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1 Introduction

The aim of this work is to study the basic properties of the square-mean μ-pseudo
almost periodic and automorphic processes using the measure theory and used those
results to study the following stochastic evolution equation. First, we study the exis-
tence of square-mean μ−pseudo almost periodic and automorphic mild solutions to
the following nonhomogeneous linear stochastic evolution equations in aHilbert space
H

dx(t) = Ax(t)dt + f (t)dt + γ (t)dW (t) for all t ∈ R, (1.1)

where A : D(A) ⊂ H is the infinitesimal generator of a C0-semigroup (T (t))t≥0 on
H , f, γ : R → L2(P, H) are two stochastic processes and W (t) is a two-sided and
standard one-dimensional Brownian motion defined on the filtered probability space
(�,F , P,Ft )withFt = σ {W (u)−W (v)|u, v ≤ t}.Second,we prove the uniqueness
and the stability of square-mean μ-pseudo almost periodic and automorphic mild
solutions for the following nonlinear stochastic evolution equations in a Hilbert space
H

dx(t) = Ax(t)dt + h(t, x(t))dt + θ(t, x(t))dW (t) for all t ∈ R, (1.2)

where h, θ : R × L2(P, H) → L2(P, H) are two stochastic processes.
We assume (H, ‖ · ‖) is real separable Hilbert space and L2(P, H) is the space of

all H -valued random variables x such that

E‖x‖2 =
∫

�

‖x‖2dP < +∞.

The concept of almost automorphic is a natural generalization of the almost
periodicity that was introduced by Bochner [8]. For more details about the almost
automorphic functions, we refer the reader to the book [24] where the author gave
an important overview about the theory of almost automorphic functions and their
applications to differential equations. In the last decade, many authors have pro-
duced extensive literature on the theory of almost automorphy and its applications
to differential equations, more details can be found in [11,15–17,20–23,29–31] and
the references therein. Then a generalization of almost automorphic functions gives
pseudo almost automorphic functions. Also weighted pseudo almost automorphic
functions which are more general than weighted pseudo almost periodic functions in
[12,13] were introduced in first time in [7] by Blot et al. In [7], the authors used the
basic properties of such functions to study the existence and uniqueness of weighted
pseudo almost automorphic solutions for some abstract differential equations. We say
that a continuous function f is ρ−weighted pseudo almost automorphic if

f = g + φ,

where g is almost automorphic andφ is ergodicwith respect to someweighted function
ρ in the sense that
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lim
r→∞

1

m(r, ρ)

∫ r

−r
‖φ(t)‖ρ(t)dt = 0,

where m(r, ρ) = ∫ r
−r ρ(t)dt and ρ is assumed to be positive and locally integrable.

When the component g is almost periodic, then f is called weighted almost periodic.
Likewise, in [5] the authors used the measure theory to define an ergodic function
and give a new concept of μ–pseudo almost automorphic functions. We say that a
continuous function f is μ–pseudo almost automorphic if

f = g + φ,

where g is almost automorphic and φ is μ–ergodic in the sense that

lim
r→∞

1

μ([−r, r ])
∫ r

−r
‖φ(t)‖dμ(t) = 0,

where μ is a positive measure on R, μ([−r, r ]) is the measure of the set [−r, r ]. One
can observe that a ρ−weighted pseudo almost automorphic function is μ–pseudo
almost automorphic, where the measureμ is absolutely continuous with respect to the
Lebesgue measure and its Radon–Nikodym derivative is ρ:

dμ(t)

dt
= ρ(t).

The authors investigated many interesting properties of such functions and study the
existence and uniqueness of general evolution equations in the space of such functions.
In recent years, the study of almost periodic or almost automorphic solutions to some
stochastic differential equations have been considerably investigated in lots of publi-
cations [1–4,9,14,18,25,27] because of its significance and applications in physics,
mechanics, and mathematical biology. Recently, in [19], the concept of square-mean
almost automorphic stochastic processes was introduced by Fu and Liu and in [10],
authors have studied the space of pseudo almost automorphic process in what they
prove the existence of solution of Eq. (1.1) and the uniqueness and the stability of
solution of Eq. (1.2) in the square-mean sense. In [10], the authors define the space
SBC0 by all stochastically bounded continuous processes x(t) verifying

lim
T→∞

1

2T

∫ T

−T
E‖x(t)‖2dt = 0.

In this paper, instead of the space SBC0, we use the space of μ–ergodic process to
define the square-meanμ–pseudo almost periodic and automorphic processes to study
equations Eqs. (1.1) and (1.2). Let us to explain the meaning notion. We say that a
continuous stochastic process f is μ–pseudo almost automorphic in the square-mean
sense if

f = h + θ,
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where h is almost automorphic and θ is μ–ergodic in the sense that

lim
r→∞

1

μ([−r, r ])
∫ r

−r
E‖θ(t)‖2dμ(t) = 0,

where μ is a positive measure on R, μ([−r, r ]) is the measure of the set [−r, r ]. One
can observe that a square-mean pseudo almost automorphic process is a square-mean
μ–pseudo almost automorphic process in the particular case where the measure μ is
the Lebesgue measure on R.
For more details about the μ–ergodic functions, we can refer to [5,6] the papers of
J. Blot, P. Cieutat, and K. Ezzinbi where they used the measure theory to define an
ergodic function and investigate many interesting properties of such functions.
Now, the classical theory of square-mean pseudo almost automorphy becomes a par-
ticular case of our approach. In this work, we investigate many important results
on the functional space of μ–square-mean pseudo almost periodic and automorphic
processes, and we used them to study the general linear and nonlinear stochastic evo-
lution equation.
The organization of this work is as follows. In Sect. 2, we define the square-mean μ–
ergodic process and study some basic properties. In Sect. 3, we give the concepts of
μ–pseudo almost periodic and automorphic process, and then we study some of their
basic properties like completeness and composition theorems. In Sects. 4 and 5, we
prove the existence of the square-mean μ–pseudo almost periodic and automorphic
mild solutions of Eq. (1.1) and the uniqueness and the stability of the square-mean
μ–pseudo almost periodic and automorphic mild solution of Eq. (1.2). In Sect. 6, we
provide an example to illustrate our results.

