

Strong Equality Between the 2-Rainbow Domination and Independent 2-Rainbow Domination Numbers in Trees

J. Amjadi¹ · M. Falahat¹ · S. M. Sheikholeslami¹ · N. Jafari Rad2

Received: 27 November 2013 / Revised: 11 June 2014 / Published online: 14 December 2015 © Malaysian Mathematical Sciences Society and Universiti Sains Malaysia 2015

Abstract A 2-*rainbow dominating function* (2RDF) on a graph $G = (V, E)$ is a function f from the vertex set V to the set of all subsets of the set $\{1, 2\}$ such that for any vertex $v \in V$ with $f(v) = \emptyset$ the condition $\bigcup_{u \in N(v)} f(u) = \{1, 2\}$ is fulfilled. A 2RDF *f* is independent (I2RDF) if no two vertices assigned nonempty sets are adjacent. The *weight* of a 2RDF *f* is the value $\omega(f) = \sum_{v \in V} |f(v)|$. The 2-*rainbow domination number* $\gamma_{r2}(G)$ (respectively, the *independent* 2-rainbow domination number $i_{r2}(G)$) is the minimum weight of a 2RDF (respectively, I2RDF) on *G*. We say that $\gamma_{r2}(G)$ is strongly equal to $i_{r2}(G)$ and denote by $\gamma_{r2}(G) \equiv i_{r2}(G)$, if every 2RDF on *G* of minimum weight is an I2RDF. In this paper, we provide a constructive characterization of trees *T* with $\gamma_{r2}(T) \equiv i_{r2}(T)$.

Keywords 2-Rainbow domination number · Independent 2-rainbow domination number · Strong equality · Tree

Mathematics Subject Classification 05C69

Communicated by Xueliang Li.

 \boxtimes S. M. Sheikholeslami s.m.sheikholeslami@azaruniv.edu

> J. Amjadi j-amjadi@azaruniv.edu

> N. Jafari Rad n.jafarirad@gmail.com

- ¹ Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Islamic Republic of Iran
- ² Department of Mathematics, Shahrood University of Technology, Shahrood, Islamic Republic of Iran

1 Introduction

Let *G* be a simple graph with vertex set $V = V(G)$ and edge set $E = E(G)$. For every vertex $v \in V$, the *open neighborhood* $N(v)$ is the set $\{u \in V \mid uv \in E\}$ and the *closed neighborhood* of v is the set $N[v] = N(v) \cup \{v\}$. The *degree* of a vertex $v \in V$ is $deg_G(v) = deg(v) = |N(v)|$. If $A \subseteq V(G)$, then $G[A]$ is the subgraph induced by A. A vertex of degree one is called a *leaf* , and its neighbor is called a *support vertex*. If v is a support vertex, then L_v will denote the set of all leaves adjacent to v. A support vertex v is called *strong support vertex* if $|L_v| > 1$. For $r, s > 1$, a double star $S(r, s)$ is a tree with exactly two vertices that are not leaves, with one adjacent to *r* leaves and the other to *s* leaves. For a vertex v in a rooted tree T, let $C(v)$ denote the set of children of v, $D(v)$ denote the set of descendants of v and $D[v] = D(v) \cup \{v\}$, and the depth of v, depth (v) , is the largest distance from v to a vertex in $D(v)$. The *maximal subtree* at v is the subtree of *T* induced by $D(v) \cup \{v\}$ and is denoted by T_v . For terminology and notation on graph theory not given here, the reader is referred to [\[11,](#page-13-0)[13\]](#page-13-1).

For a positive integer *k*, a *k-rainbow dominating function* (kRDF) of a graph *G* is a function *f* from the vertex set $V(G)$ to the set of all subsets of the set $\{1, 2, \ldots, k\}$ such that for any vertex $v \in V(G)$ with $f(v) = \emptyset$ the condition $\bigcup_{u \in N(v)} f(u) =$ {1, 2, ..., *k*} is fulfilled. The *weight* of a kRDF *f* is the value $\omega(f) = \sum_{v \in V} |f(v)|$. The *k*-rainbow domination number of a graph *G*, denoted by $\gamma_{rk}(G)$, is the minimum weight of a kRDF of *G*. A $\gamma_{rk}(G)$ -*function* is a *k*-rainbow dominating function of *G* with weight $\gamma_{rk}(G)$. Note that $\gamma_{r}(G)$ is the classical domination number $\gamma(G)$. The k -rainbow domination number was introduced by Bresar, Henning and Rall $[3]$ $[3]$ $[3]$ and has been studied by several authors (see, e.g., [\[4](#page-13-3)[–7](#page-13-4)[,12](#page-13-5)]). To study other domination parameters, we refer the readers to [\[1](#page-13-6),[2,](#page-13-7)[14](#page-13-8)[,15\]](#page-13-9).

A *k*-rainbow dominating function *f* is called an *independent k-rainbow dominating function* (abbreviated IkRDF) on *G* if the set $V(G) - \{v \in V \mid f(v) = \emptyset\}$ is independent. The *independent k-rainbow domination number*, denoted by $i_{rk}(G)$, is the minimum weight of an I*k*RDF on *G*. An independent *k*-rainbow dominating function *f* is called an $i_{rk}(G)$ -*function* if $\omega(f) = i_{rk}(G)$. Since each independent *k*rainbow dominating function is a *k*-rainbow dominating function, we have $\gamma_{rk}(G) \leq$ $i_{rk}(G)$.

Clearly if $\gamma_{rk}(G) = i_{rk}(G)$, then every $i_{rk}(G)$ -function is also a $\gamma_{rk}(G)$ -function. However, not every $\gamma_{rk}(G)$ -function is an $i_{rk}(G)$ -function, even when $\gamma_{rk}(G)$ = $i_{rk}(G)$. For example, the double star $S(k, k+1)$ has two $\gamma_{rk}(S(k, k+1))$ -function, but only one of them is an $i_{rk}(S(k, k + 1))$ -function. We say that $\gamma_{rk}(G)$ and $i_{rk}(G)$ are *strongly equal* and denote by $\gamma_{rk}(G) \equiv i_{rk}(G)$, if every $\gamma_{rk}(G)$ -function is an $i_{rk}(G)$ function.

Haynes and Slater in [\[10\]](#page-13-10) were the first to introduce strong equality between two parameters. Also in [\[8](#page-13-11),[9\]](#page-13-12), Haynes, Henning and Slater gave constructive characterizations of trees with strong equality between some domination parameters.

Our purpose in this paper is to present a constructive characterizations of trees *T* with $\gamma_{r2}(T) \equiv i_{r2}(T)$.

We make use of the following result in this paper.

Proposition A [\[5\]](#page-13-13) Let G be a connected graph. If there is a path $v_3v_2v_1$ in G with $deg(v_2) = 2$ *and* $deg(v_1) = 1$ *, then G has a* $\gamma_{r2}(G)$ *-function f such that* $f(v_1) = \{1\}$ *and* $2 \in f(v_3)$ *.*

Corollary 1 Let T be a tree with $\gamma_{r2}(T) \equiv i_{r2}(T)$. If there is a path $v_3v_2v_1$ in T *with* $deg(v_2) = 2$ *and* $deg(v_1) = 1$ *such that* v_3 *is a support vertex, then* T *has a* $\gamma_{r2}(T)$ *-function f such that* $f(v_3) = \{1, 2\}$, $|f(v_1)| = 1$ *and* $|f(x)| = 0$ *for every* $x \in L_{v_3} \cup \{v_2\}.$

Observation 2 *Let T be a tree and let z be a strong support vertex of T . Then*

- (a) *T* has a $\gamma_{r2}(T)$ *-function such that* $f(z) = \{1, 2\}$ *.*
- (b) $\gamma_{r2}(T) \not\equiv i_{r2}(T)$ *if and only if* T has a $\gamma_{r2}(T)$ *-function that is not independent and* $f(z) = \{1, 2\}$ *.*

Proof (a) The proof is immediate.

