

The Harmonic Index of Some Graphs

Jianxi Li¹ · Jian-Bo Lv1 · Yang Liu1

Received: 28 July 2014 / Revised: 17 November 2014 / Published online: 11 December 2015 © Malaysian Mathematical Sciences Society and Universiti Sains Malaysia 2015

Abstract The harmonic index of a graph *G* is defined as the sum of weights $\frac{2}{d(u)+d(v)}$ over all edges *uv* of *G*, where $d(u)$ and $d(v)$ are the degrees of the vertices *u* and *v* in *G*, respectively. Let $\mathcal{T}(n, \gamma)$ and \mathcal{C}_n^{π} be the sets of trees of order *n* with domination number γ and connected graphs of order *n* with degree sequence π , respectively. In this paper, the tree with minimum harmonic index among trees in $\mathcal{T}(n, \gamma)$ is determined, as well as the trees with maximum harmonic index among trees in $\mathcal{T}(n, \gamma)$ when $\gamma = 2$, $\lceil \frac{n}{3} \rceil$. Moreover, we show that among graphs in \mathcal{C}_n^{π} , the maximum harmonic index is attained by a BFS graph.

Keywords Harmonic index · Tree · Connected graph · Domination number · Degree sequence

Mathematics Subject Classification 05C12 · 92E10

1 Introduction

Let *G* be a simple connected graph with vertex set $V(G)$ and edge set $E(G)$. Its order is $|V(G)|$, denoted by *n*. For $v \in V(G)$, let $N_G(v)$ be the set of neighbors of v in G.

Communicated by Xueliang Li.

Partially supported by the NSF of China (Nos.11101358, 11471077, 61379021); NSF of Fujian (No.2014J01020); China Postdoctoral Science Foundation (No. 2014M551831).

B Jianxi Li ptjxli@hotmail.com

¹ School of Mathematics and Statistics, Minnan Normal University, Zhangzhou, Fujian, People's Republic of China

 $d_G(v) = |N_G(v)|$ is called the degree of v in G or written as $d(v)$ for short. A pendent vertex of *G* is a vertex of degree 1. Let $\Delta = \Delta(G)$ denote the maximum degree of *G*. The distance of *u* and *v* (in *G*) is the length of the shortest path between *u* and *v*, denoted by $d(u, v)$. We use $G - uv$ to denote the graph obtained from G by deleting the edge $uv \in E(G)$ from *G*. Similarly, $G + uv$ is the graph obtained by adding an edge $uv \notin E(G)$ to *G*. As usual, we denote by P_n the path of order *n*.

The Randić index and the second Zagreb index of *G* are defined in [\[14](#page-9-0)] and [\[6](#page-9-1)] as the sums of the weights $(d(u)d(v))^{-\frac{1}{2}}$ and the weights $d(u)d(v)$ over all edges *u*v of *G*, respectively. Those indices are two of the most successful molecular descriptors in structure–property and structure–activity relationship studies. The mathematical properties of those graph invariants have been studied extensively (see recent book $[5]$ $[5]$, survey $[8]$ $[8]$ and papers $[6,7]$ $[6,7]$). Another variant of the Randić index (or the Zagreb index), named the harmonic index $H(G)$, which is defined in [\[3\]](#page-9-5) as

$$
H(G) = \sum_{uv \in E(G)} \frac{2}{d(u) + d(v)},
$$

where the summation goes over all edges uv of G . Estimating bounds for $H(G)$ is of great interest, and there are many results that have been obtained. For example, Zhong [\[19](#page-9-6)[–21\]](#page-9-7) gave the minimum and maximum values of the harmonic index for simple connected graphs, trees, unicyclic graphs and bicyclic graphs and characterized the corresponding extremal graphs, respectively. Favaron et al. [\[4](#page-9-8)], Deng et al. [\[2\]](#page-9-9), Lv and Li [\[11](#page-9-10),[12](#page-9-11)] established the relationships between the harmonic index of a graph and its the eigenvalues, its chromatic number, its matching number, respectively; More results on the harmonic index of a graph can been found in [\[9](#page-9-12)[,16](#page-9-13)].

