γ (K3,q). Therefore b′(K3,q) = 4. Now assume that p ≥ 4. If we remove at most
p−1 edges, then there are vertices ai and b j which have degrees q and p, respectively.
It is easy to observe that the vertices ai and b j still form a dominating set. Let us observe
that γ (Kp,q − a1b1 − a2b1 − a3b2 −a4b2 − a5b2 −· · ·− apb2) = 3 > 2 = γ (Kp,q).
Therefore b′(Kp,q) = p if p ≥ 4. 
�

The authors of [2] proved that the bondage number of any tree is either one or two.

Theorem 9 ([2]) For every tree T we have b(T ) ∈ {1, 2}.
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Fig. 1 A tree Tk having 4k + 2
vertices, where both central
vertices are of degree k + 1

Let us observe that for every non-negative integer there exists a tree with such
non-isolating bondage number. We have b′(P4) = 0. For positive integers k, consider
trees Tk of the form presented in Fig. 1. It is not difficult to verify that b′(Tk) = k.

Hartnell and Rall [3] characterized all trees with bondage number equal to two. We
characterize all trees with the non-isolating bondage number equal to zero, that is, all
γ -non-isolatingly strongly stable trees.

We now show that joining two γ -non-isolatingly strongly stable trees gives us also
a γ -non-isolatingly strongly stable tree.

Lemma 10 Let T1 and T2 be vertex-disjoint γ -non-isolatingly strongly stable trees.
Let x be a support vertex of T1 and let y be a leaf of T2. Let T be a tree obtained
by joining the vertices x and y. If γ (T ) = γ (T1) + γ (T2), then the tree T is also
γ -non-isolatingly strongly stable.

Proof Let E1 be a subset of the set of edges of T such that δ(T −E1) ≥ 1. If xy ∈ E1,
thenwegetγ (T−E1) = γ (T1−E1∩E(T1))+γ (T2−E1∩E(T2)) = γ (T1)+γ (T2) =
γ (T ). Now assume that xy /∈ E1. Let z be the neighbor of y other than x . If yz /∈ E1,
then let E2 = E1 ∪ {xy}. Similarly as earlier we get γ (T − E2) = γ (T ). We have
γ (T − E1) ≤ γ (T − E2), and consequently, γ (T − E1) = γ (T ). Now assume that
yz ∈ E1. Let E3 = E1 ∪ {xy}\{yz}. Similarly as earlier we get γ (T − E3) = γ (T ).
Let D2 be a γ (T − E3)-set that contains the vertices x and z. It is easy to observe
that D2 is also a DS of the graph T − E1. Therefore γ (T − E1) ≤ γ (T − E3). This
implies that γ (T − E1) = γ (T ). We now conclude that b′(T ) = 0. 
�

We next show that a subtree of a γ -non-isolatingly strongly stable tree is also
γ -non-isolatingly strongly stable.

Lemma 11 Let T be a γ -non-isolatingly strongly stable tree. Assume that T ′ is a
subtree of T such that T − T ′ has no isolated vertices. Then b′(T ′) = 0.

Proof If T ′ consists of a single vertex, then obviously b′(T ′) = 0. Thus assume that
T ′ 	= K1. Let E1 be the minimum subset of E(T ) such that T ′ is a component of
T − E1. Now let E ′ be a subset of E(T ′) such that δ(T ′ − E ′) ≥ 1. Notice that
δ(T − E1 − E ′) ≥ 1. The assumption b′(T ) = 0 implies that γ (T − E1) = γ (T )

and γ (T − E1 − E ′) = γ (T ). We have T − E1 − E ′ = T ′ − E ′ ∪ (T − T ′) and
T − E1 = T ′ ∪ (T − T ′). We now get γ (T ′ − E ′) = γ (T − E1 − E ′) − γ (T − T ′)
= γ (T ) − γ (T − E1) + γ (T ′) = γ (T ′). This implies that b′(T ′) = 0. 
�

For the purpose of characterizing all γ -non-isolatingly strongly stable trees, we
introduce a familyT of trees T = Tk that can be obtained as follows. Let T1 ∈ {P1, P2}.
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If k is a positive integer, then Tk+1 can be obtained recursively from Tk by one of the
following operations.