(b) Let $\gamma_{r2}(T) \neq i_{r2}(T)$. Then *T* has a $\gamma_{r2}(T)$ -function that is not independent. If $f(z) = \{1, 2\}$, then we are done. If $|f(z)| = 1$, then $|f(x)| = 1$ for each $x \in L_z$ and the function $g: V(G) \to \mathcal{P}(\{1, 2\})$ defined by $g(z) = \{1, 2\}$, $g(x) = \emptyset$ for $x \in L_z$ and $g(u) = f(u)$ otherwise, is a 2RDF of *T* of weight less than $\omega(f)$ which is a contradiction. Let $f(z) = \emptyset$. Then clearly the function $g: V(G) \to \mathcal{P}(\{1, 2\})$ defined by *g*(*z*) = {1, 2}, *g*(*x*) = Ø for *x* ∈ *L_z* and *g*(*u*) = *f*(*u*) otherwise, is a $v_{r2}(T)$ -function with the desired property. $\gamma_{r2}(T)$ -function with the desired property.

2 Characterizations of Trees with $\gamma_{r2}(T) \equiv i_{r2}(T)$

Let \mathcal{F}_1 be the family of trees that can be obtained from $k \geq 1$ disjoint stars $K_{1,2}$ by adding either a new vertex v or a path *u*v and joining the centers of stars to v. Also let \mathcal{F}_2 be the family including P_5 and all trees obtained from $k \geq 2$ disjoint P_3 by adding either a new vertex v or a path uv and joining v to a leaf of each P_3 . If T belongs to $\mathcal{F}_1 \cup \mathcal{F}_2 - \{P_5\}$, then we call the vertex v, the *special vertex* of *T* and if $T = P_5$, then its support vertices are special vertices of *T*. Note that if $T \in \mathcal{F}_1 \cup \mathcal{F}_2$, then $\gamma_{r2}(T) \equiv i_{r2}(T)$.

Now we provide a constructive characterization of trees *T* with $\gamma_{r2}(T) \equiv i_{r2}(T)$. For this purpose, we define a family of trees as follows: Let $\mathcal F$ be the family of trees such that: *F* contains star $K_{1,2}$ and if *T* is a tree in *F*, then the tree *T'* obtained from *T* by the following seven operations which extend the tree *T* by attaching a tree to a vertex $y \in V(T)$, called an attacher, is also a tree in \mathcal{F} .

- Operation \mathcal{O}_1 : If *z* is a strong support vertex of $T \in \mathcal{F}$, then \mathcal{O}_1 adds a new vertex *x* and an edge *x z*.
- Operation \mathcal{O}_2 : If *z* is a vertex of $T \in \mathcal{F}$, then \mathcal{O}_2 adds a new tree $T_1 \in \mathcal{F}$ with special vertex x and an edge xz provided that if x is a support vertex, then $\gamma_{r2}(T-z) \geq \gamma_{r2}(T)$.
- Operation \mathcal{O}_3 : If *z* is a strong support vertex of $T \in \mathcal{F}$, then \mathcal{O}_3 adds a path *zxy*.
- Operation O_4 : If *z* is a vertex of $T \in \mathcal{F}$ which is adjacent to a support vertex of degree 2, then *O*⁴ adds a path *zxy*.
- Operation \mathcal{O}_5 : If *z* is a vertex of $T \in \mathcal{F}$ which is adjacent to a strong support vertex, then \mathcal{O}_5 adds a path $zxvw$.
- Operation \mathcal{O}_6 : If *z* is a vertex of $T \in \mathcal{F}$, then \mathcal{O}_6 adds a new tree $T_2 \in \mathcal{F}_2$ with special vertex x and an edge xz provided that if x is a support vertex, then $\gamma_{r2}(T-z) \geq \gamma_{r2}(T)$.
- Operation \mathcal{O}_7 : If *z* is a vertex of $T \in \mathcal{F}$ such that every $\gamma_{r2}(T)$ -function assigns \emptyset to *z*, then \mathcal{O}_7 adds the double star $S(1, 2)$ and an edge *zx* where *x* is a leaf of *S*(1, 2) whose support vertex has degree 3.

Observation 3 *The family F contains all graphs in* $\{K_{1,t} | t \geq 2\} \cup \mathcal{F}_1 \cup \mathcal{F}_2$.

Proof Starting from $K_{1,2} \in \mathcal{F}$ and by applying $t - 2$ times Operation \mathcal{O}_1 , we obtain the star $K_{1,t}$ and hence $\mathcal F$ contains all stars. Furthermore, starting from $K_{1,2}$ and by applying Operation \mathcal{O}_4 , we obtain that $\mathcal F$ contains P_5 .

Now let $T \in \mathcal{F}_1$. If $|V(T)| = 4$, then $T = K_{1,3}$ and immediately $T \in \mathcal{F}$. If $|V(T)| = 5$, then *T* can be obtained from $K_{1,2}$ by applying Operation \mathcal{O}_3 . If $|V(T)| \geq 6$, then *T* can be obtained from $K_{1,2}$ by applying Operation \mathcal{O}_2 . Thus *F* contains all graphs in \mathcal{F}_1 .

Finally, let $T \in \mathcal{F}_2 - \{P_5\}$. If $|V(T)| = 7$, then $T = P_7$ and *T* can be obtained from P_5 by applying Operation O_4 twice and so $T \in \mathcal{F}$. If $|V(T)| \geq 9$, then *T* can be obtained from $K_{1,2}$ by applying Operation \mathcal{O}_6 . Thus $\mathcal F$ contains all graphs in \mathcal{F}_2 . \Box

Lemma 4 *Let T be a tree with* $\gamma_{r2}(T) \equiv i_{r2}(T)$ *and let T' be the tree obtained from T* by Operation \mathcal{O}_1 *. Then* $\gamma_{r2}(T') \equiv i_{r2}(T')$ *.*

Proof Assume *z* is a strong support vertex of *T* and let *x* be a new vertex that is attached to *z* by applying Operation \mathcal{O}_1 . By Observation [2\(](#page-2-0)a), *T* has a γ_{r2} -function *f* that assigns $\{1, 2\}$ to *z*. Since $\gamma_{r2}(T) \equiv i_{r2}(T)$, *f* is an I2RDF of *T*. Now we can extend *f* to an I2RDF of *T'* by assigning Ø to *x*, implying that $\gamma_{r2}(T') \leq i_{r2}(T') \leq i_{r2}(T) \leq \gamma_{r2}(T)$. On the other hand, by Observation [2\(](#page-2-0)a), there is a $\gamma_{r2}(T')$ -function *g* which assigns $\{1, 2\}$ to *z*, and clearly the function *g*, restricted to *T*, is a 2RDF of *T* of weight $\gamma_{r2}(T')$, implying that $\gamma_{r2}(T) \leq \gamma_{r2}(T')$. Hence $\gamma_{r2}(T') = i_{r2}(T')$.

It will now be shown that $\gamma_{r2}(T') \equiv i_{r2}(T')$. Suppose *h* is a $\gamma_{r2}(T')$ -function that is not independent. Since $|L_z| \geq 3$, we must have $f(z) = \{1, 2\}$. Then the function *h*, restricted to *T*, is a $\gamma_{r2}(T)$ -function that is not independent which leads to a contradiction. Thus $\gamma_{r2}(T') \equiv i_{r2}(T)$.

Lemma 5 *Let T be a tree with* $\gamma_{r2}(T) \equiv i_{r2}(T)$ *and let T' be a tree obtained from T by Operation* \mathcal{O}_2 *. Then* $\gamma_{r2}(T') \equiv i_{r2}(T')$ *.*

Proof Let $T_1 \in \mathcal{F}_1$ be the tree which is attached by Operation \mathcal{O}_2 to *T* by the edge xz for obtaining the tree T' , where $z \in V(T)$ is the attacher vertex, and let $x_1, x_2, \ldots, x_k \in$ $V(T_1)$ be the strong support vertices of T_1 . Assume *x* is the special vertex of T_1 . If x is a support vertex then let y be the leaf that is adjacent to x . Let t be a variant defined by $t = 1$ if x is a support vertex, and $t = 0$ otherwise. Every $i_{r2}(T)$ -function can be extended to an I2RDF on T' by assigning $\{1, 2\}$ to x_i , $i = 1, 2, ..., k$, Ø to *u* for $u \in \bigcup_{i=1}^{k} N(x_i)$, and {1} to *y* if *x* is a support vertex. This implies that

 $i_{r2}(T') \leq i_{r2}(T) + 2k + t$. Since $\gamma_{r2}(T) \equiv i_{r2}(T)$, we deduce that

$$
\gamma_{r2}(T') \le i_{r2}(T') \le \gamma_{r2}(T) + 2k + t = i_{r2}(T) + 2k + t. \tag{1}
$$

