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Abstract This paper studies the steady boundary layer flow over an impermeable
moving vertical flat plate with convective boundary condition at the left side of the flat
plate. The governing partial differential equations are transformed into a system of
ordinary (similarity) differential equations byusing corresponding similarity variables.
These equations were then solved numerically using the function bvp4c from Matlab
for different values of the Rayleigh number Ra, the convective heat transfer parameter
γ , and the Prandtl number Pr . This paper demonstrates that a similarity solution is
possible if the convective boundary condition heat transfer is associated with the hot
or cooled fluid on the left side of the flat plate proportional to x−1/4. For the sake of
comparison of the numerical results, the case of the static flat plate (σ = 0) has been
also studied. For the case of a moving flat plate (σ = 1), it is shown that the solutions
have two branches in a certain range of the positive (assisting flow) and negative
(opposing flow) values of the Rayleigh number Ra. In order to test the physically
available solutions, a stability analysis has been also performed. The effects of the
governing parameters on the skin friction, heat transfer, wall temperature, velocity
and temperature profiles, as well as on the streamlines and isotherms are investigated.
Comparison with results from the open literature shows a very good agreement.

Communicated by Ahmad Izani MD Ismail.

B Ioan Pop
popm.ioan@yahoo.co.uk

Alin V. Roşca
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Nomenclature

a, A, b, c1, c1 Constants
Cf Skin friction coefficient
g Acceleration due to gravity
Grx Local Grashof number
hf Heat transfer coefficient
k Thermal conductivity
L Characteristic length of the plate
Nux Local Nusselt number
Pr Prandtl number
Ra Rayleigh numbers
Rex Local Reynolds number
t Time
T Fluid temperature
Tf Temperature of the hot fluid
T∞ Temperature of the ambient fluid
Tw Temperature of the plate
u, v Velocity components along and normal to the plate
Uw(x) Velocity of the moving plate
x, y Coordinates along and normal to the plate

Greek letters

α Thermal diffusivity
β Coefficient of thermal expansion
ε Eigenvalue parameter
γ Convective heat transfer
η Similarity variable
μ Dynamic viscosity
ν Kinematic viscosity
θ Dimensionless temperature
ρ Density
σ Moving parameter
τ Dimensionless time
ψ Dimensionless stream function

1 Introduction

Theboundary layer flowdue to amovingflat plate is a relevant type of flowappearing in
many industrial processes, such as manufacture and extraction of polymer and rubber
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Boundary Layer Flow Over a Moving Vertical Flat Plate... 1289

sheets, paper production, wire drawing and glass-fiber production, melt spinning,
continuous casting, etc. (Tadmor and Klein [39]). It seems that Sakiadis [37] initiated
the problem of boundary layer flow and heat transfer past a moving surface, which is
different by the boundary layer flow past a stationary surface or the famous Blasius
[10] problem due to the entering of the boundary layer. This problem has also many
industrial applications such as heat treatment of material traveling between a feed roll
and wind-up roll or conveyer belts, extrusion of steel, cooling of a large metallic plate
in a bath, liquid films in condensation process and in aerodynamics, etc. A considerable
amount of research has been reported on this topic (Jaluria [23], Karve and Jaluria
[24], Hayat et al. [15], etc.). Similarity solutions for moving plates were investigated
also by many authors. Among them, Afzal et al. [3], Afzal [1,2], Fang [12], Fang and
Lee [13], Weidman et al. [40], Ishak et al. [22] studied the boundary layer flow on a
moving permeable plate parallel to a moving stream and concluded that dual solution
exists if the plate and the free stream move in the opposite directions. Further, we
mention that Hayat et al. [15–20], Nawaz et al. [33], Aman et al. [5], and Mansur and
Ishak [32] have studied different problems on convective boundary layers flows.

