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Abstract A 2-rainbow dominating function (2RDF) on a graph G = (V, E) is a
function f from the vertex set V to the set of all subsets of the set {1, 2} such that for any
vertex v ∈ V with f (v) = ∅ the condition

⋃
u∈N (v) f (u) = {1, 2} is fulfilled. A 2RDF

f is independent (I2RDF) if no two vertices assigned nonempty sets are adjacent. The
weight of a 2RDF f is the value ω( f ) = ∑

v∈V | f (v)|. The 2-rainbow domination
number γr2(G) (respectively, the independent 2-rainbow domination number ir2(G))
is the minimum weight of a 2RDF (respectively, I2RDF) on G. We say that γr2(G)

is strongly equal to ir2(G) and denote by γr2(G) ≡ ir2(G), if every 2RDF on G of
minimumweight is an I2RDF. In this paper, we provide a constructive characterization
of trees T with γr2(T ) ≡ ir2(T ).
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1 Introduction

LetG be a simple graph with vertex set V = V (G) and edge set E = E(G). For every
vertex v ∈ V , the open neighborhood N (v) is the set {u ∈ V | uv ∈ E} and the closed
neighborhood of v is the set N [v] = N (v) ∪ {v}. The degree of a vertex v ∈ V is
degG(v) = deg(v) = |N (v)|. If A ⊆ V (G), then G[A] is the subgraph induced by A.
A vertex of degree one is called a lea f , and its neighbor is called a support vertex. If
v is a support vertex, then Lv will denote the set of all leaves adjacent to v. A support
vertex v is called strong support vertex if |Lv| > 1. For r, s ≥ 1, a double star S(r, s)
is a tree with exactly two vertices that are not leaves, with one adjacent to r leaves and
the other to s leaves. For a vertex v in a rooted tree T , letC(v) denote the set of children
of v, D(v) denote the set of descendants of v and D[v] = D(v) ∪ {v}, and the depth
of v, depth(v), is the largest distance from v to a vertex in D(v). The maximal subtree
at v is the subtree of T induced by D(v) ∪ {v} and is denoted by Tv . For terminology
and notation on graph theory not given here, the reader is referred to [11,13].

For a positive integer k, a k-rainbow dominating function (kRDF) of a graph G is
a function f from the vertex set V (G) to the set of all subsets of the set {1, 2, . . . , k}
such that for any vertex v ∈ V (G) with f (v) = ∅ the condition

⋃
u∈N (v) f (u) =

{1, 2, . . . , k} is fulfilled. The weight of a kRDF f is the value ω( f ) = ∑
v∈V | f (v)|.

The k-rainbow domination number of a graph G, denoted by γrk(G), is the minimum
weight of a kRDF of G. A γrk(G)-function is a k-rainbow dominating function of G
with weight γrk(G). Note that γr1(G) is the classical domination number γ (G). The
k-rainbow domination number was introduced by Brešar, Henning and Rall [3] and
has been studied by several authors (see, e.g., [4–7,12]). To study other domination
parameters, we refer the readers to [1,2,14,15].

A k-rainbow dominating function f is called an independent k-rainbow dominating
function (abbreviated IkRDF) on G if the set V (G) − {v ∈ V | f (v) = ∅} is
independent. The independent k-rainbow domination number, denoted by irk(G),
is the minimum weight of an IkRDF on G. An independent k-rainbow dominating
function f is called an irk(G)-function if ω( f ) = irk(G). Since each independent k-
rainbow dominating function is a k-rainbow dominating function, we have γrk(G) ≤
irk(G).

Clearly if γrk(G) = irk(G), then every irk(G)-function is also a γrk(G)-function.
However, not every γrk(G)-function is an irk(G)-function, even when γrk(G) =
irk(G). For example, the double star S(k, k+1) has two γrk(S(k, k+1))-function, but
only one of them is an irk(S(k, k + 1))-function. We say that γrk(G) and irk(G) are
strongly equal and denote by γrk(G) ≡ irk(G), if every γrk(G)-function is an irk(G)-
function.

Haynes and Slater in [10] were the first to introduce strong equality between two
parameters. Also in [8,9], Haynes, Henning and Slater gave constructive characteri-
zations of trees with strong equality between some domination parameters.

Our purpose in this paper is to present a constructive characterizations of trees T
with γr2(T ) ≡ ir2(T ).

We make use of the following result in this paper.
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Proposition A [5] Let G be a connected graph. If there is a path v3v2v1 in G with
deg(v2) = 2 and deg(v1) = 1, then G has a γr2(G)-function f such that f (v1) = {1}
and 2 ∈ f (v3).

Corollary 1 Let T be a tree with γr2(T ) ≡ ir2(T ). If there is a path v3v2v1 in T
with deg(v2) = 2 and deg(v1) = 1 such that v3 is a support vertex, then T has a
γr2(T )-function f such that f (v3) = {1, 2}, | f (v1)| = 1 and | f (x)| = 0 for every
x ∈ Lv3 ∪ {v2}.
Observation 2 Let T be a tree and let z be a strong support vertex of T . Then

(a) T has a γr2(T )-function such that f (z) = {1, 2}.
(b) γr2(T ) 	≡ ir2(T ) if and only if T has a γr2(T )-function that is not independent

and f (z) = {1, 2}.
Proof (a) The proof is immediate.
(b) Let γr2(T ) 	≡ ir2(T ). Then T has a γr2(T )-function that is not independent. If
f (z) = {1, 2}, then we are done. If | f (z)| = 1, then | f (x)| = 1 for each x ∈ Lz

and the function g : V (G) → P({1, 2}) defined by g(z) = {1, 2}, g(x) = ∅ for
x ∈ Lz and g(u) = f (u) otherwise, is a 2RDF of T of weight less than ω( f ) which
is a contradiction. Let f (z) = ∅. Then clearly the function g : V (G) → P({1, 2})
defined by g(z) = {1, 2}, g(x) = ∅ for x ∈ Lz and g(u) = f (u) otherwise, is a
γr2(T )-function with the desired property. ��

2 Characterizations of Trees with γr2(T) ≡ ir2(T)

Let F1 be the family of trees that can be obtained from k ≥ 1 disjoint stars K1,2 by
adding either a new vertex v or a path uv and joining the centers of stars to v. Also let
F2 be the family including P5 and all trees obtained from k ≥ 2 disjoint P3 by adding
either a new vertex v or a path uv and joining v to a leaf of each P3. If T belongs to
F1 ∪ F2 − {P5}, then we call the vertex v, the special vertex of T and if T = P5,
then its support vertices are special vertices of T . Note that if T ∈ F1 ∪ F2, then
γr2(T ) ≡ ir2(T ).