Recall that a matching of a graph *G* is a set of independent edges of *G*, and the matching number $\beta(G)$ is the cardinality of a maximum matching of *G*. A subset *S* of $V(G)$ is called a dominating set of *G* if for every vertex $v \in V \setminus S$, there exists a vertex $u \in S$ such that v is adjacent to u. A vertex in the dominating set is called dominating vertex. For a dominating set *S* of *G* and $u \in S$ and $v \in V(G) \setminus S$, if $uv \in E(G)$, then *v* is said to be dominated by *u*. The domination number of graph *G*, denoted by $\gamma(G)$, is defined as the minimum cardinality of dominating sets of *G*. Let $\mathcal{T}(n, \gamma)$ be the set of trees of order *n* with domination number γ .

A non-increasing sequence $\pi(G) = (d_0, d_1, \ldots, d_{n-1})$ of non-negative integers is called a degree sequence (or graphic) if there exists a graph *G* of order *n* for which $d_0, d_1, \,dot{d}$, d_0 , d_{n-1} are the degrees of its vertices. Given a degree sequence $\pi(G) = (d_0, d_1, \dots, d_{n-1})$, let \mathcal{T}_n^{π} and \mathcal{C}_n^{π} be the sets of trees and connected graphs of order *n* with degree sequence π , respectively.

In this paper, the tree with minimum harmonic index among trees in $\mathcal{T}(n, \gamma)$ is determined, as well as the trees with maximum harmonic index among trees in $\mathcal{T}(n, \gamma)$ when $\gamma = 2$, $\lceil \frac{n}{3} \rceil$. Moreover, we show that among graphs in \mathcal{C}_n^{π} , the maximum harmonic index is attained by a BFS graph.

2 Preliminaries

In this section, we present some of the preliminaries to be used in our argument.

Let $\pi = (d_0, d_1, \ldots, d_{n-1})$ be a non-increasing degree sequence, and $G \in \mathcal{C}_n^{\pi}$. We introduce an ordering of the vertices of *G* induced by breadth-first search (BFS for short): Create a sorted list of vertices beginning with v_0 , a vertex of degree $d(v_0)$ = $d_0 = \Delta(G)$; append all neighbors $v_1, v_2, \ldots, v_{d_0}$ of v_0 sorted by decreasing degrees; then append all neighbors of v_1 that are not already in the list, also sorted by decreasing degrees; continue recursively with v_2, v_3, \ldots , until all vertices of *G* are processed. In this way, we get a rooted graph $G' \in \mathcal{C}_n^{\pi}$ with root v_0 . For a graph *G* with root v_0 , the distance $d(v, v_0)$ is called the height $h(v)$ of a vertex v, and $h(G) = \max\{h(v)|v \in V\}$ the height of *G*. Note that $h(G) \geq 1$ for any non-trivial graph *G*. Let $V_i = \{v \in$ $V|d(v, v_0) = i$, $i = 0, 1, \ldots, h(G)$. Then obviously, $V_0 = \{v_0\}, V_1 = N(v_0)$, *N*(*u*) ⊆ *V*_{*h*(*u*)−1} ∪ *V*_{*h*(*u*) ← *V*_{*h*(*u*)+1} if 1 ≤ *h*(*u*) ≤ *h*(*G*) − 1, and *N*(*u*) ⊆ *V*_{*h*(*G*)−1} ∪} $V_{h(G)}$ if $h(u) = h(G)$. Moreover, for a vertex $v_i \in V_i$, $i \geq 1$, $N(v_i) \cap V_{i-1} \neq \emptyset$. We call the least one in $N(v_i) \cap V_{i-1}$ in the ordering the parent of v_i .

Definition 2.1 ([\[1](#page-9-14),[18\]](#page-9-15)) Let *G* be a connected rooted graph with root v_0 . A well order $ing \prec of$ the vertices is called breadth-first searching ordering with non-increasing degrees (BFS ordering for short) if the following conditions holds for all vertices *u*, $v \in V$:

- (i) $u \lt v$ implies $h(u) \leq h(v)$;
- (ii) $u \lt v$ implies $d(u) \geq d(v)$;
- (iii) let $uv, xy \in E$ and $uy, xv \notin E$ with $h(u) = h(x) = h(v) 1 = h(y) 1$. If $u \prec x$, then $v \prec y$.

A graph having a BFS ordering of its vertices is called a BFS graph. If a BFS graphs is a tree, then it is also called a BFS tree.

