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Abstract A 2-rainbow dominating function (2RDF) on a graph G = (V, E) is a
function f from the vertex set V to the set of all subsets of the set {1, 2} such that for any
vertex v € V with f(v) = @ the condition UueN(v) f(u) = {1, 2} is fulfilled. A2RDF
f is independent (I2RDF) if no two vertices assigned nonempty sets are adjacent. The
weight of a 2RDF f is the value w(f) = > .y | f(v)|. The 2-rainbow domination
number yy2(G) (respectively, the independent 2-rainbow domination number i,2(G))
is the minimum weight of a 2RDF (respectively, I2RDF) on G. We say that y,2(G)
is strongly equal to i,2(G) and denote by y,2(G) = i2(G), if every 2RDF on G of
minimum weight is an I2RDF. In this paper, we provide a constructive characterization
of trees T with y,2(T) = i,2(T).
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1 Introduction

Let G be a simple graph with vertex set V = V(G) and edge set E = E(G). For every
vertex v € V, the open neighborhood N (v) isthe set{u € V | uv € E} and the closed
neighborhood of v is the set N[v] = N(v) U {v}. The degree of a vertex v € V is
degs(v) = deg(v) = |[N(v)|.If A C V(G), then G[A] is the subgraph induced by A.
A vertex of degree one is called a leaf, and its neighbor is called a support vertex. If
v is a support vertex, then L, will denote the set of all leaves adjacent to v. A support
vertex v is called strong support vertex if |[L,| > 1. For r, s > 1, a double star S(r, s)
is a tree with exactly two vertices that are not leaves, with one adjacent to r leaves and
the other to s leaves. For a vertex v in arooted tree T, let C (v) denote the set of children
of v, D(v) denote the set of descendants of v and D[v] = D(v) U {v}, and the depth
of v, depth(v), is the largest distance from v to a vertex in D(v). The maximal subtree
at v is the subtree of 7" induced by D(v) U {v} and is denoted by T,. For terminology
and notation on graph theory not given here, the reader is referred to [11,13].

For a positive integer k, a k-rainbow dominating function (kRDF) of a graph G is
a function f from the vertex set V (G) to the set of all subsets of the set {1, 2, ..., k}
such that for any vertex v € V(G) with f(v) = ¢ the condition UueN(v) fu) =
{1,2, ..., k}is fulfilled. The weight of a kRDF f is the value w(f) = > .y | f(V)].
The k-rainbow domination number of a graph G, denoted by y,1(G), is the minimum
weight of a kKRDF of G. A y,«(G)-function is a k-rainbow dominating function of G
with weight v, (G). Note that 1 (G) is the classical domination number y (G). The
k-rainbow domination number was introduced by Bresar, Henning and Rall [3] and
has been studied by several authors (see, e.g., [4-7,12]). To study other domination
parameters, we refer the readers to [1,2,14,15].

A k-rainbow dominating function f is called an independent k-rainbow dominating
function (abbreviated IkRDF) on G if the set V(G) — {v € V | f(v) = @} is
independent. The independent k-rainbow domination number, denoted by i+ (G),
is the minimum weight of an IkRDF on G. An independent k-rainbow dominating
function f is called an i,; (G)-function if w(f) = i,x(G). Since each independent k-
rainbow dominating function is a k-rainbow dominating function, we have y,x(G) <
irk(G).

Clearly if Y1 (G) = i,k (G), then every i, (G)-function is also a y,,(G)-function.
However, not every y,x(G)-function is an i,£(G)-function, even when y,x(G) =
ik (G). For example, the double star S(k, k+ 1) has two y,; (S(k, k + 1))-function, but
only one of them is an i, (S(k, k 4+ 1))-function. We say that y,x(G) and i, (G) are
strongly equal and denote by y,x(G) = i,k (G), if every y,4(G)-function is an i, (G)-
function.

Haynes and Slater in [10] were the first to introduce strong equality between two
parameters. Also in [8,9], Haynes, Henning and Slater gave constructive characteri-
zations of trees with strong equality between some domination parameters.

Our purpose in this paper is to present a constructive characterizations of trees 7'
with y,2(T) = i2(T).

We make use of the following result in this paper.
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Proposition A [5] Let G be a connected graph. If there is a path vzvvy in G with
deg(v2) = 2 and deg(vy) = 1, then G has a yy>(G)-function f such that f(vy) = {1}
and?2 € f(v3).

Corollary 1 Let T be a tree with y,2(T) = iy2(T). If there is a path vzvovy in T
with deg(vy) = 2 and deg(vy) = 1 such that v3 is a support vertex, then T has a
vr2(T)-function f such that f(v3) = {1,2}, |f(v1)| = 1 and | f(x)| = O for every
x € Ly; U{va}.

Observation 2 Let T be a tree and let z be a strong support vertex of T. Then

(@) T has a yy»(T)-function such that f(z) = {1, 2}.
®) v2(T) #£ ir2(T) if and only if T has a y,2(T)-function that is not independent
and f(z) = {1, 2}.

Proof (a) The proof is immediate.