Now we provide a constructive characterization of trees T with γr2(T ) ≡ ir2(T ).
For this purpose, we define a family of trees as follows: Let F be the family of trees
such that: F contains star K1,2 and if T is a tree in F , then the tree T ′ obtained from
T by the following seven operations which extend the tree T by attaching a tree to a
vertex y ∈ V (T ), called an attacher, is also a tree in F .

• OperationO1: If z is a strong support vertex of T ∈ F , thenO1 adds a new vertex
x and an edge xz.

• Operation O2: If z is a vertex of T ∈ F , then O2 adds a new tree T1 ∈ F1
with special vertex x and an edge xz provided that if x is a support vertex, then
γr2(T − z) ≥ γr2(T ).

• Operation O3: If z is a strong support vertex of T ∈ F , then O3 adds a path zxy.
• Operation O4: If z is a vertex of T ∈ F which is adjacent to a support vertex of
degree 2, then O4 adds a path zxy.

123



S208 J. Amjadi et al.

• OperationO5: If z is a vertex of T ∈ F which is adjacent to a strong support vertex,
then O5 adds a path zxyw.

• Operation O6: If z is a vertex of T ∈ F , then O6 adds a new tree T2 ∈ F2
with special vertex x and an edge xz provided that if x is a support vertex, then
γr2(T − z) ≥ γr2(T ).

• Operation O7: If z is a vertex of T ∈ F such that every γr2(T )-function assigns
∅ to z, then O7 adds the double star S(1, 2) and an edge zx where x is a leaf of
S(1, 2) whose support vertex has degree 3.

Observation 3 The family F contains all graphs in {K1,t | t ≥ 2} ∪ F1 ∪ F2.

Proof Starting from K1,2 ∈ F and by applying t − 2 times Operation O1, we obtain
the star K1,t and hence F contains all stars. Furthermore, starting from K1,2 and by
applying Operation O4, we obtain that F contains P5.

Now let T ∈ F1. If |V (T )| = 4, then T = K1,3 and immediately T ∈ F .
If |V (T )| = 5, then T can be obtained from K1,2 by applying Operation O3. If
|V (T )| ≥ 6, then T can be obtained from K1,2 by applying Operation O2. Thus F
contains all graphs in F1.

Finally, let T ∈ F2 − {P5}. If |V (T )| = 7, then T = P7 and T can be obtained
from P5 by applying OperationO4 twice and so T ∈ F . If |V (T )| ≥ 9, then T can be
obtained from K1,2 by applying Operation O6. Thus F contains all graphs in F2. ��
Lemma 4 Let T be a tree with γr2(T ) ≡ ir2(T ) and let T ′ be the tree obtained from
T by Operation O1. Then γr2(T ′) ≡ ir2(T ′).

Proof Assume z is a strong support vertex of T and let x be a newvertex that is attached
to z by applyingOperationO1.ByObservation 2(a), T has aγr2-function f that assigns
{1, 2} to z. Since γr2(T ) ≡ ir2(T ), f is an I2RDF of T . Now we can extend f to an
I2RDF of T ′ by assigning ∅ to x , implying that γr2(T ′) ≤ ir2(T ′) ≤ ir2(T ) ≤ γr2(T ).
On the other hand, by Observation 2(a), there is a γr2(T ′)-function g which assigns
{1, 2} to z, and clearly the function g, restricted to T , is a 2RDF of T of weight γr2(T ′),
implying that γr2(T ) ≤ γr2(T ′). Hence γr2(T ′) = ir2(T ′).

It will now be shown that γr2(T ′) ≡ ir2(T ′). Suppose h is a γr2(T ′)-function
that is not independent. Since |Lz | ≥ 3, we must have f (z) = {1, 2}. Then the
function h, restricted to T , is a γr2(T )-function that is not independent which leads to
a contradiction. Thus γr2(T ′) ≡ ir2(T ). ��
Lemma 5 Let T be a tree with γr2(T ) ≡ ir2(T ) and let T ′ be a tree obtained from T
by Operation O2. Then γr2(T ′) ≡ ir2(T ′).

Proof Let T1 ∈ F1 be the tree which is attached by OperationO2 to T by the edge xz
for obtaining the treeT ′,where z ∈ V (T ) is the attacher vertex, and let x1, x2, . . . , xk ∈
V (T1) be the strong support vertices of T1. Assume x is the special vertex of T1. If
x is a support vertex then let y be the leaf that is adjacent to x . Let t be a variant
defined by t = 1 if x is a support vertex, and t = 0 otherwise. Every ir2(T )-function
can be extended to an I2RDF on T ′ by assigning {1, 2} to xi , i = 1, 2, . . . , k, ∅
to u for u ∈ ∪k

i=1N (xi ), and {1} to y if x is a support vertex. This implies that
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ir2(T ′) ≤ ir2(T ) + 2k + t . Since γr2(T ) ≡ ir2(T ), we deduce that

γr2(T
′) ≤ ir2(T

′) ≤ γr2(T ) + 2k + t = ir2(T ) + 2k + t. (1)

Nowwe show that γr2(T ′) = γr2(T )+2k+t . Let f be a γr2(T ′)-function. It is easy
to see that