2 Square-Mean µ–Ergodic Process

Let B be the Lebesgue σ -field of R andM be the set of all positive measures μ on B
satisfying μ(R) = +∞ and μ([a, b]) < +∞ for all a, b ∈ R (a ≤ b).
L2(P, H) is Hilbert space equipped with the following norm

‖x‖L2 =
( ∫

�

‖x‖2dP
) 1

2

.

Definition 2.1 Let x : R → L2(P, H) be a stochastic process.

(1) x is said to be stochastically bounded if there exists M > 0 such that

E‖x(t)‖2 ≤ M for all t ∈ R.

(2) x is said to be stochastically continuous if

lim
t→s

E‖x(t) − x(s)‖2 = 0 for all s ∈ R.
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Denote by SBC(R, L2(P, H)), the space of all the stochastically bounded and con-
tinuous processes.

The space SBC(R, L2(P, H)) is aBanach space equippedwith the following norm

‖x‖∞ = sup
t∈R

(
E‖x(t)‖2

) 1
2

.

Definition 2.2 Let μ ∈ M. A stochastic process x is said to be square-mean μ–
ergodic if x ∈ SBC(R, L2(P, H)) and satisfied

lim
r→∞

1

μ([−r, r ])
∫ r

−r
E‖x(t)‖2dμ(t) = 0.

We denote the space of all such process by E(R, L2(P, H), μ).

Proposition 2.1 Let μ ∈ M. Then E(R, L2(P, H), μ) is a Banach space with the
norm ‖ · ‖∞.

The proof is similar to the proof of Proposition 2.13 in [5].
Next result is a characterization of μ–ergodic processes in terms of measure μ.

Lemma 2.1 Let μ ∈ M and I be a bounded interval (eventually I = ∅). Assume that
f ∈ SBC(R, L2(P, H)). Then the following assertions are equivalent:

(i)

f ∈ E(R, L2(P, H), μ).

(ii)

lim
r→∞

1

μ([−r, r ])\I
∫

[−r,r ]\I
E ‖ f (t) ‖2 dμ(t) = 0.

(iii)

For any ε > 0, lim
r→+∞

μ
{
t ∈ [−r, r ]\I : E ‖ f (t) ‖2> ε

}

μ{t ∈ [−r, r ]\I } = 0.

For the proof of the Lemma 2.1, we have just to use the same arguments in the
proof of Theorem 2.14 in [5] with the function t 
→ E ‖ f (t) ‖2.
Example 2.1 Let ρ be a nonnegative B−measure function and μ be the positive mea-
sure defined by

μ(A) =
∫
A

ρ(t)dt for A ∈ B, (2.1)
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where dt denotes the Lebesgue measure on R. The function ρ which occurs in (2.1)
is called the Radon–Nikodym derivative of μ with respect to the Lebesgue measure
on R [[26], p. 130]. In this case, μ ∈ M if and only if its Radon–Nikodym derivative
ρ is locally Lebesgue-integrable on R and

∫ +∞

−∞
ρ(t)dt = +∞.

Definition 2.3 [5] Letμ1 andμ2 ∈ M.μ1 is said to be equivalent toμ2 (μ1 ∼ μ2) if
there exist constants α and β > 0 and a bounded interval I (eventually I = ∅) such that

αμ1(A) ≤ μ2(A) ≤ βμ1(A)

for A ∈ B satisfying A ∩ I = ∅.

Theorem 2.1 Let μ1 and μ2 ∈ M. If μ1 and μ2 are equivalent. Then
E(R, L2(P, H), μ1) = E(R, L2(P, H), μ2).

The proof is similar to the proof of Theorem 2.20 in [5].
For μ ∈ M and τ ∈ R, we denote by μτ the positive measure on (R,B) defined by

μτ (A) = μ(a + τ : a ∈ A) for A ∈ B.

From μ ∈ M, we formulate the following hypothesis.
(H) For all τ ∈ R, there exists β > 0 and a bounded interval I such that

μτ (A) ≤ βμ(A)when A ∈ B satisfies A ∩ I = ∅.

Lemma 2.2 [5]Letμ ∈ M. Thenμ satisfies (H) if and only ifμ andμτ are equivalent
for all τ ∈ R.

Lemma 2.3 [5] Hypothesis (H) implies that for all σ > 0,

lim sup
r→+∞

μ([−r − σ, r + σ ])
μ([−r, r ]) < +∞.

Remark 2.1 [5] For Example 2.1, Hypothesis (H) holds if and only if for all τ ∈ R,
there exists a constant β > 0 and a bounded interval I such that

ρ(t + τ) ≤ βρ(t) a.e R\I,

where μ is given by

μ(t) = ρ(t)dt,
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and ρ satisfies the condition of Example 2.1. Then Hypothesis (H) is equivalent to
say

for all τ ∈ R, lim sup
|t |→+∞

ρ(t + τ)

ρ(t)
< +∞.

Example 2.2
ρ(t) = exp(−2t) for t ∈ R.

In fact

lim
t→+∞

ρ(t + τ)

ρ(t)
= exp(−2τ) for τ ∈ R.

Let f ∈ SBC(R, L2(P, H)) and τ ∈ R. We denote by fτ the function defined by
fτ (t) = f (t + τ) for t ∈ R.
A subset F of SBC(R, L2(P, H)) is said to translation invariant if for all f ∈ F we
have fτ ∈ F for all τ ∈ R.

Theorem 2.2 Let μ ∈ M satisfy (H). Then E(R, L2(P, H), μ) is translation invari-
ant.

The proof use the same arguments of the proof of Theorem 3.5 in [5] with the
function t 
→ E ‖ f (t) ‖2.
Next, we use the results of this section to define the new concepts of μ–pseudo almost
periodic and automorphic process in the square-mean sense.

3 Square-Mean µ–Pseudo Almost Periodic and Automorphic Process

In this section, we define the concepts of square-mean μ–pseudo almost periodic and
automorphic process and study their basic properties.

