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Abstract In this paper, we present some new results concerning positive solutions for
the singular fractional boundary value problem with p-Laplacian. By imposing some
suitable conditions on the nonlinear term f, existence results of positive solutions are
obtained. The proof is based upon theory of Leray–Schauder degree. The interesting
point is the nonlinear term f (t, u) may be singular at u = 0.
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1 Introduction

The present paper is aimed at a study of the singular fractional boundary value problem
with p-Laplacian

(φp(D
α
0+u(t)))′ + f (t, u(t)) = 0, 0 < t < 1, (1)

u′(0) = 0, u(1) − γ u(η) = 0, (2)

where φp(s) = |s|p−2s, p > 1, γ, η ∈ (0, 1), 1 < α ≤ 2, Dα
0+ is the Caputo frac-

tional derivative, and f (t, u) may be singular at u = 0. The singular boundary value
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problems have proved to be valuable tools in the modeling of many problems in math-
ematics and physics such as gas dynamics, chemical reactions, nuclear physics, atomic
calculations, and the studies of atomic structures. Because of the physical interests, the
singular problems have received a great attention in recent years. Initially, most papers
focused on the singular integer order boundary value problem, we refer the reader to
[1,4,9–11,13–16]. More recently, fractional differential equations have gained impor-
tance due to their applications in various sciences, several authors begin to consider the
singular fractional boundary value problem, see [5,6,19] and the references therein.
Most of the existing results focused on the fractional boundary value problems with
time singularities. However, there are a few papers [2,3,18,20] considering fractional
boundary value problems with nonlinearities having singularities in space variables.

In [18], the authors established the existence of positive solutions for the singular
fractional boundary value problem

Dα
0+u(t) = f (t, u(t)), 0 < t < 1,

u(0) = u(1) = u′(0) = u′(1) = 0,

where 3 < α ≤ 4, f (t, u) may be singular at u = 0.
In [2], the authors investigatedpositive solutions for the singular fractional boundary

value problem

Dαu(t) + f (t, u(t), Dμu(t)) = 0, 0 < t < 1,

u(0) = u(1) = 0,

where 1 < α < 2, μ > 0 are real numbers, α − μ ≥ 1, f (t, x, y) is singular at
x = 0.

In [7,8,12], fractional boundary value problems with p-Laplacian operators have
been studied. However, there are very few papers discussing the singular fractional
boundary value problems with p-Laplacian.

In [17], using the upper and lower solutions method, the authors got the posi-
tive solutions for the following singular fractional boundary value problems with
p-Laplacian

Dγ
0+(φp(D

α
0+u(t))) = f (t, u(t)), 0 < t < 1,

u(0) = 0, u(1) = au(ξ), Dα
0+u(0) = 0, Dα

0+u(1) = bDα
0+u(η),

where 1 < α, γ ≤ 2, 0 ≤ a, b ≤ 1, 0 < ξ, η < 1, f can be singular at u = 0.
To our knowledge, there is not a paper in the literature which considers the frac-

tional boundary value problem (1)–(2) [both integer-order derivative and Caputo’s
fractional-order derivative are included in the Eq. (1)]. The existing literature about
the singular boundary value problem discussed directly about the differential equa-
tion, then integrated the equation and used the techniques of inequalities. While this
classic methods are not applicable to the mixed order (both integer-order derivative
and Caputo’s fractional-order derivative are included in the equation) Eq. (1). In this
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paper, by studying the properties of solutions of the fractional boundary value problem
(1)–(2) and using the techniques of inequalities, we obtained the existing results.

2 The Preliminary Lemmas

Definition 2.1 The Riemann-Liouville fractional integral of order α > 0 for a func-
tion f : (0,+∞) → R is defined by

I α
0+ f (t) = 1

�(α)

∫ t

0
(t − s)α−1 f (s)ds,

provided that the right-hand side is pointwise defined on (0,+∞).

Definition 2.2 TheCaputo derivative of orderα > 0 for a function f : (0,+∞) → R
is given by

Dα
0+ f (t) = 1

�(n − α)

∫ t

0

f (n)(s)ds

(t − s)α+1−n
,

where n = [α] + 1 and [α] means the integer part of α.