• Operation O1: Attach a vertex by joining it to any support vertex of Tk .
• Operation O2: Attach a path P2 by joining one of its vertices to a vertex of Tk ,
which is adjacent to a path P1 or P4, or is not a leaf and is adjacent to a support
vertex.

• Operation O3: Attach a path P3 by joining one of its leaves to a vertex of Tk
adjacent to a path P1 or P3.

• Operation O4: Attach a path P5 by joining one of its leaves to any support vertex
of Tk .

We now prove that every tree of the family T is γ -non-isolatingly strongly stable.

Lemma 12 If T ∈ T , then b′(T ) = 0.

Proof We use induction on the number k of operations performed to construct the tree
T . If T = P1, then obviously b′(T ) = 0. If T = P2, then b′(T ) = 0 as removing the
edge gives isolated vertices. Let k be a positive integer. Assume that the result is true
for every tree T ′ = Tk of the family T constructed by k − 1 operations. Let T = Tk+1
be a tree of the family T constructed by k operations.

First assume that T is obtained from T ′ by Operation O1. Let x be the attached
vertex, and let y be its neighbor. Let z be a leaf adjacent to y and different from x .
Let D be a γ (T )-set that contains all support vertices. The set D is minimal, thus
x /∈ D. Obviously, D is a DS of the tree T ′. Therefore γ (T ′) ≤ γ (T ). Now let E ′
be a subset of the set of edges of T such that δ(T − E ′) ≥ 1. Since both x and z are
leaves of T , we have xy /∈ E ′ and yz /∈ E ′. The assumption b′(T ′) = 0 implies that
γ (T ′ −E ′) = γ (T ′). Let us observe that there exists a γ (T ′ −E ′)-set that contains the
vertex y. Let D′ be such a set. It is easy to see that D′ is a DS of the graph T −E ′. Thus
γ (T − E ′) ≤ γ (T ′ − E ′). We now get γ (T − E ′) ≤ γ (T ′ − E ′) = γ (T ′) ≤ γ (T ).
On the other hand, we have γ (T − E ′) ≥ γ (T ). This implies that γ (T − E ′) = γ (T ),
and consequently, b′(T ) = 0.

Now assume that T is obtained from T ′ by Operation O2. The vertex to which is
attached P2 we denote by x . Let v1v2 be the attached path. Let v1 be joined to x . If x
is adjacent to a leaf or a support vertex, say a, then let D be a γ (T )-set that contains
all support vertices. We have v2 /∈ D as the set D is minimal. It is easy to observe that
D\{v1} is a DS of the tree T ′. If x is adjacent to a path P4, then we denote it by abcd.
Let a and x be adjacent. Let us observe that there exists a γ (T )-set that contains the
vertices v1, c, and x . Let D be such a set. It is easy to observe that D\{v1} is a DS of the
tree T ′. We conclude that γ (T ′) ≤ γ (T )−1. Now let E ′ be a subset of the set of edges
of T such that δ(T − E ′) ≥ 1. Since v2 is a leaf of T , we have v1v2 /∈ E ′. If xv1 ∈ E ′,
then δ(T ′ − (E ′ ∩ E(T ′))) ≥ 1. We get γ (T − E ′) = γ (P2 ∪ T ′ − (E ′\{xv1}))
= γ (T ′ − (E ′ ∩ E(T ′))) + γ (P2) = γ (T ′) + 1 ≤ γ (T ). Now assume that xv1 /∈ E ′.
By Tx (T ′

x , respectively), we denote the component of T − E ′ (T ′ − E ′, respectively)
which contains the vertex x . If δ(T ′−(E ′∩E(T ′))) ≥ 1, then let D′

x be any γ (T ′
x )-set.