3.1 µ–Pseudo Almost Periodic Process

Definition 3.1 [3] Let x : R → L2(P, H) be a continuous stochastic process. x is
said be square-mean almost periodic process if for each ε > 0 there exists l > 0 such
that for all α ∈ R, there exists τ ∈ [α, α + l] with

sup
t∈R

E‖x(t + τ) − x(t)‖2 < ε.

We denote the space off all such stochastic processes by SAP(R, L2(P, H)).

Theorem 3.1 [3] SAP(R, L2(P, H)) equipped with the norm ‖ · ‖∞ is a Banach
space.
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Definition 3.2 Let μ ∈ M and f : R → L2(P, H) be a continuous stochastic
process.
f is said be μ–square-mean pseudo almost periodic process if it can be decomposed
as follows

f = g + ϕ,

where g ∈ SAP(R, L2(P, H)) and ϕ ∈ E(R, L2(P, H), μ).

We denote the space off all such stochastic processes by SP AP(R, L2(P, H), μ).

Then we have

SP AP(R, L2(P, H), μ) ⊂ SBC(R, L2(P, H)).

Theorem 3.2 Let μ ∈ M satisfy (H). Then SP AP(R, L2(P, H), μ) is translation
invariant.

Proof By using Theorem 2.2, we deduce that E(R, L2(P, H), μ) is translation invari-
ant. From the definition of the square-mean pseudo almost periodic process, we
conclude that SP AP(R, L2(P, H), μ) is also translation invariant. 
�

Next, we study the completeness of the space of square-mean μ–pseudo almost
periodic processes.

Theorem 3.3 Let μ ∈ M and f ∈ SP AP(R, L2(P, H), μ) be such that

f = g + ϕ,

where g ∈ SAP(R, L2(P, H)) and ϕ ∈ E(R, L2(P, H), μ). If SP AP(R, L2

(P, H), μ) is translation invariant, then

{ f (t)|t ∈ R} ⊃ {g(t)|t ∈ R}.

For the proof, we use the same arguments of the proof of Theorem 2.24 in [6] by
using the norm ‖ · ‖L2 .

Theorem 3.4 Letμ ∈ M. Assume that SP AP(R, L2(P, H), μ) is translation invari-
ant. Then SP AP(R, L2(P, H), μ) is a Banach space with the norm ‖ · ‖∞.

The proof use the similar arguments as performed in the proof of Corollary 2.31 in
[6].
Next, we study the composition of the space square-mean μ–pseudo almost periodic
process.

Definition 3.3 [3] Let f : R × L2(P, H) → L2(P, H), (t, x) 
→ f (t, x) be contin-
uous.
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f is said be square-mean almost periodic in t ∈ R uniformly in x ∈ L2(P, H) if for
all compact K of L2(P, H) and for any ε > 0, there exists l(ε, K ) > 0 such that for
all α ∈ R, there exists τ ∈ [α, α + l(ε, K )] with

x ∈ K , sup
t∈R

E‖ f (t + τ, x) − f (t, x)‖2 < ε.

We denote the following space of stochastic processes by
g ∈ SAP(R × L2(P, H), L2(P, H)) if g : R × L2(P, H) → L2(P, H) such that

g(·, x) ∈ SAP(R, L2(P, H)) for each x ∈ L2(P, H). Similarly
ϕ ∈ E(R× L2(P, H), L2(P, H), μ) if ϕ : R× L2(P, H) → L2(P, H)) such that

ϕ(·, x) ∈ E(R, L2(P, H), μ) for each x ∈ L2(P, H).

Theorem 3.5 [3] Let f : R × L2(P, H) → L2(P, H), (t, x) 
→ f (t, x) be a square
almost periodic process in t uniformly in x ∈ L2(P, H). Suppose that f is Lipschitz
in the following sense:
there exists a positive number L such that for any x, y ∈ L2(P, H),

E‖ f (t, x) − f (t, y)‖2 ≤ L · E‖x − y‖2.

Then t 
→ f (t, x(t)) ∈ SAP(R, L2(P, H)) for any x ∈ SAP(R, L2(P, H)).

Definition 3.4 Let μ ∈ M. A continuous function f (t, x) : R × L2(P, H) →
L2(P, H) is said to be square-mean μ–pseudo almost periodic in t for any x ∈
L2(P, H) if it can be decomposed as f = g + ϕ, where g ∈ SAP(R ×
L2(P, H), L2(P, H)), ϕ ∈ E(R × L2(P, H), L2(P, H), μ). Denote the set of all
such stochastically continuous processes by SP AP(R × L2(P, H), L2(P, H), μ).

Theorem 3.6 Let μ ∈ M satisfy (H). Suppose that f ∈ SP AP(R × L2(P, H),

L2(P, H), μ) and that there exists a positive number L such that, for any x, y ∈
L2(P, H),

E‖ f (t, x) − f (t, y)‖2 ≤ L · E‖x − y‖2

for t ∈ R. Then t 
→ f (t, x(t)) ∈ SP AP(R, L2(P, H), μ) for any x ∈
SP AP(R, L2(P, H), μ).

The theorem above can be proved by using Lemma 2.1 and Theorem 3.3 and
Theorem 3.5. For more details about the proof, one may refer to [6].
Now, we study the square-mean μ–Pseudo almost automorphic processes that is a
generalization of square-mean μ–Pseudo almost periodic processes.

3.2 µ–Pseudo Almost Automorphic Process

Definition 3.5 Let x : R → L2(P, H) be a continuous stochastic process. x is said
be square-mean almost automorphic process if for every sequence of real numbers
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(t
′
n)n , we can extract a subsequence (tn)n such that, for some stochastic process y :

R → L2(P, H), we have

lim
n→+∞ E ‖x(t + tn) − y(t)‖2 = 0 for all t ∈ R

and

lim
n→+∞ E ‖y(t − tn) − x(t)‖2 = 0 for all t ∈ R.

We denote the space off all such stochastic processes by SAA(R, L2(P, H)).

Theorem 3.7 [19] SAA(R, L2(P, H)) equipped with the norm ‖ · ‖∞ is a Banach
space.