Lemma 2.1 Let α > 0 and u ∈ C(0, 1) ∩ L ′(0, 1). Suppose that

Dα
0+u(t) = 0,

then

u(t) = c1 + c2t + c3t
2 + · · · + cnt

n−1,

where ci ∈ R, i = 1, 2, · · · , n and n = [α] + 1 is the unique solution for the above
fractional differential equation.

Lemma 2.2 Let α > 0, then

I α
0+Dα

0+u(t) = u(t) + c1 + c2t + c3t
2 + · · · + cnt

n−1

for some ci ∈ R, i = 1, 2, · · · , n, and n = [α] + 1.

We shall consider the Banach space E = C[0, 1] equipped with maximum norm

||u|| = max
0≤t≤1

|u(t)|.

We suppose F : [0, 1] × R → (0,+∞) is continuous.

Lemma 2.3 For any x ∈ E, the following boundary value problem

(φp(D
α
0+u(t)))′ + F(t, x(t)) = 0, 0 < t < 1, (3)

u′(0) = a, u(1) − γ u(η) = a, (4)
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has a unique solution

u(t) =
∫ 1

0
G(t, s)φq

(∫ s

0
F(τ, x(τ ))dτ

)
ds

+ γ

1 − γ

∫ 1

0
G(η, s)φq

(∫ s

0
F(τ, x(τ ))dτ

)
ds + aηγ

1 − γ
+ at, (5)

where a is a fixed positive constant and

G(t, s) =

⎧⎪⎪⎨
⎪⎪⎩

(1 − s)α−1

�(α)
− (t − s)α−1

�(α)
, 0 ≤ s ≤ t ≤ 1,

(1 − s)α−1

�(α)
, 0 ≤ t ≤ s ≤ 1.

(6)

Proof Integrating both sides of Eq. (3) on [0, t], we have

φp(D
α
0+u(t)) − φp(D

α
0+u(0)) = −

∫ t

0
F(s, x(s))ds,

so

Dα
0+u(t) = −φq

(∫ t

0
F(s, x(s))ds

)
, (7)

then

I α
0+Dα

0+u(t) = −I α
0+φq

(∫ t

0
F(s, x(s))ds

)
,

in view of Lemma 2.2, we have

u(t) + A1 + B1t = −I α
0+φq

(∫ t

0
F(s, x(s))ds

)
,

that is

u(t) = − 1

�(α)

∫ t

0
(t − s)α−1φq

(∫ s

0
F(τ, x(τ ))dτ

)
ds + A + Bt.

By condition (4), there is u′(0) = B = a. Now

u(t) = − 1

�(α)

∫ t

0
(t − s)α−1φq

(∫ s

0
F(τ, x(τ ))dτ

)
ds + A + at,

u(1) = − 1

�(α)

∫ 1

0
(1 − s)α−1φq

(∫ s

0
F(τ, x(τ ))dτ

)
ds + A + a,

u(η) = − 1

�(α)

∫ η

0
(η − s)α−1φq

(∫ s

0
F(τ, x(τ ))dτ

)
ds + A + aη,
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by the condition u(1) − γ u(η) = a, we have

A = 1
(1−γ )�(α)

∫ 1
0 (1 − s)α−1φq

(∫ s
0 F(τ, x(τ ))dτ

)
ds

− γ
(1−γ )�(α)

∫ η

0 (η − s)α−1φq

(∫ s
0 F(τ, x(τ ))dτ

)
ds + aηγ

1−γ
.