∑
u∈N [xi ]−{x} | f (u)| ≥ 2, for i = 1, 2, . . . , k, and | f (x)| + | f (y)| ≥ 1,

if t = 1. Then
∑

u∈V (T1) | f (u)| ≥ 2k + t . If | f (x)| = 0 then f |V (T ) is a 2RDF on
T , and so

∑
u∈V (T ) | f (u)| ≥ γr2(T ). By adding two recent inequalities, we obtain

γr2(T ′) = ∑
u∈V (T ′) | f (u)| ≥ γr2(T ) + 2k + t. Assume that | f (x)| ≥ 1. Clearly if

t = 1 then | f (x)| + | f (y)| ≥ 2. Thus
∑

u∈V (T1) | f (u)| ≥ 2k + t + 1. If | f (z)| 	= 0
then f |V (T ) is a 2RDF on T , and if | f (z)| = 0 then the function f1 defined on V (T )

by f1(z) = {1} and f1(u) = f (u) if u ∈ V (T ) − {z} is a 2RDF for T . It follows that
γr2(T ′) ≥ γr2(T ) + 2k + t. Hence, we deduce that

γr2(T
′) = γr2(T ) + 2k + t. (2)

By (1) and (2), we have

ir2(T
′) = ir2(T ) + 2k + t = γr2(T ) + 2k + t = γr2(T

′).

It will now be shown that γr2(T ′) ≡ ir2(T ′). Assume h is a γr2(T ′)-function that is
not independent. We may assume that h assigns {1, 2} to each support vertex adjacent
to x . If |h(x)| = 0 then clearly h|V (T ) is a γr2(T )-function that is not independent, a
contradictionwith the assumption γr2(T ) ≡ ir2(T ). Thus |h(x)| ≥ 1. Then |h(z)| = 0
and

∑
v∈V (T1) |h(v)| ≥ 2k + 1 + t . If |h(x)| = 1, then

∑
w∈NT (z) |h(w)| ≥ 1 and

the function g : V (T ) → P({1, 2}) defined by g(z) = {1} and g(u) = h(u) for
u ∈ V (T ) − {z} is a γr2(T )-function that is not independent, contradicting γr2(T ) ≡
ir2(T ). Thus |h(x)| = 2. Then x is a support vertex. Now

γr2(T − z) ≤
∑

u∈V (T−z)

|h(u)| = γr2(T
′) − 2k − 1 − t < γr2(T ).

This is a contradictionwith the assumption γr2(T−z) ≥ γr2(T ). Therefore, γr2(T ′) ≡
ir2(T ′) and the proof is complete. ��
Lemma 6 If T is a tree with γr2(T ) ≡ ir2(T ) and T ′ is a tree obtained from T by
Operation O3, then γr2(T ′) ≡ ir2(T ′).

Proof Let z ∈ V (T ) be a strong support vertex and let zxy be the path added by
Operation O3 to obtain T ′. Let f be a γr2(T )-function such that f (z) = {1, 2}
[Observation 2(a)]. Since γr2(T ) ≡ ir2(T ), f is an I2RDF of T . We can extend f to
an I2RDF on T ′ by assigning ∅ to x and {1} to y, and thus

γr2(T
′) ≤ ir2(T

′) ≤ ir2(T ) + 1 = γr2(T ) + 1. (3)

Let now f1 be a γr2(T ′)-function. We can assume f1(z) = {1, 2} by Observation 2(a).
Since f1 is a γr2(T ′)-function, we must have | f1(x)| = 0 and | f1(y)| = 1. Then
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f1|V (T ) is a 2RDF on T , and so

γr2(T ) ≤ γr2(T
′) − 1. (4)

It follows from (3) and (4) that γr2(T ′) = ir2(T ′) = γr2(T ) + 1 = ir2(T ) + 1.
Finally, we shall show that γr2(T ′) ≡ ir2(T ′). Assume h is a γr2(T ′)-function that

it is not independent. First let |h(x)| ≥ 1. Then |h(x)| + |h(y)| = 2. If |h(z)| 	= 0
then replace h(x) by ∅ and h(y) by {1} or {2} to obtain a 2RDF for T ′ of weight
less than γr2(T ′), a contradiction. Thus |h(z)| = 0. Then clearly |h(u)| = 1 for any
leaf u adjacent to z and the function h1 : V (T ′) → P({1, 2}) defined by h1(y) =
{1}, h1(z) = {1, 2}, h1(u) = ∅ for u ∈ Lz ∪ {x} and h1(w) = h(w) otherwise, is a
2RDF for T ′ of weight less than γr2(T ′), a contradiction. Now let |h(x)| = 0. Then
clearly |h(y)| = 1 (else we couldmake a change to be in the previous case |h(x)| ≥ 1),
and h|V (T ) is a γr2(T )-function which is not independent, a contradiction. Hence,
γr2(T ′) ≡ ir2(T ′). This completes the proof. ��
Lemma 7 If T is a tree with γr2(T ) ≡ ir2(T ) and T ′ is a tree obtained from T by
Operation O4, then γr2(T ′) ≡ ir2(T ′).

Proof Let z ∈ V (T ) be a vertex which is adjacent to a support vertex of degree 2 such
as w, and let Operation O4 add the path zxy to T .

First let degT (z) ≥ 2. Let w′ be the leaf adjacent to w. Assume f is a γr2(T )-
function such that 2 ∈ f (z) (Proposition A). Since γr2(T ) ≡ ir2(T ), f is an ir2(T )-
function. Now f can be extended to an I2RDF on T ′ by assigning ∅ to x and {1} to y.
Thus

γr2(T
′) ≤ ir2(T

′) ≤ ir2(T ) + 1 = γr2(T ) + 1. (5)

On the other hand, if f1 is a γr2(T ′)-function, then we may assume that 2 ∈ f1(z) by
Proposition A. Clearly | f1(x)| + | f1(y)| ≥ 1 and f1|V (T ) is a 2RDF on T of weight
at most γr2(T ′) − 1, implying that γr2(T ′) ≥ γr2(T ) + 1. It follows from (5) and the
recent inequality that γr2(T ′) = ir2(T ′) = ir2(T ) + 1 = γr2(T ) + 1.

