

Non-isolating Bondage in Graphs

Marcin Krzywkowski1,**²**

Received: 22 February 2014 / Revised: 18 July 2014 / Published online: 31 December 2015 © The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract A dominating set of a graph $G = (V, E)$ is a set *D* of vertices of *G* such that every vertex of $V(G) \backslash D$ has a neighbor in *D*. The domination number of a graph *G*, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of *G*. The nonisolating bondage number of G , denoted by $b'(G)$, is the minimum cardinality among all sets of edges $E' \subseteq E$ such that $\delta(G - E') \ge 1$ and $\gamma(G - E') > \gamma(G)$. If for every $E' \subseteq E$ we have $\gamma(G - E') = \gamma(G)$ or $\delta(G - E') = 0$, then we define $b'(G) = 0$, and we say that *G* is a *γ*-non-isolatingly strongly stable graph. First we discuss various properties of non-isolating bondage in graphs. We find the nonisolating bondage numbers for several classes of graphs. Next we show that for every non-negative integer, there exists a tree having such non-isolating bondage number. Finally, we characterize all γ -non-isolatingly strongly stable trees.

Keywords Domination · Bondage · Non-isolating bondage · Graph · Tree

Mathematics Subject Classification 05C05 · 05C69

Communicated by Xueliang Li.

B Marcin Krzywkowski marcin.krzywkowski@gmail.com

Research partially supported by the Polish National Science Centre Grant 2011/02/A/ST6/00201. Marcin Krzywkowski—Research fellow of the Claude Leon Foundation.

¹ Department of Pure and Applied Mathematics, University of Johannesburg, Johannesburg, South Africa

² Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdańsk, Poland

1 Introduction

Let $G = (V, E)$ be a graph. By the neighborhood of a vertex v of G, we mean the set $N_G(v) = \{u \in V(G) : uv \in E(G)\}\$. The degree of a vertex v, denoted by $d_G(v)$, is the cardinality of its neighborhood. Let $\delta(G)$ mean the minimum degree among all vertices of *G*. By a leaf we mean a vertex of degree one, while a support vertex is a vertex adjacent to a leaf. We say that a support vertex is strong (weak, respectively) if it is adjacent to at least two leaves (exactly one leaf, respectively). The distance between two vertices of a graph is the number of edges in a shortest path connecting them. The eccentricity of a vertex is the greatest distance between it and any other vertex. The diameter of a graph G , denoted by $diam(G)$, is the maximum eccentricity among all vertices of *G*. We denote the path (cycle, respectively) on *n* vertices by P_n $(C_n$, respectively). A wheel W_n , where $n \geq 4$, is a graph with *n* vertices, formed by connecting a vertex to all vertices of a cycle C_{n-1} . Let *T* be a tree, and let v be a vertex of *T*. We say that v is adjacent to a path P_n if there is a neighbor of v, say x, of degree two such that the tree resulting from T by removing the edge vx , and which contains the vertex *x*, is a path P_n . Let $K_{p,q}$ denote a complete bipartite graph the partite sets of which have cardinalities p and q . By a star we mean a connected graph in which exactly one vertex has degree greater than one.

A subset $D \subseteq V(G)$ is a dominating set, abbreviated DS, of G if every vertex of $V(G) \backslash D$ has a neighbor in *D*. The domination number of a graph *G*, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of *G*. For a comprehensive survey of domination in graphs, see for example [\[5](#page-8-0)].

The bondage number $b(G)$ of a graph G is the minimum cardinality among all sets of edges $E' \subseteq E$ such that $\gamma(G - E') > \gamma(G)$. The concept of bondage in graphs was introduced in [\[2](#page-8-1)] and further studied for example in [\[1,](#page-8-2)[3](#page-8-3)[,4](#page-8-4)[,6](#page-8-5)[–9](#page-8-6)].

We define the non-isolating bondage number of a graph G , denoted by $b'(G)$, to be the minimum cardinality among all sets of edges $E' \subseteq E$ such that $\delta(G - E') \ge 1$ and $\gamma(G - E') > \gamma(G)$. Thus *b'* (*G*) is the minimum number of edges of *G* that have to be removed in order to obtain a graph with no isolated vertices, and with the domination number greater than that of *G*. If for every $E' \subseteq E$ we have $\gamma(G - E') = \gamma(G)$ or $\delta(G - E') = 0$, then we define $b'(G) = 0$, and we say that *G* is a *γ*-non-isolatingly strongly stable graph.