As per standard text books by Bejan [8], Kays and Crawford [26], Bergman et al.
[9] and other literature, the convective flow occurs in atmospheric and oceanic circu-
lation, electronic machinery, heated or cooled enclosures, electronic power supplies,
etc. This topic has many applications such as its influence on operating temperatures
of power generating and electronic devices. It also plays a great role in thermal
manufacturing applications and is important in establishing the temperature distrib-
ution within buildings as well as heat losses or heat loads for heating, ventilating,
and air conditioning systems. As it is well known, the difference between convective
heat transfer and forced convection problems is thermodynamic and mathematical,
as well, the convective flows being driven by buoyancy effect due to the presence of
gravitational acceleration and density variations from one fluid layer to another (Bejan
[8]). It seems that Karwe and Jaluria [24,25] are the first who have studied the fluid
flow and mixed convection transport from a moving plate in rolling and extrusion
processes. Ali [4] investigated the effect of temperature-dependent viscosity on lami-
nar mixed convection boundary layer flow and heat transfer on a continuously moving
vertical isothermal surface and obtained the local similarity solutions. Further, Aziz
[6] has studied the classical problem of hydrodynamic and thermal boundary layers
over an impermeable flat plate in a uniform stream of fluid with convective boundary
condition. Magyari [27] presented an exact solution of the problem considered by
Aziz [6] for the thermal boundary layer in a compact integral form, while Ishak [21]
extended Aziz’s [6] problem for a permeable flat plate. Yao et al. [42] obtained exact
analytical solutions of the momentum and the energy equations of a viscous fluid flow
over a stretching/shrinking sheet with a convective boundary condition. Makinde and
Olanrewaju [28] considered the buoyancy effects on the thermal boundary layer over
a vertical flat plate with a convective surface boundary condition, while Makinde [29]
investigated MHD heat and mass transfer over a moving vertical plate with a convec-
tive surface boundary condition. In another paper, Makinde [30] presented similarity
solution for natural convection from a moving vertical plate with internal heat gen-
eration and a convective boundary condition. Makinde and Aziz [31] analyzed the
boundary layer flow of a nanofluid past a stretching sheet with convective boundary
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1290 A. V. Roşca et al.

condition. Finally, we mention that Aziz and Khan [7] have very recently studied
the natural convective boundary layer flow of a nanofluid past a convectively heated
vertical plate.

The objectives of the present study are to find new similarity transformations and the
corresponding similarity solutions for the problem of steady viscous incompressible
fluid past a moving vertical flat plate with thermal convective boundary condition
and to solve the transformed coupled ordinary differential equations numerically. The
effects of the convective heat transfer parameter γ , the Prandtl number Pr , and the
Rayleigh number Ra on the flow and heat transfer characteristics are investigated
numerically. To our best of knowledge, this is a novel problem with new and original
results. On the other hand, it should be mentioned that, this is a complete paper with
a mathematical stability analysis of the nature of the dual (first and second order or
upper branch and lower branch) solutions.

2 Basic Equations

Consider a vertical flat plate moving with the velocity Uw(x) in an unsteady laminar
viscous and incompressible fluid as shown in Fig. 1. It is assumed that the temperature
of the ambient fluid is T∞, the unknown temperature of the plate is Tw, and the
left surface of the plate is heated from a hot fluid of temperature Tf (> T∞) or is
cooled from a cooled fluid (Tf < T∞) by the process of convection (see Aziz [6]
and Ishak [21]). This then yields a heat transfer variable coefficient hf(x). It is also
assumed that the thermophysical properties of the fluid are constant except the density
in the buoyancy force term. Under the assumption of Boussinesq and boundary layer
approximations, the governing boundary layer equations relevant to our problem are
(Bejan [8], Bergman et al. [9])

∂u

∂x
+ ∂v

∂y
= 0 (1)

Fig. 1 Flow configuration and coordinate system. a Assisting flow. b Opposing flow
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∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
+ gβ(T − T∞) (2)

∂u

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
. (3)

