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Abstract A matching in a graph is a set of edges no two of which share a common
vertex. A matching is an induced matching if no two edges in the matching have a
third edge in the graph connecting them. The problem of finding a maximum induced
matching or shortly MIM is known to be NP-hard in general, and it remains so even
when the input graph is bipartite. The decision problem of MIM is NP-complete in
general, and it remains NP-complete even if restricted to several classes of graphs. On
the other hand, the problem has been shown to be polynomial for some special sets
of graphs. In this paper, we give tight upper and lower bounds on maximum induced
matching in special subset of planar graphs, called hexagonal graphs.
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1 Introduction

LetG = (V, E) be a simple connected graph. A set of edges M ⊆ E(G) is amatching
or an independent edge set if no two edges of M share a common vertex. Matchings
have been researched extensively for many years. In this paper, we consider induced
matching, which is amatching in which no two edges in thematching have a third edge
in the graph connecting them. In other words, the set of edges in the subgraph of G
induced by V (M) coincides with M. Finding a maximum inducedmatching of a given
graph G (or shortly MIM) is a well-known problem. Stockmeyer and Vazirani [16]
introduced MIM as a variant of the maximum matching problem and motivated MIM
as the “risk-free” marriage problem: find the maximum number of married couples
such that each married person is compatible with no married person other than his/her
spouse.

Inducedmatchings have stimulated a great deal of interest in the discretemathemat-
ics community, since finding large induced matchings is a subtask of finding a strong
edge colouring (i.e. a proper colouring of the edges such that no edge is adjacent to
two edges of the same colour) using a small number of colours. For a brief survey of
applications of this type of colouring and some open questions, we refer the reader to
[12,19]. There is an immediate connection between the size of an induced matching
and the irredundancy number of a graph [7]. Besides, Golumbic and Lewenstein [8]
introduced induced matching as an application for secure communication channels.
Similar applications exist for VLSI and network flow problems.

In [5], Edmonds proved that the largest matching in a graph can be computed in
polynomial time. On the other hand, Stockmeyer and Vazirani [16] and Cameron in
[2] showed that MIM is NP-hard in general and it remains NP-hard even when the
input graph is bipartite. Determining whether a graph has an induced matching of size
at least k is NP-complete and remains so even if restricted, for example, to bipartite
graphs of maximum degree 4, planar bipartite graphs, 3-regular planar graphs and
Hamiltonian graphs, see [4] for a detailed history.

On the other hand, MIM has been shown to be solvable in polynomial time for
several graph classes, including, for example, chordal graphs, circular arc graphs,
weakly chordal graphs and outerplanar graphs (see [4,14] for a survey and [13] for
hhd-free graphs). Recently, authors in [11] showed that planar twinless graphs always
contain an induced matching of size at least n/40, while there are planar twinless
graphs that do not contain an induced matching of size (n + 10)/27. They derive
similar results for outerplanar graphs and graphs of bounded genus. For trees linear
time algorithm for MIM was given by Fricke and Laskar [6]. Independently simpler
linear time algorithms were constructed in [8,20]. Since the problem is NP-hard,
several results regarding the approximability of MIM can be found in the literature,
see for example [4,9] and references there. Very recently, the existence of O(1.4786n)-
time algorithm for the MIM problem was proved in [3].

In this paper, we discuss MIM for special subset of planar graphs, called hexago-
nal graphs, which are induced subgraphs of triangular lattice and arise in frequency
assignment problem of cellular networks. We take a combinatorial approach to the
problem, establishing tight lower and upper bounds on the size of maximum induced
matching in an arbitrary hexagonal graph. More precisely, in Sect. 2 we give formal
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definitions, notions and derive some partial results. In Sect. 3, we give a procedure
for a special vertex colouring of hexagonal graphs and some of its consequences. Our
main result is given in Sect. 4, where tight bounds on the size of maximum induced
matching in an arbitrary hexagonal graph are computed. In the last section, some open
problems are presented.

2 Preliminaries

A simple graph is determined by G = (V, E), where V = V (G) is the vertex set and
E = E(G) is the set of (unordered) pairs of vertices, called edges. For an edge {u, v},
we are using a short notation uv and call vertices u and v endpoints of the edge uv. A
path on n vertices is denoted by Pn . We say that a graph is connected if there is a path
between each pair of vertices and is disconnected otherwise.