Now we show that $\gamma_{r2}(T') = \gamma_{r2}(T) + 2k + t$. Let *f* be a $\gamma_{r2}(T')$ -function. It is easy to see that $\sum_{u \in N[x_i]-\{x\}} |f(u)| \ge 2$, for $i = 1, 2, ..., k$, and $|f(x)| + |f(y)| \ge 1$, if $t = 1$. Then $\sum_{u \in V(T_1)} |f(u)| \ge 2k + t$. If $|f(x)| = 0$ then $f|_{V(T)}$ is a 2RDF on *T*, and so $\sum_{u \in V(T)} |f(u)| \geq \gamma r_2(T)$. By adding two recent inequalities, we obtain $\gamma r_2(T') = \sum_{u \in V(T')} |f(u)| \ge \gamma r_2(T) + 2k + t$. Assume that $|f(x)| \ge 1$. Clearly if *t* = 1 then $|f(x)| + |f(y)| \ge 2$. Thus $\sum_{u \in V(T_1)} |f(u)| \ge 2k + t + 1$. If $|f(z)| \ne 0$ then $f|_{V(T)}$ is a 2RDF on *T*, and if $|f(z)| = 0$ then the function f_1 defined on $V(T)$ by $f_1(z) = \{1\}$ and $f_1(u) = f(u)$ if $u \in V(T) - \{z\}$ is a 2RDF for *T*. It follows that $\gamma_{r2}(T') \geq \gamma_{r2}(T) + 2k + t$. Hence, we deduce that

$$
\gamma_{r2}(T') = \gamma_{r2}(T) + 2k + t. \tag{2}
$$

By (1) and (2) , we have

$$
i_{r2}(T') = i_{r2}(T) + 2k + t = \gamma_{r2}(T) + 2k + t = \gamma_{r2}(T').
$$

It will now be shown that $\gamma_{r2}(T') \equiv i_{r2}(T')$. Assume *h* is a $\gamma_{r2}(T')$ -function that is not independent. We may assume that *h* assigns {1, 2} to each support vertex adjacent to x. If $|h(x)| = 0$ then clearly $h|_{V(T)}$ is a $\gamma_{T2}(T)$ -function that is not independent, a contradiction with the assumption $\gamma_r(1) \equiv i_{r2}(T)$. Thus $|h(x)| \geq 1$. Then $|h(z)| = 0$ and $\sum_{v \in V(T_1)} |h(v)| \ge 2k + 1 + t$. If $|h(x)| = 1$, then $\sum_{w \in N_T(z)} |h(w)| \ge 1$ and the function $g : V(T) \rightarrow \mathcal{P}(\{1, 2\})$ defined by $g(z) = \{1\}$ and $g(u) = h(u)$ for $u \in V(T) - \{z\}$ is a $\gamma_{r2}(T)$ -function that is not independent, contradicting $\gamma_{r2}(T) \equiv$ $i_{r2}(T)$. Thus $|h(x)| = 2$. Then *x* is a support vertex. Now

$$
\gamma_{r2}(T-z) \leq \sum_{u \in V(T-z)} |h(u)| = \gamma_{r2}(T') - 2k - 1 - t < \gamma_{r2}(T).
$$

This is a contradiction with the assumption $\gamma_{r2}(T-z) \geq \gamma_{r2}(T)$. Therefore, $\gamma_{r2}(T') \equiv$ $i_{r2}(T')$ and the proof is complete.

Lemma 6 *If T* is a tree with $\gamma_{r2}(T) \equiv i_{r2}(T)$ and *T'* is a tree obtained from *T* by *Operation* \mathcal{O}_3 *, then* $\gamma_{r2}(T') \equiv i_{r2}(T')$ *.*

Proof Let $z \in V(T)$ be a strong support vertex and let *zxy* be the path added by Operation \mathcal{O}_3 to obtain *T'*. Let *f* be a $\gamma_{r2}(T)$ -function such that $f(z) = \{1, 2\}$ [Observation [2\(](#page-2-0)a)]. Since $\gamma_{r2}(T) \equiv i_{r2}(T)$, f is an I2RDF of T. We can extend f to an I2RDF on T' by assigning Ø to x and $\{1\}$ to y, and thus

$$
\gamma_{r2}(T') \le i_{r2}(T') \le i_{r2}(T) + 1 = \gamma_{r2}(T) + 1. \tag{3}
$$

Let now f_1 be a $\gamma_{r2}(T')$ -function. We can assume $f_1(z) = \{1, 2\}$ by Observation [2\(](#page-2-0)a). Since f_1 is a $\gamma_{r2}(T')$ -function, we must have $|f_1(x)| = 0$ and $|f_1(y)| = 1$. Then $f_1|_{V(T)}$ is a 2RDF on *T*, and so

$$
\gamma_{r2}(T) \le \gamma_{r2}(T') - 1. \tag{4}
$$

It follows from [\(3\)](#page-4-2) and [\(4\)](#page-5-0) that $\gamma_{r2}(T') = i_{r2}(T') = \gamma_{r2}(T) + 1 = i_{r2}(T) + 1$.

Finally, we shall show that $\gamma_{r2}(T') \equiv i_{r2}(T')$. Assume *h* is a $\gamma_{r2}(T')$ -function that it is not independent. First let $|h(x)| > 1$. Then $|h(x)| + |h(y)| = 2$. If $|h(z)| \neq 0$ then replace $h(x)$ by \emptyset and $h(y)$ by $\{1\}$ or $\{2\}$ to obtain a 2RDF for *T'* of weight less than $\gamma_{r2}(T')$, a contradiction. Thus $|h(z)| = 0$. Then clearly $|h(u)| = 1$ for any leaf *u* adjacent to *z* and the function $h_1 : V(T') \to P({1, 2})$ defined by $h_1(y) =$ $\{1\}, h_1(z) = \{1, 2\}, h_1(u) = \emptyset$ for $u \in L_z \cup \{x\}$ and $h_1(w) = h(w)$ otherwise, is a 2RDF for *T'* of weight less than $\gamma_{r2}(T')$, a contradiction. Now let $|h(x)| = 0$. Then clearly $|h(y)| = 1$ (else we could make a change to be in the previous case $|h(x)| \ge 1$), and $h|_{V(T)}$ is a $\gamma_{r2}(T)$ -function which is not independent, a contradiction. Hence, $\gamma_{r2}(T') \equiv i_{r2}(T')$. This completes the proof. $\gamma_{r2}(T') \equiv i_{r2}(T')$. This completes the proof.

Lemma 7 If T is a tree with $\gamma r_2(T) \equiv i_r 2(T)$ and T' is a tree obtained from T by *Operation* \mathcal{O}_4 *, then* $\gamma_{r2}(T') \equiv i_{r2}(T')$ *.*

Proof Let $z \in V(T)$ be a vertex which is adjacent to a support vertex of degree 2 such as w, and let Operation \mathcal{O}_4 add the path *zxy* to *T*.

First let deg_{*T*}(*z*) \geq 2. Let w' be the leaf adjacent to w. Assume f is a $\gamma_{r2}(T)$ function such that $2 \in f(z)$ (Proposition [A\)](#page-1-0). Since $\gamma_{r2}(T) \equiv i_{r2}(T)$, f is an $i_{r2}(T)$ function. Now f can be extended to an I2RDF on T' by assigning Ø to x and $\{1\}$ to y. Thus

$$
\gamma_{r2}(T') \le i_{r2}(T') \le i_{r2}(T) + 1 = \gamma_{r2}(T) + 1. \tag{5}
$$

On the other hand, if f_1 is a $\gamma_{r2}(T')$ -function, then we may assume that $2 \in f_1(z)$ by Proposition [A.](#page-1-0) Clearly $|f_1(x)|+|f_1(y)| \ge 1$ and $f_1|_{V(T)}$ is a 2RDF on *T* of weight at most $\gamma_{r2}(T') - 1$, implying that $\gamma_{r2}(T') \ge \gamma_{r2}(T) + 1$. It follows from [\(5\)](#page-5-1) and the recent inequality that $\gamma_{r2}(T') = i_{r2}(T') = i_{r2}(T) + 1 = \gamma_{r2}(T) + 1$.