We assume that the initial and boundary conditions of these equations are (Aziz [6],
Ishak [21])

t < 0 : u = v = 0, T = T∞ for any x, y

t ≥ 0 : v = 0, u = σUw(x), −k
∂T

∂y
= hf(Tf − Tw) at y = 0 (4)

u → 0, T → T∞ as y → ∞,

where t is the time, u and v are the velocity components along the x- and y- axes, T
is the temperature, ν is the kinematic viscosity, k is the thermal conductivity, α is the
thermal diffusivity, β is the volumetric thermal coefficient, g is the acceleration due
to gravity, and σ is a constant with σ = 0 for a fixed (static) plate and σ = 1 for a
moving plate, respectively. The convective boundary condition is based on the surface
energy balance expressed as follows: heat conduction at the surface = heat convection
at the surface. This boundary condition encountered in practice as most of the process
involving heat transfer are exposed to environment at a specified temperature (see
Cengel [11]).

3 Steady-State Flow Analysis

In order to deal with our problem, we introduce the stream function ψ defined in the
classical form as u = ∂ψ/∂y and v = −∂ψ/∂x . Thus, Eqs. (2) and (3) can be written
as

∂ψ

∂y

∂2ψ

∂x∂y
− ∂ψ

∂x

∂2ψ

∂y2
= ν

∂3ψ

∂y3
+ gβ(T − T∞) (5)

∂ψ

∂y

∂T

∂x
− ∂ψ

∂x

∂T

∂y
= α

∂2T

∂y2
(6)

and the boundary condition (4) becomes

∂ψ

∂x
= 0,

∂ψ

∂y
= σUw(x), −k

∂T

∂y
= hf(Tf − Tw) at y = 0

∂ψ

∂y
→ 0, T → T∞ as y → ∞. (7)

Further, we define the independent and dependent similarity variables in the usual
form as (White [41])
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1292 A. V. Roşca et al.

η = c1
y

x1/4
, ψ = c2x

3/4 f (η), θ(η) = (T − T∞)/�T, (8)

where �T = Tf − T∞ and c1 and c2 are positive constants and will be determined
later by using the condition that Eqs. (5) and (6) subject to the boundary condition (7)
become similarity equations or ordinary differential equations. Thus, substituting (8)
into Eqs. (5) and (6), we get

f ′′′ + c2
νc1

(
3

4
f f ′′ − 1

2
f ′2

)
+ gβ�T

νc2c31
= 0 (9)

1

Pr
θ ′′ + 3

4

c2
νc1

f θ ′ = 0 (10)

along with

c1c2x
1/2 f ′(0) = Uw(x), (11)

where primes denote differentiation with respect to the similarity independent variable
η. To get the dimensionless form of η, f (η), and θ(η) and to get rid of the fluid
properties appearing in the coefficients of the Eqs. (9) and (10),

c2
νc1

= 1, c1c2 ≡ A (12)

so that in the wall condition Uw(x) = Ax1/2, where the constant A(m1/2/s) cor-
responds to the prescribed plate velocity at the distance x = 1m from the origin,
namely A = Uw(1). Accordingly, the first Eq. (12), c2 ≡ νc1 along with the pre-
scribed equation c1c2 = A, determines the constants c1 and c2 in terms of A uniquely,
yielding

c1 =
√

A

ν
, c2 = √

Aν. (13)

In this way, the coefficient gβ�T/(νc2c31) in Eq. (9) leads to an essential parameter
of the problem, namely to the mixed convection parameter

gβ�T

νc2c31
= gβ�T

A2 . (14)

Bearing in mind that the present problem does not possess a natural length scale, the
length unit L is to our disposal. Thus, choosing L as

L =
(να

A2

)1/3
, (15)
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one obtains from Eq. (14) the Rayleigh number Ra defined as

gβ�T

νc2c31
= gβ�T

A2 = gβ�T L3

να
≡ Ra. (16)

Thus, Eqs. (9) and (10) become

f ′′′ + 3

4
f f ′′ − 1

2
f ′2 + Raθ = 0 (17)

1

Pr
θ ′′ + 3

4
f θ ′ = 0 (18)

and the boundary condition (7) can be written as

f (0) = 0, f ′(0) = σ, θ ′(0) = −γ [1 − θ(0)]
f ′(η) → 0, θ(η) = 0 as η → ∞,

(19)

where Pr = ν/α is the Prandtl number and γ is the convective heat transfer parameter,
which is given by