It will now be shown that γr2(T ′) ≡ ir2(T ′). Suppose h is a γr2(T ′)-function which
it is not independent. If |h(z)| > 0 then we must have |h(x)| = 0 and |h(y)| = 1,
and so h|V (T ) is a γr2(T )-function which is not independent, a contradiction. Let
|h(z)| = 0. Then obviously |h(x)| + |h(y)| = |h(w)| + |h(w′)| = 2. Then the
function g : V (T ′) → P({1, 2}) defined by g(x) = g(w) = ∅, g(y) = g(w′) =
{1}, g(z) = {2} and g(u) = f (u) for u ∈ V (T ′) − {x, y, w,w′, z}, is a 2RDF of T ′
of weight less than γr2(T ′), a contradiction. Thus γr2(T ′) ≡ ir2(T ′).

Now let degT (z) = 1, i.e., z is a leaf.
Assume f is a γr2(T )-function. By Proposition A, wemay assume that f (z) = {1}.

Note that f is an ir2(T )-function because γr2(T ) ≡ ir2(T ). Then f can be extended
to an I2RDF on T ′ by assigning ∅ to x and {2} to y. This implies that

γr2(T
′) ≤ ir2(T

′) ≤ ir2(T ) + 1 = γr2(T ) + 1. (6)

On the other hand, if f1 is a γr2(T ′)-function, then by Proposition A we may assume
f1(y) = {1} and 2 ∈ f1(z). Then f1|V (T ) is a 2RDF of T ofweight at most γr2(T ′)−1,
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implying that γr2(T ′) ≥ γr2(T ) + 1. It follows from the last inequality and (6) that
γr2(T ′) = ir2(T ′) = γr2(T ) + 1 = ir2(T ) + 1.

Next we show that γr2(T ′) ≡ ir2(T ′). Assume h is a γr2(T ′)-function that it is not
independent. If |h(z)| > 0 then wemay assume that |h(x)| = 0 and |h(y)| = 1, and so
h|V (T ) is a γr2(T )-function which is not independent, a contradiction. Let h(z) = ∅.
Then |h(x)| + |h(y)| ≥ 2. If |h(w)| = 0 then |h(x)| = 2 and |h(y)| = 0, and the
function h1 : V (T ) → P({1, 2}) defined by h1(z) = {1} and h1(u) = h(u) if u ∈
V (T )−{z} is a γr2(T )-function which is not independent, a contradiction. If |h(w)| ≥
1 then it follows from |h(x)| + |h(y)| ≥ 2 that the function h1 : V (T ) → P({1, 2})
defined above, is a γr2(T )-function which is not independent, a contradiction. Hence
γr2(T ′) ≡ ir2(T ′). ��
Lemma 8 If T is a tree with γr2(T ) ≡ ir2(T ) and T ′ is a tree obtained from T by
Operation O5, then γr2(T ′) ≡ ir2(T ′).

Proof Let z ∈ V (T ) be a vertex that has a strong support vertex u in its neighborhood
and let Operation O5 add the path zxyw to T for obtaining T ′. Any 2RDF of T can
be extended to a 2RDF for T ′ by assigning {1, 2} to y, and ∅ to x and w. Since
γr2(T ) ≡ ir2(T ), we deduce that

γr2(T
′) ≤ ir2(T

′) ≤ ir2(T ) + 2 = γr2(T ) + 2. (7)

Let f be a γr2(T ′)-function.Wemay assume f (w) = {1}, f (y) = ∅ and 2 ∈ f (x),
by Proposition A. Also we may assume that | f (u)| = 2, since u is a strong support
vertex. Then f |V (T ) is a 2RDF on T of weight at most γr2(T ′) − 2, and so γr2(T ) ≤
γr2(T ′) − 2. It follows from (7) that

γr2(T
′) = ir2(T

′) = ir2(T ) + 2 = γr2(T ) + 2.

To show that γr2(T ′) ≡ ir2(T ′), suppose h is a γr2(T ′)-function that it is not
independent. Since u is a strong support vertex, we may assume |h(u)| = 2. Then
clearly h(z) = ∅ and |h(x)|+ |h(y)|+ |h(w)| = 2, and so h|V (T ) is a γr2(T )-function
which is not independent, a contradiction. Hence γr2(T ′) ≡ ir2(T ′) and the proof is
completed. ��

The proof of next lemma is similar to the proof of Lemma 5, and therefore omitted.

Lemma 9 If T is a tree with γr2(T ) ≡ ir2(T ), and T ′ is a tree obtained from T by
Operation O6, then γr2(T ) ≡ ir2(T ).

Lemma 10 If T is a tree with γr2(T ) ≡ ir2(T ) and T ′ is a tree obtained from T by
Operation O7, then γr2(T ′) ≡ ir2(T ′).

Proof Let z be a vertex of T such that every γr2(T )-function assign ∅ to it, and let
x be a leaf of double star S(1, 2) whose support vertex has degree 3. Assume that
Operation O7 adds the double star S(1, 2) and the edge xz to obtain T ′ from T . Let
V (S(1, 2)) = {x, v, v0, u, u0} where N (v) = {x, u, v0} and u ∈ N (u0). Any 2RDF
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of T can be extended to a 2RDF on T ′ by assigning ∅ to x, u and v0, {1, 2} to v and
{1} to u0. Since γr2(T ) ≡ ir2(T ), we deduce that

γr2(T
′) ≤ ir2(T

′) ≤ ir2(T ) + 3 = γr2(T ) + 3. (8)

Let f be a γr2(T ′)-function such that f (u0) = {1} and 2 ∈ f (v) by Observation A.
Clearly | f (v)| + | f (u0)| + | f (u)| + | f (v0)| ≥ 3. We may assume that | f (x)| = 0,
otherwise we replace f (x) by ∅ and f (z) by f (z) ∪ f (x). Then f |V (T ) is a 2RDF
of T , implying that γr2(T ) ≤ γr2(T ′) − 3. By (8), we have γr2(T ′) = ir2(T ′) =
γr2(T ) + 3 = ir2(T ) + 3.