First we discuss various properties of non-isolating bondage in graphs. We find the non-isolating bondage numbers for several classes of graphs. Next we show that for every non-negative integer, there exists a tree having such non-isolating bondage number. Finally, we characterize all γ -non-isolatingly strongly stable trees.

2 Results

We begin with the following well known observations.

For every graph *G* of diameter at least two there exists a $\gamma(G)$ -set that contains all support vertices.

If *H* is a subgraph of *G* such that $V(H) = V(G)$, then $\gamma(H) \geq \gamma(G)$.

If *n* is a positive integer, then $\gamma(P_n) = \lfloor (n+2)/3 \rfloor$.

For every integer $n \geq 3$ we have $\gamma(C_n) = \lfloor (n+2)/3 \rfloor$.

Observation 1 *If n is a positive integer, then* $\gamma(K_n) = 1$ *.*

Observation 2 *For every integer* $n \geq 4$ *we have* $\gamma(W_n) = 1$ *.*

Observation 3 Let p and q be positive integers such that $p \leq q$. Then

$$
\gamma(K_{p,q}) = \begin{cases} 1 & \text{if } p = 1; \\ 2 & \text{otherwise.} \end{cases}
$$

First we calculate the non-isolating bondage numbers of paths.

Lemma 4 *For any positive integer n we have*

$$
b'(P_n) = \begin{cases} 0 & \text{if } n = 1, 2, 3, 4, 5, 7; \\ 1 & \text{if } n \ge 6 \text{ and } n \ne 3k + 1; \\ 2 & \text{if } n \ge 10 \text{ and } n = 3k + 1. \end{cases}
$$

Proof Let us observe that if a path has at most five or exactly seven vertices, then removing any edges does not increase the domination number, or gives an isolated vertex. Assume that $n = 6$ or $n \ge 8$. First assume that $n = 3k$. We have $\gamma(P_n)$ $|(n+2)/3| = |(3k+2)/3| = k$. We also have $\gamma(P_{n-2}) + \gamma(P_2) = |n/3| + 1 =$ $k+1 > \gamma(P_n)$. Thus $b'(P_n) = 1$ if $n = 3k$ and $n \ge 6$. Now assume that $n = 3k+2$. We have $\gamma(P_n) = |(n+2)/3| = |(3k+4)/3| = k+1$. We also have $\gamma(P_{n-4}) + \gamma(P_4) =$ $\lfloor n/3 \rfloor + 2 = k + 2 > \gamma(P_n)$. Thus $b'(P_n) = 1$ if $n = 3k + 2$ and $n \ge 8$. Now assume that $n = 3k + 1$. We have $\gamma(P_n) = |(n+2)/3| = |(3k+3)/3| = k+1$. Let us observe that removing any edge does not increase the domination number. We have $\gamma(P_{n-6}) + \gamma(P_4) + \gamma(P_2) = |(n-4)/3| + 3 = |(3k-3)/3| + 3 = k+2 > \gamma(P_n).$ Therefore $b'(P_n) = 2$ if $n = 3k + 1$ and $n \ge 10$. \Box

We now investigate the non-isolating bondage in cycles.

Lemma 5 *For every integer* $n \geq 3$ *we have*

$$
b'(C_n) = \begin{cases} 0 & \text{if } b'(P_n) = 0; \\ b'(P_n) + 1 & \text{if } b'(P_n) \neq 0. \end{cases}
$$

Proof We have $\gamma(P_n) = \gamma(C_n)$. Clearly, $C_n - e = P_n$. This implies that $b'(C_n) = 0$ if $b'(P_n) = 0$, while $b'(C_n) = b'(P_n) + 1$ if $b'(P_n) \neq 0$. \Box

We now find the non-isolating bondage numbers of complete graphs.

Proposition 6 *If n is a positive integer, then*

$$
b'(K_n) = \begin{cases} 0 & \text{for } n = 1, 2, 3; \\ \lfloor (n+1)/2 \rfloor & \text{for } n \ge 4. \end{cases}
$$

Proof Obviously, $b'(K_1) = 0$ and $b'(K_2) = 0$. We have $K_3 - e = C_3$ and $b'(C_3) = 0$. This implies that $b'(K_3) = 0$. Now assume that $n \geq 4$. By Observation [1](#page-2-0) we have $\gamma(K_n) = 1$. Let us observe that the domination number of a graph equals one if and only if the graph has a universal vertex. Given a complete graph, we increase the domination number if and only if for every vertex we remove at least one incident edge. If *n* is even, then we remove $n/2 = \lfloor (n + 1)/2 \rfloor$ edges. If *n* is odd, then we remove $(n-1)/2 + 1 = (n+1)/2 = \lfloor (n+1)/2 \rfloor$ edges. \Box

We now calculate the non-isolating bondage numbers of wheels.