Definition 3.6 Let μ ∈ M and f : R → L2(P, H) be a continuous stochastic
process.
f is said be μ–square-mean pseudo almost automorphic process if it can be decom-
posed as follows

f = g + ϕ,

where g ∈ SAA(R, L2(P, H)) and ϕ ∈ E(R, L2(P, H), μ).

We denote the space off all such stochastic processes by SP AA(R, L2(P, H), μ).

Then we have

SP AA(R, L2(P, H), μ) ⊂ SBC(R, L2(P, H)).

Remark 3.1 A square-mean pseudo almost automorphic process is a square-mean μ–
pseudo almost automorphic process in the particular case where the measure μ is the
Lebesgue measure on R. For more details on the pseudo almost automorphic process
we refer to [10].

Hence, together with Theorem 2.2 and Definition 3.6, we arrive at the following
conclusion.

Theorem 3.8 Let μ ∈ M satisfy (H). Then SP AA(R, L2(P, H), μ) is translation
invariant.

Theorem 3.9 Let μ ∈ M and f ∈ SP AA(R, L2(P, H), μ) be such that

f = g + ϕ,

where g ∈ SAA(R, L2(P, H)) and ϕ ∈ E(R, L2(P, H), μ). If SP AA
(R, L2(P, H), μ) is translation invariant, then

{ f (t)|t ∈ R} ⊃ {g(t)|t ∈ R}.

The proof of Theorem 3.9 is similar to the proof of Theorem 4.1 in [5].
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Theorem 3.10 Let μ ∈ M. Assume that SP AA(R, L2(P, H), μ) is translation
invariant. Then SP AA(R, L2(P, H), μ) is a Banach space with the norm ‖ · ‖∞.

The proof of the theorem above is similar to the proof of Theorem 4.9 in [5].
Next, we study the composition of square-mean μ–pseudo almost automorphic
processes that is a generalization of the result of composition of square-mean almost
automorphic processes of Miao Miao Fu and Zhen Xin Liu [[19], Theorem 2.6]
We say that g ∈ SAA(R × L2(P, H), L2(P, H) if g : R × L2(P, H) → L2(P, H))

such that g(·, x) ∈ SAA(R, L2(P, H)) for each x ∈ L2(P, H).

Definition 3.7 Let μ ∈ M. A continuous function f (t, x) : R × L2(P, H) →
L2(P, H) is said to be square-mean μ–pseudo almost automorphic in t for any
x ∈ L2(P, H) if it can be decomposed as f = g + ϕ, where g ∈ SAA(R ×
L2(P, H), L2(P, H)), ϕ ∈ E(R × L2(P, H), L2(P, H), μ). Denote the set of all
such stochastically continuous processes by SP AA(R × L2(P, H), L2(P, H), μ).

Theorem 3.11 Let μ ∈ M satisfy (H). Suppose that f ∈ SP AA(R × L2(P, H),

L2(P, H), μ) and that there exists a positive number L such that, for any x, y ∈
L2(P, H),

E‖ f (t, x) − f (t, y)‖2 ≤ L · E‖x − y‖2

for t ∈ R. Then t 
→ f (t, x(t)) ∈ SP AA(R, L2(P, H), μ) for any x ∈
SP AA(R, L2(P, H), μ).

Theorem 3.11 can be proved by using Lemma 2.1, Theorem 3.8, and Theorem 2.6
in [19]. More details about the proof can be found in [5].
Next Sections, we use the results of this section to study the stochastic evolution
equations (1.1) and (1.2).

4 Square-Mean µ–Pseudo Almost Periodic Solutions Eq. (1.1)

This section is devoted to the existence of μ–pseudo almost periodic solutions on R

of Eq. (1.1) and the uniqueness and the stability of the square-mean μ–pseudo almost
periodic mild solution on R of Eq. (1.2) in the space SP AP(R, L2(P, H), μ), where
μ ∈ M.
Weassume that (T (t))t≥0 is exponentially stablewhichmeans that there exist constants
K ≥ 1 and ω > 0 such that

‖T (t)‖ ≤ Ke−ωt for all t ≥ 0. (4.1)

Definition 4.1 An Ft -progressively measurable process {x(t)}t∈R is called a mild
solution on R of Eq. (1.1) if it satisfies the corresponding stochastic integral equation

x(t) = T (t − a)x(a) +
∫ t

a
T (t − s) f (s)ds +

∫ t

a
T (t − s)γ (s)dW (s) (4.2)

for any t, a ∈ R such that t ≥ a.
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Theorem 4.1 Let μ ∈ M satisfy (H). Then Eq. (1.1) has a unique square-mean
μ–pseudo almost periodic mild solution on R if f, γ ∈ SP AP(R, L2(P, H), μ).

Proof Since the semigroup (T (t))t≥0 is exponentially stable, then one can see that
Eq. (1.1) has a unique bounded solution on R that is given by the following formula

x(t) =
∫ t

−∞
T (t − s) f (s)ds +

∫ t

−∞
T (t − s)γ (s)dW (s). (4.3)

Since f, γ ∈ SP AP(R, L2(P, H), μ), there exist g, α ∈ SAP(R, L2(P, H)) and
ϕ, β ∈ E(R, L2(P, H), μ) such that f = g + ϕ, γ = α + β. Hence,

x(t) =
∫ t

−∞
T (t − s)[g(s) + ϕ(s)]d(s) +

∫ t

−∞
T (t − s)[α(s) + β(s)]dW (s)

= [ ∫ t

−∞
T (t − s)g(s)ds +

∫ t

−∞
T (t − s)α(s)dW (s)

]

+ [ ∫ t

−∞
T (t − s)ϕ(s)ds +

∫ t

−∞
T (t − s)β(s)dW (s)

]

=̇F(t) + �(t).

The aim is to verify that F ∈ SAP(R, L2(P, H)) and � ∈ E(R, L2(P, H), μ).
We define

F(t) =
∫ t

−∞
T (t − s)g(s)ds +

∫ t

−∞
T (t − s)α(s)dW (s)

:= G(t) + P(t).