It will now be shown that $\gamma_{r2}(T') \equiv i_{r2}(T')$. Suppose *h* is a $\gamma_{r2}(T')$ -function which it is not independent. If $|h(z)| > 0$ then we must have $|h(x)| = 0$ and $|h(y)| = 1$, and so $h|_{V(T)}$ is a $\gamma_{r2}(T)$ -function which is not independent, a contradiction. Let $|h(z)| = 0$. Then obviously $|h(x)| + |h(y)| = |h(w)| + |h(w')| = 2$. Then the function $g: V(T') \to \mathcal{P}(\{1, 2\})$ defined by $g(x) = g(w) = \emptyset$, $g(y) = g(w') =$ $\{1\}$, $g(z) = \{2\}$ and $g(u) = f(u)$ for $u \in V(T') - \{x, y, w, w', z\}$, is a 2RDF of T' of weight less than $\gamma_{r2}(T')$, a contradiction. Thus $\gamma_{r2}(T') \equiv i_{r2}(T')$.

Now let $\deg_T(z) = 1$, i.e., *z* is a leaf.

Assume *f* is a $\gamma_{r2}(T)$ -function. By Proposition [A,](#page-1-0) we may assume that $f(z) = \{1\}$. Note that *f* is an $i_{r2}(T)$ -function because $\gamma_{r2}(T) \equiv i_{r2}(T)$. Then *f* can be extended to an I2RDF on T' by assigning Ø to x and $\{2\}$ to y. This implies that

$$
\gamma_{r2}(T') \le i_{r2}(T') \le i_{r2}(T) + 1 = \gamma_{r2}(T) + 1. \tag{6}
$$

On the other hand, if f_1 is a $\gamma_{r2}(T')$ -function, then by Proposition [A](#page-1-0) we may assume $f_1(y) = \{1\}$ and $2 \in f_1(z)$. Then $f_1|_{V(T)}$ is a 2RDF of *T* of weight at most $\gamma_{r2}(T') - 1$, implying that $\gamma_{r2}(T') \geq \gamma_{r2}(T) + 1$. It follows from the last inequality and [\(6\)](#page-5-2) that $\gamma_{r2}(T') = i_{r2}(T') = \gamma_{r2}(T) + 1 = i_{r2}(T) + 1.$

Next we show that $\gamma_{r2}(T') \equiv i_{r2}(T')$. Assume *h* is a $\gamma_{r2}(T')$ -function that it is not independent. If $|h(z)| > 0$ then we may assume that $|h(x)| = 0$ and $|h(y)| = 1$, and so $h|_{V(T)}$ is a $\gamma_{r2}(T)$ -function which is not independent, a contradiction. Let $h(z) = \emptyset$. Then $|h(x)| + |h(y)| \ge 2$. If $|h(w)| = 0$ then $|h(x)| = 2$ and $|h(y)| = 0$, and the function $h_1 : V(T) \rightarrow \mathcal{P}(\{1, 2\})$ defined by $h_1(z) = \{1\}$ and $h_1(u) = h(u)$ if $u \in$ $V(T) - \{z\}$ is a $\gamma_{r2}(T)$ -function which is not independent, a contradiction. If $|h(w)| \ge$ 1 then it follows from $|h(x)|+|h(y)| \ge 2$ that the function $h_1 : V(T) \to \mathcal{P}(\{1, 2\})$ defined above, is a $\gamma_{r2}(T)$ -function which is not independent, a contradiction. Hence $\gamma_{r2}(T') \equiv i_{r2}(T')$).

Lemma 8 If T is a tree with $\gamma_{r2}(T) \equiv i_{r2}(T)$ and T' is a tree obtained from T by *Operation* \mathcal{O}_5 *, then* $\gamma_{r2}(T') \equiv i_{r2}(T')$ *.*

Proof Let $z \in V(T)$ be a vertex that has a strong support vertex *u* in its neighborhood and let Operation \mathcal{O}_5 add the path $zxyw$ to *T* for obtaining *T'*. Any 2RDF of *T* can be extended to a 2RDF for T' by assigning $\{1, 2\}$ to *y*, and Ø to *x* and w. Since $\gamma_{r2}(T) \equiv i_{r2}(T)$, we deduce that

$$
\gamma_{r2}(T') \le i_{r2}(T') \le i_{r2}(T) + 2 = \gamma_{r2}(T) + 2. \tag{7}
$$

Let *f* be a $\gamma_{r2}(T')$ -function. We may assume $f(w) = \{1\}$, $f(y) = \emptyset$ and $2 \in f(x)$, by Proposition [A.](#page-1-0) Also we may assume that $|f(u)| = 2$, since *u* is a strong support vertex. Then $f|_{V(T)}$ is a 2RDF on *T* of weight at most $\gamma_{r2}(T') - 2$, and so $\gamma_{r2}(T) \le$ $\gamma_{r2}(T') - 2$. It follows from [\(7\)](#page-6-0) that

$$
\gamma_{r2}(T') = i_{r2}(T') = i_{r2}(T) + 2 = \gamma_{r2}(T) + 2.
$$

To show that $\gamma_{r2}(T') \equiv i_{r2}(T')$, suppose *h* is a $\gamma_{r2}(T')$ -function that it is not independent. Since *u* is a strong support vertex, we may assume $|h(u)| = 2$. Then clearly $h(z) = \emptyset$ and $|h(x)| + |h(y)| + |h(w)| = 2$, and so $h|_{V(T)}$ is a $\gamma_{r2}(T)$ -function which is not independent, a contradiction. Hence $\gamma_{r2}(T') \equiv i_{r2}(T')$ and the proof is \Box completed. \Box

The proof of next lemma is similar to the proof of Lemma [5,](#page-3-0) and therefore omitted.

Lemma 9 *If T is a tree with* $\gamma_{r2}(T) \equiv i_{r2}(T)$ *, and T' is a tree obtained from T by Operation* \mathcal{O}_6 *, then* $\gamma_{r2}(T) \equiv i_{r2}(T)$ *.*

Lemma 10 *If T* is a tree with $\gamma_{r2}(T) \equiv i_{r2}(T)$ and *T'* is a tree obtained from *T* by *Operation* \mathcal{O}_7 *, then* $\gamma_{r2}(T') \equiv i_{r2}(T')$ *.*

Proof Let *z* be a vertex of *T* such that every $\gamma_{r2}(T)$ -function assign Ø to it, and let *x* be a leaf of double star $S(1, 2)$ whose support vertex has degree 3. Assume that Operation O_7 adds the double star $S(1, 2)$ and the edge xz to obtain T' from T. Let $V(S(1, 2)) = \{x, v, v_0, u, u_0\}$ where $N(v) = \{x, u, v_0\}$ and $u \in N(u_0)$. Any 2RDF of *T* can be extended to a 2RDF on *T'* by assigning Ø to *x*, *u* and v_0 , {1, 2} to *v* and {1} to u_0 . Since $\gamma_{r2}(T) \equiv i_{r2}(T)$, we deduce that

$$
\gamma_{r2}(T') \le i_{r2}(T') \le i_{r2}(T) + 3 = \gamma_{r2}(T) + 3. \tag{8}
$$

Let *f* be a $\gamma_{r2}(T')$ -function such that $f(u_0) = \{1\}$ and $2 \in f(v)$ by Observation [A.](#page-1-0) Clearly $|f(v)| + |f(u_0)| + |f(u)| + |f(v_0)| \ge 3$. We may assume that $|f(x)| = 0$, otherwise we replace $f(x)$ by Ø and $f(z)$ by $f(z) \cup f(x)$. Then $f|_{V(T)}$ is a 2RDF of *T*, implying that $\gamma_{r2}(T) \leq \gamma_{r2}(T') - 3$. By [\(8\)](#page-7-0), we have $\gamma_{r2}(T') = i_{r2}(T') = i_{r2}(T')$ $\gamma_{r2}(T) + 3 = i_{r2}(T) + 3.$

It will now be shown that $\gamma_{r2}(T') \equiv i_{r2}(T')$. Suppose *h* is a $\gamma_{r2}(T')$ -function which is not independent. Clearly $\sum_{y \in V(S(1,2))} |h(y)| \ge 3$. If $|h(z)| > 0$, then $h|_{V(T)}$ is a $\gamma_{r2}(T)$ -function assigning nonempty set to *z* which leads to a contradiction. Thus $|h(z)| = 0$. If $\sum_{y \in V(S(1,2))} |h(y)| \ge 4$, then we change the values of *h* on $V(S(1, 2)) \cup$ $\{z\}$ to $h(z) = h(u_0) = \{1\}, h(v) = \{1, 2\}, \text{ and } h(x) = h(u) = h(v_0) = \emptyset$, and then the new function plays the role of *h* which has been considered earlier. Thus we assume that $\sum_{y \in V(S(1,2))} |h(y)| = 3$. Then clearly $|h(x)| = 0$, and $h|_{V(T)}$ is a $\gamma_{r2}(T)$ -function which is not independent, a contradiction. Hence $\gamma_{r2}(T') \equiv i_{r2}(T')$). 