So

u(t) = − 1

�(α)

∫ t

0
(t − s)α−1φq

(∫ s

0
F(τ, x(τ ))dτ

)
ds

+ 1

(1 − γ )�(α)

∫ 1

0
(1 − s)α−1φq

(∫ s

0
F(τ, x(τ ))dτ

)
ds

− γ

(1 − γ )�(α)

∫ η

0
(η − s)α−1φq

(∫ s

0
F(τ, x(τ ))dτ

)
ds + aηγ

1 − γ
+ at,

splitting the second integral in two parts of the form

1

�(α)
+ γ

(1 − γ )�(α)
= 1

(1 − γ )�(α)
,

we have

u(t) = − 1
�(α)

∫ t
0 (t − s)α−1φq

(∫ s
0 F(τ, x(τ ))dτ

)
ds

+ 1
�(α)

∫ 1
0 (1 − s)α−1φq

(∫ s
0 F(τ, x(τ ))dτ

)
ds

+ γ
(1−γ )�(α)

∫ 1
0 (1 − s)α−1φq

(∫ s
0 F(τ, x(τ ))dτ

)
ds

− γ
(1−γ )�(α)

∫ η

0 (η − s)α−1φq

(∫ s
0 F(τ, x(τ ))dτ

)
ds + aηγ

1−γ
+ at

= ∫ t
0

(
(1−s)α−1

�(α)
− (t−s)α−1

�(α)

)
φq

(∫ s
0 F(τ, x(τ ))dτ

)
ds

+ ∫ 1
t

(1−s)α−1

�(α)
φq

(∫ s
0 F(τ, x(τ ))dτ

)
ds

+ γ
(1−γ )�(α)

∫ η

0 ((1 − s)α−1 − (η − s)α−1)φq

(∫ s
0 F(τ, x(τ ))dτ

)
ds

+ γ
(1−γ )�(α)

∫ 1
η
(1 − s)α−1φq

(∫ s
0 F(τ, x(τ ))dτ

)
ds + aηγ

1−γ
+ at.

The proof is complete. 	

Lemma 2.4 Fixed β ∈ (0, 1). The function G(t, s) defined by (6) has the following
properties.

1. 0 ≤ G(t, s) ≤ G(s, s), for all s ∈ (0, 1),
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2. min
0≤t≤β

G(t, s) ≥ 1−βα−1

2 G(s, s), for all s ∈ (0, 1).

Proof 1. For 1 < α ≤ 2 and 0 ≤ s ≤ t ≤ 1, we get

(1 − s)α−1 > (t − s)α−1,

this implies G(t, s) > 0.
On the other hand, case (1): 0 ≤ s < t ≤ 1,

∂G(t, s)

∂t
= − (α − 1)(t − s)α−2

�(α)
< 0,

case (2): 0 ≤ t ≤ s ≤ 1,

∂G(t, s)

∂t
= 0,

considering the above two cases, we have the function G(t, s) is nonincreasing of t,
thus

G(t, s) ≤ G(s, s), ∀s ∈ (0, 1).

2. For 0 ≤ t ≤ β, in view of the proof of 1, we have

min
0≤t≤β

G(t, s) = G(β, s),

where

G(β, s) =

⎧⎪⎪⎨
⎪⎪⎩

(1 − s)α−1

�(α)
− (β − s)α−1

�(α)
, 0 ≤ s ≤ β ≤ 1,

(1 − s)α−1

�(α)
, 0 ≤ β ≤ s ≤ 1.

(a) If 0 ≤ s ≤ β ≤ 1,

min
0≤t≤β

G(t, s) = (1 − s)α−1

�(α)
− (β − s)α−1

�(α)

= (1 − s)α−1

�(α)
− βα−1(1 − s

β
)α−1

�(α)

≥ (1 − s)α−1

�(α)
− βα−1(1 − s)α−1

�(α)

= (1 − βα−1)(1 − s)α−1

�(α)

>
(1 − βα−1)

2

(1 − s)α−1

�(α)
= (1 − βα−1)

2
G(s, s).
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(b) If 0 ≤ β ≤ s ≤ 1,

min
0≤t≤β

G(t, s) = (1 − s)α−1

�(α)
>

(1 − βα−1)

2

(1 − s)α−1

�(α)
= (1 − βα−1)

2
G(s, s).

The proof is complete. 	