- Fact 2.2 (a) Every graph has an ordering of its vertices which satisfies the conditions (i) and (iii) by using breadth-first search.
- (b) Not all connected graphs have an ordering that satisfies the condition (ii). Hence not all connected graphs are BFS graphs.
- (c) Given a degree sequence π , there may exist more than one BFS graphs in \mathcal{C}_n^{π} . If π is a tree degree sequence, then there exist a unique BFS tree in \mathcal{C}_n^{π} (under isomorphism).
- (d) If π is a tree degree sequence, then *T* is a greedy tree (see Definition [2.3\)](#page-2-0) in \mathcal{I}_n^{π} if and only if *T* is a BFS tree in \mathcal{I}_n^{π} .

Definition 2.3 ([\[15](#page-9-16)]) Suppose that the degrees of the non-leaf vertices are given. The greedy tree is achieved by the following "greedy algorithm":

- (1) Label the vertex with the largest degree as v (the root).
- (2) Label the neighbors of v as v_1, v_2, \ldots , assign the largest degrees available to them such that $d(v_1) \geq d(v_2) \geq \cdots$.
- (3) Label the neighbors of v_1 (except v) as v_{11} , v_{12} , \cdots , such that they take all the largest degrees available and that $d(v_{11}) \geq d(v_{12}) \geq \ldots$ then do the same for v_2, v_3, \ldots

(4) Repeat (3) for all the newly labeled vertices, always start with the neighbors of the labeled vertex with largest degree whose neighbors are not labeled yet.

Let *n* and β be positive integers and $n \ge 2\beta$. Let $T^0(n, \beta)$ be a tree of order *n*, which is obtained from a star $S_{n-\beta+1}$ by attaching a pendant edge to each of certain β − 1 non-central vertices of $S_{n-\beta+1}$. Obviously, $T^{0}(n, \beta)$ is a tree of order *n* with an β-matching, where $T^0(n, \beta)$ is shown in Fig. [1.](#page-3-0)

The following lemmas are useful for our argument.

Lemma 2.4 ([\[11\]](#page-9-10)) *Let T be a tree of order n with an β-matching, where* $n \geq 2\beta$ *. Then* $H(T) > H(T^{0}(n, \beta))$ *. The equality holds if and only if* $T \cong T^{0}(n, \beta)$ *.*

Lemma 2.5 ([\[10\]](#page-9-17)) *Let G be a graph and D be a subset of V(G). If D is covered by some matching of G, then is also covered by a maximum matching of G.*

Let $e = uv$ be an edge of a graph *G*. Let *G'* be the graph obtained from *G* by contracting the edge *e* into a new vertex $u(v)$ and adding a new pendent edge to $u(v)$. We say that G' is obtained from G by $s.e.$ p an edge uv (see Fig. [2\)](#page-3-1).

Lemma 2.6 ([\[9\]](#page-9-12)) Let $e = uv$ be a cut edge of a connected graph G and suppose that $G - uv = G_1 ∪ G_2$ (| $V(G_1)$ |, | $V(G_2)$ | ≥ 2)*, where* G_1 *and* G_2 *are two components of* $G - uv$, $u \in V(G_1)$ *and* $v \in V(G_2)$ *. Let* G' *be the graph obtained from* G *by running s.e.p on the edge uv. Then* $H(G) > H(G')$.

The following lemma is an easy exercise of calculus.

Lemma 2.7 *Let* $g(x) = \frac{2}{(a+x)^2} - \frac{2}{(b+x)^2}$, where a, b, and x are the positive integers. *Then* $g(x)$ *is increasing on x when* $a \geq b$; $g(x)$ *is decreasing on x when* $a < b$.

Lemma 2.8 *Let* $P_k(a, b)(a + b = l, l \ge 2)$ *be a tree obtained by attaching a and b pendent vertices to the two pendent vertices u and v of* P_k ($k \geq 2$), *respectively. Then we have*

$$
H(P_k(0,l)) < H(P_k(1,l-1)) < \cdots < H\left(P_k\left(\left\lfloor\frac{l}{2}\right\rfloor,\left\lceil\frac{l}{2}\right\rceil\right)\right).
$$

 $\circled{2}$ Springer

Proof We consider the following two cases.