Theorem 11 *Each tree T in family* $\mathcal{F} \cup \{K_1\}$ *satisfies* $\gamma_{r2}(T) \equiv i_{r2}(T)$ *.*

Proof If $T = K_1$, then clearly $\gamma_{r2}(T) \equiv i_{r2}(T)$. Let $T \in \mathcal{F}$. Then *T* is obtained from a star $K_{1,2}$ by successive operations T^1, \ldots, T^m , where $T^i \in \{0, \ldots, 0, 0\}$ if $m \geq 1$ and $T = K_{1,2}$ if $m = 0$. The proof is by induction on *m*. If $m = 0$, then clearly $\gamma_{r2}(K_{1,2}) \equiv i_{r2}(K_{1,2})$. Let $m \geq 1$ and that the statement holds for all trees which are obtained from *K*_{1,2} by applying *m* − 1 operations in { $\mathcal{O}_1, \ldots, \mathcal{O}_7$ }. It follows from Lemmas 4, ..., 10 that $\gamma_r \gamma(T) \equiv i_r \gamma(T)$. Lemmas [4,](#page-3-1) …, [10](#page-6-1) that $\gamma_{r2}(T) \equiv i_{r2}(T)$.

Observation 12 If $S(p, q)$ is a double star with $q \geq p \geq 1$ and $\gamma_{r2}(S(p, q)) \equiv$ $i_{r2}(S(p, q))$ *, then* $p = 1$ *and* $q \ge 2$ *.*

Theorem 13 Let T be a tree of order n. If $\gamma_{r2}(T) \equiv i_{r2}(T)$, then $T \in \mathcal{F} \cup \{K_1\}$.

Proof The proof is by induction on *n*. If $n = 1$ then $T = K_1$. Let the statement holds for all trees of order less than *n* and let *T* be a tree of order *n* with $\gamma_{r2}(T) \equiv i_{r2}(T)$. Since $\gamma_{r2}(P_2) \neq i_{r2}(P_2)$, we may assume that $n \geq 3$. If diam(*T*) = 2 then *T* is a star and by Observation [3,](#page-3-2) $T \in \mathcal{F}$. If diam(*T*) = 3, then *T* is a double star *S*(*p*, *q*) with $q \ge p \ge 1$. By Observation [12,](#page-7-1) we have $p = 1$ and $q \ge 2$. Then *T* can be obtained from $K_{1,q}$ by Operation \mathcal{O}_3 and so $T \in \mathcal{F}$. Therefore, we may assume that $diam(T) \geq 4$.

Let $v_1v_2...v_k$ ($k \ge 5$) be a diametral path in *T* such that $|L_{v_2}|$ is as large as possible and root *T* at v_k . Also suppose among paths with this property we choose a path such that $|L_{v_3}|$ is as large as possible.

Assume first that deg(v_2) \geq 4. Let f be a $\gamma_{r2}(T)$ -function. Then clearly $f(v_2)$ = {1, 2} and so *f* is a 2RDF of $T - v_1$. Since $\gamma_{r2}(T) \equiv i_{r2}(T)$, *f* is also an I2RDF of $T - v_1$, implying that $\gamma_{r2}(T) = i_{r2}(T) \geq i_{r2}(T - v_1) \geq \gamma_{r2}(T - v_1)$. On the other hand, by Observation [2\(](#page-2-0)a), $T - v_1$ has a γ_{r2} -function *g* that assigns {1, 2} to

 v_2 . Then *g* can be extended to a $\gamma_{r2}(T)$ -function by assigning Ø to v_1 that yields $\gamma_{r2}(T) \leq \gamma_{r2}(T - v_1)$. Hence $\gamma_{r2}(T) = i_{r2}(T - v_1) = \gamma_{r2}(T - v_1)$.

We show that $\gamma_{r2}(T - v_1) \equiv i_{r2}(T - v_1)$. Suppose that there is a $\gamma_{r2}(T - v_1)$ function *g* that is not independent. Since *g* is a $\gamma_{r2}(T - v_1)$ -function, we must have $|g(v_2)| + \sum_{u \in L_{v_2} - \{v_1\}} |g(u)| = 2$. Now the function $h : V(T - v_1) \to P(\{1, 2\})$ defined by $h(v_2) = \{1, 2\}$, $h(u) = \emptyset$ for $u \in L_{v_2} - \{v_1\}$ and $h(x) = g(x)$ otherwise, is a 2RDF of $T - v_1$ which in not independent. It is clear that *h* can be extended to a $\gamma_{r2}(T)$ -function which is not independent by assigning Ø to v_1 . This leads to a contradiction with $\gamma_{r2}(T) \equiv i_{r2}(T)$. Thus $\gamma_{r2}(T - v_1) \equiv i_{r2}(T - v_1)$. It follows from the inductive hypothesis that $T - v_1 \in \mathcal{F}$. Now it is clear that *T* can be obtained from *T* − v_1 ∈ *F* by applying Operation \mathcal{O}_1 .

Assume next that deg(v_2) = 3. Let $u \in L_{v_2} - \{v_1\}$. We claim that v_3 is not a strong support vertex. Assume to the contrary that v_3 is a strong support vertex. By Observation [2\(](#page-2-0)a), *T* has a $\gamma_{r2}(T)$ -function *f* such that $f(v_3) = \{1, 2\}$. Clearly $|f(v_2)| + |f(v_1)| + |f(u)| = 2$. Now the function $g: V(T) \to \mathcal{P}(\{1, 2\})$ defined by $g(v_2) = \{1, 2\}, g(v_1) = g(u) = \emptyset$ and $g(x) = f(x)$ for $x \in V(T) - \{u, v_1, v_2\}$ is clearly a $\gamma_{r2}(T)$ -function that is not independent, a contradiction with $\gamma_{r2}(T) \equiv$ $i_{r2}(T)$. Thus v_3 is not a strong support vertex. Using Proposition [A](#page-1-0) and an argument similar to that described above, we deduce that v_3 is not adjacent to a support vertex of degree 2. By the choice of the diametral path, we deduce that any child of v_3 is a leaf or a support vertex of degree 3 and at most one of them is leaf. This implies that $T_{v_3} \in \mathcal{F}_1$. Let $T' = T - T_{v_3}$.

We claim that if v_3 is a support vertex, then $\gamma_{r2}(T'-v_4) \ge \gamma_{r2}(T')$. Let v_3 be a support vertex and let to the contrary that $\gamma_{r2}(T'-v_4) < \gamma_{r2}(T')$. Assume *h* is a $\gamma_{r2}(T'-v_4)$ -function and define $g: V(T) \rightarrow \mathcal{P}(\{1, 2\})$ by $g(x) = h(x)$ for $x \in V(T') - \{v_4\}, g(x) = \{1, 2\}$ for $x \in N[v_3] - (L_{v_3} \cup \{v_4\})$ and $g(x) = \emptyset$ otherwise. Obviously *g* is a $\gamma_{r2}(T)$ -function that is not independent, a contradiction with $\gamma_{r2}(T) \equiv i_{r2}(T)$. Thus $\gamma_{r2}(T' - v_4) \ge \gamma_{r2}(T')$ when v_3 is a support vertex.