Using similar arguments as performed in the step 1 of Theorem 3.1 in [10], we obtain
the continuity of G and P .
Since g ∈ SAP(R, L2(P, H)), then for each ε > 0, there exists l(ε) such that for all
a ∈ R, there exists τ ∈ [a, a + l(ε)] satisfying

sup
t∈R

E‖g(t + τ) − g(t)‖2 <
ω2

K 2 ε.

Let t ∈ R. Then we have

E‖G(t + τ) − G(t)‖2 = E‖
∫ t+τ

−∞
T (t + τ − s)g(s)ds −

∫ t

−∞
T (t − s)g(s)ds‖2

= E‖
∫ t

−∞
T (t − s)g(s + τ)ds −

∫ t

−∞
T (t − s)g(s)ds‖2

= E‖
∫ t

−∞
T (t − s)[g(s + τ) − g(s)]ds‖2
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≤ K 2
E

(∫ t

−∞
e−ω(t−s)‖g(s + τ) − g(s)‖ds

)2

≤ K 2
E

(∫ t

−∞
(e

−ω(t−s)
2 )(e

−ω(t−s)
2 )‖g(s + τ) − g(s)‖ds

)2

.

By the Cauchy-Schwartz’s inequality, we obtain that

E‖G(t + τ) − G(t)‖2

≤ K 2
E

[(∫ t

−∞
e−ω(t−s)ds

) (∫ t

−∞
e−ω(t−s)‖g(s + τ) − g(s)‖2ds

)]

≤ K 2
(∫ t

−∞
e−ω(t−s)ds

) (∫ t

−∞
e−ω(t−s)

E‖g(s + τ) − g(s)‖2ds
)

≤ K 2
(∫ t

−∞
e−ω(t−s)ds

)2

sup
s∈R

E‖g(s + τ) − g(s)‖2

≤ K 2

ω2 sup
s∈R

E‖g(s + τ) − g(s)‖2

< ε.

HenceG ∈ SAP(R, L2(P, H)). Since α ∈ SAP(R, L2(P, H)), then for each ε > 0,
there exists l(ε) such that for all a ∈ R, there exists τ ∈ [a, a + l(ε)] satisfying

sup
t∈R

E‖α(t + τ) − α(t)‖2 <
2ω

K 2 ε.

Let W̃ (σ ) = W (σ + τ) − W (τ ) for each σ ∈ R. Then W̃ is also a Wiener process
having the same distribution as W. Letting σ = s − τ and using the Ito’s isometry
property of stochastic integral, we obtain the following estimation

E‖P(t + τ) − P(t)‖2

= E‖
∫ t+τ

−∞
T (t + τ − s)α(s)dW (s) −

∫ t

−∞
T (t − s)α(s)dW (s)‖2

= E‖
∫ t

−∞
T (t − σ)α(σ + τ)dW̃ (σ ) −

∫ t

−∞
T (t − s)α(s)dW (s)‖2

= E‖
∫ t

−∞
T (t − s)[α(s + τ) − α(s)]dW (s)‖2

= E

(∫ t

−∞
‖T (t − s)[α(s + τ) − α(s)]‖2ds

)

≤
∫ t

−∞
‖T (t − s)‖2E‖α(s + τ) − α(s)‖2ds
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≤ K 2

2ω
sup
s∈R

E‖α(s + τ) − α(s)‖2

< ε.

Therefore P ∈ SAP(R, L2(P, H)), hence F ∈ SAP(R, L2(P, H)).
Next, we have to show that � ∈ E(R, L2(P, H), μ). Using similar arguments as
performed in the step 1 of Theorem 3.1 in [10], we obtain the continuity of �. We
claim that

lim
n→+∞

1

μ([−r, r ])
∫ r

−r
E‖�(t)‖2dμ(t) = 0.

In fact, we have

1

μ([−r, r ])
∫ r

−r
E‖�(t)‖2dμ(t)

= 1

μ([−r, r ])
∫ r

−r
E‖

∫ t

−∞
T (t − s)ϕ(s)d(s) +

∫ t

−∞
T (t − s)β(s)dW (s)‖2dμ(t)

≤ 2

μ([−r, r ])
∫ r

−r
E‖

∫ t

−∞
T (t − s)ϕ(s)d(s)‖2dμ(t)

+ 2

μ([−r, r ])
∫ r

−r
E‖

∫ t

−∞
T (t − s)β(s)dW (s)‖2dμ(t)

≤ 2

μ([−r, r ])
∫ r

−r
dμ(t)E

(∫ t

−∞
‖T (t − s)‖‖ϕ(s)‖ds

)2

+ 2

μ([−r, r ])
∫ r

−r
dμ(t)E‖

∫ t

−∞
T (t − s)β(s)dW (s)‖2.

By the Cauchy-Schwartz’s inequality and the Ito’s isometry property of the stochastic
integral, we have

1

μ([−r, r ])
∫ r

−r
E‖�(t)‖2dμ(t)

≤ 2

μ([−r, r ])
∫ r

−r
dμ(t)

∫ t

−∞
Ke−ω(t−s)ds

∫ t

−∞
Ke−ω(t−s)

E‖ϕ(s)‖2ds

+ 2

μ([−r, r ])
∫ r

−r
dμ(t)

∫ t

−∞
K 2e−2ω(t−s)

E‖β(s)‖2ds

= 2K

ωμ([−r, r ])
∫ r

−r
dμ(t)

∫ t

−∞
Ke−ω(t−s)

E‖ϕ(s)‖2ds

+ 2

μ([−r, r ])
∫ r

−r
dμ(t)

∫ t

−∞
K 2e−2ω(t−s)

E‖β(s)‖2ds.

Using the Fubini’s theorem, the first term on the right-hand side of the last equality
satisfies the following
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2K

ωμ([−r, r ])
∫ r

−r
dμ(t)

∫ t

−∞
Ke−ω(t−s)

E‖ϕ(s)‖2ds

= 2K

ωμ([−r, r ])
∫ r

−r
dμ(t)

∫ ∞

0
Ke−ωu

E‖ϕ(t − u)‖2du (setting u = t − s)

= 2K 2

ω

∫ ∞

0
e−ωu 1

μ([−r, r ])
∫ r

−r
E‖ϕ(t − u)‖2dμ(t)du.