Proposition 7 *For integers n* \geq 4 *we have*

$$
b'(W_n) = \begin{cases} 2 & \text{if } n = 4; \\ 1 & \text{if } n \ge 5. \end{cases}
$$

Proof Since $W_4 = K_4$, using Proposition [6](#page-2-1) we get $b'(W_4) = b'(K_4) = [5/2] = 2$. Now assume that $n \geq 5$. By Observation [2](#page-2-2) we have $\gamma(W_n) = 1$. The domination number of a graph equals one if and only if it has a universal vertex. Removing an edge of W_n incident to the vertex of maximum degree gives a graph without universal vertices. Therefore $b'(W_n) = 1$ for $n \ge 5$. \Box

We now investigate the non-isolating bondage in complete bipartite graphs.

Proposition 8 Let p and q be positive integers such that $p \leq q$. Then

$$
b'(K_{p,q}) = \begin{cases} 0 & \text{if } p = 1, 2; \\ 4 & \text{if } p = 3; \\ p & \text{otherwise.} \end{cases}
$$

Proof Let $E(K_{p,q}) = \{a_i b_j : 1 \le i \le p \text{ and } 1 \le j \le q\}$. If $p = 1$, then obviously $b'(K_{p,q}) = 0$ as removing any edge produces an isolated vertex. Now assume that $p \ge 2$. By Observation [3](#page-2-3) we have $\gamma(K_{p,q}) = 2$. Let *E*' be a subset of the set of edges of $K_{2,q}$ such that $\delta(K_{2,q} - E') \geq 1$. Each vertex b_i is adjacent to a_1 or a_2 in the graph $K_{2,q} - E'$. Observe that the vertices *a*₁ and *a*₂ form a dominating set of $K_{2,q} - E'$. Therefore $b'(K_{2,q}) = 0$. Now assume that $p = 3$. It is not very difficult to verify that removing any three edges does not increase the domination number while not producing an isolated vertex. We have $\gamma(K_{3,q} - a_1b_2 - a_1b_3 - a_2b_1 - a_3b_1) = 3$ $2 = \gamma(K_{3,q})$. Therefore $b'(K_{3,q}) = 4$. Now assume that $p \ge 4$. If we remove at most $p-1$ edges, then there are vertices a_i and b_j which have degrees q and p , respectively. It is easy to observe that the vertices a_i and b_j still form a dominating set. Let us observe that $\gamma(K_{p,q} - a_1b_1 - a_2b_1 - a_3b_2 - a_4b_2 - a_5b_2 - \cdots - a_pb_2) = 3 > 2 = \gamma(K_{p,q}).$ Therefore $b'(K_{p,q}) = p$ if $p \ge 4$. Ч

The authors of [\[2](#page-8-1)] proved that the bondage number of any tree is either one or two.

Theorem 9 ([\[2](#page-8-1)]) *For every tree T we have b*(*T*) \in {1, 2}*.*

Fig. 1 A tree T_k having $4k + 2$ vertices, where both central vertices are of degree $k + 1$

Hartnell and Rall [\[3](#page-8-3)] characterized all trees with bondage number equal to two. We characterize all trees with the non-isolating bondage number equal to zero, that is, all ν -non-isolatingly strongly stable trees.

We now show that joining two γ -non-isolatingly strongly stable trees gives us also a γ -non-isolatingly strongly stable tree.

Lemma 10 *Let* T_1 *and* T_2 *be vertex-disjoint* γ *-non-isolatingly strongly stable trees.* Let x be a support vertex of T_1 and let y be a leaf of T_2 *. Let* T be a tree obtained *by joining the vertices x and y. If* $\gamma(T) = \gamma(T_1) + \gamma(T_2)$ *, then the tree T is also* γ *-non-isolatingly strongly stable.*