It will now be shown that $\gamma_{r2}(T') \equiv i_{r2}(T')$. First we show that $\gamma_{r2}(T') = i_{r2}(T')$. Since every $\gamma_{r2}(T')$ -function can be extended to a 2RDF on *T* by assigning {1, 2} to the strong support vertices in $N_{T_{\nu}(\nu_3)}$, {1} to the leaf adjacent to ν_3 , if any, and Ø to the other vertices in T_{v_3} , we deduce that

$$
i_{r2}(T) = \gamma_{r2}(T) \le \gamma_{r2}(T') + 2k + t \le i_{r2}(T') + 2k + t \tag{9}
$$

where *k* is the number of strong support vertices adjacent to v_3 in T_{v_3} and *t* is the number of leaf adjacent to v_3 . On the other hand, let *f* be a $\gamma_{r2}(T)$ -function. By Observation $2(a)$ $2(a)$, we may assume that f assigns $\{1, 2\}$ to the strong support vertices in T_{v_3} . Since $\gamma_{r2}(T) \equiv i_{r2}(T)$, f is an I2RDF. Then f assigns Ø to v_3 and {1} or {2} to the leaf adjacent to v_3 , if any, and $f|_{V(T)}$ is an I2RDF on T' with weight $i_{r2}(T) - 2k - t$. Thus $i_{r2}(T') \leq i_{r2}(T) - 2k - t$. It follows from [\(9\)](#page-8-0) that $i_{r2}(T) =$ $\gamma_{r2}(T) = \gamma_{r2}(T') + 2k + t = i_{r2}(T') + 2k + t$ and hence $\gamma_{r2}(T') = i_{r2}(T')$.

Now we show that this equality is strong. Suppose *h* is a $\gamma_{r2}(T')$ -function that it is not independent. We can extend *h* to a 2RDF on *T* by assigning {1, 2} to every strong support vertex of T_{v_3} and {1} to the leaf adjacent to v_3 , if any, and Ø to the other vertices in T_{v_3} , to obtain a $\gamma_{r2}(T)$ -function which is not independent, a contradiction

with $\gamma_{r2}(T) \equiv i_{r2}(T)$. Therefore $\gamma_{r2}(T') \equiv i_{r2}(T')$. It follows from the induction hypothesis that $T' \in \mathcal{F}$. Then *T* can be obtained from *T'* by applying Operation \mathcal{O}_2 and hence $T \in \mathcal{F}$.

We thus assume that $deg(v_2) = 2$. Furthermore, we may assume that every child of $v₃$ that is a support vertex has degree two. We now consider the following three cases on $|L_{v_3}|$.

Case 1 $|L_{v_3}| \geq 2$.

Let $T' = T - \{v_1, v_2\}$. We show that $\gamma_{r2}(T') \equiv i_{r2}(T')$. Suppose f is a $\gamma_{r2}(T)$ function that assigns $\{1, 2\}$ to v_3 [Observation [2\(](#page-2-0)a)]. Clearly $|f(v_1)| + |f(v_2)| = 1$. Since $\gamma_{r2}(T) \equiv i_{r2}(T)$, *f* is an $i_{r2}(T)$ -function. Hence $|f(v_2)| = 0$ and $f|_{V(T)}$ is an I2RDF on T' implying that

$$
\gamma_{r2}(T') \le i_{r2}(T') \le i_{r2}(T) - 1 = \gamma_{r2}(T) - 1. \tag{10}
$$

Now let *g* be a $\gamma_{r2}(T')$ -function that assigns $\{1, 2\}$ to v_3 [Observation [2\(](#page-2-0)a)]. Then *g* can be extended to a 2RDF on *T* by assigning \emptyset to v_2 and {1} to v_1 . This yields $\gamma_{r2}(T) \leq \gamma_{r2}(T') + 1$, By [\(10\)](#page-9-0), we have $\gamma_{r2}(T') = i_{r2}(T')$. To show that this equality is strong, assume *h* is a $\gamma_{r2}(T')$ -function that it is not independent. We may assume $h(v_3) = \{1, 2\}$. Now one can extend *h* to a $\gamma_{r2}(T)$ -function which is not independent, by assigning Ø to v_2 and $\{1\}$ to v_1 , a contradiction with $\gamma_{r2}(T) \equiv i_{r2}(T)$. Thus $\gamma_{r2}(T') \equiv i_{r2}(T')$. By induction hypothesis, $T' \in \mathcal{F}$ and so *T* can be obtain from *T'* by Operation \mathcal{O}_3 .

Case 2 $|L_{v_3}| = 0$.

Then any child of v_3 is a support vertex of degree 2. We consider two subcases.

Subcase 2.1 deg(v_3) \geq 3.

Let z_2 be a child of v_3 different from v_2 , and let z_1 be the leaf adjacent to z_2 . Suppose $T' = T - \{v_1, v_2\}$. We show that $\gamma_{r2}(T') \equiv i_{r2}(T')$. Let *f* be a $\gamma_{r2}(T)$ -function. We may assume $2 \in f(v_3)$ by Proposition [A.](#page-1-0) Clearly $|f(v_1)| + |f(v_2)| = 1$. Since $\gamma_{r2}(T) \equiv i_{r2}(T), f$ is a $i_{r2}(T)$ -function. Clearly $f|_{V(T')}$ is an I2RDF on T' , implying that

 $\gamma_{r2}(T') \leq i_{r2}(T') \leq i_{r2}(T) - 1 = \gamma_{r2}(T) - 1.$ (11)

On the other hand, by Proposition [A,](#page-1-0) *T'* has a $\gamma_{r2}(T')$ -function *g* such that $2 \in g(v_3)$. Then we can extend *g* on *T* by assigning \emptyset to v_2 and $\{1\}$ to v_1 , to obtain a 2RDF of weight $\gamma_{r2}(T') + 1$. Thus $\gamma_{r2}(T') \ge \gamma_{r2}(T) - 1$. It follows from [\(11\)](#page-9-1) that $\gamma_{r2}(T') =$ $i_{r2}(T')$.

To show that this equality is strong, assume *h* is a $\gamma_{r2}(T')$ -function that it is not independent. First let $|h(v_3)| > 0$. Assume without loss of generality that $2 \in h(v_3)$. Then the function $h' : V(T) \to \mathcal{P}(\{1, 2\})$ defined by $h'(v_1) = \{1\}, h'(v_2) = \emptyset$ and $h'(x) = h(x)$ for $x \in V(T) - \{v_1, v_2\}$ is a $\gamma_{r2}(T)$ -function that is not independent, a contradiction. Let now $|h(v_3)| = 0$. Then $|h(z_2)| + |h(z_1)| = 2$. If $\bigcup_{x \in N(v_3) - \{z_2\}} h(x)$ ≠ Ø, then we define $g : V(T) \rightarrow \mathcal{P}(\{1, 2\})$ by $g(v_3)$ = $\{1\}$, $g(z_2) = g(v_2) = \emptyset$, $g(z_1) = g(v_1) = \{2\}$ and $g(x) = h(x)$ otherwise, to produce a γ_r ₂(*T*)-function that is not independent, a contradiction. Let $\bigcup_{x \in N} \gamma_{(y)}\big|_{\{z\}}(x) = \emptyset$. Then to rainbowly dominate v_3 , we must have $h(z_2) = \{1, 2\}$ and $|h(z_1)| = 0$. Then the

function $h_1 : V(T') \to \mathcal{P}(\{1, 2\})$ defined by $h_1(v_3) = \{1\}, h_1(z_2) = \emptyset, h_1(z_1) = \{2\},\$ and $h_1(x) = h(x)$ otherwise, is a $\gamma_{r2}(T')$ -function that is not independent and $|h_1(v_3)| > 0$. This leads to a contradiction as above. Thus $\gamma_{r2}(T') \equiv i_{r2}(T')$ and by inductive hypothesis we have $T' \in \mathcal{F}$. Now *T* can be obtained from *T'* by Operation \mathcal{O}_4 .

Subcase 2.2 deg(v_3) = 2.

First let deg(*v*₄) = 2. Let $T' = T - \{v_1, v_2\}$. We show that $\gamma_{r2}(T') \equiv i_{r2}(T')$. Let *f* be a $\gamma_{r2}(T)$ -function such that $f(v_1) = \{1\}$ and $2 \in f(v_3)$ (Proposition [A\)](#page-1-0). This implies that $|f(v_2)| = 0$. Since $\gamma_{r2}(T) \equiv i_{r2}(T)$, f is an $i_{r2}(T)$ -function. Obviously the function f , restricted to T' , is an I2RDF on T' , implying that

$$
\gamma_{r2}(T') \le i_{r2}(T') \le i_{r2}(T) - 1 = \gamma_{r2}(T) - 1. \tag{12}
$$

Now let *g* be a $\gamma_{r2}(T')$ -function such that $g(v_3) = \{1\}$ by Proposition [A.](#page-1-0) We can extend *g* to a $\gamma_{r2}(T)$ -function by assigning Ø to v_2 and $\{2\}$ to v_1 . This implies that $\gamma_{r2}(T) \leq \gamma_{r2}(T') + 1$, and by [\(12\)](#page-10-0) we obtain $\gamma_{r2}(T') = i_{r2}(T')$.