Let us recall that a set of edgesM ⊆ E(G) is called amatching ofG if no two edges
ofM share a common vertex. AmatchingM ⊆ E(G) of a graphG = (V, E) is said to
be an induced matching of G if no two edges in M are joined by an edge of E(G)\M .
An induced matching M is a maximum induced matching if M has the maximum size
among all induced matchings of the graph. The size of a maximum induced matching
of G is denoted by ν(G) = max{|M | | M ⊆ E(G) is an induced matching of G}.
For the problem of finding a maximum induced matching of a given graph G, we are
using the short abbreviation MIM(G).

As we already mentioned, we will discuss the MIM problem in a special subclass
of planar graphs, called hexagonal graphs. Graph G is called a hexagonal graph if it
is induced on the subset of vertices of the triangular lattice. Hexagonal graphs arise
within the problem of frequency assignment in cellular networks. For a more detailed
explanation of the problem and a survey of existing results on the topic, we refer
the reader to [15,17,18] and references there. An example of a hexagonal graph is
presented in Fig. 1.

More precisely, we will derive tight bounds for the size of maximum induced
matchingof a connectedhexagonal graphGwith respect to the number of vertices ofG.

In the continuation of this section, some notations, definitions and some partial
results are given. For an arbitrary vertex v ∈ V (G), the following notations are used:

NG(v) for the open neighborhood of vertex v ∈ V (G) in graph G:
NG(v) = {u ∈ V (G) | uv ∈ E(G)};

NG [v] for the closed neighborhood of vertex v ∈ V (G) in graph G:
NG [v] = {v} ∪ NG(v);

dG(v) for the vertex degree of vertex v ∈ V (G) in graph G:
dG(v) = |NG(v)| ;

δV (G) for the minimal vertex degree in graph G.

Fig. 1 An example of a
hexagonal graph
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For an arbitrary edge e = uv ∈ E(G), the following notations are used:

NG(e) for the open neighborhood of edge e ∈ E(G) in graph G:
NG(e) = NG(uv) = (NG(u) ∪ NG(v))\{u, v};

NG [e] for the closed neighborhood of edge e ∈ E(G) in graph G:
NG [e] = NG [uv] = NG(u) ∪ NG(v);

dG(e) for the edge degree of edge e ∈ E(G) in graph G:
dG(e) = |NG(uv)| = |NG(u) ∪ NG(v)| − 2;

δE(G) for the minimal edge degree in graph G;
G(e) for the subgraph of G induced on vertices V (G)\NG [e] :

G(e) = G\NG [e] ;
IG(e) for isolated vertices in G(e),

IG(e) = {w ∈ V (G(e)) | dG(e)(w) = 0}.
Let G be a connected hexagonal graph. We want to find an induced matching M

of G. Note that an induced matching of a graph G actually divides the set of vertices
V (G) into two subsets such that endpoints of edges in M are in the first set, say S,
and all the other vertices are in the second set, let us say P = V (G)\S, called the
set of protectors. Therefore, the induced matching can also be discussed as a special
bicolouring c : V (G) → {white, black}, which assigns white colour to vertices of S
and black colour to protectors, i.e. vertices of P .

Suppose that edge e = uv ∈ E(G) belongs to the induced matching M ofG, which
means that vertices u and v belong to S and are assigned white colour. Note that in
this case all vertices in the open neighbourhood of the edge e must be protectors and
therefore coloured black. Moreover, all isolated vertices in G(e) are assigned black
colours too. Therefore, the inclusion of an edge e to the induced matching M of G
contributes dG(e) + |IG(e)| black vertices to the set of protectors P .

The three connected hexagonal graphs H1, H2 and H3 depicted in Figs. 2 and 3
satisfy the following equation:

min{dHi (e) + ∣
∣IHi (e)

∣
∣ | e ∈ E(Hi )} = 5, i = 1, 2, 3. (1)

For all the other hexagonal graphs, the result is given in the following lemma. Note
that the lemma is very technical and its proof strongly relies on properties of hexagonal

Fig. 2 Graphs H1 and H2:
|V (H1)| = |V (H2)| = 7,
ν(H1) = ν(H2) = 1

Fig. 3 Graph H3:
|V (H3)| = 13, ν(H3) = 3
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graphs. Let us recall that a hexagonal graph G is an induced subgraph of triangular
lattice, which means that if u, v ∈ V (G) are adjacent in underlying triangular lattice,
then uv must be an edge in G. Moreover, for every vertex u ∈ V (G), dG(v) ≤ 6 and
for every edge e ∈ E(G), dG(e) ≤ 8.