It is easy to see that D′
x ∪ {v1} is a DS of the tree Tx . Thus γ (Tx ) ≤ γ (T ′

x ) + 1. We
now get γ (T − E ′) = γ (T − E ′ − Tx ) + γ (Tx ) ≤ γ (T − E ′ − Tx ) + γ (T ′

x ) + 1
= γ (T ′ − E ′ − T ′

x ) + γ (T ′
x ) + 1 = γ (T ′ − E ′) + 1 = γ (T ′) + 1 ≤ γ (T ). Now
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assume that δ(T ′ − (E ′ ∩ E(T ′))) = 0. This implies that x is the only isolated vertex
of T ′ − (E ′ ∩ E(T ′)), and so x is not adjacent to any leaf in the trees T ′ and T .
Consequently, T ′

x consists only of the vertex x , and Tx is a path P3. Let us observe
that δ(T ′ − (E ′\{xa})) ≥ 1. Let T ′

a be the component of T ′ − E ′, which contains
the vertex a. Now let T ′′

a be a tree obtained from T ′
a by attaching a vertex to the

vertex a. We now get γ (T − E ′) = γ (T − E ′ − Tx ) + γ (P3) = γ (T ′ − E ′ − T ′
x ) + 1

= γ (T ′−E ′−T ′
x−T ′

a)+γ (T ′
a)+1 ≤ γ (T ′−E ′−T ′

x−T ′
a)+γ (T ′′

a )+1 = γ ((T ′−E ′
−T ′

x −T ′
a)∪T ′′

a )+1 = γ (T ′−(E ′\{xa}))+1 = γ (T ′−E ′)+1 = γ (T ′)+1 ≤ γ (T ).
We conclude that γ (T − E ′) = γ (T ), and consequently, b′(T ) = 0.

Now assume that T is obtained from T ′ by Operation O3. The vertex to which is
attached P3 we denote by x . If x is a support vertex, then using Lemma 10, for T1 = T ′
and T2 = P3, we get b′(T ) = 0. Now assume that x is adjacent to a path P3, say abc.
Let a and x be adjacent. The attached path we denote by v1v2v3. Let v1 be joined to
x . Let us observe that there exists a γ (T )-set that contains all support vertices and
does not contain the vertex v1. Let D be such a set. We have v3 /∈ D as the set D is
minimal. Observe that D\{v2} is a DS of the tree T ′. Therefore γ (T ′) ≤ γ (T ) − 1.
Now let E ′ be a subset of the set of edges of T such that δ(T − E ′) ≥ 1. We have
v2v3 /∈ E ′ as the vertex v3 is a leaf. If xv1 ∈ E ′, then v1v2 /∈ E ′; otherwise we get
an isolated vertex. Let us observe that δ(T ′ − (E ′ ∩ E(T ′))) ≥ 1. We get γ (T − E ′)
= γ (P3 ∪ T − (E ′\{xv1})) = γ (T ′ − (E ′ ∩ E(T ′))) + γ (P3) = γ (T ′) + 1 ≤ γ (T ).
Nowassume that xv1 /∈ E ′. Because of the similarity between the pathsabc and v1v2v3
adjacent to the vertex x , it suffices to consider only the possibility when xa /∈ E ′. Let
us observe that δ(T ′ − (E ′ ∩ E(T ′))) ≥ 1. By Tx (T ′

x , respectively), we denote the
component of T − E ′ (T ′ − (E ′ ∩ E(T ′)), respectively) which contains the vertex x . If
v1v2 /∈ E ′, then let D′

x be any γ (T ′
x )-set. It is easy to see that D

′
x ∪ {v2} is a DS of the

tree Tx . Thus γ (Tx ) ≤ γ (T ′
x )+1.We now get γ (T −E ′) = γ (T −E ′−Tx )+γ (Tx ) ≤

γ (T − E ′ − Tx ) + γ (T ′
x ) + 1 = γ (T ′ − E ′ − T ′

x ) + γ (T ′
x ) + 1 = γ (T ′ − E ′) + 1 =

γ (T ′)+1 ≤ γ (T ). Now assume that v1v2 ∈ E ′. Because of the similarity between the
paths abc and v1v2v3, it suffices to consider only the possibility when ab ∈ E ′. Let D′

x
be a γ (T ′

x )-set that contains all support vertices (so x ∈ D′
x ). It is easy to see that D

′
x is

a DS of the tree Tx . Thus γ (Tx ) ≤ γ (T ′
x ).We get γ (T −E ′) = γ (T −E ′−Tx )+γ (Tx )

≤ γ (T−E ′−Tx )+γ (T ′
x ) = γ (T ′−E ′−T ′

x )+γ (T ′
x ) = γ (T ′−E ′) = γ (T ′) ≤ γ (T ).