(b) Let y2(T) # i2(T). Then T has a y,2(T)-function that is not independent. If
f(z) = {1, 2}, then we are done. If | f(z)| = 1, then |f(x)| = 1 foreach x € L,
and the function g : V(G) — P({l, 2}) defined by g(z) = {1,2}, g(x) = ¥ for
x € L; and g(u) = f(u) otherwise, is a 2RDF of T of weight less than w( f) which
is a contradiction. Let f(z) = @. Then clearly the function g : V(G) — P({l1, 2})
defined by g(z) = {1,2},g(x) = ¥ for x € L, and g(u) = f(u) otherwise, is a
y2(T)-function with the desired property. O

2 Characterizations of Trees with y,.2(T) = i,2(T)

Let F7 be the family of trees that can be obtained from k > 1 disjoint stars K1 » by
adding either a new vertex v or a path uv and joining the centers of stars to v. Also let
F> be the family including Ps and all trees obtained from k& > 2 disjoint P3 by adding
either a new vertex v or a path v and joining v to a leaf of each P3. If T belongs to
F1 U F> — {Ps}, then we call the vertex v, the special vertex of T and if T = Ps,
then its support vertices are special vertices of 7. Note that if 7 € F; U F, then
vr2(T) = i (T).

Now we provide a constructive characterization of trees 7" with y,2(T) = i2(T).
For this purpose, we define a family of trees as follows: Let F be the family of trees
such that: F contains star K 7 and if T is a tree in F, then the tree 7’ obtained from
T by the following seven operations which extend the tree T by attaching a tree to a
vertex y € V(T), called an attacher, is also a tree in F.

e Operation O1: If 7 is a strong support vertex of T € F, then O adds a new vertex
x and an edge xz.

e Operation O: If z is a vertex of T € F, then O, adds a new tree T} € F
with special vertex x and an edge xz provided that if x is a support vertex, then
Yr2(T —2) = yr2(T).

e Operation O3: If z is a strong support vertex of 7 € F, then O3 adds a path zxy.

e Operation O4: If z is a vertex of ' € F which is adjacent to a support vertex of
degree 2, then O4 adds a path zxy.
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e Operation Os: If z is a vertex of 7 € F which is adjacent to a strong support vertex,
then Os adds a path zxyw.

e Operation O¢: If 7 is a vertex of T € F, then Og adds a new tree 7o € F»
with special vertex x and an edge xz provided that if x is a support vertex, then
Vr2(T —2) = yr2(T).

e Operation O7: If 7z is a vertex of T € F such that every y,(T)-function assigns
) to z, then 7 adds the double star S(1,2) and an edge zx where x is a leaf of
S(1, 2) whose support vertex has degree 3.

Observation 3 The family F contains all graphs in {K; |t > 2} U F; U Fo.

Proof Starting from K » € F and by applying ¢ — 2 times Operation O, we obtain
the star K ; and hence F contains all stars. Furthermore, starting from K > and by
applying Operation 4, we obtain that F contains Ps.

Now let T € Fi. If |V(T)| = 4, then T = K; 3 and immediately T € F.
If |V(T)| = 5, then T can be obtained from K by applying Operation O3. If
|V(T)| = 6, then T can be obtained from K; > by applying Operation O;. Thus F
contains all graphs in Fj.

Finally, let T € F, — {Ps}. If |V(T)| = 7,then T = P; and T can be obtained
from Ps by applying Operation O4 twice andso 7 € F.If |[V(T)| > 9, then T can be
obtained from K » by applying Operation Og. Thus F contains all graphs in 7. O

Lemma 4 Let T be a tree with y,2(T) = i2(T) and let T’ be the tree obtained from
T by Operation O1. Then yy2(T") = ipo(T).

Proof Assume z is a strong support vertex of 7 and let x be a new vertex that is attached
to z by applying Operation Q. By Observation 2(a), T has a y,»-function f thatassigns
{1, 2} to z. Since y2(T) = i,2(T), f is an I2RDF of T. Now we can extend f to an
I2RDF of T’ by assigning @ to x, implying that y,2(T") < i,2(T") < i;2(T) < yy2(T).
On the other hand, by Observation 2(a), there is a y,2(T”)-function g which assigns
{1, 2} to z, and clearly the function g, restricted to T, is a 2RDF of T of weight y,2(T”),
implying that y,2(T) < y2(T"). Hence y,2(T") = ir2(T").

It will now be shown that y,2(T’) = i,2(T’). Suppose & is a y,2(T")-function
that is not independent. Since |L,;| > 3, we must have f(z) = {l,2}. Then the
function £, restricted to 7, is a y,2(T')-function that is not independent which leads to
a contradiction. Thus y,2(T") = i,o(T). O

Lemma 5 Let T be a tree with y,»(T) = i,»(T) and let T' be a tree obtained from T
by Operation Oy. Then y,»(T") = i, »(T").

Proof Let T1 € Fj be the tree which is attached by Operation O; to T by the edge xz
for obtaining the tree T, where z € V (T') is the attacher vertex, and let x1, x2, ..., xx €
V(T1) be the strong support vertices of 7. Assume x is the special vertex of 7j. If
x is a support vertex then let y be the leaf that is adjacent to x. Let ¢ be a variant
defined by t = 1 if x is a support vertex, and ¢ = 0 otherwise. Every i,2 (7T )-function
can be extended to an I2RDF on T’ by assigning {1,2} to x;, i = 1,2,...,k, @
to u foru € U{FZIN (xi), and {1} to y if x is a support vertex. This implies that

@ Springer



Strong Equality Between the 2-Rainbow Domination and. . . S209

ir2(T") < iy(T) + 2k + 1. Since y,2(T) = i,2(T), we deduce that
Yr2(T)) < ip2(T') < yp2(T) 4+ 2k +t = ir2(T) + 2k + 1. ()