Lemma 1 Let G be a connected hexagonal graph with n ≥ 2 vertices which is not
isomorphic to graphs H1, H2 or H3. Then

min{dG(e) + |IG(e)| | e ∈ E(G)} ≤ 4.

Proof Let G be a connected hexagonal graph such that |V (G)| = n ≥ 2 and G �

H1, H2, H3. Clearly, for each edge e ∈ E(G), dG(e) + |IG(e)| ≤ n − 2, and thus for
2 ≤ n ≤ 6, the statement of the lemma is true.
Suppose that n ≥ 7. We claim that there exists an edge e′ ∈ E(G) such that dG(e′) +
∣
∣IG(e′)

∣
∣ ≤ 4. To prove the claim, we will use the following observation. If for an

edge e = uv ∈ E(G), there is an isolated vertex w ∈ IG(e) in G(e), and then for
the vertex w, we have NG(w) ⊆ NG(e). Namely, such vertex w ∈ IG(e) has just one
or at most two (adjacent) neighbours in a connected hexagonal graph G, i.e. either
dG(w) = 1 or dG(w) = 2, and the neighbourhood NG(w) of the vertex w ∈ IG(e)
consists either of one vertex or it consists of two adjacent vertices in the set NG(e).
Therefore, |IG(e)| > 0 only if 1 ≤ δV (G) ≤ 2.
It is not difficult to see that for any connected hexagonal graph G, δV (G) ≤ 3 and
δE(G) ≤ 4. If δV (G) = 3, then for an edge e with dG(e) = δE(G) there are no isolated
vertices in G(e), and thus, dG(e) + |IG(e)| = dG(e) ≤ 4.
Furthermore, each vertex of NG(e) can be connected to at most two vertices of IG(e),
and thus, |IG(e)| ≤ 2dG(e). If δE(G) = 1, then for the edge e ∈ E(G) such that
dG(e) = δE(G), dG(e) + |IG(e)| ≤ 3dG(e) = 3.
Therefore, it remains to show that there exists an edge e′ ∈ E(G) such that dG(e′) +
∣
∣IG(e′)

∣
∣ ≤ 4 only for the cases when 1 ≤ δV (G) ≤ 2 and 2 ≤ δE(G) ≤ 4.

(1) Let δV (G) = 1 and δE(G) ≥ 2. Then for every edge e = uv ∈ E(G) such that
dG(u) = 1, 2 ≤ dG(e) ≤ 3.

(a) Suppose first that there exists the edge e = uv such that dG(u) = 1, dG(e) = 2
and let NG(e) = {v1, v2}. If |IG(e)| ≤ 2, then dG(e)+|IG(e)| ≤ 4. Suppose that
|IG(e)| ≥ 3.
If v1v2 ∈ E(G), then edge v1v2 can have at most five additional neighbours in G
besides v and at most three of them can be non-adjacent. Since vertices of IG(e)
must be non-adjacent, in this case the set IG(e) contains exactly three vertices, say
IG(e) = {w1, w2, w3}. According to geometric properties of hexagonal graphs
in this case G ∼= H1, a contradiction.
Suppose v1v2 /∈ E(G). Then at least one vertex of NG(e), let us say v1, has two
neighbours in IG(e), denote them by w1, w2, and both of them are of degree one,
dG(w1) = dG(w2) = 1. For the edge e′ = w1v1, we have NG(e′) = {v,w2}
and the subgraph G(e′) has two components, one of them is isolated vertex u
and the other component contains vertex v2 and at least one adjacent vertex
w3 ∈ IG(e) such that v2w3 ∈ E(G), because |IG(e)| ≥ 3. Thus, IG(e′) = {u}
and dG(e′) + ∣

∣IG(e′)
∣
∣ = 3.
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(b) Assume now that each edge in E(G) with one endpoint of degree one is of
degree three in G. Let e = uv ∈ E(G), dG(u) = 1, NG(e) = {v1, v2, v3} and
v1v2, v2v3 ∈ E(G). If |IG(e)| ≤ 1, then dG(e) + |IG(e)| ≤ 4. Suppose that
|IG(e)| ≥ 2 and let w1, w2 ∈ IG(e). Then there are two possibilities, either
dG(w1) = dG(w2) = 1 or dG(wi ) = 2 for at least one vertex wi , i = 1, 2.
• Let us suppose first there exists a vertexwi ∈ IG(e)with dG(wi ) = 2.Without
loss of generality, let dG(w1) = 2 and w1v1, w1v2 ∈ E(G). Then the edge
e′ = v1w1 can have only one additional neighbour besides v and v2 in G, and
thus, 2 ≤ dG(e′) ≤ 3.
If dG(e′) = 2, then NG(e′) = {v, v2} and the subgraph G(e′) has two com-
ponents, one of them is isolated vertex u and the other component contains
adjacent vertices v3 and w2, and thus, dG(e′) + ∣

∣IG(e′)
∣
∣ = 3.