We now conclude that γ (T − E ′) = γ (T ), and consequently, b′(T ) = 0.
Now assume that T is obtained from T ′ by Operation O4. By Lemma 4 we have

b′(P5) = 0. Using Lemma 10, for T1 = T ′ and T2 = P5, we get b′(T ) = 0. 
�
We now prove that if a tree is γ -non-isolatingly strongly stable, then it belongs to

the family T .

Lemma 13 Let T be a tree. If b′(T ) = 0, then T ∈ T .

Proof If diam(T ) ∈ {0, 1}, then T ∈ {P1, P2} ⊆ T . If diam(T ) = 2, then T is a star.
The tree T can be obtained from P2 by an appropriate number of OperationsO1. Thus
T ∈ T . Now assume that diam(T ) ≥ 3. Thus the order n of the tree T is at least four.
We obtain the result by the induction on the number n. Assume that the lemma is true
for every tree T ′ of order n′ < n.
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First assume that some support vertex of T , say x , is strong. Let y be a leaf adjacent
to x . Let T ′ = T − y. Let D′ be a γ (T ′)-set that contains all support vertices. It
is easy to see that D′ is a DS of the tree T . Thus γ (T ) ≤ γ (T ′). Now let E ′ be
a subset of the set of edges of T ′ such that δ(T ′ − E ′) ≥ 1. Since b′(T ) = 0,
we have γ (T − E ′) = γ (T ). Let us observe that there exists a γ (T − E ′)-set that
contains the vertex x . Let D be such a set. The set D is minimal, thus y /∈ D.
Obviously, D is a DS of the graph T ′ − E ′. Therefore γ (T ′ − E ′) ≤ γ (T − E ′).
We now get γ (T ′ − E ′) ≤ γ (T − E ′) = γ (T ) ≤ γ (T ′). On the other hand, we
have γ (T ′ − E ′) ≥ γ (T ′). This implies that γ (T ′ − E ′) = γ (T ′), and consequently,
b′(T ′) = 0. By the inductive hypothesis, we have T ′ ∈ T . The tree T can be obtained
from T ′ by Operation O1. Thus T ∈ T . Henceforth, we assume that every support
vertex of T is weak.

We now root T at a vertex r of maximum eccentricity diam(T ). Let t be a leaf at
maximum distance from r , v be the parent of t , and u be the parent of v in the rooted
tree. If diam(T ) ≥ 4, then let w be the parent of u. If diam(T ) ≥ 5, then let d be the
parent ofw. If diam(T ) ≥ 6, then let e be the parent of d. By Tx we denote the subtree
induced by a vertex x and its descendants in the rooted tree T .

Assume that dT (u) ≥ 3. Thus some child of u is a leaf or a support vertex other than
v. Let T ′ = T − Tv . By Lemma 11 we have b′(T ′) = 0. By the inductive hypothesis,
we have T ′ ∈ T . The tree T can be obtained from T ′ by Operation O2. Thus T ∈ T .

Now assume that dT (u) = 2. Assume that dT (w) ≥ 3. First assume that there is a
child of w other than u, say k, such that the distance of w to the most distant vertex of
Tk is three. It suffices to consider only the possibility when Tk is a path P3, say klm.
Let T ′ = T − Tu . By Lemma 11 we have b′(T ′) = 0. By the inductive hypothesis,
we have T ′ ∈ T . The tree T can be obtained from T ′ by Operation O3. Thus T ∈ T .

Now assume that some child of w is a leaf. Let T ′ = T − Tu . By Lemma 11 we
have b′(T ′) = 0. By the inductive hypothesis, we have T ′ ∈ T . The tree T can be
obtained from T ′ by Operation O3. Thus T ∈ T .