Proof Let E_1 be a subset of the set of edges of *T* such that $\delta(T - E_1) \geq 1$. If $xy \in E_1$, then we get $\gamma(T - E_1) = \gamma(T_1 - E_1 \cap E(T_1)) + \gamma(T_2 - E_1 \cap E(T_2)) = \gamma(T_1) + \gamma(T_2) =$ $\gamma(T)$. Now assume that $xy \notin E_1$. Let *z* be the neighbor of *y* other than *x*. If $yz \notin E_1$, then let $E_2 = E_1 \cup \{xy\}$. Similarly as earlier we get $\gamma(T - E_2) = \gamma(T)$. We have $\gamma(T - E_1) \leq \gamma(T - E_2)$, and consequently, $\gamma(T - E_1) = \gamma(T)$. Now assume that $yz \in E_1$. Let $E_3 = E_1 \cup \{xy\} \setminus \{yz\}$. Similarly as earlier we get $\gamma(T - E_3) = \gamma(T)$. Let D_2 be a $\gamma(T - E_3)$ -set that contains the vertices x and z. It is easy to observe that *D*₂ is also a DS of the graph $T - E_1$. Therefore $\gamma(T - E_1) \leq \gamma(T - E_3)$. This implies that $\gamma(T - E_1) = \gamma(T)$. We now conclude that $b'(T) = 0$. \Box

We next show that a subtree of a γ -non-isolatingly strongly stable tree is also γ -non-isolatingly strongly stable.

Lemma 11 Let T be a γ-non-isolatingly strongly stable tree. Assume that T' is a $subtree$ of T such that $T - T'$ has no isolated vertices. Then $b'(T') = 0$.

Proof If *T'* consists of a single vertex, then obviously $b'(T') = 0$. Thus assume that $T' \neq K_1$. Let *E*₁ be the minimum subset of *E*(*T*) such that *T'* is a component of *T* − *E*₁. Now let *E*^{\prime} be a subset of *E*(*T*^{\prime}) such that $\delta(T' - E') \geq 1$. Notice that $\delta(T - E_1 - E') \geq 1$. The assumption $b'(T) = 0$ implies that $\gamma(T - E_1) = \gamma(T)$ and $\gamma(T - E_1 - E') = \gamma(T)$. We have $T - E_1 - E' = T' - E' \cup (T - T')$ and $T - E_1 = T' \cup (T - T')$. We now get $\gamma(T' - E') = \gamma(T - E_1 - E') - \gamma(T - T')$ $= \gamma(T) - \gamma(T - E_1) + \gamma(T') = \gamma(T')$. This implies that $b'(T') = 0$. \Box

For the purpose of characterizing all γ -non-isolatingly strongly stable trees, we introduce a family *T* of trees $T = T_k$ that can be obtained as follows. Let $T_1 \in \{P_1, P_2\}$. If k is a positive integer, then T_{k+1} can be obtained recursively from T_k by one of the following operations.

- Operation \mathcal{O}_1 : Attach a vertex by joining it to any support vertex of T_k .
- Operation \mathcal{O}_2 : Attach a path P_2 by joining one of its vertices to a vertex of T_k , which is adjacent to a path P_1 or P_4 , or is not a leaf and is adjacent to a support vertex.
- Operation \mathcal{O}_3 : Attach a path P_3 by joining one of its leaves to a vertex of T_k adjacent to a path P_1 or P_3 .
- Operation O_4 : Attach a path P_5 by joining one of its leaves to any support vertex of T_k .

We now prove that every tree of the family $\mathcal T$ is γ -non-isolatingly strongly stable.

Lemma 12 *If* $T \in T$ *, then* $b'(T) = 0$ *.*

Proof We use induction on the number *k* of operations performed to construct the tree *T*. If $T = P_1$, then obviously $b'(T) = 0$. If $T = P_2$, then $b'(T) = 0$ as removing the edge gives isolated vertices. Let *k* be a positive integer. Assume that the result is true for every tree $T' = T_k$ of the family T constructed by $k - 1$ operations. Let $T = T_{k+1}$ be a tree of the family *T* constructed by *k* operations.