γ = hf
c1k

x1/4. (20)

In order that Eqs. (17) and (18) have similarity solutions, the quantity γ must be a
constant and not a function of x as in Eq. (20) (see Aziz [6] and Ishak et al. [22]). This
condition can happen if the heat transfer coefficient hf(x) is proportional to x−1/4.
We therefore assume

hf = ax−1/4, (21)

where a is a constant. With the introduction of Eq. (21) into Eq. (20), we have γ =
a/(c1k). Thus, the solutions of Eqs. (17) and (18) with the boundary condition (19)
yield the similarity solutions. Therefore, the investigation of this problem has to be
conducted with respect to three characteristic parameters of the model, namely γ ,
Pr , and Ra. It is worth emphasizing that Ra is a proper physical characteristic of the
problem, depending on the temperature prescription�T for the fluid, as well as on the
velocity prescription A for the moving plate. Obviously,�T and A are two physically
independent input data. Moreover, Ra can be positive (�T , aiding flow) or negative
(�T < 0 opposing flow), respectively.

The physical parameters of interest in the present problem are the skin friction
factor Cf and the local Nusselt number Nux , which are given by

Cf = μ

ρU 2
w(x)

(
∂u

∂y

)
y=0

, Nux = x

�T

(
−∂T

∂y

)
y=0

. (22)
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1294 A. V. Roşca et al.

Substituting (8) into (22), we get

Re1/2x Cf = f ′′(0), Re−1/2
x Nux = −θ ′(0), (23)

where Rex = Uw(x)x/ν is the local Reynolds number.

4 Flow Stability

Weidman et al. [40], Postelnicu and Pop [35], and Roşca and Pop [36] have shown
for the forced convection boundary layer flow past a permeable flat plate and, respec-
tively, for the forced convection flow of a non-Newtonian fluid past a wedge, that the
lower branch solutions are unstable (not realizable physically), while the upper branch
solutions are stable (physically realizable). We test these features by considering the
unsteady equations (2) and (3). Following Weidman et al. [40], we introduce the new
dimensionless time variable τ = ct . The use of τ is associated with an initial value
problem and is consistent with the question of which solution will be obtained in
practice (physically realizable). Using the variables τ and (8), we have

u = Ax1/2
∂ f

∂η
, v = −c2

4
x−1/4

(
3 f − η

∂ f

∂η

)

θ(η, τ ) = (T − T∞)/�T, τ = c21x
−1/2t, η = c1

y

x1/4

(24)

so that Eqs. (3) and (5) can be written as

∂3 f

∂η3
+ 3

4
f
∂2 f

∂η2
− 1

2

(
∂ f

∂η

)2

− ∂2 f

∂η∂τ
+ Raθ = 0 (25)

1

Pr

∂2θ

∂η2
+ 3

4
f
∂θ

∂η
− ∂θ

∂τ
= 0 (26)

subject to the boundary conditions

f (0, τ ) = 0,
∂ f

∂η
(0, τ ) = σ,

∂θ

∂η
(0, τ ) = −γ [1 − θ(0, τ )]

∂ f

∂η
(n, τ ) → 0, θ(η, τ ) → 0 as η → ∞.

(27)

To test stability of the steady flow solution f (η) = f0(η) and θ(η) = θ0(η) satisfying
the boundary-value problem (17)–(19), we write (see Weidman et al. [40] or Roşca
and Pop [36]),

f (η, τ ) = f0(η) + e−ετ F(η, τ ), θ(η, τ ) = θ0(η) + e−ετG(η, τ ), (28)
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where ε is an unknown eigenvalue parameter, and F(η, τ ) and G(η, τ ) are small
relative to f0(η) and θ0(η). Substituting (28) into Eqs. (25) and (26), we obtain the
following linearized problem

∂3F

∂η3
+ 3

4

(
f0

∂2F

∂η2
+ f ′′

0 F

)
− ( f ′

0 − ε)
∂F

∂η
− ∂2F

∂η∂τ
+ Ra G = 0 (29)

1

Pr

∂2G

∂η2
+ 3

4

(
f0

∂G

∂η
+ Fθ ′

0

)
+ εG − ∂G

∂τ
= 0 (30)

along with the boundary conditions

F(0, τ ) = 0,
∂F

∂η
(0, τ ) = 0,

∂G

∂η
(0, τ ) = γG(0, τ )

∂F

∂η
(η, τ ) → 0, G(η, τ ) → 0 as η → ∞.