Consider the following fractional boundary value problem

(φp(D
α
0+u(t)))′ + F(t, u(t)) = 0, 0 < t < 1, (8)

u′(0) = a, u(1) − γ u(η) = a. (9)

Define the operator T : E → E by

Tu(t) =
∫ 1

0
G(t, s)φq

(∫ s

0
F(τ, u(τ ))dτ

)
ds

+ γ

1 − γ

∫ 1

0
G(η, s)φq

(∫ s

0
F(τ, u(τ ))dτ

)
ds + aηγ

1 − γ
+ at. (10)

Remark 2.1 By Lemma 2.3, the problem (8)–(9) has a solution u(t) if and only if u
is a fixed point of T .

Lemma 2.5 T : E → E is completely continuous.

Proof The continuity of functions G(t, s) and F(t, u(t)) implies that T : E → E is
continuous.

Let� ⊂ E be bounded, that is, there exists L > 0 such that ‖u‖ ≤ L for all u ∈ �.

Set

D = max
0≤t≤1, 0≤u≤L

|F(t, u)|.

Lemmas 2.3 and 2.4 imply that for u ∈ �,

|Tu(t)| =
∣∣∣∣
∫ 1

0
G(t, s)φq

(∫ s

0
F(τ, u(τ ))dτ

)
ds

+ γ

1 − γ

∫ 1

0
G(η, s)φq

(∫ s

0
F(τ, u(τ ))dτ

)
ds + aηγ

1 − γ
+ at

∣∣∣∣
≤

∫ 1

0
G(s, s)φq

(∫ 1

0
Ddτ

)
ds

+ γ

1 − γ

∫ 1

0
G(η, s)φq

(∫ 1

0
Ddτ

)
ds + aηγ

1 − γ
+ a
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≤ φq(D)

[∫ 1

0

(1 − s)α−1

�(α)
ds + γ

1 − γ

∫ 1

0

(1 − s)α−1

�(α)
ds

]
+ aηγ

1 − γ
+ a

= φq(D)

(1 − γ )�(α)

∫ 1

0
(1 − s)α−1ds + aηγ

1 − γ
+ a =: d.

So T (�) is bounded.
Moreover, let u ∈ �, t1, t2 ∈ [0, 1] with t1 < t2, then

|Tu(t2) − Tu(t1)| ≤ φq(D)

∣∣∣∣
∫ 1

0
(G(t2, s) − G(t1, s))ds

∣∣∣∣+a|t2 − t1|

= φq(D)

∣∣∣∣
∫ t2

0

(
(1−s)α−1

�(α)
− (t2 − s)α−1

�(α)

)
ds+

∫ 1

t2

(1−s)α−1

�(α)
ds

−
∫ t1

0

(
(1 − s)α−1

�(α)
− (t1 − s)α−1

�(α)

)
ds

−
∫ 1

t1

(1 − s)α−1

�(α)
ds

∣∣∣∣ + a|t2 − t1|

= φq(D)

∣∣∣∣−
∫ t2

0

(t2−s)α−1

�(α)
ds+

∫ t1

0

(t1 − s)α−1

�(α)
ds

∣∣∣∣ + a|t2 − t1|

= φq(D)
1

�(α + 1)

∣∣∣∣tα1 − tα2

∣∣∣∣ + a|t2 − t1|

≤ φq(D)
1

�(α)
|t2 − t1| + a|t2 − t1|.

We have the right side of the above inequality tends to zero if t2 → t1. Using Arzela-
Ascoli Theorem, we have T is completely continuous. 	

Lemma 2.6 If u(t) is a solution of the problem (8)–(9), then u(t) ≥ aηγ

1−γ
.

Proof By lemma 2.3, the solution of the problem (8)–(9) can be written as

u(t) =
∫ 1

0
G(t, s)φq

(∫ s

0
F(τ, u(τ ))dτ

)
ds

+ γ

1 − γ

∫ 1

0
G(η, s)φq

(∫ s

0
F(τ, u(τ ))dτ

)
ds + aηγ

1 − γ
+ at.

By lemma 2.4, we getG(t, s) ≥ 0, this together with γ, η ∈ (0, 1), F : [0, 1]× R →
(0,+∞), a is a fixed positive constant, we have u(t) ≥ aηγ

1−γ
. 	