First assume that *T* is obtained from *T'* by Operation \mathcal{O}_1 . Let *x* be the attached vertex, and let *y* be its neighbor. Let *z* be a leaf adjacent to *y* and different from *x*. Let *D* be a $\gamma(T)$ -set that contains all support vertices. The set *D* is minimal, thus $x \notin D$. Obviously, *D* is a DS of the tree *T'*. Therefore $\gamma(T') \leq \gamma(T)$. Now let *E'* be a subset of the set of edges of *T* such that $\delta(T - E') \geq 1$. Since both *x* and *z* are leaves of *T*, we have $xy \notin E'$ and $yz \notin E'$. The assumption $b'(T') = 0$ implies that $\gamma(T'-E') = \gamma(T')$. Let us observe that there exists a $\gamma(T'-E')$ -set that contains the vertex *y*. Let *D'* be such a set. It is easy to see that *D'* is a DS of the graph $T - E'$. Thus $\gamma(T - E') \leq \gamma(T' - E')$. We now get $\gamma(T - E') \leq \gamma(T' - E') = \gamma(T') \leq \gamma(T)$. On the other hand, we have $\gamma(T - E') \geq \gamma(T)$. This implies that $\gamma(T - E') = \gamma(T)$, and consequently, $b'(T) = 0$.

Now assume that *T* is obtained from T' by Operation \mathcal{O}_2 . The vertex to which is attached P_2 we denote by *x*. Let v_1v_2 be the attached path. Let v_1 be joined to *x*. If *x* is adjacent to a leaf or a support vertex, say a, then let D be a $\gamma(T)$ -set that contains all support vertices. We have $v_2 \notin D$ as the set *D* is minimal. It is easy to observe that $D\setminus\{v_1\}$ is a DS of the tree T'. If *x* is adjacent to a path P_4 , then we denote it by *abcd*. Let *a* and *x* be adjacent. Let us observe that there exists a $\gamma(T)$ -set that contains the vertices v_1 , *c*, and *x*. Let *D* be such a set. It is easy to observe that $D\setminus\{v_1\}$ is a DS of the tree *T*'. We conclude that $\gamma(T') \leq \gamma(T) - 1$. Now let *E*' be a subset of the set of edges of *T* such that $\delta(T - E') \geq 1$. Since v_2 is a leaf of *T*, we have $v_1v_2 \notin E'$. If $xv_1 \in E'$, then $\delta(T' - (E' \cap E(T'))) \geq 1$. We get $\gamma(T - E') = \gamma(P_2 \cup T' - (E' \setminus \{xv_1\}))$ $= \gamma(T' - (E' \cap E(T'))) + \gamma(P_2) = \gamma(T') + 1 \leq \gamma(T)$. Now assume that $xv_1 \notin E'$. By T_x (T'_x , respectively), we denote the component of $T - E'$ ($T' - E'$, respectively) which contains the vertex *x*. If $\delta(T' - (E' \cap E(T')) \geq 1$, then let D'_x be any $\gamma(T'_x)$ -set. It is easy to see that $D'_x \cup \{v_1\}$ is a DS of the tree T_x . Thus $\gamma(T_x) \leq \gamma(T'_x) + 1$. We now get $\gamma(T - E') = \gamma(T - E' - T_x) + \gamma(T_x) \leq \gamma(T - E' - T_x) + \gamma(T'_x) + 1$ $= \gamma(T' - E' - T'_x) + \gamma(T'_x) + 1 = \gamma(T' - E') + 1 = \gamma(T') + 1 \leq \gamma(T)$. Now assume that $\delta(T' - (E' \cap E(T'))) = 0$. This implies that *x* is the only isolated vertex of $T' - (E' \cap E(T'))$, and so *x* is not adjacent to any leaf in the trees T' and T . Consequently, T'_x consists only of the vertex *x*, and T_x is a path P_3 . Let us observe that $\delta(T' - (E' \setminus \{xa\})) \geq 1$. Let T'_a be the component of $T' - E'$, which contains the vertex *a*. Now let T_a'' be a tree obtained from T_a' by attaching a vertex to the vertex *a*. We now get $\gamma(T - E') = \gamma(T - E' - T_x) + \gamma(P_3) = \gamma(T' - E' - T'_x) + 1$ $=\gamma(T'-E'-T'_x-T'_a)+\gamma(T'_a)+1 \leq \gamma(T'-E'-T'_x-T'_a)+\gamma(T''_a)+1=\gamma((T'-E'-T'_x-T'_a)+\gamma(T'_a))$ $-T'_{x} - T'_{a}$) $\cup T''_{a}$) +1 = γ (*T'* - (*E'* \{*xa*})) +1 = γ (*T'* - *E'*) +1 = γ (*T'*) +1 ≤ γ (*T*). We conclude that $\gamma(T - E') = \gamma(T)$, and consequently, $b'(T) = 0$.