Since, we have

|e−ωu 1

μ([−r, r ])
∫ r

−r
E‖ϕ(t − u)‖2dμ(t)| ≤ e−ωu‖ϕ‖2∞

and ∫ ∞

0
e−ωu‖ϕ‖2∞du < ∞.

Then, using the Lebesgue dominated convergence theorem and the fact that
E(R, L2(P, H), μ) is translation invariant, we get

lim
r→∞

2K

ωμ([−r, r ])
∫ r

−r
dμ(t)

∫ t

−∞
Ke−ω(t−s)

E‖ϕ(s)‖2ds = 0.

We argue as above, we can show that

lim
r→∞

2

μ([−r, r ])
∫ r

−r
dμ(t)

∫ t

−∞
K 2e−2ω(t−s)

E‖β(s)‖2ds = 0.

Then,

lim
r→∞

1

μ([−r, r ])
∫ r

−r
E‖�(t)‖2dμ(t) = 0,

which implies that � ∈ E(R, L2(P, H), μ).

To end the prove, we have to show the uniqueness. Let u, v be two mild solutions
to Eq. (1.1). Setting w = u − v, one can easily see that w is bounded and that
w(t) = T (t − s)w(s) for t ≥ s. Now using (4.1), we can obtain that

E‖w(t)‖2 = E‖T (t − s)w(s)‖2
≤ K 2e−2ω(t−s)

E‖w(s)‖2
≤ K 2e−2ω(t−s)‖w‖∞

for all t ≥ s.
Now let (sn)n ∈ N be a sequence of real numbers such that sn → −∞ as n → ∞.

Clearly, for any fixed t ∈ R, there exists a subsequence (snk )k∈N of (sn)n∈N such that
snk < t for all k ∈ N. In view of the above, letting k → ∞ yieldsw(t) = u(t)−v(t) =
0. Therefore, u = v. This ends the proof. 
�
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Next, we study the uniqueness of the bounded mild solution on R of Eq. (1.2).

Definition 4.2 An Ft -progressively measurable process {x(t)}t∈R is called a mild
solution onR of Eq. (1.2) provided that it satisfies the corresponding stochastic integral
equation

x(t) = T (t−a)x(a)+
∫ t

a
T (t−s)h(s, x(s))ds+

∫ t

a
T (t−s)θ(s, x(s))dW (s) (4.4)

for any t, a ∈ R such t ≥ a.

Theorem 4.2 Let μ ∈ M satisfy (H). We suppose that h, θ ∈ SP AP(R ×
L2(P, H), L2(P, H), μ) and that there exist constants L , L ′ > 0 such that

E ‖ h(t, x) − h(t, y) ‖2≤ L · E ‖ x − y ‖2
E ‖ θ(t, x) − θ(t, y) ‖2≤ L ′ · E ‖ x − y ‖2

for all t ∈ R and for any x, y ∈ L2(P, H).
If

2K 2L

ω2 + K 2L ′

ω
< 1,

then Eq. (1.2) has a unique square-mean μ–pseudo almost periodic mild solution on
R.

Proof By the definition 4.2, stochastic process x : R → L2(P, H) is a solution to
Eq. (1.2) if and only if it satisfies the stochastic integral equation

x(t) = T (t − a)x(a) +
∫ t

a
T (t − s)h(s, x(s))ds +

∫ t

a
T (t − s)θ(s, x(s))dW (s).

Note that h(·, x(·) and θ(·, x(·) are L2-bounded. Therefore, if we let a → −∞ in
above integral equation then by the exponential dissipation condition of T , we obtain
the that stochastic process x : R → L2(P, H) is a solution to Eq. (1.2) if and only if
x satisfies the stochastic integral equation

x(t) =
∫ t

−∞
T (t − s)h(s, x(s))ds +

∫ t

−∞
T (t − s)θ(s, x(s))dW (s). (4.5)

Define the operator S by

(Sx)(t) =
∫ t

−∞
T (t − s)h(s, x(s))ds +

∫ t

−∞
T (t − s)θ(s, x(s))dW (s),

for any x ∈ SP AP(R, L2(P, H), μ). Using Theorem 3.6, we deduce that
h(·, x(·), θ(·, x(·) ∈ SP AP(R, L2(P, H), μ) and from Theorem 4.1 we conclude
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that S is a self-mapping from the space SP AP(R, L2(P, H), μ) to the space
SP AP(R, L2(P, H), μ). Now, we have to check that S is a strict contraction. For
x1, x2 ∈ SP AP(R, L2(P, H), μ) and each t ∈ R, we have

E‖(Sx1)(t) − (Sx2)(t)‖2 = E‖
∫ t

−∞
T (t − s)[h(s, x1(s)) − h(s, x2(s))]ds

+
∫ t

−∞
T (t − s)[θ(s, x1(s)) − θ(s, x2(s))]dW (s)‖2

≤ 2K 2
E

(∫ t

−∞
e−ω(t−s)‖h(s, x1(s)) − h(s, x2(s))‖ds

)2

+ 2E‖
∫ t

−∞
T (t − s)[θ(s, x1(s)) − θ(s, x2(s))]dW (s)‖2.

Weestimate the first termof the right-hand side by usingCauchy-Schwartz’s inequality
as follows:

E

(∫ t

−∞
e−ω(t−s)‖h(s, x1(s)) − h(s, x2(s))‖ds

)2

= E

(∫ t

−∞
(e

−ω(t−s)
2 )(e

−ω(t−s)
2 )‖h(s, x1(s)) − h(s, x2(s))‖ds

)2

≤ E

[(∫ t

−∞
e−ω(t−s)ds

) (∫ t

−∞
e−ω(t−s)‖h(s, x1(s)) − h(s, x2(s))‖2ds

)]

≤
(∫ t

−∞
e−ω(t−s)ds

) (∫ t

−∞
e−ω(t−s)

E‖h(s, x1(s)) − h(s, x2(s))‖2ds
)

≤ L ·
(∫ t

−∞
e−ω(t−s)ds

) (∫ t

−∞
e−ω(t−s)

E‖x1(s) − x2(s)‖2ds
)

≤ L ·
(∫ t

−∞
e−ω(t−s)ds

)2

sup
s∈R

E‖x1(s) − x2(s)‖2

≤ L

ω2 sup
s∈R

E‖x1(s) − x2(s)‖2.