If dG(e′) = 3, then there exists the vertex z ∈ NG(v1) such that N (e′) =
{v, v2, z}.
If dG(z) = 1, then z ∈ IG(e) and for the edge zv1, we have NG(zv1) =
{v, v2, w1}. Since G � H2, vertex v3 must have at least one additional
neighbour besides v and v2 in G. Therefore, we have IG(zv1) = {u} and
dG(zv1) + |IG(zv1)| = 4.
If dG(z) ≥ 2, then the subgraph G(e′) has three or four components. In both
cases, one of the components is isolated vertex u and the other component
contains at least two adjacent vertices (v3 andw2). Suppose there is a vertexa 
=
u ∈ IG(e′). Then az ∈ E(G), dG(a) = 1 and dG(az) ≤ 2, a contradiction.
Therefore IG(e′) = {u} and dG(e′) + ∣

∣IG(e′)
∣
∣ = 4.

• Suppose now dG(w1) = dG(w2) = 1. Since each edge with the endpoint
wi is of degree three, vertices w1 and w2 are neighbours of vertices v1 and
v3, let us say v1w1, v3w2 ∈ E(G), and there are vertices z1, z3 ∈ V (G)

such that z1v1, z1v2, z3v2, z3v3 ∈ E(G). For the edge e′ = w1v1, we have
NG(w1v1) = {v, v2, z1} and u ∈ IG(w1v1). If |IG(w1v1)| = 1, then dG(e′) +
∣
∣IG(e′)

∣
∣ = 4. If |IG(w1v1)| ≥ 2, then there exists a neighbour a of z1 such that

a ∈ IG(w1v1), and consequently, there exists a vertex z2 ∈ V (G) such that
z2z1, z2v2, z2z3 ∈ E(G), since dG(az1) = 3. Note that for the edge az1 we
have 1 ≤ |IG(az1)| ≤ 2. If |IG(az1)| = 1, then dG(az1) + |IG(az1)| = 4. If
|IG(az1)| = 2, then for the edge w2v3 we have dG(w2v3) + |IG(w2v3)| = 4,
since G � H3.

(2) Suppose now δV (G) = 2 and let e = uv ∈ E(G) be an edge with minimal edge
degree, i.e. dG(e) = δE(G) ≥ 2. If there exists vertexw ∈ IG(e), then dG(w) = 2
and vertex w is a neighbour of two adjacent vertices from NG(e).

(a) If dG(e) = δE(G) = 2, then |IG(e)| ≤ 1 and dG(e) + |IG(e)| ≤ 3.
(b) If dG(e) = δE(G) = 3, then |IG(e)| ≤ 2. If |IG(e)| ≤ 1, then dG(e)+|IG(e)| ≤ 4.

Let us suppose that |IG(e)| = 2 and let us denote NG(e) = {v1, v2, v3}.
As δV (G) = 2, vertices v1, v2 and v3 must be consecutive in triangular lat-
tice such that uv1, vv1, vv2, vv3, v1v2, v2v3 ∈ E(G) and IG(e) = {w1, w2},
where w1v1, w1v2, w2v2, w2v3 ∈ E(G). Then for the edge e′ = v1w1, we have
dG(e′) = 3,

∣
∣IG(e′)

∣
∣ = 0 and dG(e′) + ∣

∣IG(e′)
∣
∣ = 3.