Case 1 $k \geq 3$. That is $uv \notin E(P_k(a, b))$. Note that $H(P_k(a, b)) = \frac{2a}{a+1+1} + \frac{2}{a+1+2} + \frac{2(k-3)}{2+2} + \frac{2b}{b+1+1} + \frac{2}{b+1+2}$ and $a + b = l$. Let

$$
f(x) = H(P_k(x, l - x)) = \frac{2(l - x)}{l - x + 1 + 1} + \frac{2}{l - x + 1 + 2} + \frac{2(k - 3)}{2 + 2} + \frac{2x}{x + 1 + 1} + \frac{2}{x + 1 + 2}.
$$

Then for $0 \le x \le \frac{l}{2}$, we have

$$
f'(x) = \frac{-4}{(l-x+2)^2} + \frac{4}{(x+2)^2} + \frac{2}{(l-x+3)^2} + \frac{-2}{(x+3)^2}
$$

= $2\left(\frac{2}{(x+2)^2} - \frac{2}{(l-x+2)^2}\right) - \left(\frac{2}{(x+3)^2} - \frac{2}{(l-x+3)^2}\right)$
= $\left(\frac{2}{(x+2)^2} - \frac{2}{(l-x+2)^2}\right) + \left[\left(\frac{2}{(x+2)^2} - \frac{2}{(l-x+2)^2}\right) - \left(\frac{2}{(x+3)^2} - \frac{2}{(l-x+3)^2}\right)\right].$

Note that $\frac{2}{(x+2)^2} - \frac{2}{(x+x^2)^2} > 0$ for $0 \le x < \lfloor \frac{1}{2} \rfloor$. Thus Lemma [2.7](#page-3-2) implies $\left(\frac{2}{(x+2)^2} - \frac{2}{(l-x+2)^2}\right)$ $\int -\left(\frac{2}{(x+3)^2} - \frac{2}{(l-x+3)^2}\right)$ $\bigg) > 0$. That is $f'(x) > 0$ for $0 \leq x < \lfloor \frac{l}{2} \rfloor$. Moreover, $f'(\frac{l}{2}) = 0$. Therefore, $f(x)$ is monotonously increasing on $[0, \frac{l}{2}]$.

Case 2 $k = 2$. That is $uv \in E(P_k(a, b))$.

By the similar argument as Case 1, the result follows.

The proof is completed.

Lemma 2.9 (Switching transformation) *Let* $G \in \mathcal{C}_n^{\pi}$ *with uv, xy* $\in E(G)$ *and uy,* $xv \notin E(G)$ *. Let* $G_0 = G - uv - xy + uy + vx$ *. If* $d(u) \ge d(x)$ *and* $d(v) \le d(y)$ *, then* $H(G_0) \geq H(G)$ *. Moreover, the equality holds if and only if* $d(u) = d(x)$ *or* $d(v) = d(y)$.

Proof Note that $d(u) \ge d(x)$ and $d(v) \le d(y)$. Then we have

$$
H(G) - H(G_0) = \frac{2}{d(y) + d(x)} + \frac{2}{d(v) + d(u)} - \frac{2}{d(v) + d(x)} - \frac{2}{d(y) + d(u)}
$$

=
$$
\left(\frac{2}{d(y) + d(x)} - \frac{2}{d(v) + d(x)}\right) - \left(\frac{2}{d(y) + d(u)} - \frac{2}{d(v) + d(u)}\right)
$$

Hence, *H*(*G*₀) ≥ *H*(*G*). Moreover, the equality holds if and only if *d*(*u*) = *d*(*x*) or *d*(*v*) = *d*(*y*). \Box $d(v) = d(y)$.

3 The Main Results

In this section, the tree with minimum harmonic index among trees in $\mathcal{T}(n, \gamma)$ is determined, as well as the trees with maximum harmonic index among trees in $\mathcal{T}(n, \gamma)$ when $\gamma = 2$, $\lceil \frac{n}{3} \rceil$. Moreover, we show that among graphs in \mathcal{C}_n^{π} , the maximum harmonic index is attained by a BFS graph.