Now we show that y,2(T") = y,2(T)+2k+t.Let f be ay,»(T’)-function. It is easy
to see that ZueN[xi]_{X} |fw)| > 2,fori =1,2,...,k,and |f(x)|+ |f(»)| > 1,
if t = 1. Then ZueV(Tl) |f(u)| = 2k +t. If | f(x)| = O then f|y(r) is a 2RDF on
T, and so ZMGV(T) | f(w)| > y2(T). By adding two recent inequalities, we obtain
Yo (T)) = ZueV(T,) |f)| = yr2(T) 4 2k + t. Assume that | f(x)] > 1. Clearly if
t = 1then [f(x)|+ |f(y)| = 2. Thus Zuevm) [fw) >2k+t+1.If|f(2)] #0
then f|y(r)isa2RDFon T, and if | f(z)| = O then the function f; defined on V(T
by fi1(z) = {1} and f1(u) = f(u)ifu € V(T) — {z} is a 2RDF for T. It follows that
vr2(T") > yp2(T) + 2k + t. Hence, we deduce that

Vr2(T/) =y (T) + 2k +1¢. 2)
By (1) and (2), we have
ir2(T') = iy2(T) + 2k +1 = y,2(T) + 2k + 1 = o (T").

It will now be shown that y,2(T”) = i,2(T"). Assume & is a 2 (T")-function that is
not independent. We may assume that £ assigns {1, 2} to each support vertex adjacent
to x. If |h(x)| = O then clearly h|yr) is a y»2(T)-function that is not independent, a
contradiction with the assumption ;2 (T) = i,2(T). Thus |a(x)| > 1. Then |A(z)] = 0
and Zvevm) |h(v)| > 2k + 1 +¢. If |h(x)| = 1, then ZweNT(Z) |h(w)| > 1 and
the function g : V(T) — P({1,2}) defined by g(z) = {1} and g(u) = h(u) for
u € V(T) — {z} is a yy2(T)-function that is not independent, contradicting y,2(T) =
ir2(T). Thus |h(x)| = 2. Then x is a support vertex. Now

yaT =)< D h@)]=ya(T) =2k —1—1 < yo(T).
ueV(T—z)

This is a contradiction with the assumption y,2 (T —z) > y,2(T). Therefore, y,2(T")
ir2(T") and the proof is complete.

o i

Lemma 6 If T is a tree with y»2(T) = i,2(T) and T' is a tree obtained from T by
Operation O3, then y,2(T") = i2(T).

Proof Let z € V(T) be a strong support vertex and let zxy be the path added by
Operation O3 to obtain T’. Let f be a y,2(T)-function such that f(z) = {I,2}
[Observation 2(a)]. Since y;2(T) = i2(T), f is an 2RDF of T. We can extend f to
an I2RDF on 7" by assigning ¥ to x and {1} to y, and thus

vr2(T") < ir(T') < ipa(T) + 1 = y2(T) + 1. 3

Letnow f] be a y,2(T’)-function. We can assume f](z) = {1, 2} by Observation 2(a).
Since f] is a y,»(T’)-function, we must have | f{(x)| = 0 and | f1(y)| = 1. Then
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fl |V(T) is a 2RDF on T, and so

vr2(T) < yra(T") — 1. “

It follows from (3) and (4) that y,o(T") = i,2(T") = y2(T) + 1 = i,2(T) + 1.
Finally, we shall show that y,2(T") = i,2(T"). Assume 4 is a y,2(T’)-function that
it is not independent. First let |2(x)| > 1. Then |h(x)| + |A(y)| = 2. If |h(z)] # O
then replace h(x) by ¥ and h(y) by {1} or {2} to obtain a 2RDF for T’ of weight
less than y,2(T"), a contradiction. Thus |h(z)| = 0. Then clearly |h(u)| = 1 for any
leaf u adjacent to z and the function iy : V(T') — P({1,2}) defined by hi(y) =
{1}, h1(z) = {1,2}, hi(u) = @ foru € L, U {x} and h;(w) = h(w) otherwise, is a
2RDF for T’ of weight less than y,2(T"), a contradiction. Now let |2(x)| = 0. Then
clearly |2 (y)| = 1 (else we could make a change to be in the previous case |h(x)| > 1),
and h|y(r) is a y,2(T)-function which is not independent, a contradiction. Hence,
¥r2(T") = i,2(T"). This completes the proof. O

Lemma 7 If T is a tree with y,2(T) = i,»(T) and T' is a tree obtained from T by
Operation Oy, then y,2(T") = i2(T).

Proof Letz € V(T) be a vertex which is adjacent to a support vertex of degree 2 such
as w, and let Operation Oy add the path zxy to T'.

First let degy(z) > 2. Let w’ be the leaf adjacent to w. Assume f is a y,2(7)-
function such that 2 € f(z) (Proposition A). Since y,2(T) = i,2(T), f is an i2(T)-
function. Now f can be extended to an I2RDF on 7’ by assigning @ to x and {1} to y.
Thus

yr2(T") < i (T') < ip2(T) + 1 = y2(T) + 1. )

On the other hand, if fj is a 2 (T")-function, then we may assume that 2 € f(z) by
Proposition A. Clearly | fi(x)| 4+ | fi(y)| = 1 and fi|v(r) is a 2RDF on T of weight
at most y,2(T') — 1, implying that y,2(T”) > y,2(T) + 1. It follows from (5) and the
recent inequality that y,2(T") = i,2(T") = i;2(T) + 1 = y2(T) + 1.