Now we show that this equality is strong. Assume *h* is a $\gamma_{r2}(T')$ -function that is not independent. If $|h(v_3)| > 0$, then we can extend *h* to a $\gamma_{r2}(T)$ -function that is not independent by assigning Ø to v_2 and $\{1\}$ to v_1 if $2 \in h(v_3)$ and $\{2\}$ to v_1 if $1 \in h(v_3)$, a contradiction with $\gamma_{r2}(T) \equiv i_{r2}(T)$. Let $|h(v_3)| = 0$. Then to rainbowly dominate v_3 , we must have $h(v_4) = \{1, 2\}$. Since *h* is a $\gamma_{r2}(T')$ -function and deg $(v_4) = 2$, we must have $|h(v_5)| = 0$. Then the function $h_1 : V(T) \rightarrow \mathcal{P}(\{1, 2\})$ defined by $h_1(v_5) =$ $h_1(v_1) = \{1\}, h_1(v_3) = \{2\}, h_1(v_2) = h_1(v_4) = \emptyset$ and $h_1(x) = h(x)$ otherwise, is a $\gamma_{r2}(T)$ -function which is not independent, a contradiction with $\gamma_{r2}(T) \equiv i_{r2}(T)$. Hence $\gamma_{r2}(T') \equiv i_{r2}(T')$ and by inductive hypothesis, $T' \in \mathcal{F}$. Now *T* can be obtained from T' by Operation \mathcal{O}_4 .

Next let deg(v_4) \geq 3. By Proposition [A,](#page-1-0) *T* has a γ_{r2} -function *f* such that $f(v_1) = \{1\}$, $|f(v_2)| = 0$ and $2 \in f(v_3)$. Also suppose among $\gamma_{r2}(T)$ -functions with this property we choose a $\gamma_{r2}(T)$ -function such that $|f(v_4)|$ is as large as possible. If $|f(v_3)| = 2$, then the function $g_1 : V(T) \rightarrow \mathcal{P}(\{1, 2\})$ defined by $g_1(v_1) = \{1\}$, $g_1(v_2) = \emptyset$, $g_1(v_3) = \{2\}$, $g_1(v_4) = \{1\}$ and $g_1(x) = f(x)$ for $x \in V(T) - \{v_1, v_2, v_3, v_4\}$ is a $\gamma_{r2}(T)$ -function that is not independent, a contradiction. Therefore $|f(v_3)| = 1$. Since $\gamma_{r2}(T) \equiv i_{r2}(T)$, f is an I2RDF of T and hence $f(v_4) = \emptyset$. This implies that neither v_4 is a strong support vertex nor v_4 has a support vertex of degree 2 in its neighborhood. If there is a path $v_4 y_3 y_2 y_1$ in T_4 where $y_3 \neq v_3$ and deg(y_1) = 1, then by the choice of diametral path $v_1 \dots v_k$, we have $|L_{v_2}| \geq |L_{v_2}|$ and $|L_{v_3}| \geq |L_{v_3}|$ that implies deg(y_2) = 2 and $|L_{v_3}|$ = 0. Hence, if there is a leaf at distance three from v_4 in T_{v_4} , then it plays the same role of v_1 . Thus we may assume that each component of $T_{v4} - v_4$ is isomorphic to P_3 , $K_{1,t}$, ($t \ge 2$) or a single vertex, where v_4 is adjacent to a leaf of each P_3 , the center of $K_{1,t}$, or the single vertex, respectively.

Assume first that one of the components of $T_{v_4} - v_4$ is $K_{1,t}$, ($t \ge 2$). That is, v_4 has a strong support vertex such as *z* in its neighborhood. Let $T' = T - \{v_1, v_2, v_3\}$ and let *f* be a $\gamma_{r2}(T)$ -function. By Observation [2\(](#page-2-0)a), we may assume $f(z) = \{1, 2\}$. Since $\gamma_{r2}(T) \equiv i_{r2}(T)$, *f* is a $i_{r2}(T)$ -function and hence $|f(v_4)| = 0$. Then clearly $|f(v_1)| + |f(v_2)| + |f(v_3)| = 2$ and $f|_{V(T')}$ is an I2RDF on *T'*, implying that

$$
\gamma_{r2}(T') \le i_{r2}(T') \le i_{r2}(T) - 2 = \gamma_{r2}(T) - 2. \tag{13}
$$

On the other hand, let f_1 be a $\gamma_{r2}(T')$ -function such that $f_1(z) = \{1, 2\}$ [Observation [2\(](#page-2-0)a)]. We can extend f_1 to a 2RDF on *T* with weight $\gamma_{r2}(T') + 2$ by assigning {2}, Ø and {1} to v_3 , v_2 and v_1 , respectively. Hence $\gamma_{r2}(T) \leq \gamma_{r2}(T') + 2$ and by [\(13\)](#page-11-0), we have $\gamma_{r2}(T') = i_{r2}(T')$.

If there exists a $\gamma_{r2}(T')$ -function *h* that is not independent, then as above we can extend *h* to a $\gamma_{r2}(T)$ -function that is not independent, a contradiction with $\gamma_{r2}(T) \equiv$ $i_{r2}(T)$. Thus $\gamma_{r2}(T') \equiv i_{r2}(T')$. It follows from inductive hypothesis that $T' \in \mathcal{F}$ and so *T* can be obtained from *T'* by Operation \mathcal{O}_5 .

Now suppose that v_4 has no child which is a strong support vertex. We claim that $|L_{v_4}| \leq 1$. Let to the contrary that $|L_{v_4}| \geq 2$. By Proposition [A,](#page-1-0) T has a γ_{r2} function *f* that $f(v_1) = \{1\}$ and $2 \in f(v_3)$. Since $|L_{v_4}| \geq 2$, we may assume $f(v_4) = \{1, 2\}$ which contradicts the assumption $\gamma_{r2}(T) \equiv i_{r2}(T)$. Hence $|L_{v_4}| \leq 1$. Since $deg(v_4) \geq 3$, we deduce that $T_{v_4} \in \mathcal{F}_2$. Let $T' = T - T_{v_4}$ and let *g* be a $\gamma_{r2}(T)$ -function with $g(v_1) = \{1\}$ and $2 \in g(v_3)$. By assumption, g is an I2RDF of T and hence $g(v_4) = \emptyset$. Then $g|_{V(T')}$ is an I2RDF of T' , implying that

$$
\gamma_{r2}(T') \leq i_{r2}(T') \leq i_{r2}(T) - 2 \deg(v_4) + 2 - t = \gamma_{r2}(T) - 2 \deg(v_4) + 2 - t
$$
, (14)

where t is number of leaves adjacent to v_4 .

On the other hand, each $\gamma_{r2}(T')$ -function *f* can be extended to a 2RDF of *T* by assigning $\{2\}$ to v_3 , $\{1\}$ to v_1 , each vertex of $N(v_4)\setminus (L_{v_4} \cup \{v_5, v_3\})$ and the leaf adjacent to v_4 , if any, $\{2\}$ to every vertex in T_{v_4} at distance 3 from v_4 except v_1 , and Ø to the other vertices of T_{v_4} . It follows that $\gamma_{r2}(T') \ge \gamma_{r2}(T) - 2 \deg(v_4) + 2 - t$. By [\(14\)](#page-11-1) we obtain $\gamma_{r2}(T') = i_{r2}(T')$.

If *h* is a $\gamma_{r2}(T')$ -function that is not independent, then we can easily extend *h* to a $\gamma_{r2}(T)$ -function that is not independent, a contradiction with $\gamma_{r2}(T) \equiv i_{r2}(T)$. Thus $\gamma_{r2}(T') \equiv i_{r2}(T')$. By inductive hypothesis, we have $T' \in \mathcal{F}$. It can be easily seen that $\gamma_{r2}(T'-v_5) \ge \gamma_{r2}(T')$ if v_4 is a support vertex. Now *T* can be obtained from *T*' by Operation \mathcal{O}_6 .

Case 3 $|L_{v_3}| = 1$.

Let w be the leaf adjacent to v_3 . We consider the following subcases.

Subcase 3.1 deg(v_3) > 3.