3.1 Trees with Given Domination Number

In this subsection, we consider the problem of determining the tree with maximum(or minimum) harmonic index among trees in $\mathcal{T}(n, \gamma)$. The tree with minimum harmonic index among trees in $\mathcal{T}(n, \gamma)$ is determined, as well as the trees with maximum harmonic index among trees in $\mathcal{T}(n, \gamma)$ when $\gamma = 2$, $\lceil \frac{n}{3} \rceil$.

The following lemmas are needed.

Lemma 3.1 ([\[17\]](#page-9-18)) *For a connected graph G, we have* $\gamma(G) \leq \beta(G)$ *.*

Lemma 3.2 *Let* T_0 *be a tree with minimum harmonic index among trees in* $\mathcal{T}(n, \gamma)$ *. Then* $\gamma(T_0) = \beta(T_0) = \gamma$ *.*

Proof By Lemma [3.1,](#page-5-0) it suffices to prove that $\gamma(T_0) \geq \beta(T_0)$.

Otherwise, assume to the contrary that $\beta(T_0) > \gamma(T_0) = \gamma$. Let *S* = $\{v_1, v_2, \dots, v_{\gamma}\}\$ be a dominating set of T_0 . Then there exist γ independent edges $v_1v_1^0$, $v_2v_2^0$, ..., $v_\gamma v_\gamma^0$ in T_0 . Clearly, those γ independent edges form a matching of *T*⁰ and cover *S*. Hence, by Lemma [2.5,](#page-3-3) there exist a maximum matching $M = \{e_1, e_2, \ldots, e_{\beta(T_0)}\}$ in T_0 such that *M* covers *S*. Note that $|M| = \beta(T_0) > \gamma$. Then we may choose γ edges from *M*. Without loss of generality, we assume that $e_1, e_2, \ldots, e_\gamma$ such that $\{e_1, e_2, \ldots, e_\gamma\}$ covers *S*. Let $e_{\gamma+1} = w_1w_2$. Note that if w_1 , w_2 are dominated by the same vertex $v_i \in S$, then there is a triangle $C_3 = w_1w_2v_i$ in *T*₀. This is impossible since $T_0 \in \mathcal{T}(n, \gamma)$. Thus we conclude that w_1, w_2 are dominated by two different vertices from S . Without loss of generality, we assume that w_1 and w_2 are dominated by the vertex v_1 and v_2 , respectively. Clearly, $v_1v_2 \notin E(T_0)$ (otherwise, T_0 contains a $C_4 = v_1v_2w_2w_1$, which is impossible since $T_0 \in \mathcal{T}(n, \gamma)$). Now we construct a new tree T_0' from T_0 by running *s.e.p* on the edges v_1w_1 and v_2w_2 , respectively. Clearly, $S = \{v_1, v_2, \dots, v_{\gamma}\}\$ is also a minimum dominating set of T'_0 . That is $T'_0 \in \mathcal{T}(n, \gamma)$, where T_0 and T'_0 are shown in Fig. [3,](#page-6-0) respectively. Then

Lemma [2.6](#page-3-4) implies that $H(T_0) > H(T'_0)$. This contradicts to the choice of T_0 . The proof is completed.

From Lemmas [2.4](#page-3-5) and [3.2,](#page-5-1) the following result is immediate.

Theorem 3.3 *For any tree* $T \in \mathcal{T}(n, \gamma)$ *, we have*

$$
H(T) \ge \frac{2(n-2\gamma+1)}{n-\gamma+1} + \frac{2(\gamma-1)}{n-\gamma+2} + \frac{2(\gamma-1)}{3}.
$$

Moreover, the equality holds if and only if $T \cong T^0(n, \gamma)$ *.*

Note that if $\gamma = 1$, then there is a single tree, i.e., the star S_n , in $\mathscr{T}(n, \gamma)$. We now turn to determine the trees with maximum harmonic index among trees in $\mathcal{T}(n, \gamma)$ when $\gamma = 2$, $\lceil \frac{n}{3} \rceil$.