It will now be shown that y,2(T") = i,2(T"). Suppose h is a y,2(T”)-function which
it is not independent. If |A(z)| > O then we must have |h(x)| = 0 and |k (y)| = 1,
and so h|y(r) is a y-2(T)-function which is not independent, a contradiction. Let
|h(z)] = 0. Then obviously |a(x)| + |h(y)| = |h(w)| + |A(w")] = 2. Then the
function g : V(T') — P({1,2}) defined by g(x) = g(w) = @, g(y) = gw’) =
{1}, g(z) = {2} and g(u) = f(u) foru € V(T') — {x, y, w, w’, z}, is a 2RDF of T’
of weight less than y,2(T"), a contradiction. Thus y,2(T") = i2(T").

Now let degy(z) = 1, i.e., z is a leaf.

Assume f is a y»2 (T )-function. By Proposition A, we may assume that f(z) = {1}.
Note that f is an i,2(T)-function because y;2(T) = i,2(T). Then f can be extended
to an I2RDF on 7" by assigning @ to x and {2} to y. This implies that

yr2(T") < i (T') < ir2(T) + 1 = y2(T) + 1. (©6)

On the other hand, if fj is a y,2(T’)-function, then by Proposition A we may assume
fi(y) ={1}and2 € fi(z). Then fi|v(r)isa2RDF of T of weight at most y,2(7")—1,
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implying that y,2(T") > y,2(T) + 1. It follows from the last inequality and (6) that
Y2 (T =ip(T") = y2(T) + 1 = ip2(T) + L.

Next we show that y,2(T") = i,2(T"). Assume h is a y,2(T")-function that it is not
independent. If | (z)| > O then we may assume that |2(x)| = Oand |2(y)| = 1, and so
hly(ry is a y,2(T)-function which is not independent, a contradiction. Let /(z) = @.
Then |h(x)| + |h(y)| = 2. If |h(w)| = O then |h(x)| = 2 and |h(y)| = 0, and the
function hy : V(T) — P({1, 2}) defined by h1(z) = {1} and h{(u) = h(u) ifu €
V(T)—{z}is a y,2(T)-function which is not independent, a contradiction. If |z (w)| >
1 then it follows from |k (x)| + |A(y)| > 2 that the function h; : V(T) — P({1, 2})
defined above, is a y,-2(T)-function which is not independent, a contradiction. Hence
Yr2(T") = i (T"). o

Lemma 8 If T is a tree with y»2(T) = i,2(T) and T' is a tree obtained from T by
Operation Os, then y,2(T") = i2(T).

Proof Letz € V(T) be a vertex that has a strong support vertex « in its neighborhood
and let Operation Os add the path zxyw to T for obtaining 7’. Any 2RDF of T can
be extended to a 2RDF for T’ by assigning {1, 2} to y, and # to x and w. Since
vr2(T) = i2(T), we deduce that

Y2 (T") <ipp(T') < ir2(T) +2 = y2(T) + 2. (7

Let f be a v, (T')-function. We may assume f(w) = {1}, f(y) =¥ and2 € f(x),
by Proposition A. Also we may assume that | f («)| = 2, since u is a strong support
vertex. Then f|y(r) is a 2RDF on T of weight at most y2(T") — 2, and so yo(T) <
yp2(T") — 2. Tt follows from (7) that

Vr2(T") = ip2(T") = iy2(T) +2 = y2(T) + 2.

To show that y,2(T") = i,2(T"), suppose h is a y,2(T’)-function that it is not
independent. Since u is a strong support vertex, we may assume |i(u)| = 2. Then
clearly h(z) = @ and |h(x)|+ |h(y)| + [ (w)| = 2, and so h|y(7) is a y,2 (T )-function
which is not independent, a contradiction. Hence y,2(T") = i,2(T’) and the proof is
completed. O

The proof of next lemma is similar to the proof of Lemma 5, and therefore omitted.

Lemma 9 If T is a tree with y,2(T) = i,2(T), and T' is a tree obtained from T by
Operation Og, then y,2(T) = ir2(T).

Lemma 10 If T is a tree with y,2(T) = i,2(T) and T' is a tree obtained from T by
Operation O7, then y,»(T") = i2(T).

Proof Let z be a vertex of T such that every y,»(T)-function assign @ to it, and let
x be a leaf of double star S(1,2) whose support vertex has degree 3. Assume that
Operation 7 adds the double star S(1, 2) and the edge xz to obtain 7’ from T'. Let
V(S(1,2)) = {x, v, vo, u, up} where N(v) = {x, u, vo} and u € N(up). Any 2RDF
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of T can be extended to a 2RDF on T’ by assigning @ to x, u and vy, {1, 2} to v and
{1} to ug. Since yy2(T) = i2(T), we deduce that

yr2(T") < i (T') < ip2(T) + 3 = y2(T) + 3. ®)

Let f be a y,2(T’)-function such that f(ug) = {1} and 2 € f(v) by Observation A.
Clearly | f(v)| + | f(uo)| + | f@)| + | f (vo)| > 3. We may assume that | f(x)| = O,
otherwise we replace f(x) by ¥ and f(z) by f(z) U f(x). Then f|yr) is a 2RDF
of T, implying that y,2(T) < y2(T’) — 3. By (8), we have y,2(T") = i,o(T) =
vr2(T) +3 = ipa(T) + 3.