Thus there is a child of w, say k, such that the distance of w to the most distant
vertex of Tk is two. Consequently, k is a support vertex of degree two. Due to the earlier
analysis of the children of the vertex u, it suffices to consider only the possibility
when dT (w) = 3. Let T ′ = T − Tw. It is easy to observe that D′ ∪ {v, k} is a
DS of the tree T . Thus γ (T ) ≤ γ (T ′) + 2. We have δ(T − dw − uv − wk) ≥ 1.
We now get γ (T − dw − uv − wk) = γ (T ′ ∪ P2 ∪ P2 ∪ P2) = γ (T ′) + 3γ (P2)
= γ (T ′) + 3 ≥ γ (T ) + 1 > γ (T ). This implies that b′(T ) 	= 0, a contradiction.

If dT (w) = 1, then T = P4. Let T ′ = P2 ∈ T . The tree T can be obtained from
T ′ by Operation O2. Thus T ∈ T . Now assume that dT (w) = 2. First assume that
there is a child of d other than w, say k, such that the distance of d to the most distant
vertex of Tk is four or one. It suffices to consider only the possibilities when Tk is a
path P4, or k is a leaf. Let T ′ = T − Tw. Let us observe that there exists a γ (T ′)-set
that contains the vertex d. Let D′ be such a set. It is easy to observe that D′ ∪ {v} is a
DS of the tree T . Thus γ (T ) ≤ γ (T ′)+1. We have δ(T −dw−uv) ≥ 1. We now get
γ (T − dw − uv) = γ (T ′ ∪ P2 ∪ P2) = γ (T ′)+ 2γ (P2) = γ (T ′)+ 2 ≥ γ (T )+ 1 >

γ (T ). This implies that b′(T ) 	= 0, a contradiction.
Now assume that there is a child of d, say k, such that the distance of d to the most

distant vertex of Tk is three. It suffices to consider only the possibility when Tk is a
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path P3, say klm. Let T ′ = T − Tl . Due to the similarity of T ′ to the tree T from the
previous case when d is adjacent to a leaf, we conclude that b′(T ′) 	= 0. On the other
hand, by Lemma 11 we have b′(T ′) = 0, a contradiction.

Now assume that there is a child of d, say k, such that the distance of d to the most
distant vertex of Tk is two. Thus k is a support vertex of degree two. Let T ′ = T − Tk .
By Lemma 11 we have b′(T ′) = 0. By the inductive hypothesis, we have T ′ ∈ T .
The tree T can be obtained from T ′ by Operation O2. Thus T ∈ T .

If dT (d) = 1, then T = P5. Let T ′ = P2 ∈ T . The tree T can be obtained from T ′
by Operation O3. Thus T ∈ T .

Now assume that dT (d) = 2. First assume that e is adjacent to a leaf, say k. Let
T ′ = T − Td . By Lemma 11 we have b′(T ′) = 0. By the inductive hypothesis, we
have T ′ ∈ T . The tree T can be obtained from T ′ by Operation O4. Thus T ∈ T .

Now assume that e is not adjacent to any leaf. Let E ′ be the set of edges incident
with e excluding ed. Let G ′ = T − Td − e. Let D′ be any γ (G ′)-set. It is easy
to observe that D′ ∪ {d, v} is a DS of the tree T . Thus γ (T ) ≤ γ (G ′) + 2. We
have δ(T − (E ′ ∪ {dw, uv})) ≥ 1. We now get γ (T − (E ′ ∪ {dw, uv})) = γ (G ′
∪P2 ∪ P2 ∪ P2) = γ (G ′) + 3γ (P2) = γ (G ′) + 3 ≥ γ (T ) + 1 > γ (T ). This implies
that b′(T ) 	= 0, a contradiction. 
�

As an immediate consequence of Lemmas 12 and 13, we have the following char-
acterization of all γ -non-isolatingly strongly stable trees.

Theorem 14 Let T be a tree. Then b′(T ) = 0 if and only if T ∈ T .
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