Theorem 3.4 *Among trees in* $\mathcal{T}(n, \lceil \frac{n}{3} \rceil)$ *with* $n > 4$ *, the path* P_n *has the maximal harmonic index.*

Proof It is well known that the path P_n has the maximal harmonic index among trees of order *n* [\[19](#page-9-6)]. Assume that $n = 3k + r$ where $0 \le r \le 2$ and $S_0 = \{v_2, v_5, \dots, v_{3k-1}\}.$ Note that the vertex subset *S*₀ is dominating set of *P_n* for $n = 3k$, and $S_0 \cup \{v_{3k+1}\}\$ for $n = 3k + 1$ or $3k + 2$. By the definition of domination number, we have $\gamma(P_n) \leq \lceil \frac{n}{3} \rceil$. If $\gamma(P_n) < \lceil \frac{n}{3} \rceil$, that is $\gamma(P_n) \leq \lceil \frac{n}{3} \rceil - 1$, then we claim that at least three vertex are dominated by one vertex from a dominating set. By the structure of P_n , this is impossible. Then we have $\gamma(P_n) = \lceil \frac{n}{3} \rceil$. This completes the proof.

Theorem 3.5 *Among trees in* $\mathscr{T}(n, 2)$ *with* $n \geq 4$ *, the tree* $P_4(\lfloor \frac{n-4}{2} \rfloor, \lceil \frac{n-4}{2} \rceil)$ *has the maximal harmonic index.*

Proof If $n = 4, 5, 6$, the result follows in view of Theorem [3.4.](#page-6-1) In what follows, we consider the case when $n \ge 7$. Assume that $T_1 \in \mathcal{T}(n, 2)$ has the maximal harmonic index and $S = \{w_1, w_2\}$ is a dominating set of T_1 . We have the following two claims.

 \Box

Claim 1 w_1 *is not adjacent to* w_2 *.*

Proof of Claim [1](#page-6-2) If not, then w_1 and w_2 are adjacent. Therefore T_1 must be of the form $P_2(a, b)$ with $a + b = n - 2$ and $a \leq b$. Since by Lemma [2.8,](#page-3-6) we have $b - a \leq 1$. That $\lim_{n \to \infty} T_1 \cong P_2(\frac{n-2}{2}, \lceil \frac{n-2}{2} \rceil)$. Note that $\frac{n-2}{2} > 2$ for $n > 4$ and $P_3(\lfloor \frac{n-2}{2} \rfloor, \lceil \frac{n-2}{2} \rceil - 1) \in$ *T*(*n*, 2). It is known that *T*₁ can be obtained from $P_3(\lfloor \frac{n-2}{2} \rfloor, \lceil \frac{n-2}{2} \rceil - 1)$ by *s.e.p* an cut edge. Thus Lemma [2.6](#page-3-4) implies that $H(P_3(\lfloor \frac{n-2}{2} \rfloor, \lceil \frac{n-2}{2} \rceil - 1)) > H(T_1)$, which contradicts the choice of T_1 . Completing the proof of Claim [1.](#page-6-2)

Claim 2 $d(w_1, w_2) = 3$.

Proof of Claim [2](#page-7-0) From Claim [1,](#page-6-2) we have $d(w_1, w_2) \geq 2$. If $d(w_1, w_2) \geq 4$, then there exists at least one vertex x on the shortest path between w_1 and w_2 such that *x* can not be dominated by the two vertices w_1 and w_2 . This contradicts the fact that *T*₁ $\in \mathcal{T}(n, 2)$. Thus, we have $2 \le d(w_1, w_2) \le 3$. If $d(w_1, w_2) = 2$, then Lemma [2.8](#page-3-6) implies that $T_1 \cong P_3(\frac{n-3}{2}], \lceil \frac{n-3}{2} \rceil$). Assume that the common neighbor of w_1 and *w*₂ is *w*₀. Note that $\frac{n-3}{2}$ ≥ 2 and $P_4(\lfloor \frac{n-3}{2} \rfloor, \lceil \frac{n-3}{2} \rceil - 1) \in \mathcal{T}(n, 2)$. It is known that *T*₁ can be obtained from $P_4(\lfloor \frac{n-3}{2} \rfloor, \lceil \frac{n-3}{2} \rceil - 1)$ by *s.e.p* an cut edge. Thus Lemma [2.6](#page-3-4) implies that $H(P_4(\lfloor \frac{n-3}{2} \rfloor, \lceil \frac{n-3}{2} \rceil - 1)) > H(T_1)$, which contradicts the choice of T_1 . Completing the proof of Claim [2.](#page-7-0)

From the proof of Claim [2,](#page-7-0) we find that T_1 must be of the form $P_4(a, b)$ with $a + b = n - 4$. This together with Lemma [2.8](#page-3-6) imply that the result follows.