Lemma 2.7 Suppose that there exists a constant M > a+ aηγ
1−γ

independent of λ such
that for λ ∈ (0, 1), ‖u‖ �= M, where u(t) satisfies

{
(φp(Dα

0+u(t)))′ + λF(t, u(t)) = 0, 0 < t < 1,

u′(0) = a, u(1) − γ u(η) = a.
(11)λ

Then problem (11)1 has at least one solution u(t) with‖u‖ ≤ M.
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Proof For any λ ∈ [0, 1], define an operator Aλ : E → E by

Aλu(t) = ∫ 1
0 G(t, s)φq

(∫ s
0 λF(τ, u(τ ))dτ

)
ds

+ γ
1−γ

∫ 1
0 G(η, s)φq

(∫ s
0 λF(τ, u(τ ))dτ

)
ds + aηγ

1−γ
+ at.

In view of Lemma 2.5, Aλ is completely continuous. By remark 2.1, problem (11)λ has
a solution u(t) if and only if u is a fixed point of Aλ.Given� = {u ∈ E : ‖u‖ < M},
then � is an open set in E . Assume that there exists u ∈ ∂� such that A1u = u, then
u(t) is a solution of (11)1 with ‖u‖ ≤ M. Thus the proof is completed. Otherwise,
for any u ∈ ∂�, A1u �= u. If λ = 0, for u ∈ ∂�, (I − A0)u(t) = u(t) − A0u(t) =
u(t) − aηγ

1−γ
− at �≡ 0 for ‖u‖ = M > a + aηγ

1−γ
. For λ ∈ (0, 1), if the problem (11)λ

has a solution u(t), thus we have ‖u‖ �= M, which is a contradiction to u ∈ ∂�.

Therefore, for any u ∈ ∂� and λ ∈ [0, 1], Aλu �= u. According to the homotopy
invariance of Leray- Schauder degree, we have

Deg{I − A1,�, 0} = Deg{I − A0,�, 0} = 1.

So A1 has a fixed point u in �. That is to say, the problem (11)1 has a solution u(t)
with ‖u‖ ≤ M. We have completed the proof. 	


3 Positive Solutions of the Singular Problem (1), (2)

Define

δ(t) = ∫ t
0

(
(1−s)α−1

�(α)
− (t−s)α−1

�(α)

)
φq

(∫ s
0 �M (τ )dτ

)
ds

+ ∫ 1
t

(1−s)α−1

�(α)
φq

(∫ s
0 �M (τ )dτ

)
ds + γ

1−γ

∫ 1
0 G(η, s)φq

(∫ s
0 �M (τ )dτ

)
ds.

Theorem 3.1 Assume that (H1) for each constant H > 0, there exists a function �H

which is continuous on [0, 1] and positive on (0, 1) such that f (t, u) ≥ �H (t) on
(0, 1) × (0, H ];
(H2) there exist nonnegative continuous functions f1(u) and f2(u) such that

0 ≤ f (t, u) = f1(u) + f2(u) for (t, u) ∈ [0, 1] × (0,∞)

and f1(u) > 0 is nonincreasing and f2(u)
f1(u)

is nondecreasing on u ∈ (0,∞);
(H3) there exists M > 0 such that

1

(1 − γ )�(α + 1)
φq

(
f1(M0M)

{
1 + f2(M)

f1(M)

})
< M,

where M0 = min

(
(1 − γ )

1−βα−1

2 ,
ηγ

ηγ+(1−γ )

)
.

Then the singular fractional boundary value problem (1)-(2) has a positive solution
u(t) with ‖u‖ ≤ M.
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Proof Since (H3) holds, we choose M > 0 and 0 < ε < M, such that

1

(1 − γ )�(α + 1)
φq

(
f1(M0M)

{
1 + f2(M)

f1(M)

})
+ ε < M.

Let n0 ∈ {1, 2, 3, . . . , } satisfying that ηγ
n0(1−γ )

+ 1
n0

≤ ε, set N0 = {n0, n0 + 1, n0 +
2, . . . , }.