It will now be shown that y,2(T") = i.2(T’). Suppose & is a y,2(T")-function
which is not independent. Clearly zer(S(l,z)) [h(y)| = 3.If |h(z)| > O, then h|y(T)
is a y,2(T)-function assigning nonempty set to z which leads to a contradiction. Thus
|h(z)| = 0. InyeV(S(l,Z)) |h(y)| = 4, then we change the values of 7 on V (S(1, 2))U
{z}toh(z) = h(ug) = {1}, h(v) = {1, 2},and h(x) = h(u) = h(vg) = @, and then the
new function plays the role of # which has been considered earlier. Thus we assume
that Z),GV(S(LZ)) |h(y)| = 3. Thenclearly |h(x)| = 0,and &|y 7y is a y-2(T)-function
which is not independent, a contradiction. Hence y,2(T") = io(T"). O

Theorem 11 Each tree T in family F U {K,} satisfies y,o(T) = i2(T).

Proof If T = K, then clearly y,2(T) = i2(T). Let T € F. Then T is obtained
from a star K13 by successive operations T, ..., 7", where T' € {Oy, ..., O7}if
m > 1land T = K > if m = 0. The proof is by induction on m. If m = 0, then clearly
vr2(K1,2) =i2(K12). Let m > 1 and that the statement holds for all trees which are
obtained from K by applying m — 1 operations in {O1, ..., O7}. It follows from
Lemmas 4, ..., 10 that y»(T) = i,2(T). O

Observation 12 If S(p, q) is a double star with ¢ > p > 1 and y-2(S(p,q)) =
ir(S(p,q)), then p =1and g > 2.

Theorem 13 Let T be a tree of order n. If yy2(T) = i,2(T), then T € F U {K}.

Proof The proof is by induction on n. If n = 1 then T = K. Let the statement holds
for all trees of order less than n and let 7' be a tree of order n with y,2(T) = i,2(T).
Since yy2(P2) # i2(P2), we may assume that n > 3. If diam(7) = 2 then T is a
star and by Observation 3, T € F. If diam(7) = 3, then T is a double star S(p, q)
with ¢ > p > 1. By Observation 12, we have p = 1 and ¢ > 2. Then T can be
obtained from K , by Operation O3 and so T € F. Therefore, we may assume that
diam(T) > 4.

Let viva... v (kK > 5) be a diametral path in T such that [L,,| is as large as
possible and root T at vg. Also suppose among paths with this property we choose a
path such that |L,,] is as large as possible.

Assume first that deg(v2) > 4. Let f be a y,2(T)-function. Then clearly f(v2) =
{1,2} and so f is a 2RDF of T — vy. Since y,2(T) = i,2(T), f is also an I2RDF
of T — vy, implying that y,2(T) = i2(T) > i2(T — v1) > y2(T — v1). On the
other hand, by Observation 2(a), T — v; has a y,o-function g that assigns {1, 2} to
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vy. Then g can be extended to a y,2(7T)-function by assigning ¥ to v; that yields
¥r2(T) < yp2(T — v1). Hence y2(T) = iy2(T) = i2(T — v1) = yr2(T — v1).

We show that y2(T — v1) = i,2(T — v1). Suppose that there is a y,2(T — vy)-
function g that is not independent. Since g is a y,2(T — vy)-function, we must have
lg(v2)| + ZuGLUf{UI} |g(u)| = 2. Now the function & : V(T — vy) — P({l1,2})
defined by h(vy) = (1,2}, h(u) = @ foru € Ly, — {v1} and h(x) = g(x) otherwise,
is a 2RDF of T — v; which in not independent. It is clear that & can be extended
to a y»2(T')-function which is not independent by assigning ¢ to v;. This leads to a
contradiction with Y2 (T) = i,2(T). Thus y,2(T — vy) = i,2(T — vy). It follows from
the inductive hypothesis that 7 — v; € F. Now it is clear that 7' can be obtained from
T — vy € F by applying Operation O;.

Assume next that deg(vy) = 3. Let u € L,, — {v1}. We claim that v3 is not
a strong support vertex. Assume to the contrary that v3 is a strong support vertex.
By Observation 2(a), T has a y2(T)-function f such that f(v3) = {1, 2}. Clearly
| f(v2)] 4+ | f(v1)] + | f(u)] = 2. Now the function g : V(T) — P({l1, 2}) defined
by g(v2) = {1,2}, g(v1) = g(u) =P and g(x) = f(x) forx € V(T) — {u, vy, v2}
is clearly a y,2(T)-function that is not independent, a contradiction with y,»(T) =
ir2(T). Thus v3 is not a strong support vertex. Using Proposition A and an argument
similar to that described above, we deduce that v3 is not adjacent to a support vertex
of degree 2. By the choice of the diametral path, we deduce that any child of v3 is a
leaf or a support vertex of degree 3 and at most one of them is leaf. This implies that
Ty, € Fi.LetT' =T — T,.