(c) If dG(e) = δE(G) = 4 and |IG(e)| = 0, then dG(e) + |IG(e)| = 4. Suppose
now NG(e) = {v0, v1, v2, v3} and w ∈ IG(e) is a neighbour of adjacent vertices
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v1, v2. Since dG(w) = 2 and δE(G) = 4, we have dG(v1) = dG(v2) = 5 and
dG(wv1) = dG(wv2) = 4. There are only two non-isomorphic cases for position
of vertices v1 and v2 regarding vertices u, v. Either one of the vertices v1 and
v2 is a common neighbour of u and v (say v1), or both vertices v1 and v2 are
common neighbours of just one of the vertices u and v, say v. In both cases,
vertices v0, v1, v2 and v3 must be consecutive in triangular lattice, and without
loss of generality, let v0v1, v2v3 ∈ E(G).
In the first case, NG(wv1) = {v0, u, v, v2} and subgraph G(wv1) has at most
two components. One component contains vertex v3 and at least one additional
vertex as dG(v2) = 5. Suppose that the other component is isolated vertex v′. But
then NG(v′) = {v0}, a contradiction as δV (G) = 2. Therefore, |IG(wv1)| = 0 and
dG(wv1) + |IG(wv1)| = 4.
Without loss of generality, let uv0, vv0, vv1, vv2, vv3 ∈ E(G) in the second
case. As dG(v2) = 5, there exists a vertex a such that av2, av3 ∈ E(G). Then
NG(wv2) = {v1, v, v3, a}, and one component of subgraph G(wv2) contains
at least three consecutive vertices where two of them are u and v0. Suppose
there exists vertex v′ ∈ IG(wv2). But then NG(v′) = {a, v3} and NG(v′v3) =
{a, v2, v}, a contradiction as δE(G) = 4. Therefore |IG(wv2)| = 0 and dG(wv2)+
|IG(wv2)| = 4. ��

3 A Procedure for Vertex Colouring of Hexagonal Graphs

In this section, a procedure for a special vertex colouring of hexagonal graphs and
some consequences are given.

Let G be an arbitrary connected hexagonal graph with |V (G)| ≥ 2. The following
procedure presents a bicolouring c : V (G) → {white, black}, which assigns white
colours to vertices of S and black colours to vertices of P , called protectors, such that
V (G) = S ∪ P .

Procedure 2 Let G be a connected hexagonal graph such that |V (G)| ≥ 2, and let
H1, H2 and H3 be graphs depicted in Figs. 2 and 3, respectively.

Step 1 If graph G is isomorphic to graph H1 or to graph H2, then colour two adjacent
vertices white and other five vertices black. If graph G is isomorphic to graph
H3, then colour six vertices white and seven vertices black such that each
white vertex is a neighbour of exactly one white vertex.

Step 2 If graph G is not isomorphic to any of the graphs H1, H2 and H3, then do
what follows.
Step 2a If there exists one, choose an edge e ∈ E(G) with minimal possible

number dG(e) + |IG(e)| ≤ 4 so that the subgraph G(e)\IG(e) is
either a connected or an empty graph.

Step 2b Otherwise, choose an edge e ∈ E(G) with minimal possible num-
ber dG(e) + |IG(e)| ≤ 4 so that the subgraph G(e)\IG(e) is not a
connected graph.

Colour the endpoints of the edge e white and vertices of NG(e)∪ IG(e) black.
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Fig. 4 Graph G1:
|V (G1)| = 10, ν(G1) = 3

While there exists one, for every connected uncoloured component Gi of the sub-
graph G(e)\IG(e) go to the Step 1 (G → Gi ).

Note that Step 2 of the procedure is divided into substeps (2a) and (2b). At first it
looks like that every connected hexagonal graphG such thatG � H1, H2, H3 belongs
to Step 2a, but actually this is not the case. Namely, Fig. 4 represents an example of
a hexagonal graph G1 that belongs to Step 2b. More precisely, for every edge e such
that dG1(e) + ∣

∣IG1(e)
∣
∣ ≤ 4, the subgraph G1(e)\IG1(e) is disconnected.

Proposition 3 Let G be a connected hexagonal graph coloured by Procedure 2, and
let S be the set of vertices that were assigned white colour. Then, vertices of the set S
correspond to endpoints of edges of an induced matching of G and ν(G) ≥ |S|

2 .

Proof Statement of Proposition 3 is clear for the graphs H1, H2 and H3. If G �

H1, H2, H3, then byLemma1 there exists an edge e ∈ E(G)with dG(e)+|IG(e)| ≤ 4,
andG(e)\IG(e) is either a connected graph or a disconnected graph or an empty graph.
For the edge e = uv, chosen by the Procedure 2, vertices in its open neighbourhood
NG(e) and isolated vertices in G(e) = G\NG [e] were coloured black. Therefore,
a particular colouring within the procedure is independent of all colourings of the
previous loops in the procedure. It follows that at the end of the procedure each white
vertex is a neighbour of exactly one white vertex. Thus, vertices coloured white by
the Procedure 2 correspond to endpoints of the edges of an induced matching M in G,
and |M | = |S| /2, where S is a set of white vertices. Therefore, ν(G) = max{|M | |
M ⊆ E(G) is an induced matching of G} ≥ |S| /2. ��

In the sequel, wewill determine the number of protectors needed for a given number
of white vertices representing edge endpoints of an induced matching in an arbitrary
hexagonal graph, which will be used in the next section. Note that edges with both
endpoints coloured white are called white edges. The set of white edges corresponds
to induced matching.