In what follows, we prove that the following problem

{
(φp(Dα

0+u(t)))′ + f (t, u(t)) = 0, 0 < t < 1,

u′(0) = 1
m , u(1) − γ u(η) = 1

m

(11)

has a solution for each m ∈ N0.

In order to obtain a solution of problem (11) for each m ∈ N0, we discuss the
following problem

{
(φp(Dα

0+u(t)))′ + f ∗(t, u(t)) = 0, 0 < t < 1,

u′(0) = 1
m , u(1) − γ u(η) = 1

m

(11)m

where

f ∗(t, u) =
{

f (t, u), u ≥ ηγ
m(1−γ )

,

f (t, ηγ
m(1−γ )

), u ≤ ηγ
m(1−γ )

,

clearly f ∗ ∈ C([0, 1] × R, (0,+∞)).

According to Lemma 2.7, to obtain a solution of problem (11)m for each m ∈ N0,

we shall consider the following family of problems

{
(φp(Dα

0+u(t)))′ + λ f ∗(t, u(t)) = 0, 0 < t < 1,

u′(0) = 1
m , u(1) − γ u(η) = 1

m .
(11)λm

We claim that any solution u of (11)λm for any λ ∈ [0, 1] must satisfy ‖u‖ �= M.

Otherwise, let u(t) be a solution of (11)λm for some λ ∈ [0, 1] such that ‖u‖ = M. By
Lemma 2.6, we get u(t) ≥ ηγ

m(1−γ )
for t ∈ [0, 1]. Note that

‖u‖ ≤ 1

m
+ ηγ

m(1 − γ )
+ 1

1 − γ

∫ 1

0

(1 − s)α−1

�(α)
φq

(∫ s

0
λ f ∗(τ, u(τ ))dτ

)
ds,

so for t ∈ [0, β], we have

u(t) ≥ ηγ

m(1 − γ )
+

∫ 1

0

1 − βα−1

2

(1 − s)α−1

�(α)
φq (

∫ s

0
λ f ∗(τ, u(τ ))dτ)ds

≥ ηγ

ηγ + (1 − γ )

(
1

m
+ ηγ

m(1 − γ )

)
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+(1 − γ )
1 − βα−1

2

1

1 − γ

∫ 1

0

(1 − s)α−1

�(α)
φq (

∫ s

0
λ f ∗(τ, u(τ ))dτ)ds

≥M0

(
1

m
+ ηγ

m(1 − γ )

)
+M0

(
1

1−γ

∫ 1

0

(1−s)α−1

�(α)
φq

(∫ s

0
λ f ∗(τ, u(τ )

)
dτ)ds

)

≥ M0‖u‖ = M0M.

From (H2) − (H3), we have for t ∈ [0, β],

u(t) =
∫ 1

0
G(t, s)φq

(∫ s

0
λ f ∗(τ, u(τ ))dτ

)
ds

+ γ

1 − γ

∫ 1

0
G(η, s)φq

(∫ s

0
λ f ∗(τ, u(τ ))dτ

)
ds + ηγ

m(1 − γ )
+ t

m

=
∫ 1

0
G(t, s)φq

(∫ s

0
λ f (τ, u(τ ))dτ

)
ds

+ γ

1 − γ

∫ 1

0
G(η, s)φq

(∫ s

0
λ f (τ, u(τ ))dτ

)
ds + ηγ

m(1 − γ )
+ t

m

≤
∫ 1

0

(1 − s)α−1

�(α)
φq

(∫ 1

0
f1(u(τ ))

{
1 + f2(u(τ ))

f1(u(τ ))

}
dτ

)
ds

+ γ

1 − γ

∫ 1

0

(1 − s)α−1

�(α)
φq

(∫ 1

0
f1(u(τ ))

{
1 + f2(u(τ ))

f1(u(τ ))

}
dτ

)
ds

+ ηγ

m(1 − γ )
+ 1

m

≤ 1

1 − γ

∫ 1

0

(1 − s)α−1

�(α)
φq

(∫ 1

0
f1(M0M)

{
1 + f2(M)

f1(M)

}
dτ

)
ds

+ ηγ

n0(1 − γ )
+ 1

n0

= 1

(1 − γ )�(α + 1)
φq

(
f1(M0M)

{
1 + f2(M)

f1(M)

})
+ ηγ

n0(1 − γ )
+ 1

n0
.