(31)

As suggested by Weidman et al. [40], we investigate the stability of the steady flow
and heat transfer solution f0(η) and θ0(η) by setting τ = 0, and hence F = F0(η) and
G = G0(η) in (29) and (30) to identify initial growth or decay of the solution (26).
To test our numerical procedure, we have to solve the linear eigenvalue problem

F ′′′
0 + 3

4
( f0F

′′
0 + f ′′

0 F0) − ( f ′
0 − ε)F ′

0 + Ra G0 = 0 (32)

1

Pr
G ′′

0 + 3

4
( f0G

′
0 + F0θ

′
0) + εG0 = 0 (33)

along with the boundary conditions

F0(0) = 0, F ′
0(0) = 0, G ′

0(0) = γG0(0)

F ′
0(η) → 0, G0(η) → 0 as η → ∞.

(34)

It should be mentioned that for particular values of ε, Pr , and Ra the correspond-
ing steady flow solution f0(η) and θ0(η), the stability of the steady flow solution is
determined by the smallest eigenvalue ε. According to Harris et al. [14], the range of
possible eigenvalues can be determined by relaxing a boundary condition on F0(η) or
G0(η). For the present problem, we relax the condition that G0(η) → 0 as η → ∞
and for a fixed value of γ , we solve the system (32,33) along with the new boundary
condition G0(0) = 1.

5 Results and Discussion

The set of coupled non-linear ordinary differential Eqs. (17) and (18) with boundary
conditions in Eq. (16) forms a two-point boundary-value problem and has been solved
numerically using the function bvp4c fromMatlab for different values of the Rayleigh
number Ra, the convective heat transfer parameter γ , and the Prandtl number Pr . Both
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1296 A. V. Roşca et al.

Table 1 Comparison of heat
transfer for several values of Pr
when σ = 0 (fixed plate),
γ → ∞ (isothermal plate), and
Ra = 1 (assisting flow)

Pr Present study Bejan [7]
−θ ′(0)Pr−1/4 Nu Ra−1/4

0.01 0.180 0.162

0.72 0.387 0.387

1 0.401 0.401

2 0.426 0.426

10 0.464 0.465

100 0.489 0.490

1000 0.497 0.499

the cases of assisting flow (Ra > 0) and opposing flow (Ra < 0) and also both cases
of static (σ = 0) and moving (σ = 1) flat plate have been considered. The relative
tolerance was set to 10−10. In this method, we have chosen a suitable finite value of
η → ∞, namely η = η∞ = 12. It was noticed by Pantokratotars [34] that some results
are erroneous as the graphs for velocity and temperature distributions in the boundary
layers do not approach the correct values in a asymptotic manner due to a small value
of ηmax. Since the present problem may have more than one (dual) solution, the bvp4c
function requires an initial guess of the desired solution for the ordinary differential
equations (17) and (18) with the boundary condition (19). The guess should satisfy the
boundary conditions and reveal the behavior of the solution. Determining an initial
guess for the first (upper branch) solution is not difficult because the bvp4c method
will converge to the first solution even for poor guesses. However, it is difficult to
come up with a sufficiently good guess for the solution of the system of the ordinary
differential equations (17) and (18) in the case of opposing flow. To overcome this
difficulty, we start with a set of parameter values for which the problem is easy to be
solved. Then, we use the obtained result as initial guess for the solution of the problem
with small variation of the parameters. This is repeated until the right values of the
parameters are reached. This technique is called continuation (Shampine et al. [38]).
Table 1 shows the comparison of heat transfer for several values of Pr when σ = 0
(fixed plate), γ → ∞ (isothermal plate), and Ra = 1 (assisting flow) with those
reported by Bejan [7]. It is seen that the results are in very good agreement. Further,
Eqs. (17) and (18) have been also numerically solved using the Runge–Kutta–Fehlberg
fourth–fifth order numerical method proposed by Aziz [6]. The values of − f ′′(0) and
θ(0) for different values of the Prandtl number Pr and the convective heat transfer
parameter γ are given in Table 2 for Ra = 1 (assisting flow) and a moving plate
(σ = 1). The results are shown in Table 2. Also, this table shows a very agreement.
Therefore, the results presented in the both Tables 1 and 2 support the validity of the
present numerical results. We are, therefore, confident that these results are accurate
and correct.