It will now be shown that γr2(T ′) ≡ ir2(T ′). Suppose h is a γr2(T ′)-function
which is not independent. Clearly

∑
y∈V (S(1,2)) |h(y)| ≥ 3. If |h(z)| > 0, then h|V (T )

is a γr2(T )-function assigning nonempty set to z which leads to a contradiction. Thus
|h(z)| = 0. If

∑
y∈V (S(1,2)) |h(y)| ≥ 4, thenwe change the values of h on V (S(1, 2))∪

{z} to h(z) = h(u0) = {1}, h(v) = {1, 2}, and h(x) = h(u) = h(v0) = ∅, and then the
new function plays the role of h which has been considered earlier. Thus we assume
that

∑
y∈V (S(1,2)) |h(y)| = 3. Then clearly |h(x)| = 0, and h|V (T ) is a γr2(T )-function

which is not independent, a contradiction. Hence γr2(T ′) ≡ ir2(T ′). ��
Theorem 11 Each tree T in family F ∪ {K1} satisfies γr2(T ) ≡ ir2(T ).

Proof If T = K1, then clearly γr2(T ) ≡ ir2(T ). Let T ∈ F . Then T is obtained
from a star K1,2 by successive operations T 1, . . . , T m , where T i ∈ {O1, . . . ,O7} if
m ≥ 1 and T = K1,2 ifm = 0. The proof is by induction onm. Ifm = 0, then clearly
γr2(K1,2) ≡ ir2(K1,2). Let m ≥ 1 and that the statement holds for all trees which are
obtained from K1,2 by applying m − 1 operations in {O1, . . . ,O7}. It follows from
Lemmas 4, …, 10 that γr2(T ) ≡ ir2(T ). ��
Observation 12 If S(p, q) is a double star with q ≥ p ≥ 1 and γr2(S(p, q)) ≡
ir2(S(p, q)), then p = 1 and q ≥ 2.

Theorem 13 Let T be a tree of order n. If γr2(T ) ≡ ir2(T ), then T ∈ F ∪ {K1}.
Proof The proof is by induction on n. If n = 1 then T = K1. Let the statement holds
for all trees of order less than n and let T be a tree of order n with γr2(T ) ≡ ir2(T ).
Since γr2(P2) 	≡ ir2(P2), we may assume that n ≥ 3. If diam(T ) = 2 then T is a
star and by Observation 3, T ∈ F . If diam(T ) = 3, then T is a double star S(p, q)

with q ≥ p ≥ 1. By Observation 12, we have p = 1 and q ≥ 2. Then T can be
obtained from K1,q by Operation O3 and so T ∈ F . Therefore, we may assume that
diam(T ) ≥ 4.

Let v1v2 . . . vk (k ≥ 5) be a diametral path in T such that |Lv2 | is as large as
possible and root T at vk . Also suppose among paths with this property we choose a
path such that |Lv3 | is as large as possible.

Assume first that deg(v2) ≥ 4. Let f be a γr2(T )-function. Then clearly f (v2) =
{1, 2} and so f is a 2RDF of T − v1. Since γr2(T ) ≡ ir2(T ), f is also an I2RDF
of T − v1, implying that γr2(T ) = ir2(T ) ≥ ir2(T − v1) ≥ γr2(T − v1). On the
other hand, by Observation 2(a), T − v1 has a γr2-function g that assigns {1, 2} to
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v2. Then g can be extended to a γr2(T )-function by assigning ∅ to v1 that yields
γr2(T ) ≤ γr2(T − v1). Hence γr2(T ) = ir2(T ) = ir2(T − v1) = γr2(T − v1).

We show that γr2(T − v1) ≡ ir2(T − v1). Suppose that there is a γr2(T − v1)-
function g that is not independent. Since g is a γr2(T − v1)-function, we must have
|g(v2)| + ∑

u∈Lv2−{v1} |g(u)| = 2. Now the function h : V (T − v1) → P({1, 2})
defined by h(v2) = {1, 2}, h(u) = ∅ for u ∈ Lv2 − {v1} and h(x) = g(x) otherwise,
is a 2RDF of T − v1 which in not independent. It is clear that h can be extended
to a γr2(T )-function which is not independent by assigning ∅ to v1. This leads to a
contradiction with γr2(T ) ≡ ir2(T ). Thus γr2(T −v1) ≡ ir2(T −v1). It follows from
the inductive hypothesis that T − v1 ∈ F . Now it is clear that T can be obtained from
T − v1 ∈ F by applying Operation O1.

Assume next that deg(v2) = 3. Let u ∈ Lv2 − {v1}. We claim that v3 is not
a strong support vertex. Assume to the contrary that v3 is a strong support vertex.
By Observation 2(a), T has a γr2(T )-function f such that f (v3) = {1, 2}. Clearly
| f (v2)| + | f (v1)| + | f (u)| = 2. Now the function g : V (T ) → P({1, 2}) defined
by g(v2) = {1, 2}, g(v1) = g(u) = ∅ and g(x) = f (x) for x ∈ V (T ) − {u, v1, v2}
is clearly a γr2(T )-function that is not independent, a contradiction with γr2(T ) ≡
ir2(T ). Thus v3 is not a strong support vertex. Using Proposition A and an argument
similar to that described above, we deduce that v3 is not adjacent to a support vertex
of degree 2. By the choice of the diametral path, we deduce that any child of v3 is a
leaf or a support vertex of degree 3 and at most one of them is leaf. This implies that
Tv3 ∈ F1. Let T ′ = T − Tv3 .

We claim that if v3 is a support vertex, then γr2(T ′ − v4) ≥ γr2(T ′). Let v3 be
a support vertex and let to the contrary that γr2(T ′ − v4) < γr2(T ′). Assume h is
a γr2(T ′ − v4)-function and define g : V (T ) → P({1, 2}) by g(x) = h(x) for
x ∈ V (T ′) − {v4}, g(x) = {1, 2} for x ∈ N [v3] − (Lv3 ∪ {v4}) and g(x) = ∅
otherwise. Obviously g is a γr2(T )-function that is not independent, a contradiction
with γr2(T ) ≡ ir2(T ). Thus γr2(T ′ − v4) ≥ γr2(T ′) when v3 is a support vertex.