We claim that if v is a support vertex, then y,2(T" — v4) > y2(T"). Let v3 be
a support vertex and let to the contrary that y,2(T" — v4) < yr2(T’). Assume h is
a Y2(T’ — vyg)-function and define g : V(T) — P({1,2}) by g(x) = h(x) for
x € V(T') — {va}, g(x) = {1,2} for x € N[vz] — (Ly; U {v4}) and g(x) = @
otherwise. Obviously g is a y,2(T)-function that is not independent, a contradiction
with y,2(T) = i,2(T). Thus y,2(T’ — v4) > y,2(T’) when v3 is a support vertex.

It will now be shown that y,2(T") = i,2(T"). First we show that y,2(T") = i,2(T").
Since every y,2(T’)-function can be extended to a 2RDF on T by assigning {1, 2} to
the strong support vertices in N7,, (v3), {1} to the leaf adjacent to v3, if any, and ¥ to
the other vertices in T, we deduce that

ir2(T) = Y2 (T) < yr2(T) + 2k + 1 < iy2(T) + 2k +1 &)

where k is the number of strong support vertices adjacent to v3 in 7,, and ¢ is the
number of leaf adjacent to v3. On the other hand, let f be a y,2(7)-function. By
Observation 2(a), we may assume that f assigns {1, 2} to the strong support vertices
in Ty,. Since y2(T) = i,2(T), f is an I2RDF. Then f assigns ¥ to v3 and {1} or
{2} to the leaf adjacent to vs3, if any, and f|y(zvy is an I2RDF on T’ with weight
i;2(T) — 2k — t. Thus io(T") < ipp(T) — 2k — t. It follows from (9) that i,»(T) =
Y2 (T) = Y2 (T") + 2k +t = ip2(T') + 2k + t and hence ;2 (T") = io(T).

Now we show that this equality is strong. Suppose £ is a y;,»(T’)-function that it
is not independent. We can extend % to a 2RDF on T by assigning {1, 2} to every
strong support vertex of T, and {1} to the leaf adjacent to v3, if any, and ¥ to the other
vertices in 7T,,, to obtain a y,»(7")-function which is not independent, a contradiction
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with y,2(T) = i2(T). Therefore y,2(T') = i,2(T’). It follows from the induction
hypothesis that T’ € F. Then T can be obtained from T’ by applying Operation O,
and hence T € F.

We thus assume that deg(v,) = 2. Furthermore, we may assume that every child of
v3 that is a support vertex has degree two. We now consider the following three cases
on |Ly,].

Case1|L,,| > 2.

Let T/ = T — {v1, vo}. We show that y,2(T’) = i,2(T’). Suppose f is a y,2(T)-
function that assigns {1, 2} to v3 [Observation 2(a)]. Clearly | f (vi)| + | f(v2)| = 1.
Since yy2(T) = iy2(T), fisani»(T)-function. Hence | f(v2)| = 0 and f|y (7 is an
I2RDF on 7' implying that

vr2(T") < in(T') < ip2(T) — 1 = y2(T) — 1. (10)

Now let g be a y,2(T’)-function that assigns {1, 2} to v3 [Observation 2(a)]. Then
g can be extended to a 2RDF on T by assigning ¢ to v and {1} to vy. This yields
vr2(T) < y2(T") + 1, By (10), we have y,2(T’) = i,2(T"). To show that this equality
is strong, assume £ is a y2 (T")-function that it is not independent. We may assume
h(v3) = {1, 2}. Now one can extend / to a y,-2(T')-function which is not independent,
by assigning ¢ to vy and {1} to vy, a contradiction with y2(T) = i2(T). Thus
vr2(T") = i,2(T"). By induction hypothesis, T’ € F and so T can be obtain from 7"’
by Operation O3.

Case 2 |L,,| =0.

Then any child of v3 is a support vertex of degree 2. We consider two subcases.
Subcase 2.1 deg(v3) > 3.

Let z5 be a child of v3 different from v,, and let z; be the leaf adjacent to z2. Suppose
T' = T — {v1, va}. We show that y,2(T") = i,2(T’). Let f be a y,2(T)-function.
We may assume 2 € f(v3) by Proposition A. Clearly | f(vy)| + | f(v2)] = 1. Since
vr2(T) = ip2(T), fisai(T)-function. Clearly f|y 7 is an 2RDF on T, implying
that

Yr2(T") < i (T') < ipa(T) — 1 = y,0(T) — 1. (11

On the other hand, by Proposition A, T’ has a y,»(T’)-function g such that 2 € g(v3).
Then we can extend g on 7 by assigning ¥ to v2 and {1} to vy, to obtain a 2RDF of
weight y,2(T") + 1. Thus y,2(T") > y2(T) — 1. It follows from (11) that y,2(T") =
ira(T").

To show that this equality is strong, assume % is a y,2(T’)-function that it is not
independent. First let |2 (v3)| > 0. Assume without loss of generality that 2 € h(v3).
Then the function ' : V(T) — P({1,2}) defined by h'(v)) = {1}, (v2) = @
and h'(x) = h(x) for x € V(T) — {v1, v2} is a y2(T)-function that is not inde-
pendent, a contradiction. Let now |h(v3)| = 0. Then |h(z2)| + |h(z1)| = 2. If
UreN@y)—{z}h(x) # @, then we define g : V(T) — P({1,2}) by g(v3) =
{1}, g(z2) = g(v2) =0, g(z1) = g(v1) = {2} and g(x) = h(x) otherwise, to produce
a y2(T)-function that is not independent, a contradiction. Let Uy ey (v3)—{z,} A (x) = @.
Then to rainbowly dominate v3, we musthave 2 (z2) = {1, 2} and |h(z1)| = 0. Then the
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functiony : V(T') — P ({1, 2}) defined by 1 (v3) = {1}, h1(z2) =@, hi(z1) = {2},
and hi(x) = h(x) otherwise, is a y,2(T’)-function that is not independent and
|h1(v3)| > 0. This leads to a contradiction as above. Thus y,2(T’) = i»(T’) and
by inductive hypothesis we have T" € F. Now T can be obtained from 7’ by Opera-
tion Oy.