Now assume that *T* is obtained from *T'* by Operation \mathcal{O}_3 . The vertex to which is attached *P*₃ we denote by *x*. If *x* is a support vertex, then using Lemma [10,](#page-4-1) for $T_1 = T'$ and $T_2 = P_3$, we get $b'(T) = 0$. Now assume that *x* is adjacent to a path P_3 , say *abc*. Let *a* and *x* be adjacent. The attached path we denote by $v_1v_2v_3$. Let v_1 be joined to *x*. Let us observe that there exists a $\gamma(T)$ -set that contains all support vertices and does not contain the vertex v_1 . Let *D* be such a set. We have $v_3 \notin D$ as the set *D* is minimal. Observe that $D \setminus \{v_2\}$ is a DS of the tree *T'*. Therefore $\gamma(T') \leq \gamma(T) - 1$. Now let *E'* be a subset of the set of edges of *T* such that $\delta(T - E') \geq 1$. We have $v_2v_3 \notin E'$ as the vertex v_3 is a leaf. If $xv_1 \in E'$, then $v_1v_2 \notin E'$; otherwise we get an isolated vertex. Let us observe that $\delta(T' - (E' \cap E(T'))) \geq 1$. We get $\gamma(T - E')$ $\gamma = \gamma(P_3 \cup T - (E' \setminus \{xv_1\})) = \gamma(T' - (E' \cap E(T'))) + \gamma(P_3) = \gamma(T') + 1 \leq \gamma(T).$ Now assume that $xv_1 \notin E'$. Because of the similarity between the paths *abc* and $v_1v_2v_3$ adjacent to the vertex *x*, it suffices to consider only the possibility when $xa \notin E'$. Let us observe that $\delta(T' - (E' \cap E(T'))) \geq 1$. By $T_x(T'_x)$, respectively), we denote the component of $T - E'(T' - (E' \cap E(T'))$, respectively) which contains the vertex *x*. If $v_1v_2 \notin E'$, then let D'_x be any $\gamma(T'_x)$ -set. It is easy to see that $D'_x \cup \{v_2\}$ is a DS of the tree T_x . Thus $\gamma(T_x) \leq \gamma(T'_x) + 1$. We now get $\gamma(T - E') = \gamma(T - E' - T_x) + \gamma(T_x) \leq$ $\gamma(T - E' - T_x) + \gamma(T'_x) + 1 = \gamma(T' - E' - T'_x) + \gamma(T'_x) + 1 = \gamma(T' - E') + 1 =$ $\gamma(T') + 1 \leq \gamma(T)$. Now assume that $v_1v_2 \in E'$. Because of the similarity between the paths *abc* and $v_1v_2v_3$, it suffices to consider only the possibility when $ab \in E'$. Let D'_x be a $\gamma(T'_x)$ -set that contains all support vertices (so $x \in D'_x$). It is easy to see that D'_x is a DS of the tree T_x . Thus $\gamma(T_x) \leq \gamma(T'_x)$. We get $\gamma(T - E') = \gamma(T - E' - T_x) + \gamma(T_x)$ $\leq \gamma(T - E' - T_x) + \gamma(T'_x) = \gamma(T' - E' - T'_x) + \gamma(T'_x) = \gamma(T' - E') = \gamma(T') \leq \gamma(T).$ We now conclude that $\gamma(T - E') = \gamma(T)$, and consequently, $b'(T) = 0$.

Now assume that *T* is obtained from T' by Operation \mathcal{O}_4 \mathcal{O}_4 . By Lemma 4 we have $b'(P_5) = 0$. Using Lemma [10,](#page-4-1) for $T_1 = T'$ and $T_2 = P_5$, we get $b'(T) = 0$. Ч

We now prove that if a tree is γ -non-isolatingly strongly stable, then it belongs to the family *T* .

Lemma 13 Let T be a tree. If $b'(T) = 0$, then $T \in T$.

Proof If diam(*T*) \in {0, 1}, then *T* \in {*P*₁, *P*₂} \subseteq *T*. If diam(*T*) = 2, then *T* is a star. The tree *T* can be obtained from P_2 by an appropriate number of Operations O_1 . Thus $T \in \mathcal{T}$. Now assume that diam(*T*) ≥ 3 . Thus the order *n* of the tree *T* is at least four. We obtain the result by the induction on the number *n*. Assume that the lemma is true for every tree T' of order $n' < n$.