It will now be shown that γr2(T ′) ≡ ir2(T ′). First we show that γr2(T ′) = ir2(T ′).
Since every γr2(T ′)-function can be extended to a 2RDF on T by assigning {1, 2} to
the strong support vertices in NTv3

(v3), {1} to the leaf adjacent to v3, if any, and ∅ to
the other vertices in Tv3 , we deduce that

ir2(T ) = γr2(T ) ≤ γr2(T
′) + 2k + t ≤ ir2(T

′) + 2k + t (9)

where k is the number of strong support vertices adjacent to v3 in Tv3 and t is the
number of leaf adjacent to v3. On the other hand, let f be a γr2(T )-function. By
Observation 2(a), we may assume that f assigns {1, 2} to the strong support vertices
in Tv3 . Since γr2(T ) ≡ ir2(T ), f is an I2RDF. Then f assigns ∅ to v3 and {1} or
{2} to the leaf adjacent to v3, if any, and f |V (T ′) is an I2RDF on T ′ with weight
ir2(T ) − 2k − t . Thus ir2(T ′) ≤ ir2(T ) − 2k − t . It follows from (9) that ir2(T ) =
γr2(T ) = γr2(T ′) + 2k + t = ir2(T ′) + 2k + t and hence γr2(T ′) = ir2(T ′).

Now we show that this equality is strong. Suppose h is a γr2(T ′)-function that it
is not independent. We can extend h to a 2RDF on T by assigning {1, 2} to every
strong support vertex of Tv3 and {1} to the leaf adjacent to v3, if any, and ∅ to the other
vertices in Tv3 , to obtain a γr2(T )-function which is not independent, a contradiction
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with γr2(T ) ≡ ir2(T ). Therefore γr2(T ′) ≡ ir2(T ′). It follows from the induction
hypothesis that T ′ ∈ F . Then T can be obtained from T ′ by applying Operation O2
and hence T ∈ F .

We thus assume that deg(v2) = 2. Furthermore, we may assume that every child of
v3 that is a support vertex has degree two. We now consider the following three cases
on |Lv3 |.
Case 1 |Lv3 | ≥ 2.

Let T ′ = T − {v1, v2}. We show that γr2(T ′) ≡ ir2(T ′). Suppose f is a γr2(T )-
function that assigns {1, 2} to v3 [Observation 2(a)]. Clearly | f (v1)| + | f (v2)| = 1.
Since γr2(T ) ≡ ir2(T ), f is an ir2(T )-function. Hence | f (v2)| = 0 and f |V (T ′) is an
I2RDF on T ′ implying that

γr2(T
′) ≤ ir2(T

′) ≤ ir2(T ) − 1 = γr2(T ) − 1. (10)

Now let g be a γr2(T ′)-function that assigns {1, 2} to v3 [Observation 2(a)]. Then
g can be extended to a 2RDF on T by assigning ∅ to v2 and {1} to v1. This yields
γr2(T ) ≤ γr2(T ′)+1, By (10), we have γr2(T ′) = ir2(T ′). To show that this equality
is strong, assume h is a γr2(T ′)-function that it is not independent. We may assume
h(v3) = {1, 2}. Now one can extend h to a γr2(T )-function which is not independent,
by assigning ∅ to v2 and {1} to v1, a contradiction with γr2(T ) ≡ ir2(T ). Thus
γr2(T ′) ≡ ir2(T ′). By induction hypothesis, T ′ ∈ F and so T can be obtain from T ′
by Operation O3.

Case 2 |Lv3 | = 0.

Then any child of v3 is a support vertex of degree 2. We consider two subcases.

Subcase 2.1 deg(v3) ≥ 3.

Let z2 be a child of v3 different from v2, and let z1 be the leaf adjacent to z2. Suppose
T ′ = T − {v1, v2}. We show that γr2(T ′) ≡ ir2(T ′). Let f be a γr2(T )-function.
We may assume 2 ∈ f (v3) by Proposition A. Clearly | f (v1)| + | f (v2)| = 1. Since
γr2(T ) ≡ ir2(T ), f is a ir2(T )-function. Clearly f |V (T ′) is an I2RDF on T ′, implying
that

γr2(T
′) ≤ ir2(T

′) ≤ ir2(T ) − 1 = γr2(T ) − 1. (11)

On the other hand, by Proposition A, T ′ has a γr2(T ′)-function g such that 2 ∈ g(v3).
Then we can extend g on T by assigning ∅ to v2 and {1} to v1, to obtain a 2RDF of
weight γr2(T ′) + 1. Thus γr2(T ′) ≥ γr2(T ) − 1. It follows from (11) that γr2(T ′) =
ir2(T ′).

To show that this equality is strong, assume h is a γr2(T ′)-function that it is not
independent. First let |h(v3)| > 0. Assume without loss of generality that 2 ∈ h(v3).
Then the function h′ : V (T ) → P({1, 2}) defined by h′(v1) = {1}, h′(v2) = ∅
and h′(x) = h(x) for x ∈ V (T ) − {v1, v2} is a γr2(T )-function that is not inde-
pendent, a contradiction. Let now |h(v3)| = 0. Then |h(z2)| + |h(z1)| = 2. If
∪x∈N (v3)−{z2}h(x) 	= ∅, then we define g : V (T ) → P({1, 2}) by g(v3) =
{1}, g(z2) = g(v2) = ∅, g(z1) = g(v1) = {2} and g(x) = h(x) otherwise, to produce
a γr2(T )-function that is not independent, a contradiction. Let∪x∈N (v3)−{z2}h(x) = ∅.
Then to rainbowly dominate v3,wemust have h(z2) = {1, 2} and |h(z1)| = 0. Then the
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function h1 : V (T ′) → P({1, 2}) defined by h1(v3) = {1}, h1(z2) = ∅, h1(z1) = {2},
and h1(x) = h(x) otherwise, is a γr2(T ′)-function that is not independent and
|h1(v3)| > 0. This leads to a contradiction as above. Thus γr2(T ′) ≡ ir2(T ′) and
by inductive hypothesis we have T ′ ∈ F . Now T can be obtained from T ′ by Opera-
tion O4.