Using Ito’s isometry property of stochastic integral, we obtain that

E‖
∫ t

−∞
T (t − s)[θ(s, x1(s)) − θ(s, x2(s))]dW (s)‖2

= E[
∫ t

−∞
‖T (t − s)[θ(s, x1(s)) − θ(s, x2(s))]‖2ds

≤ E[
∫ t

−∞
‖T (t − s)‖2‖θ(s, x1(s)) − θ(s, x2(s))‖2ds

≤ K 2
∫ t

−∞
e−2ω(t−s)

E‖θ(s, x1(s)) − θ(s, x2(s))‖2ds
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≤ K 2L ′
(∫ t

−∞
e−2ω(t−s)ds

)
sup
s∈R

E‖x1(s)) − x2(s)‖2

≤ K 2L ′

2ω
sup
s∈R

E‖x1(s) − x2(s)‖2.

Thus, it follows that for each t ∈ R

E‖(Sx1)(t) − (Sx2)(t)‖2 ≤
(
2K 2L

ω2 + K 2L ′

ω

)
sup
s∈R

E‖x1(s) − x2(s)‖2

that is,

∥∥(Sx1)(t) − (Sx2)(t)
∥∥2
L2 ≤ N sup

s∈R
∥∥x1(s) − x2(s)

∥∥2
L2 ≤ N

(
sup
s∈R

∥∥x1(s) − x2(s)
∥∥
L2

)2

,

with N := 2K 2L
ω2 + K 2L ′

ω
.

Hence

‖(Sx1)(t) − (Sx2)(t)‖L2 ≤ √
N‖x1 − x2‖∞.

That implies

‖Sx1 − Sx2‖∞ = sup
t∈R

‖(Sx1)(t) − (Sx2)(t)‖L2 ≤ √
N‖x1 − x2‖∞.

Since N < 1, it follows S is a contraction. Therefore by Banach point fixed, there
exists a unique fixed point x such that Sx = x which satisfies Eq. (1.2). The proof is
complete. 
�

Now, we investigate the stability of the unique square-mean μ–pseudo almost peri-
odic mild solution on R of Eq. (1.2). Let us recalling the definition of asymptotic
stability.

Definition 4.3 [19] A solution x∗ of Eq. (1.2) is said to be stable in square-mean
sense, if for arbitrary ε > 0, there exists δ > 0 such that

E

∥∥∥x∗(t) − x(t)
∥∥∥2 < ε, t ≥ 0

whenever E

∥∥∥x∗(0) − x0
∥∥∥2 < δ, where x is the solution of Eq. (1.1) with initial

condition x0. The solution x∗ of Eq. (1.2) is said to be globally asymptotically stable
in the square-mean sense if it is stable in square-mean sense and

lim
t→∞ E

∥∥∥x∗(t) − x(t)
∥∥∥2 = 0

holds for any x0 ∈ L2(P, H).
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Remark 4.1 Let x0 ∈ L2(P, H). Then under the assumptions of Theorem 4.2, it easy
to show that the solution of Eq. (1.2) with initial value x0 exists for t ∈ [0,+∞).

Theorem 4.3 Under the assumptions of Theorem 4.2, if

L

ω2 + L ′

ω
<

1

3K 2 ,

then the unique square-mean μ–pseudo almost periodic mild solution on R of Eq.
(1.2) is is globally asymptotically stable.

Proof Let x be a mild solution of Eq. (1.2) with initial value x(0) on [0,∞). Then,
for t ≥ 0, we have

E‖x(t) − x∗(t)‖2 = E‖T (t)(x(0) − x∗(0))

+
∫ t

0
T (t − s)

[
h(s, x(s)) − h

(
s, x∗(s)

)]
ds

+
∫ t

0
T (t − s)

[
θ(s, x(s)) − θ

(
s, x∗(s)

)]
dW (s)‖2

Thus using the Cauchy-Schwartz’s inequality, the Ito’s isometry property of the sto-
chastic integral and the Fubini’s theorem, we have

E‖x(t) − x∗(t)‖2 ≤ 3‖T (t)‖2E‖x(0) − x∗(0)‖2

+ 3E

(∫ t

0
‖T (t − s)

[
h(s, x(s)) − h

(
s, x∗(s)

)] ‖ds
)2

+ 3E

(∫ t

0
‖T (t − s)

[
θ(s, x(s)) − θ

(
s, x∗(s)

)] ‖2ds
)

.

It follows that

E‖x(t) − x∗(t)‖2 ≤ 3K 2e−2ωt
E‖x(0) − x∗(0)‖2

+ 3L
∫ t

0
Ke−ω(t−s)ds

∫ t

0
Ke−ω(t−s)

E‖x(s) − x∗(s)‖2ds

+ 3L ′
∫ t

0
K 2e−2ω(t−s)

E‖x(s) − x∗(s)‖2ds.

Consequently, we obtain that

E‖x(t) − x∗(t)‖2 ≤ 3K 2e−2ωt
E‖x(0) − x∗(0)‖2

+ 3K 2L

ω

∫ t

0
e−ω(t−s)

E‖x(s) − x∗(s)‖2ds

+ 3K 2L ′
∫ t

0
e−2ω(t−s)

E‖x(s) − x∗(s)‖2ds. (4.6)
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Let X (t) := E

∥∥∥x(t)−x∗(t)
∥∥∥2 and k = 3K 2L

ω
+3K 2L ′. Since for t ≥ 0, e−2ωt ≤ e−ωt .

Then by (4.6), we obtain

X (t) ≤ 3K 2e−ωt X (0) + k
∫ t

0
e−ω(t−s)X (s)ds.

Hence, we get

e−ωt X (t) ≤ 5K 2X (0) + k
∫ t

0
eωs X (s)ds.