Lemma 4 For each connected hexagonal graph, which is not isomorphic to any of
graphs H1, H2 and H3, at most one connected component, obtained during the real-
ization of Procedure 2, can be isomorphic either to H1 or to H2.

Proof Let G be a connected hexagonal graph such that G � H1, H2, H3. Suppose
that at each step of the Procedure 2 there exists an edge e ∈ E(Gi ) ⊆ E(G) with
dGi (e) + ∣

∣IGi (e)
∣
∣ ≤ 4 (where Gi represents the uncoloured connected component

after previous colourings) such that the subgraph Gi (e)\IGi (e) is a connected (or an
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empty) graph. In this case, according to Eq. (1), graphs H1 or H2 can be isomorphic
only to the last component.

Suppose now that during the realization of Procedure 2 we have to choose an edge
e ∈ E(Gi ) ⊆ E(G) with dGi (e) + ∣

∣IGi (e)
∣
∣ ≤ 4 such that Gi (e)\IGi (e) is a discon-

nected graph and one of the components is isomorphic either to H1 or to H2. Because
we got this component by removing the edge e together with its neighbourhood from
graph Gi , vertices of the component may have been adjacent only to the vertices
in NGi (e). Without loss of generality, suppose that the component is isomorphic to
H1. Note that H1 has four vertices of degree at most two. Let us denote them by
v1, v2, v3 and v4 in the clockwise direction in triangular lattice. Because of the struc-
ture of the graph H1, at least one of its vertices of degree at most two, say vk , where
k ∈ {1, 2, 3, 4}, must have been adjacent to at least one of the vertices in NGi (e).
Then the vertex vl ∈ {v1, v2, v3, v4} \ {vk} such that l ≡ k + 2 (mod 5) could not be
adjacent to the vertices in NGi (e). Therefore, there exists an edge e′ ∈ E(Gi ) with
one endpoint vl such that dGi (e

′) + ∣
∣IGi (e

′)
∣
∣ ≤ 4 and Gi (e′)\IGi (e

′) is a connected
graph, a contradiction. The same can be shown for the graph H2. It follows that if we
choose Step 2b of Procedure 2, then components in the graph Gi (e)\IGi (e) cannot be
isomorphic neither to H1 nor to H2.

Finally, suppose that during the realization of Procedure 2 we have to choose an
edge e ∈ E(Gi ) ⊆ E(G) with dGi (e) + ∣

∣IGi (e)
∣
∣ ≤ 4 such that Gi (e)\IGi (e) is a

disconnected graph and one of the components has more then seven vertices. Suppose
that during the continuation of the Procedure 2 on this component, the last subgraph is
isomorphic either to H1 or to H2. In this case, there would exist an edge e′ (in the last
subgraph isomorphic either to H1 or to H2) such that Gi (e′)\IGi (e

′) is a connected
graph. ��
Lemma 5 Let G be a connected hexagonal graph and M an induced matching of
G. Further, let S be the set of endpoints of edges of M. For the set of protectors
P = V (G)\S, we have

|S| − 2

4
≤ |P| ≤ 2 |S| + 1.

Proof Let M be an induced matching of a connected hexagonal graph G and P =
V (G)\S, where S is the set of endpoints of edges of M .
To prove the upper bound, we take into account the following facts. For graphs H1 and
H2 from Fig. 2, five protectors are needed for only one white edge, i.e. for two white
vertices. On the other hand, for graph H3 only seven protectors are needed for three
white edges, which means that less than three protectors are needed per one white
edge. Thus, by Lemmas 1 and 4, it follows that for colouring by Procedure 2 at most
four protectors are needed for every white edge, except maybe for one (the last) white
edge, where five black protectors are needed. Therefore, for an arbitrary connected
hexagonal graph G, at most 4(|S| /2 − 1) + 5 = 2 |S| + 1 protectors are needed for
|S| /2 white edges.