In Figs. 2 and 3, we plot the reduced skin friction f ′′(0) and the reduced heat
transfer from the plate −θ ′(0) against the Rayleigh number Ra for different values of
the convective heat transfer parameter γ when the Prandtl number Pr = 1 and the
plate is moving (σ = 1). In this case, we find the existence of dual solutions, an upper
brunch (or first) solution (shown by full lines), and lower brunch (or second) solution
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Fig. 2 Variation of f ′′(0) with Ra for several values of γ when Pr = 1 and a moving plate (σ = 1)

Fig. 3 Variation of −θ(0) with Ra for several values of γ when Pr = 1 and a moving plate (σ = 1)

(shown by dot lines) for f ′′(0) and−θ ′(0) for both the cases of assisting (Ra > 0) and
opposing (Ra < 0) flows. It is seen that there are critical values Rac < 0 of Ra < 0,
with the values of |Rac| decreasing with increasing γ for f ′′(0) and increasing with
γ for −θ ′(0), respectively. Further, it is seen that there is a saddle-node bifurcation
at Ra = Rac giving rise to the two solution branches for Rac < Ra < 0. Both
solution branches continue into the aiding flow region (Ra > 0) with the upper
solution branch passing through the forced convection solution at Ra = 0 for f ′′(0).
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Table 3 Smallest eigenvalues
of ε for several values of γ when
Ra = −0.5 and −1 (opposing
flow) with Pr = 1

Ra γ Upper branch Lower branch

−0.5 0.05 0.2142 −0.0498

0.1 0.1835 −0.0450

−1 0.05 0.2958 −0.0296

0.1 0.2347 −0.0168

Fig. 4 Velocity profiles f ′(η) for several values of Ra < 0 (opposing flow) when γ = 0.01, Pr = 1, and
σ = 1

On this upper solution branch, f ′′(0) increases with γ . The numerical solutions for
the both upper and lower brunch solutions pass smoothly through Ra = 0 without
a singularity appearing, as seen for example in Weidman et al. [40]. Further, it has
been shown from the stability analysis that the upper branch solutions are stable and
physically realizable, while the lower branch solutions are unstable and, therefore, not
physically realizable. The smallest eigenvalues ε for Ra = −0.5 and −1 (opposing
flow), γ = 0.05 and 0.1, and Pr = 1 are given in Table 3.

We next illustrate in Figs. 4, 5, 6, 7, 8, 9, 10, and 11, the velocity f ′(η) and
temperature θ(η) profiles for several values of Ra both positive (assisting flow, Ra >

0) and negative (opposing flow, Ra < 0) and for several values of γ , Pr = 1 when
the flat plate is moving (σ = 1). These figures show that there are also dual (upper
and lower brunch) solutions for the velocity and temperature profiles. Figures 4 and 5
display the velocity f ′(η) and temperature θ(η) profiles for several values of Ra < 0
(opposing flow) and γ = 0.01. We notice that the velocity profiles decrease, while
the temperature profiles increase as |Ra| increases for the both branch solutions. For
the velocity field, the boundary layer thickness is higher for the upper branch than
the lower branch solutions. However, reverse happens for the temperature profiles.
Further, the velocity f ′(η) and the temperature θ(η) profiles for several values of γ
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Fig. 5 Temperature profiles θ(η) for several values of Ra < 0 (opposing flow) when γ = 0.01, Pr = 1,
and σ = 1