Subcase 2.2 deg(v3) = 2.

First let deg(vq) = 2. Let T = T — {vy, v2}. We show that y,2(T") = i2(T’). Let
f be a yo(T)-function such that f(vy) = {1} and 2 € f(v3) (Proposition A). This
implies that | f (v3)| = 0. Since y,2(T) = i,2(T), f is an i, (T )-function. Obviously
the function f, restricted to 7’, is an I2RDF on 7’, implying that

yr2(T") < i (T') < ip2(T) — 1 = y2(T) — 1. (12)

Now let g be a y,2(T’)-function such that g(v3) = {1} by Proposition A. We can
extend g to a y,2(7T)-function by assigning ¢ to v» and {2} to v;. This implies that
Yr2(T) < yr2(T') + 1, and by (12) we obtain y,2(T") = ir2(T").

Now we show that this equality is strong. Assume £ is a y,»(T’)-function that is
not independent. If |2 (v3)| > 0, then we can extend / to a y,»(T')-function that is not
independent by assigning ¥ to vy and {1} to vy if 2 € h(v3) and {2} to vy if 1 € h(v3),a
contradiction with y,2(T) = i,2(T). Let |h(v3)| = 0. Then to rainbowly dominate v3,
we must have i (v4) = {1, 2}. Since A is a y,5(T")-function and deg(v4) = 2, we must
have |h(vs)| = 0. Then the function 41 : V(T) — P({l, 2}) defined by h(vs) =
hi(v)) = {1}, hi(v3) = {2}, h1(v2) = h1(vg) = ¥ and h1(x) = h(x) otherwise, is
a yp2(T)-function which is not independent, a contradiction with y,2(T) = i2(T).
Hence y,2(T") = i,2(T’) and by inductive hypothesis, T’ € F.Now T can be obtained
from T’ by Operation Oj.

Next let deg(v4) > 3. By Proposition A, T has a y,p-function f such that
fr) = {1}, |f(v2)] = 0and 2 € f(v3). Also suppose among y;>(T)-functions
with this property we choose a y,2(T)-function such that |f(v4)| is as large as
possible. If | f(v3)| = 2, then the function g; : V(T) — P({l,2}) defined by
g1(vy) = {1}, g1(v2) = ¥, g1(v3) = {2}, g1(v4) = (1} and g1(x) = f(x) for
x € V(T) — {v1, vz, v3,v4} is a yo(T)-function that is not independent, a con-
tradiction. Therefore | f (v3)| = 1. Since yy2(T) = i2(T), f is an I2RDF of T and
hence f(v4) = ¥. This implies that neither v4 is a strong support vertex nor v4 has a
support vertex of degree 2 in its neighborhood. If there is a path v4y3y2y; in T4 where
y3 # v3 and deg(y;) = 1, then by the choice of diametral path v; ... v, we have
|[Ly,| = |Ly,| and |Ly;| > |Ly,]| that implies deg(y2) = 2 and |L,,| = 0. Hence, if
there is a leaf at distance three from vy4 in T, then it plays the same role of v;. Thus
we may assume that each component of Ty, — v4 is isomorphic to Pz, Ky, (t > 2)
or a single vertex, where vy is adjacent to a leaf of each Ps, the center of K ;, or the
single vertex, respectively.

Assume first that one of the components of 7,, — v4 is K1 7, (t > 2). That is, v4
has a strong support vertex such as z in its neighborhood. Let 7" = T — {vy, v2, v3}
and let f be a y,-2(T')-function. By Observation 2(a), we may assume f(z) = {1, 2}.
Since y2(T) = i,2(T), f is ai»(T)-function and hence | f (v4)| = 0. Then clearly
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[ f D]+ 1f )|+ |f(v3)] =2and f|y is an I2RDF on T, implying that
Yr2(T") < ipa(T') < ip2(T) = 2 = y2(T) — 2. (13)

On the other hand, let f; be a ;2 (T’)-function such that f|(z) = {1, 2} [Observation
2(a)]. We can extend f] to a 2RDF on T with weight y,2(T") + 2 by assigning {2},
and {1} to vs3, vy and vy, respectively. Hence y,2(T) < v2(T’) + 2 and by (13), we
have y,2(T") = i2(T").

If there exists a y,2(T’)-function 4 that is not independent, then as above we can
extend % to a y,2(T)-function that is not independent, a contradiction with y,»(7T) =
ir2(T). Thus y,2(T") = ip(T’). It follows from inductive hypothesis that 7’ € F and
so T can be obtained from T’ by Operation Os.