Then v_3 has a child $z_2 \neq v_2$ that is a support vertex of degree 2. Let z_1 be the leaf adjacent to *z*₂. Set $T' = T - \{v_1, v_2\}$. We show that $\gamma_{r2}(T') \equiv i_{r2}(T')$. Assume that f is a $\gamma_{r2}(T)$ -function. We may assume that $f(v_1) = \{1\}$ and $2 \in f(v_3)$ by Proposition [A.](#page-1-0) Clearly $|f(v_2)| = 0$. Since $\gamma_{r2}(T) \equiv i_{r2}(T)$, f is an I2RDF of T. Now $f|_{V(T)}$ is an I2RDF of *T'* of weight $\gamma_{r2}(T) - 1$ which implies that

$$
\gamma_{r2}(T') \le i_{r2}(T') \le i_{r2}(T) - 1 = \gamma_{r2}(T) - 1. \tag{15}
$$

On the other hand, if f_1 is a $\gamma_{r2}(T')$ -function, then we may assume that $2 \in f_1(v_3)$ by Proposition [A,](#page-1-0) and so f_1 can be extended to a 2RDF of *T* of weight $\gamma_{r2}(T') + 1$ by assigning Ø to v_2 and {1} to v_1 , implying that $\gamma_{r2}(T) \leq \gamma_{r2}(T') + 1$. By [\(15\)](#page-11-2) we obtain $\gamma_{r2}(T') = i_{r2}(T')$.

To show that this equality is strong, suppose *h* is a $\gamma_{r2}(T')$ -function which is not independent. We may assume $|h(v_3)| > 0$, for otherwise we must have $|h(w)| = 1$ and $|h(z_2)| + |h(z_1)| = 2$ and the function $g: V(T') \to \mathcal{P}(\{1, 2\})$ by $g(v_3) = \{1\}$, $g(z_2) = \emptyset$, $g(z_1) = g(w) = \{2\}$ and $g(x) = h(x)$ otherwise, is a $\gamma_{r2}(T')$ -function with the desired property. Then we can easily extend *h* to a $\gamma_{r2}(T)$ -function that is not independent, a contradiction with $\gamma_{r2}(T) \equiv i_{r2}(T)$. Thus $\gamma_{r2}(T') \equiv i_{r2}(T')$ and by inductive hypothesis, $T' \in \mathcal{F}$. Now *T* can be obtained from *T'* by Operation \mathcal{O}_4 .

Subcase 3.2 deg(v_3) = 3.

First let deg(v_4) \geq 3. Let f be a $\gamma_{r2}(T)$ -function. By Corollary [1,](#page-2-1) we may assume $f(v_3) = \{1, 2\}$. Since $\gamma_{r2}(T) \equiv i_{r2}(T)$, *f* is an I2RDF of *T*. Then $|f(v_4)| = 0$ and $|f(v_1)| = 1$. If $1 \in \bigcup_{x \in N(v_4) - \{v_3\}} f(x)$ (the case $2 \in \bigcup_{x \in N(v_4) - \{v_3\}} f(x)$ is similar), then the function $f_1 : V(T) \to \mathcal{P}(\{1, 2\})$ defined by $f_1(v_1) = f_1(w) = \{1\}, f_1(v_3) =$ ${2}$, $f_1(v_2) = \emptyset$ and $f_1(x) = f(x)$ otherwise, is a $\gamma_{r2}(T)$ -function which is not independent, a contradiction with $\gamma_{r2}(T) \equiv i_{r2}(T)$. Thus $|\bigcup_{x \in N[v_4]-\{v_3\}} f(x)| = 0$. This implies that v_4 has no child with depth 0 or 1. Assume that v_4 has a child *z* with depth 2. Then any leaf of T_z at distance two from *z* plays the same role of v_1 , and thus by the previous arguments, we may assume that $T_z \simeq T_{yz}$ and as above we can define a $\gamma_{r2}(T)$ -function *g* such that $g(z) = g(v_3) = \{1, 2\}$ which leads to a contradiction. Thus deg(v_4) = 2. Suppose $T' = T - T_{v_4}$. We show that $i_{r2}(T') \equiv \gamma_{r2}(T')$. Let *f* be a $\gamma_{r2}(T)$ -function that assigns {1, 2} to v_3 and Ø to v_4 , according to Corollary [1.](#page-2-1) Note that *f* is also an I2RDF of *T* because $i_{r2}(T) \equiv \gamma_{r2}(T)$. Then $f|_{V(T)}$ is an I2RDF on *T* , implying that

$$
\gamma_{r2}(T') \le i_{r2}(T') \le i_{r2}(T) - 3 = \gamma_{r2}(T) - 3. \tag{16}
$$

On the other hand, every $\gamma_{r2}(T')$ -function can be extended to a 2RDF of *T* by assigning {1} to v_1 , \emptyset to v_2 , v_4 , w and {1, 2} to v_3 , and thus $\gamma_{r2}(T) \leq \gamma_{r2}(T') + 3$. It follows from [\(16\)](#page-12-0) that $\gamma_{r2}(T') = i_{r2}(T')$.

If there is a $\gamma_{r2}(T')$ -function *g* that is not independent then as above, we can extend it to a $\gamma_{r2}(T)$ -function that is not independent, a contradiction. Thus $\gamma_{r2}(T') \equiv i_{r2}(T')$. By the inductive hypothesis, $T' \in \mathcal{F}$ and *T* can be obtained from *T'* by Operation \mathcal{O}_7 and the proof is completed. and the proof is completed. 

Now we are ready to state the main theorem of this paper.

Theorem 14 Let T be a tree. Then $i_{r2}(T) \equiv \gamma_{r2}(T)$ if and only if $T \in \mathcal{F} \cup \{K_1\}$.

Acknowledgments The authors would like to thank anonymous referees for their remarks and suggestions that helped improve the manuscripts.

References

- 1. Aram, H., Sheikholeslami, S.M., Volkmann, L.: On the total {*k*}-domination and {*k*}-domatic number of a graph. Bull. Malays. Math. Sci. Soc. (2) **36**(1), 39–47 (2013)
- 2. Aram, H., Atapour, M., Sheikholeslami, S.M., Volkmann, L.: Signed *k*-domatic number of digraphs. Bull. Malays. Math. Sci. Soc. (2) **36**(1), 143–150 (2013)
- 3. Brešar, B., Henning, M.A., Rall, D.F.: Rainbow domination in graphs. Taiwan. J. Math. **12**, 213–225 (2008)
- 4. Brešar, B., Šumenjak, T.K.: On the 2-rainbow domination in graphs. Discrete Appl. Math. **155**, 2394– 2400 (2007)
- 5. Dehgardi, N., Sheikholeslami, S.M., Volkmann, L.: The rainbow domination subdivision numbers of graphs. Mat. Vesn. **67**, 102–114 (2015)
- 6. Dehgardi, N., Sheikholeslami, S.M., Volkmann, L.: The *k*-rainbow bondage number of a graph. Discrete Appl. Math. **174**, 133–139 (2014)
- 7. Falahat, M., Sheikholeslami, S.M., Volkmann, L.: New bounds on the rainbow domination subdivision number. Filomat **28**, 615–622 (2014)
- 8. Haynes, T.W., Henning, M.A., Slater, P.J.: Strong equality of domination parameters in trees. Discrete Math. **260**, 77–87 (2003)
- 9. Haynes, T.W., Henning, M.A., Slater, P.J.: Strong equality of upper domination and independence in trees. Util. Math. **59**, 111–124 (2001)
- 10. Haynes, T.W., Slater, P.J.: Paired-domination in graphs. Networks **32**, 199–206 (1998)
- 11. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in Graphs. Marcel Dekker Inc, New York (1998)
- 12. Sheikholeslami, S.M., Volkmann, L.: The *k*-rainbow domatic number of a graph. Discuss. Math. Graph Theory **32**, 129–140 (2012)
- 13. West, D.B.: Introduction to Graph Theory. Prentice-Hall Inc, Englewood Cliffs (2000)
- 14. Wu, Y., Yu, Q.: A characterization of graphs with equal domination number and vertex cover number. Bull. Malays. Math. Sci. Soc. (2) **35**, 803–806 (2012)
- 15. Zhao, Y., Shan, E., Liang, Z., Gao, R.: A labeling algorithm for distance domination on block graphs. Bull. Malays. Math. Sci. Soc. (2) **37**, 965–970 (2014)