First assume that some support vertex of *T* , say *x*, is strong. Let *y* be a leaf adjacent to *x*. Let $T' = T - y$. Let *D'* be a $\gamma(T')$ -set that contains all support vertices. It is easy to see that *D'* is a DS of the tree *T*. Thus $\gamma(T) \leq \gamma(T')$. Now let *E'* be a subset of the set of edges of *T'* such that $\delta(T' - E') \geq 1$. Since $b'(T) = 0$, we have $\gamma(T - E') = \gamma(T)$. Let us observe that there exists a $\gamma(T - E')$ -set that contains the vertex *x*. Let *D* be such a set. The set *D* is minimal, thus $y \notin D$. Obviously, *D* is a DS of the graph $T' - E'$. Therefore $\gamma(T' - E') \leq \gamma(T - E')$. We now get $\gamma(T'-E') \leq \gamma(T-E') = \gamma(T) \leq \gamma(T')$. On the other hand, we have $\gamma(T'-E') \geq \gamma(T')$. This implies that $\gamma(T'-E') = \gamma(T')$, and consequently, $b'(T') = 0$. By the inductive hypothesis, we have $T' \in \mathcal{T}$. The tree *T* can be obtained from *T'* by Operation O_1 . Thus $T \in \mathcal{T}$. Henceforth, we assume that every support vertex of *T* is weak.

We now root *T* at a vertex *r* of maximum eccentricity diam(*T*). Let *t* be a leaf at maximum distance from r, v be the parent of t , and u be the parent of v in the rooted tree. If diam(*T*) \geq 4, then let *w* be the parent of *u*. If diam(*T*) \geq 5, then let *d* be the parent of w. If diam(T) > 6 , then let *e* be the parent of *d*. By T_x we denote the subtree induced by a vertex *x* and its descendants in the rooted tree *T* .

Assume that $d_T(u) \geq 3$. Thus some child of *u* is a leaf or a support vertex other than v. Let $T' = T - T_v$. By Lemma [11](#page-4-2) we have $b'(T') = 0$. By the inductive hypothesis, we have $T' \in \mathcal{T}$. The tree *T* can be obtained from *T'* by Operation \mathcal{O}_2 . Thus $T \in \mathcal{T}$.

Now assume that $d_T(u) = 2$. Assume that $d_T(w) \geq 3$. First assume that there is a child of w other than u , say k , such that the distance of w to the most distant vertex of T_k is three. It suffices to consider only the possibility when T_k is a path P_3 , say klm . Let $T' = T - T_u$. By Lemma [11](#page-4-2) we have $b'(T') = 0$. By the inductive hypothesis, we have $T' \in \mathcal{T}$. The tree *T* can be obtained from *T'* by Operation \mathcal{O}_3 . Thus $T \in \mathcal{T}$.

Now assume that some child of w is a leaf. Let $T' = T - T_u$. By Lemma [11](#page-4-2) we have $b'(T') = 0$. By the inductive hypothesis, we have $T' \in \mathcal{T}$. The tree *T* can be obtained from *T'* by Operation \mathcal{O}_3 . Thus $T \in \mathcal{T}$.

Thus there is a child of w , say k , such that the distance of w to the most distant vertex of T_k is two. Consequently, k is a support vertex of degree two. Due to the earlier analysis of the children of the vertex u , it suffices to consider only the possibility when $d_T(w) = 3$. Let $T' = T - T_w$. It is easy to observe that $D' \cup \{v, k\}$ is a DS of the tree *T*. Thus $\gamma(T) \leq \gamma(T') + 2$. We have $\delta(T - dw - uv - wk) \geq 1$. We now get $\gamma(T - dw - uv - wk) = \gamma(T' \cup P_2 \cup P_2 \cup P_2) = \gamma(T') + 3\gamma(P_2)$ $= \gamma(T') + 3 \ge \gamma(T) + 1 > \gamma(T)$. This implies that $b'(T) \ne 0$, a contradiction.

If $d_T(w) = 1$, then $T = P_4$. Let $T' = P_2 \in T$. The tree *T* can be obtained from *T* by Operation \mathcal{O}_2 . Thus *T* ∈ *T*. Now assume that $d_T(w) = 2$. First assume that there is a child of *d* other than w, say k , such that the distance of *d* to the most distant vertex of T_k is four or one. It suffices to consider only the possibilities when T_k is a path *P*₄, or *k* is a leaf. Let $T' = T - T_w$. Let us observe that there exists a $\gamma(T')$ -set that contains the vertex *d*. Let *D'* be such a set. It is easy to observe that $D' \cup \{v\}$ is a DS of the tree *T*. Thus $\gamma(T) \leq \gamma(T') + 1$. We have $\delta(T - dw - uv) \geq 1$. We now get $\gamma(T - dw - uv) = \gamma(T' \cup P_2 \cup P_2) = \gamma(T') + 2\gamma(P_2) = \gamma(T') + 2 \ge \gamma(T) + 1 >$ $\gamma(T)$. This implies that $b'(T) \neq 0$, a contradiction.