3.2 Connected Graphs with Given Degree Sequence

In this section, we show that, there is a BFS graph with maximal harmonic index among graphs in \mathcal{C}_n^{π} .

Theorem 3.6 *Let* π *be a degree sequence. Then among all graphs in* \mathscr{C}_n^{π} *, there exists a BFS graphs G*∗ *with maximal harmonic index.*

Proof Let *G* be a graph with maximal harmonic index among all graphs in \mathcal{C}_n^{π} . Choose a vertex v_0 of degree $\Delta = \Delta(G)$ as its root. Let $v_0 \prec v_1 \prec \cdots \prec v_{n-1}$ be the well ordering of the vertices of *G* induced by BFS beginning with v_0 . Notice that, conditions (i) and (iii) of Definition [2.1](#page-2-1) hold for this ordering. If this ordering is not a BFS ordering, then there exist $i < j$ such that $d(v_i) < d(v_j)$. Choose *i* and *j* such that *d*(*v*₀) ≥ *d*(*v*₁) ≥ ··· ≥ *d*(*v*_{*i*}-1) ≥ *d*(*v*_{*i*}) ≥ *d*(*v*_{*k*}) and *d*(*v*_{*i*}) > *d*(*v*_{*i*}), where *k* ≥ *i*. Then $i \ge 1$ and $h(v_i) \ge h(v_i) \ge 1$ since $d(v_0) = \triangle$. We consider the following two cases.

Case 1 $h(v_i) = h(v_i)$.

Note that $d(v_0) \geq d(v_1) \geq \cdots \geq d(v_\wedge), v_i \notin V_0 \cup V_1$ and hence $h(v_i) =$ $h(v_i) \geq 2$. Let u_i and u_j be the parent of v_i and v_j , respectively. Then $u_i \prec u_j \prec v_i$ and $d(u_i) \geq d(u_j)$, and $u_i v_j$, $u_j v_i \notin E(G)$. Let $G_1 =$ $G - u_i v_i - u_i v_j + u_i v_j + u_i v_i$.

Case 2 $h(v_i) < h(v_i)$.

Let u_i be the parent of v_i and $u_j \in N(v_i) - N(v_i) - \{v_i\}$. u_j is available since $d(v_i) > d(v_i)$ and $u_i \notin N(v_i)$. Obviously, $u_i \in \{v_0, v_1, \ldots, v_{i-1}\}$ and

$$
d(u_i) \ge d(u_j), \text{ and } u_i v_j, u_j v_i \notin E(G). \text{ Let } G_1 = G - u_i v_i - u_j v_j + u_i v_j + u_j v_i.
$$

In both cases we have $G_1 \in \mathcal{C}_n^{\pi}$, and $H(G_1) = H(G)$ from Lemma [2.9.](#page-4-0) Let $w_0 \prec$ $w_1 \prec \cdots w_{n-1}$ be the well ordering of the vertices of G_1 induced by BFS beginning with $w_0 = v_0$. Then we have $d(w_0) \ge d(w_1) \ge \cdots \ge d(w_i) \ge d(v_k)$ where $k \ge i+1$.

If G_1 is not a BFS graph yet, we can repeat the switching transformation $G \longrightarrow G_1$, and finally arrive at a BFS graph $G^* \in \mathcal{C}_n^{\pi}$ with $H(G^*) = H(G)$. The proof is thus \Box completed. \Box

Note that Fact [2.2.](#page-2-2)(d) tells that $T \in \mathcal{T}_n^{\pi}$ is a greedy tree if and only if *T* is a BFS tree. Hence, the following result is immediate from Theorem [3.6.](#page-7-1)

Corollary 3.7 ([\[13\]](#page-9-19)) *Given a degree sequence* π *, among trees in* \mathscr{T}_n^{π} *, the maximal harmonic index is attained by a greedy tree* T^* *.*

Remark 3.8 In fact, a graph with maximal harmonic index in \mathcal{C}_n^{π} need not be a BFS graph, even in the case of trees. For example, let $\pi = (3, 3, 2, 2, 1, 1, 1, 1)$, and T_1 , $T_2 \in \mathcal{T}_n^{\pi}$ be two trees which are shown in Fig. [4,](#page-8-0) respectively. Clearly, T_1 is not a BFS tree and T_2 is a BFS tree, but both T_1 and T_2 are two trees with maximal harmonic index in \mathcal{T}_n^{π} , respectively.