For the lower bound, note that each black vertex of P can have at most three white
neighbours which are endpoints of white edges (see graph G3 depicted in Fig. 6). A
connected hexagonal graph, where each black vertex is a neighbour of exactly three
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Fig. 5 Graph G2: |V (G2)| = 25, ν(G2) = 4

Fig. 6 Graph G3: |V (G3)| = 7,
ν(G3) = 3

white edges, can be obtained by gluing graph G3 and several copies of P̂5 depicted
in Fig. 7 (for details see the next section). Note that in the graph obtained by G3 and
k − 1 copies of P̂5 we have k black vertices and 3+ (k − 1) · 2 = 2k + 1 white edges.
Therefore, for |P| black vertices, there are at most 3 |P|− (|P|−1) = 2 |P|+1 white
edges in M , and thus, |M | = |S| /2 ≤ 2 |P| + 1, and we have (|S| − 2)/4 ≤ |P|. ��

Both inequalities of Lemma 5 are tight. Namely, the example of the connected
hexagonal graph G2 depicted on Fig. 5 attains the maximal possible number of pro-
tectors depending on the number of white edges, |P(G2)| = 17 = 2 · 8 + 1 =
2 |S(G2)|+1. On the other hand, the example of hexagonal graph G3 in Fig. 6 attains
the lower bound for the number of protectors, |P(G3)| = 1 = (6 − 2)/4.

4 The Main Result

In this section, the lower and the upper bounds for ν(G) in an arbitrary connected
hexagonal graph G are given. First, we will prove the lower bound.

Proposition 6 Let G be a connected hexagonal graph with n ≥ 2 vertices. Then

ν(G) ≥
⌈
n − 1

6

⌉

.

Proof Let G be a connected hexagonal graph with n = |V (G)| ≥ 2. For hexagonal
graphs Hi , i = 1, 2, 3 from Figs. 2 and 3, we have ν(H1) = ν(H2) = 1 = (7− 1)/6,
and ν(H3) = 3 > (13 − 1)/6.
Suppose now that G � H1, H2, H3. Let us apply Procedure 2 on graph G. By Propo-
sition 3, the colouring with Procedure 2 corresponds to an induced matching M and
ν(G) ≥ |S| /2 = |M |, where S is a set of white vertices (i.e. endpoints of edges
of M). Considering |P| = n − |S| and Lemma 5, we get n − |S| ≤ 2 |S| + 1 or
|S| ≥ (n− 1)/3. Therefore, ν(G) ≥ |S| /2 ≥ (n− 1)/6 and as ν(G) is an integer; the
inequality ν(G) ≥ �(n − 1)/6� actually holds. ��
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Note that bound of Proposition 6 is tight. Namely, for each n ≥ 2 there exists a
hexagonal graph G, obtained by connecting several components of graph H1, with
ν(G) equal to the bound of Proposition 6. For example, Fig. 5 represents graph G2,
obtained by connecting four components of graph H1 such that n = 25 and ν(G) =
�(n − 1)/6� = 4.

For obtaining the upper bound of ν(G) in an arbitrary connected hexagonal graph
G, wewill try to construct a connected hexagonal graph on n ≥ 2 vertices such that the
cardinality of themaximum inducedmatching setM ofG is as large as possible among
all hexagonal graphs with n vertices. In other words, we will construct a connected
hexagonal graphwithmaximum possible number of white edges regarding the number
of vertices.

For n = 2, we get a path P2 with ν(G) = 1. It is obvious that we have to add at
least three additional vertices to the graph P2 to obtain another white edge. One of the
possible graphs with n = 5 and ν(G) = 2 is a path P5. The third white edge can be
obtained if we add another two vertices such that we obtain a special hexagonal graph
on seven vertices, depicted on Fig. 6. Note that in every other connected hexagonal
graph on seven vertices, including path P7, we can obtain at most two white edges.
Therefore, by adding every additional five vertices to the existent connected hexagonal
graph, we can contribute at most two additional white edges in the following way. We
add a special path on five vertices P̂5 with the following geometric properties: the
inner two edges of the path form a 120◦ angle between each other and a 180◦ angle
with the other neighbouring edge (see Fig. 7), such that the middle vertex of the path
is connected to one of the endpoints of white edges in the existent graph.

Using this construction, we obtain a special tree on n vertices, which is denoted by
T̂n . More precisely, a construction of a hexagonal graph T̂n is the following. We start
with a path P2 and then continue with connecting several (say k) copies of a path P̂5
such that themiddle vertex of the particular path P̂5 is connected to one of the endpoints
of the starting edge or to one of the endpoints of previously connected paths P̂5. At the

end, we can add at most four additional vertices. Therefore, n =
∣
∣
∣V (T̂n)

∣
∣
∣ = 2+5k+l,

where k = �(n − 2)/5� and l is an integer such that 0 ≤ l ≤ 4. Figure 8 shows one
of the possible examples of such a tree with 15 vertices denoted by T̂15. This tree is
composed of the starting path P2, two copies of path P̂5 and three additional vertices.