Then using Gronvall Lemma, we obtain that

X (t) ≤ 5K 2X (0)e(k−ω)t .

That implies that X (t) → 0 exponentially fast if k − ω < 0, that is

L

ω2 + L ′

ω
<

1

3K 2 .

Therefore x∗ is globally asymptotically stable in the square-mean sense. This com-
pletes the proof. 
�

5 Square-Mean µ–Pseudo Almost Automorphic Solutions

This section is devoted to the existence of μ–pseudo almost automorphic solutions on
R of Eq. (1.1) and the uniqueness and the stability of the square-meanμ–pseudo almost
automorphic mild solution on R of Eq. (1.2) in the space SP AA(R, L2(P, H), μ),
where μ ∈ M.

Theorem 5.1 Let μ ∈ M satisfy (H). Then Eq. (1.1) has a square-mean μ–pseudo
almost automorphic mild solution on R if f, γ ∈ SP AA(R, L2(P, H), μ).

Proof We reproduce the proof of Theorem 4.1 in what we take g, α ∈ SAA
(R, L2(P, H)). Then, we only need to verify that F ∈ SAA(R, L2(P, H)). Since
it is proven in [10] that F ∈ SAA(R, L2(P, H)), then the mild solution of Eq. (1.1)
is square-mean μ–pseudo almost automorphic. 
�

Next, we study the uniqueness of square-meanμ–pseudo almost automorphic mild
solution of (1.2).

Theorem 5.2 Let μ ∈ M satisfy (H). We suppose that h, θ ∈ SP AA(R ×
L2(P, H), L2(P, H), μ), and that there exist constants L , L ′ > 0 such that

E ‖ h(t, x) − h(t, y) ‖2≤ L · E ‖ x − y ‖2
E ‖ θ(t, x) − θ(t, y) ‖2≤ L ′ · E ‖ x − y ‖2

for all t ∈ R and for any x, y ∈ L2(P, H).
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If

2K 2L

ω2 + K 2L ′

ω
< 1,

then Eq. (1.2) has a unique square-mean μ–pseudo almost automorphic mild solution
on R.

The arguments of the proof of Theorem 5.2 are the same as performed in the proof
of Theorem 4.2.

Theorem 5.3 Under the assumptions of Theorem 5.2, if

L

ω2 + L ′

ω
<

1

3K 2 ,

then the unique square-meanμ–pseudo almost automorphic mild solution onR of Eq.
(1.2) is is globally asymptotically stable.

The proof uses the same arguments performed in the proof of Theorem 4.3.

6 Example

To apply our theoretical results, we consider the measureμwhere its Radon-Nikodym
derivative is

ρ(t) = exp(−2t) for t ∈ R.

Then μ ∈ M and μ satisfies (H) (cf. Example 2.2). Let consider the following one-
dimensional stochastic heat equation with the Dirichlet boundary conditions:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du(t, x) = ∂2u(t,x)
∂x2

dt +
√
l
4

[
u(t, x) sin 1

2+cos t+cos
√
2t

+ et cos u(t, x)
]
dt

+
√
l
4

[
u(t, x) sin 1

2+cos t+cos
√
3t

+ et sin u(t, x)
]
dW (t),

(t, x) ∈ R × (0, 1),

u(t, 0) = u(t, 1) = 0, t ∈ R,

(6.1)
where W(t) is a two-sided and standard one-dimensional Brownian motion defined on
the filtered probability space (�,F , P,Ft ) with Ft = σ {W (w) − W (v)|w, v ≤ t}.
with l > 0.
System (6.1) takes the abstract form (1.2),

du(t) = Au(t)dt + h(t, u)dt + θ(t, u)dW (t) for all t ∈ R (6.2)
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where

h(t, u)(x) = h(t, u(t)(x)) =
√
l

4

[
u(t)(x) sin

1

2 + cos t + cos
√
2t

+ et cos u(t)(x)

]
,

θ(t, u)(x) = θ(t, u(t)(x)) =
√
l

4

[
u(t)(x) sin

1

2 + cos t + cos
√
3t

+ et sin u(t)(x)

]
,

and

D(A) = H2((0, 1)) ∩ H1
0((0, 1)),

Ax(ξ) = x ′′(ξ) for ξ ∈ (0, 1) and x ∈ D(A).

Then, A generates a C0-semigroup (T (t))t≥0 on L2[0, 1] given by

(T (t)x)(r) =
∞∑
n=1

e−n2π2t 〈x, en〉L2en(r),

where en(r) = √
2 sin(nπr) for n = 1, 2, ...., and ‖T (t)‖ ≤ e−π2t for all t ≥ 0.

Thus, set K = 1 and ω = π2.
u sin 1

2+cos t+cos
√
2t

+ et cos u belongs to SP AA(R × L2(P, L2[0, 1]),
L2(P, L2[0, 1]), μ),

where u sin 1
2+cos t+cos

√
2t

is the almost automorphic component and et cos u is the
μ–ergodic perturbation, since

1

μ([−r, r ])
∫ r

−r
E‖et cos u‖2dμ(t) ≤ −2

e2r (e−4r − 1)

∫ r

−r
e2t e−2tdt

= −2

e2r (e−4r − 1)

∫ r

−r
dt

= −4r

e2r (e−4r − 1)
→ 0 as r → +∞.

Then (t, u) 
→ h(t, u) ∈ SP AA(R × L2(P, L2[0, 1]), L2(P, L2[0, 1]), μ). By anal-
ogous argument performed above, we have also (t, u) 
→ θ(t, u) ∈ SP AA(R ×
L2(P, L2[0, 1]), L2(P, L2[0, 1]), μ). Clearly, h and θ satisfy the Lipschitz condition
in Theorem 5.3 with L = L ′ = l, K = 1 and ω = π2. Since

l <
1

3K 2

(
1

ω2 + 1

ω

)−1

= 1

3π2

(
1

π2 + 1

)−1

.

Therefore, by Theorems 5.2 and 5.3, the corresponding equation (6.2) has a unique
square-mean μ–pseudo almost automorphic mild solution which is globally asymp-
totically stable.
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