Moreover, a BFS graph in \mathcal{C}_n^{π} may not be a graph with maximal harmonic index in \mathcal{C}_n^{π} . For example, let $\pi = (4, 4, 3, 3, 2, 1, 1)$, and $G_1, G_2 \in \mathcal{C}_n^{\pi}$ be two graphs which are shown in Fig. [5,](#page-8-1) respectively. Clearly, both G_1 and G_2 are BFS graphs, and $H(G_1) < H(G_2)$. That is, G_1 is a BFS graph but not a graph with maximal harmonic index in \mathcal{C}_n^{π} .

Acknowledgments The authors would like to thank the anonymous referees for their constructive corrections and valuable comments on this paper, which have considerably improved the presentation of this paper.

References

- 1. Biyikoglu, T., Leydold, J.: Graphs with given degree sequence and maximal spectral radius. Electron. J. Comb. **15**, R119 (2008)
- 2. Deng, H., Balachandran, S., Ayyaswamy, S.K., Venkatakrishnan, Y.B.: On the harmonic index and the chromatic number of a graph. Discrete Appl. Math. **161**, 2740–2744 (2013)
- 3. Fajtlowicz, S.: On conjectures of Graffitiff I. Congr. Numer. **60**, 187–197 (1987)
- 4. Favaron, O., Mahéo, M., Saclé, J.F.: Some eigenvalue properties in graphs (conjectures of Graffitiff II). Discrete Math. **111**, 197–220 (1993)
- 5. Gutman, I., Furtula, B.: ecent Results in the Theory of Randić Index, Mathematical Chemistry Monographs 6. University of Kragujevac, Kragujevac (2008)
- 6. Gutman, I., Trinajstić, N.: Graph theory and molecular orbitals. Total π -electron energy of alternant hydrocarbons. Chem. Phys. Lett. **17**, 535–538 (1972)
- 7. Lang, R., Deng, X., Lu, H.: Bipartite graphs with the maximal value of the second Zagreb index. Bull. Malays. Math. Sci. Soc. **36**, 1–6 (2013)
- 8. Li, X., Shi, Y.: A survey on the Randić index. MATCH Commun. Math. Comput. Chem. **59**, 127–156 (2008)
- 9. Li, J., Shiu, W.C.: The harmonic index of a graph. Rocky Mountain J. Math. **44**, 1607–1620 (2014)
- 10. Lovász, L., Plummer, M.: Matching Theory. North-Holland, New York (1986)
- 11. Lv, J.-B., Li, J.: On the harmonic index and the matching numbers of trees. Ars Comb. **116**, 407–416 (2014)
- 12. Lv, J.-B., Li, J., Shiu, W.C.: The harmonic index of unicyclic graphs with given matching number. Kragujev. J. Math. **38**, 173–183 (2014)
- 13. Lv, J.-B., Liu, Y., Li, J.: The harmonic index of trees with given degree sequence. Ars Comb. (submitted)
- 14. Randi´c, M.: On characterization of molecular branching. J. Am. Chem. Soc. **97**, 6609–6615 (1975)
- 15. Wang, H.: Extremal trees with given degree sequence for the Randić index. Discrete Math. 308, 3407– 3411 (2008)
- 16. Wu, R., Tang, Z., Deng, H.: A lower bound for the harmonic index of a graph with minimum degree at least two. Filomat **27**, 51–55 (2013)
- 17. Xu, K., Feng, L.: Extremal energies of trees with a given domination number. Linear Algebra Appl. **435**, 2382–2393 (2011)
- 18. Zhang, X.: The Laplacian spectral radii of trees with degree sequence. Discrete Math. **308**, 3143–3150 (2008)
- 19. Zhong, L.: The harmonic index for graphs. Appl. Math. Lett. **25**, 561–566 (2012)
- 20. Zhong, L.: The harmonic index on unicyclic graphs. Ars Comb. **104**, 261–269 (2012)
- 21. Zhong, L., Xu, K.: The harmonic index for bicyclic graphs. Util. Math. **90**, 23–32 (2013)