Subcase 2.2 deg(v3) = 2.

First let deg(v4) = 2. Let T ′ = T − {v1, v2}. We show that γr2(T ′) ≡ ir2(T ′). Let
f be a γr2(T )-function such that f (v1) = {1} and 2 ∈ f (v3) (Proposition A). This
implies that | f (v2)| = 0. Since γr2(T ) ≡ ir2(T ), f is an ir2(T )-function. Obviously
the function f , restricted to T ′, is an I2RDF on T ′, implying that

γr2(T
′) ≤ ir2(T

′) ≤ ir2(T ) − 1 = γr2(T ) − 1. (12)

Now let g be a γr2(T ′)-function such that g(v3) = {1} by Proposition A. We can
extend g to a γr2(T )-function by assigning ∅ to v2 and {2} to v1. This implies that
γr2(T ) ≤ γr2(T ′) + 1, and by (12) we obtain γr2(T ′) = ir2(T ′).

Now we show that this equality is strong. Assume h is a γr2(T ′)-function that is
not independent. If |h(v3)| > 0, then we can extend h to a γr2(T )-function that is not
independent by assigning ∅ to v2 and {1} to v1 if 2 ∈ h(v3) and {2} to v1 if 1 ∈ h(v3), a
contradiction with γr2(T ) ≡ ir2(T ). Let |h(v3)| = 0. Then to rainbowly dominate v3,
we must have h(v4) = {1, 2}. Since h is a γr2(T ′)-function and deg(v4) = 2, we must
have |h(v5)| = 0. Then the function h1 : V (T ) → P({1, 2}) defined by h1(v5) =
h1(v1) = {1}, h1(v3) = {2}, h1(v2) = h1(v4) = ∅ and h1(x) = h(x) otherwise, is
a γr2(T )-function which is not independent, a contradiction with γr2(T ) ≡ ir2(T ).
Hence γr2(T ′) ≡ ir2(T ′) and by inductive hypothesis, T ′ ∈ F . Now T can be obtained
from T ′ by Operation O4.

Next let deg(v4) ≥ 3. By Proposition A, T has a γr2-function f such that
f (v1) = {1}, | f (v2)| = 0 and 2 ∈ f (v3). Also suppose among γr2(T )-functions
with this property we choose a γr2(T )-function such that | f (v4)| is as large as
possible. If | f (v3)| = 2, then the function g1 : V (T ) → P({1, 2}) defined by
g1(v1) = {1}, g1(v2) = ∅, g1(v3) = {2}, g1(v4) = {1} and g1(x) = f (x) for
x ∈ V (T ) − {v1, v2, v3, v4} is a γr2(T )-function that is not independent, a con-
tradiction. Therefore | f (v3)| = 1. Since γr2(T ) ≡ ir2(T ), f is an I2RDF of T and
hence f (v4) = ∅. This implies that neither v4 is a strong support vertex nor v4 has a
support vertex of degree 2 in its neighborhood. If there is a path v4y3y2y1 in T4 where
y3 	= v3 and deg(y1) = 1, then by the choice of diametral path v1 . . . vk , we have
|Lv2 | ≥ |Ly2 | and |Lv3 | ≥ |Ly3 | that implies deg(y2) = 2 and |Ly3 | = 0. Hence, if
there is a leaf at distance three from v4 in Tv4 , then it plays the same role of v1. Thus
we may assume that each component of Tv4 − v4 is isomorphic to P3, K1,t , (t ≥ 2)
or a single vertex, where v4 is adjacent to a leaf of each P3, the center of K1,t , or the
single vertex, respectively.

Assume first that one of the components of Tv4 − v4 is K1,t , (t ≥ 2). That is, v4
has a strong support vertex such as z in its neighborhood. Let T ′ = T − {v1, v2, v3}
and let f be a γr2(T )-function. By Observation 2(a), we may assume f (z) = {1, 2}.
Since γr2(T ) ≡ ir2(T ), f is a ir2(T )-function and hence | f (v4)| = 0. Then clearly
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| f (v1)| + | f (v2)| + | f (v3)| = 2 and f |V (T ′) is an I2RDF on T ′, implying that

γr2(T
′) ≤ ir2(T

′) ≤ ir2(T ) − 2 = γr2(T ) − 2. (13)

On the other hand, let f1 be a γr2(T ′)-function such that f1(z) = {1, 2} [Observation
2(a)]. We can extend f1 to a 2RDF on T with weight γr2(T ′) + 2 by assigning {2}, ∅
and {1} to v3, v2 and v1, respectively. Hence γr2(T ) ≤ γr2(T ′) + 2 and by (13), we
have γr2(T ′) = ir2(T ′).

If there exists a γr2(T ′)-function h that is not independent, then as above we can
extend h to a γr2(T )-function that is not independent, a contradiction with γr2(T ) ≡
ir2(T ). Thus γr2(T ′) ≡ ir2(T ′). It follows from inductive hypothesis that T ′ ∈ F and
so T can be obtained from T ′ by Operation O5.