Therefore

M=‖u‖≤ 1

(1 − γ )�(α + 1)
φq

(
f1(M0M)

{
1 + f2(M)

f1(M)

})
+ ηγ

n0(1 − γ )
+ 1

n0
< M.

This is a contradiction, so the claim is proved. Lemma 2.7 guarantees that (11)m has
at least a solution um(t) with ‖um(t)‖ ≤ M for any fixed m. Lemma 2.6 implies that
um(t) ≥ ηγ

m(1−γ )
, so f ∗(t, um(t)) = f (t, um(t)). Therefore, um(t) is a solution to the

fractional boundary value problem (11).
Next, we claim that um(t) has a uniform sharper lower bound, i.e., there exists a

function δ(t) which is continuous on [0, 1] and positive on (0, 1), such that

um(t) ≥ δ(t), t ∈ [0, 1],
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for all m ∈ N0. Since 0 <
ηγ

m(1−γ )
≤ um(t) ≤ M, t ∈ [0, 1], (H1) implies that there

exists a continuous function �M : (0, 1) → (0,+∞) (independent of m) satisfying

f (t, um(t)) ≥ �M (t), t ∈ (0, 1),

we have for t ∈ [0, 1],

um(t) =
∫ 1

0
G(t, s)φq

(∫ s

0
f (τ, um(τ ))dτ

)
ds

+ γ

1 − γ

∫ 1

0
G(η, s)φq

(∫ s

0
f (τ, um(τ ))dτ

)
ds + ηγ

m(1 − γ )
+ t

m

≥
∫ t

0

(
(1 − s)α−1

�(α)
− (t − s)α−1

�(α)

)
φq

(∫ s

0
�M (τ )dτ

)
ds

+
∫ 1

t

(1 − s)α−1

�(α)
φq

(∫ s

0
�M (τ )dτ

)
ds

+ γ

1 − γ

∫ 1

0
G(η, s)φq

(∫ s

0
�M (τ )dτ

)
ds. (12)

From (12), we have for any m ∈ N0,

um(t) ≥ δ(t), t ∈ [0, 1].
For t, τ ∈ [0, 1], τ < t, we have

|um(t) − um(τ )| =
∣∣∣∣
∫ 1
0 (G(t, s) − G(τ, s))φq

(∫ s
0 f (r, um(r))dr

)
ds

∣∣∣∣ + 1
m |t − τ |

≤
∣∣∣∣
∫ 1
0 (G(t, s) − G(τ, s))φq

(∫ s
0 f1(δ(r))

{
1 + f2(M)

f1(M)

}
dr

)
ds

∣∣∣∣ + 1
m |t − τ |

= φq

{
1 + f2(M)

f1(M)

}∣∣∣∣
∫ 1
0 (G(t, s) − G(τ, s))φq

(∫ s
0 f1(δ(r))dr

)
ds

∣∣∣∣+ 1
m |t − τ |

≤ φq

{
1 + f2(M)

f1(M)

}
φq

(∫ 1
0 f1(δ(r))dr

)∣∣∣∣
∫ 1
0 (G(t, s) − G(τ, s))ds

∣∣∣∣ + 1
m |t − τ |

= φq

{
1 + f2(M)

f1(M)

}
φq

(∫ 1
0 f1(δ(r))dr

)∣∣∣∣
∫ t

0

(
(1 − s)α−1

�(α)
− (t − s)α−1

�(α)

)
ds

+
∫ 1

t

(1 − s)α−1

�(α)
ds −

∫ τ

0

(
(1 − s)α−1

�(α)
− (τ − s)α−1

�(α)

)
ds

− ∫ 1
τ

(1 − s)α−1

�(α)
ds

∣∣∣∣ + 1

m
|t − τ |

= φq

{
1 + f2(M)

f1(M)