Fig. 7 Path P̂5 with ν(P̂5) = 2

Fig. 8 Tree T̂15 with

ν(T̂15) = 6
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Lemma 7 For a graph T̂n with n = 2 + 5k + l and l ∈ {0, 1, 2, 3, 4}, we have:

ν(T̂n) =
{

2
⌊ n−2

5

⌋ + 1 if l ∈ {0, 1, 2}
2

⌊ n−2
5

⌋ + 2 if l ∈ {3, 4} .

Proof Let 0 ≤ l ≤ 2. Then, themaximum inducedmatching setM (set ofwhite edges)
of T̂n consists of one edge from the starting path P2 and of two edges from every path
P̂5. Therefore, there are 1 + 2k white edges in this case. Using k = �(n − 2)/5�, the
equality is proved.
In the case 3 ≤ l ≤ 4, there is one additional white edge in comparison with the
previous case, so we have 2k + 2 white edges. ��
Proposition 8 Let G be a connected hexagonal graph with n ≥ 2 vertices and let
n = 2 + 5k + l where l ∈ {0, 1, 2, 3, 4}. Then

ν(G) ≤
{

2
⌊ n−2

5

⌋ + 1 if l ∈ {0, 1, 2}
2

⌊ n−2
5

⌋ + 2 if l ∈ {3, 4} .

Proof According to Lemma 7, for a given n ≥ 2 the bound is attained by a graph T̂n .
Suppose there exists a hexagonal graph G with n ≥ 2 such that ν(G) > ν(T̂n). Let M
be a maximum induced matching of G, and let S be the set of endpoints of edges of
M . Further let n = 2 + 5k + l, where l ∈ {0, 1, 2, 3, 4}. Then k = �(n − 2)/5�.
For 0 ≤ l ≤ 2, we have ν(G) ≥ 2 �(n − 2)/5� + 1 + 1 = 2k + 2. Therefore,
|S| = 2ν(G) ≥ 4k + 4 and |P| = n − |S| ≤ 2+ 5k + l − (4k + 4) = k + l − 2 ≤ k.
Using Lemma 5, we have ν(G) = |M | = |S| /2 ≤ 2 |P|−1 ≤ 2k−1, a contradiction.
Similarly, for 3 ≤ l ≤ 4 we have ν(G) ≥ 2 �(n − 2)/5�+ 2+ 1 = 2k + 3. Therefore,
|S| = 2ν(G) ≥ 4k + 6 and |P| = n − |S| ≤ 2 + 5k + l − (4k + 6) = k + l − 4 ≤ k.
Using Lemma 5, we again have ν(G) ≤ 2k − 1, a contradiction. ��

Using Propositions 6 and 8, we obtain the following theorem.

Theorem 9 Let G be a connected hexagonal graph with n ≥ 2 vertices and let
n = 2 + 5k + l where l ∈ {0, 1, 2, 3, 4}. Then

⌈
n − 1

6

⌉

≤ ν(G) ≤
{

2
⌊ n−2

5

⌋ + 1 if l ∈ {0, 1, 2}
2

⌊ n−2
5

⌋ + 2 if l ∈ {3, 4} .

Proof Straightforward by Propositions 6 and 8. ��

5 Conclusions

If we are interested in the number of vertices in the set P , i.e. the number of protectors,
the problem is very similar to the problem of finding a graph invariant ψ3, which is a
special case of so-called k-path vertex problem defined recently in [1]. The problem
is to find the minimum number of vertices needed to destroy every path of order k in
G, denoted by ψk(G). For the case k = 3, we are looking for the minimal cardinality
set of protectors P needed to destroy every path of order 3. In this case, vertices of
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the set S = V (G)\P induce a subgraph with maximum degree 1 and thus correspond
to the so-called dissociation set of G. Therefore, for ψ3(G) problem, a graph induced
by vertices in the set S is composed of paths P2 and isolated vertices, while in our
problem the set S induces a graph composed only of paths P2. Determining ψk(G)

for k ≥ 2 was shown to be NP-hard problem in general and polynomial only for some
special sets of graphs (for details we refer to [1,10] and references there). Therefore,
it would be interesting to examine ψ3(G) or even ψk(G) for hexagonal graphs.

Acknowledgments The authors wish to thank Jan Katrenič and František Galčik for addressing the
problem and to the anonymous referee for careful reading and for constructive remarks which helped to
improve the presentation.
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