Now suppose that v4 has no child which is a strong support vertex. We claim
that [L,,| < 1. Let to the contrary that |L,,| > 2. By Proposition A, T has a y,,-
function f that f(vi) = {1} and 2 € f(v3). Since |L,,| > 2, we may assume
f(v4) = {1, 2} which contradicts the assumption y,2(T) = i,2(T). Hence |L,,| < 1.
Since deg(v4) > 3, we deduce that T, € F». Let T" = T — T, and let g be a
¥r2(T)-function with g(v1) = {1} and 2 € g(v3). By assumption, g is an [2RDF of T
and hence g(v4) = @. Then g|y (7 is an I2RDF of T”, implying that

yr2(T") < ipa(T') < ip2(T) —2deg(vg) +2 —1 = yy2(T) —2deg(va) +2—1, (14)

where ¢ is number of leaves adjacent to vy.

On the other hand, each y,,(T’)-function f can be extended to a 2RDF of T by
assigning {2} to vs, {1} to vy, each vertex of N(v4)\(Ly, U {vs, v3}) and the leaf
adjacent to vs, if any, {2} to every vertex in T, at distance 3 from v4 except vy, and ¢
to the other vertices of Ty, . It follows that y,2(T”) > y2(T) — 2deg(v4) +2 — t. By
(14) we obtain y,2(T") = i;2(T").

If & is a y,2(T’)-function that is not independent, then we can easily extend  to a
¥r2(T)-function that is not independent, a contradiction with y,2(T) = i,2(T). Thus
vr2(T") = i,2(T"). By inductive hypothesis, we have T’ € F. It can be easily seen
that y,2(T' — vs) > y2(T") if v4 is a support vertex. Now T can be obtained from 7’
by Operation Og.

Case3 |L,,| = 1.
Let w be the leaf adjacent to v3. We consider the following subcases.
Subcase 3.1 deg(v3) > 3.

Then v3 has a child zp # vy that is a support vertex of degree 2. Let z; be the leaf
adjacent to zp. Set T = T — {vy, vo}. We show that y,2(T”) = i,2(T”). Assume that f
is a Y2 (T)-function. We may assume that f(v;) = {1} and 2 € f(v3) by Proposition
A. Clearly | f(v2)| = 0. Since y,2(T) = i,2(T), f is an I2RDF of T. Now f|y () is
an I2RDF of T’ of weight y,2(T) — 1 which implies that

vr2(T") < i (T') < ip2(T) — 1 = y2(T) — 1. 15)
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On the other hand, if f] is a y,2(T’)-function, then we may assume that 2 € fj(v3)
by Proposition A, and so f] can be extended to a 2RDF of T of weight y,2(T") + 1
by assigning ¥ to v, and {1} to vy, implying that y,2(T) < y,2(T") + 1. By (15) we
obtain y,2(T") = i, (T").

To show that this equality is strong, suppose /% is a y,2(T’)-function which is not
independent. We may assume |h(v3)| > 0, for otherwise we must have |h(w)| = 1
and |h(z2)| + |h(z1)| = 2 and the function g : V(T') — P({1,2}) by g(v3) = {1},
g(z2) = 0, g(z1) = g(w) = {2} and g(x) = h(x) otherwise, is a y,2(T’)-function
with the desired property. Then we can easily extend 4 to a y,>(T')-function that is not
independent, a contradiction with y,2(T) = i,2(T). Thus y2(T’) = i,2(T’) and by
inductive hypothesis, T’ € F. Now T can be obtained from 7"’ by Operation Oy.

Subcase 3.2 deg(v3) = 3.

First let deg(v4) > 3. Let f be a y,2(T)-function. By Corollary 1, we may assume
f(v3) = {1, 2}. Since y2(T) = i,»(T), f is an I2RDF of T. Then | f (v4)| = 0 and
[f)| = 1.If 1 € Uyen(uy)—{vy) [ (x) (the case 2 € Uyen(uy)—{u;) f (x) is similar),
then the function f; : V(T) — P({1, 2}) defined by fi(v1) = fi(w) = {1}, fi(v3) =
{2}, filva) = @ and fi(x) = f(x) otherwise, is a y,»(T)-function which is not
independent, a contradiction with y,2(T) = i,2(T). Thus | Uxen[u]—{v;) f(x)] = 0.
This implies that v4 has no child with depth O or 1. Assume that v4 has a child z with
depth 2. Then any leaf of T, at distance two from z plays the same role of v, and thus
by the previous arguments, we may assume that 7, >~ T,,, and as above we can define
a Y2 (T)-function g such that g(z) = g(v3) = {1, 2} which leads to a contradiction.
Thus deg(v4) = 2. Suppose T’ = T — T,,,. We show that i,2(T") = y2(T"). Let f be
a yy2(T)-function that assigns {1, 2} to v3 and ¥ to v, according to Corollary 1. Note
that f is also an I2RDF of T because i,2(T') = y,2(T). Then f|y 7/ is an I2RDF on
T’, implying that

vr2(T") < ira(T') < iya(T) = 3 = yp2(T) — 3. (16)

On the other hand, every y, (T’)-function can be extended to a 2RDF of T by assigning
{1} to vy, @ to vy, v4, w and {1, 2} to v3, and thus y,2(T) < y,2(T’) + 3. It follows
from (16) that y,2(T") = i,2(T").

If there is a v, (T')-function g that is not independent then as above, we can extend it
to a ¥y (T)-function that is not independent, a contradiction. Thus y,2(T") = i2(T").
By the inductive hypothesis, 7’ € F and T can be obtained from 7’ by Operation O
and the proof is completed. O

Now we are ready to state the main theorem of this paper.

Theorem 14 Let T be a tree. Then i, o(T) = yo(T) ifand only if T € F U {K1}.
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