Fig. 6 Velocity profiles f ′(η) for several values of γ when Ra = −1 (opposing flow), Pr = 1, and σ = 1

when Ra = −1 (opposing flow), Pr = 1, and σ = 1 are illustrated in Figs. 6 and 7. It
is seen that f ′(η) decreases, while θ(η) increases with γ for the both branch solutions.
Physically, this is because fluids on the right side of the flat plate are cooled, so that
higher values of γ increase the temperature. Further, Figs. 8 and 9 show the velocity
f ′(η) and temperature θ(η) profiles for several values of Ra > 0 (assisting flow)
when γ = 0.01, Pr = 1, and σ = 1. It can be seen that f ′(η) increases, while θ(η)
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Fig. 7 Temperature profiles θ(η) for several values of γ when Ra = −1 (opposing flow), Pr = 1, and
σ = 1

Fig. 8 Velocity profiles f ′(η) for several values of Ra > 0 (assisting flow) when γ = 0.01, Pr = 1, and
σ = 1

decreases with Ra for the both branch solutions. Fluids on the right side surface of the
plate are heated upmaking it to become lighter and flow faster. Also, the velocity f ′(η)

and temperature θ(η) profiles are given in Figs. 10 and 11 for several values of γ when
Ra = 1 (assisting flow), Pr = 1, and σ = 1. It is found that for the velocity profiles,
the upper branch solutions increase, while the lower branch solutions decrease with
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Fig. 9 Temperature profiles θ(η) for several values of Ra > 0 (assisting flow) when γ = 0.01, Pr = 1,
and σ = 1

Fig. 10 Velocity profiles f ′(η) for several values of γ when Ra = 1 (assisting flow), Pr = 1, and σ = 1

γ . However, both the upper and lower branch solutions continuously increase with γ .
For an opposing flow, effects of these parameters are reverse to that of the effect for
the assisting case. It is worth mentioning to this end that for both dual solutions, the
velocity f ′(η) and temperature θ(η) profiles attain smoothly the boundary condition
(19) as η → ∞ and it shows again that the present results are accurate. Finally, the
streamlines and isotherms for the first (upper branch) and the second (lower branch)
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Fig. 11 Temperature profiles θ(η) for several values of γ when Ra = 1 (assisting flow), Pr = 1, and
σ = 1

Fig. 12 Streamlines for the first solution branch (a) and second solution branch (b) when γ = 0.05 (solid
line) and γ = 0.06 (dotted line), Ra = −1, and Pr = 1

solutions are illustrated in Figs. 12 and 13 when γ = 0.05 and 0.06, Ra = −1, and
Pr = 1.

6 Conclusions

The steady two-dimensional boundary layer flow of a viscous and incompressible
fluid over a moving vertical flat plate subject to the thermal convective boundary con-
dition has been examined in this paper. The analysis revealed that similarity solutions
exist if the convective heat transfer coefficient γ is inversely proportional to x−1/4.
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Fig. 13 Isotherm lines for the first solution branch (a) and second solution branch (b) when γ = 0.05
(solid line) and γ = 0.06 (dotted line), Ra = −1, and Pr = 1

The numerical solutions have been reported for various governing parameters. The
following conclusions can be made:

• Multiple (dual) solutions exist for both the cases of assisting (Ra > 0) and oppos-
ing (Ra < 0).

• The stability analysis has revealed that the upper branch solutions are stable and
physically realizable, while the lower branch solutions are unstable and, therefore,
not physically realizable.

• It is found that there are critical values Rac < 0 of Ra < 0, with the values of
|Rac| decreasing with increasing γ for f ′′(0) and increasing with γ for −θ ′(0),
respectively.

• The reduced skin friction f ′′(0) decreases, while the rate of heat transfer increases
with the increase of γ when the flow is opposing (Ra < 0).

• The velocity and temperature profiles are also affected by the governing parameters
Ra and γ .
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