Now assume that there is a child of *d*, say *k*, such that the distance of *d* to the most distant vertex of T_k is three. It suffices to consider only the possibility when T_k is a

path *P*₃, say *klm*. Let $T' = T - T_l$. Due to the similarity of *T'* to the tree *T* from the previous case when *d* is adjacent to a leaf, we conclude that $b'(T') \neq 0$. On the other hand, by Lemma [11](#page-4-2) we have $b'(T') = 0$, a contradiction.

Now assume that there is a child of *d*, say *k*, such that the distance of *d* to the most distant vertex of T_k is two. Thus *k* is a support vertex of degree two. Let $T' = T - T_k$. By Lemma [11](#page-4-2) we have $b'(T') = 0$. By the inductive hypothesis, we have $T' \in \mathcal{T}$. The tree *T* can be obtained from *T'* by Operation \mathcal{O}_2 . Thus $T \in \mathcal{T}$.

If $d_T(d) = 1$, then $T = P_5$. Let $T' = P_2 \in T$. The tree *T* can be obtained from *T*' by Operation \mathcal{O}_3 . Thus $T \in \mathcal{T}$.

Now assume that $d_T(d) = 2$. First assume that *e* is adjacent to a leaf, say *k*. Let $T' = T - T_d$. By Lemma [11](#page-4-2) we have $b'(T') = 0$. By the inductive hypothesis, we have $T' \in \mathcal{T}$. The tree *T* can be obtained from T' by Operation \mathcal{O}_4 . Thus $T \in \mathcal{T}$.

Now assume that *e* is not adjacent to any leaf. Let *E*^{\prime} be the set of edges incident with *e* excluding *ed*. Let $G' = T - T_d - e$. Let D' be any $\gamma(G')$ -set. It is easy to observe that $D' \cup \{d, v\}$ is a DS of the tree *T*. Thus $\gamma(T) \leq \gamma(G') + 2$. We have $\delta(T - (E' \cup \{dw, uv\})) \ge 1$. We now get $\gamma(T - (E' \cup \{dw, uv\})) = \gamma(G' \cup \{dw, uv\})$ $∪P_2 ∪ P_2 ∪ P_2$ = γ(*G'*) + 3γ(*P*₂) = γ(*G'*) + 3 ≥ γ(*T*) + 1 > γ(*T*). This implies that $b'(T) \neq 0$, a contradiction. \Box

As an immediate consequence of Lemmas [12](#page-5-0) and [13,](#page-6-0) we have the following characterization of all γ -non-isolatingly strongly stable trees.

Theorem 14 *Let* T *be a tree. Then* $b'(T) = 0$ *if and only if* $T \in T$ *.*

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License [\(http://creativecommons.org/licenses/by/4.0/\)](http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

- 1. Domke, G., Laskar, R.: The bondage and reinforcement numbers of γ_f for some graphs. Discret. Math. **167**(168), 249–259 (1997)
- 2. Fink, J., Jacobson, M., Kinch, L., Roberts, J.: The bondage number of a graph. Discret. Math. **86**, 47–57 (1990)
- 3. Hartnell, B., Rall, D.: A characterization of trees in which no edge is essential to the domination number. Ars Comb. **33**, 65–76 (1992)
- 4. Hartnell, B., Rall, D.: Bounds on the bondage number of a graph. Discret. Math. **128**, 173–177 (1994)
- 5. Haynes, T., Hedetniemi, S., Slater, P.: Fundamentals of Domination in Graphs. Marcel Dekker, New York (1998)
- 6. Kang, L., Yuan, J.: Bondage number of planar graphs. Discret. Math. **222**, 191–198 (2000)
- 7. Krzywkowski, M.: 2-Bondage in graphs. Int. J. Comput. Math. **90**, 1358–1365 (2013)
- 8. Liu, H., Sun, L.: The bondage and connectivity of a graph. Discret. Math. **263**, 289–293 (2003)
- 9. Teschner, U.: New results about the bondage number of a graph. Discret. Math. **171**, 249–259 (1997)