Now suppose that v4 has no child which is a strong support vertex. We claim
that |Lv4 | ≤ 1. Let to the contrary that |Lv4 | ≥ 2. By Proposition A, T has a γr2-
function f that f (v1) = {1} and 2 ∈ f (v3). Since |Lv4 | ≥ 2, we may assume
f (v4) = {1, 2} which contradicts the assumption γr2(T ) ≡ ir2(T ). Hence |Lv4 | ≤ 1.
Since deg(v4) ≥ 3, we deduce that Tv4 ∈ F2. Let T ′ = T − Tv4 and let g be a
γr2(T )-function with g(v1) = {1} and 2 ∈ g(v3). By assumption, g is an I2RDF of T
and hence g(v4) = ∅. Then g|V (T ′) is an I2RDF of T ′, implying that

γr2(T
′) ≤ ir2(T

′) ≤ ir2(T )−2 deg(v4)+2− t = γr2(T )−2 deg(v4)+2− t, (14)

where t is number of leaves adjacent to v4.
On the other hand, each γr2(T ′)-function f can be extended to a 2RDF of T by

assigning {2} to v3, {1} to v1, each vertex of N (v4)\(Lv4 ∪ {v5, v3}) and the leaf
adjacent to v4, if any, {2} to every vertex in Tv4 at distance 3 from v4 except v1, and ∅
to the other vertices of Tv4 . It follows that γr2(T

′) ≥ γr2(T ) − 2 deg(v4) + 2 − t . By
(14) we obtain γr2(T ′) = ir2(T ′).

If h is a γr2(T ′)-function that is not independent, then we can easily extend h to a
γr2(T )-function that is not independent, a contradiction with γr2(T ) ≡ ir2(T ). Thus
γr2(T ′) ≡ ir2(T ′). By inductive hypothesis, we have T ′ ∈ F . It can be easily seen
that γr2(T ′ − v5) ≥ γr2(T ′) if v4 is a support vertex. Now T can be obtained from T ′
by Operation O6.

Case 3 |Lv3 | = 1.

Let w be the leaf adjacent to v3. We consider the following subcases.

Subcase 3.1 deg(v3) > 3.

Then v3 has a child z2 	= v2 that is a support vertex of degree 2. Let z1 be the leaf
adjacent to z2. Set T ′ = T −{v1, v2}. We show that γr2(T ′) ≡ ir2(T ′). Assume that f
is a γr2(T )-function. We may assume that f (v1) = {1} and 2 ∈ f (v3) by Proposition
A. Clearly | f (v2)| = 0. Since γr2(T ) ≡ ir2(T ), f is an I2RDF of T . Now f |V (T ′) is
an I2RDF of T ′ of weight γr2(T ) − 1 which implies that

γr2(T
′) ≤ ir2(T

′) ≤ ir2(T ) − 1 = γr2(T ) − 1. (15)
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On the other hand, if f1 is a γr2(T ′)-function, then we may assume that 2 ∈ f1(v3)
by Proposition A, and so f1 can be extended to a 2RDF of T of weight γr2(T ′) + 1
by assigning ∅ to v2 and {1} to v1, implying that γr2(T ) ≤ γr2(T ′) + 1. By (15) we
obtain γr2(T ′) = ir2(T ′).

To show that this equality is strong, suppose h is a γr2(T ′)-function which is not
independent. We may assume |h(v3)| > 0, for otherwise we must have |h(w)| = 1
and |h(z2)| + |h(z1)| = 2 and the function g : V (T ′) → P({1, 2}) by g(v3) = {1},
g(z2) = ∅, g(z1) = g(w) = {2} and g(x) = h(x) otherwise, is a γr2(T ′)-function
with the desired property. Then we can easily extend h to a γr2(T )-function that is not
independent, a contradiction with γr2(T ) ≡ ir2(T ). Thus γr2(T ′) ≡ ir2(T ′) and by
inductive hypothesis, T ′ ∈ F . Now T can be obtained from T ′ by Operation O4.

Subcase 3.2 deg(v3) = 3.

First let deg(v4) ≥ 3. Let f be a γr2(T )-function. By Corollary 1, we may assume
f (v3) = {1, 2}. Since γr2(T ) ≡ ir2(T ), f is an I2RDF of T . Then | f (v4)| = 0 and
| f (v1)| = 1. If 1 ∈ ∪x∈N (v4)−{v3} f (x) (the case 2 ∈ ∪x∈N (v4)−{v3} f (x) is similar),
then the function f1 : V (T ) → P({1, 2}) defined by f1(v1) = f1(w) = {1}, f1(v3) =
{2}, f1(v2) = ∅ and f1(x) = f (x) otherwise, is a γr2(T )-function which is not
independent, a contradiction with γr2(T ) ≡ ir2(T ). Thus | ∪x∈N [v4]−{v3} f (x)| = 0.
This implies that v4 has no child with depth 0 or 1. Assume that v4 has a child z with
depth 2. Then any leaf of Tz at distance two from z plays the same role of v1, and thus
by the previous arguments, we may assume that Tz � Tv3 and as above we can define
a γr2(T )-function g such that g(z) = g(v3) = {1, 2} which leads to a contradiction.
Thus deg(v4) = 2. Suppose T ′ = T − Tv4 . We show that ir2(T ′) ≡ γr2(T ′). Let f be
a γr2(T )-function that assigns {1, 2} to v3 and ∅ to v4, according to Corollary 1. Note
that f is also an I2RDF of T because ir2(T ) ≡ γr2(T ). Then f |V (T ′) is an I2RDF on
T ′, implying that

γr2(T
′) ≤ ir2(T

′) ≤ ir2(T ) − 3 = γr2(T ) − 3. (16)

On the other hand, every γr2(T ′)-function can be extended to a 2RDFof T by assigning
{1} to v1, ∅ to v2, v4, w and {1, 2} to v3, and thus γr2(T ) ≤ γr2(T ′) + 3. It follows
from (16) that γr2(T ′) = ir2(T ′).

If there is a γr2(T ′)-function g that is not independent then as above,we can extend it
to a γr2(T )-function that is not independent, a contradiction. Thus γr2(T ′) ≡ ir2(T ′).
By the inductive hypothesis, T ′ ∈ F and T can be obtained from T ′ by OperationO7
and the proof is completed. ��
Now we are ready to state the main theorem of this paper.

Theorem 14 Let T be a tree. Then ir2(T ) ≡ γr2(T ) if and only if T ∈ F ∪ {K1}.
Acknowledgments The authorswould like to thank anonymous referees for their remarks and suggestions
that helped improve the manuscripts.
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