}
φq

(∫ 1
0 f1(δ(r))dr

)∣∣∣∣−
∫ t

0

(t − s)α−1

�(α)

+ ∫ τ

0
(τ − s)α−1

�(α)
ds

∣∣∣∣ + 1

m
|t − τ |

= φq

{
1 + f2(M)

f1(M)

}
φq

(∫ 1
0 f1(δ(r))dr

)
1

�(α+1)

∣∣∣∣τα − tα
∣∣∣∣ + 1

m |t − τ |

≤ φq

{
1 + f2(M)

f1(M)

}
φq

(∫ 1
0 f1(δ(r))dr

)
1

�(α)
|t − τ | + 1

m |t − τ |.

123



Positive Solutions of Singular Fractional Boundary Value… 261

Thus

|um(t) − um(τ )| → 0, |t − τ | → 0,

which implies that {um(t)}m∈N0 is equicontinuous on [0, 1]. Moreover, from the fact

0 < um(t) ≤ M, t ∈ [0, 1],

we have {um(t)}m∈N0 is uniformly bounded on [0, 1].
Now the Arzela-Ascoli Theorem guarantees that there is a subsequence N1 ⊂ N0

and a function u(t) such that {um(t)}m∈N1 converges uniformly on [0, 1] to u(t). From
the definition of um(t), we have

um(t) =
∫ 1

0
G(t, s)φq

(∫ s

0
f (τ, um(τ ))dτ

)
ds

+ γ

1 − γ

∫ 1

0
G(η, s)φq

(∫ s

0
f (τ, um(τ ))dτ

)
ds + ηγ

m(1 − γ )
+ t

m
. (13)

Let m → +∞ in N1 in (13). By the continuity of f and Lebesgue’s dominated
convergence theorem, we have

u(t) =
∫ 1

0
G(t, s)φq

(∫ s

0
f (τ, u(τ ))dτ

)
ds

+ γ

1 − γ

∫ 1

0
G(η, s)φq

(∫ s

0
f (τ, u(τ ))dτ

)
ds, (14)

hence

(φp(D
α
0+u(t)))′ + f (t, u(t)) = 0, 0 < t < 1,

u′(0) = 0, u(1) − γ u(η) = 0.

Therefore, u(t) is a solution of the singular fractional boundary value problem (1)–(2)
and satisfies 0 < ‖u‖ ≤ M, which implies that u(t) is a positive solution to the
problem (1)–(2). 	


4 Example

Example 4.1 We consider the following fractional boundary value problem

(D
3
2
0+u(t))′ + u−a(t) + ρub(t) = 0, 0 < t < 1, (15)

u′(0) = 0, u(1) − 1

2
u

(
1

2

)
= 0, (16)
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where a, b > 0, and ρ > 0 is a given parameter. Then (15)–(16) has at least one
positive solution for each 0 < ρ < ρ1, where ρ1 is some positive constant.

Proof We can easily see that p = 2, γ = 1
2 , η = 1

2 , α = 3
2 , choose β = 1

4 , we claim
all the assumptions in Theorem 3.1 hold. (H1) for each constant H > 0, there exists
�H (t) = H−a such that f (t, u) = u−a + ρub ≥ �H (t) = H−a on (0, 1) × (0, H ];
(H2)

0 < f (t, u) = u−a + ρub = f1(u) + f2(u),

where f1(u) = u−a > 0 is continuous and nonincreasing on (0,∞), f2(u) = ρub >

0 is continuous on (0,∞),
f2(u)
f1(u)

= ρub

u−a is nondecreasing on u ∈ (0,∞); (H3) by

calculating, M0 = min{ 13 , 1
8 } = 1

8 , we choose ρ < M8−a3
√

π − 8M−a − 8ρMb for
some M > 0 and M satisfies M8−a3

√
π − 8M−a − 8ρMb > 0.

Therefore, (15)–(16) has at least one positive solution for 0 < ρ < ρ1 :=
sup
M>0

M8−a3
√

π −8M−a −8ρMb,where M > 0 and satisfies M8−a3
√

π −8M−a −
8ρMb > 0. 	
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