BULLETIN of the

Bull. Malays. Math. Sci. Soc. (2018) 41:207-230 MALAYSIAN MATHENATICAL @ CrossMark

https://doi.org/10.1007/s40840-015-0272-4 O RRA—

esfjournali 40840

A Stabilized Characteristic-Nonconforming Finite
Element Method for Time-Dependent Incompressible
Navier-Stokes Equations

Huiyong Jia! - Kaitai Li?> - Hongen Jia!

Received: 3 June 2015 / Revised: 1 October 2015 / Published online: 19 December 2015
© Malaysian Mathematical Sciences Society and Universiti Sains Malaysia 2015

Abstract In this paper, we study a stabilized characteristic-nonconforming finite
element method to solve the time-dependent incompressible Navier—Stokes equa-
tions. The characteristic scheme is used to deal with advection term and temporal
differentiation, which avoid some difficulties caused by trilinear terms. The space dis-
cretization utilizes the nonconforming lowest equal-order pair of mixed finite elements
(i.e. NCP; — Py). The stability analysis and optimal-order error estimates for veloc-
ity and pressure are presented. Numerical results are also provided to verify theory
analysis.
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1 Introduction

The time-dependent incompressible Navier—Stokes equations are one of the most
important equations in mathematical physics and fluid mechanics. To solve them, a
variety of numerical methods are proposed. Among them, the characteristics methods
(or the Lagrange—Galerkin methods) have proved their efficiency for the problem when

Communicated by Ahmad Izani Md. Ismail.

B Hongen Jia
jiahongen@tyut.edu.cn

L' The College of Mathematics, Taiyuan University of Technology, Taiyuan 030024, China

2 The College of Science, Xian Jiaotong University, Xi’an 710049, China

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s40840-015-0272-4&domain=pdf

208 H. Jia et al.

advection dominates diffusion. These methods are based on combining a Galerkin
finite element procedure with a special discretization of the material derivative along
trajectories, which have some common features, such as better stability, larger time
steps, etc. [1]. On the other hand, if standard finite element methods are used to solve the
incompressible Navier—Stokes equations, the approximations for velocity and pressure
must satisfy the LBB conditions to be stable. This cause some difficulties in using low-
order finite element pairs because of the lack of LBB condition. However, the equal-
order pairs for velocity and pressure are of practical important in scientific computation
because they are computationally convenient and efficient in a parallel or multi-grid
context [2]. To compensate the lack of LBB stability, all kinds of stabilized techniques
have been proposed, such as residual-based stabilized methods in [3-9], non-residual
stabilized methods in [5-8], polynomial pressure-stabilized methods [10-15]. For
the non-stationary Navier—Stokes equations, characteristic methods combining with
pressure projection stabilized method and macro-element technique, respectively, is
proposed in [16,17]. In the above methods, the standard conforming finite element
methods are used. Compared with the conforming finite element methods, the noncon-
forming finite element possesses more favorable stability properties and less support
sets [18,19]. Hence, we will focus on the application of the nonconforming finite
elements in characteristic methods for non-stationary Navier—Stokes equations.

A lot of work has been devoted to study the lowest order nonconforming finite
elements. For example, the nonconforming elements proposed by Douglas et al. [20]
for the piecewise velocity and a piecewise constant element for the pressure were used
for the stationary Stokes and Navier—Stokes equations in [21], and the nonconform-
ing and conforming piecewise linear polynomial approximations for the velocity and
pressure were used for the Navier—Stokes equations in [22]. In 2002, Chen proposed
characteristic mixed discontinuous finite element methods for advection-dominated
diffusion problems in [23]. Two years later, characteristic-nonconforming finite ele-
ments for advection-dominated diffusion problems are proposed in [24]. In [23,24],
advection-dominated diffusion problems were both solved by characteristic tech-
nique and nonconforming finite element methods, but the different nonconforming
finite elements were used. In this paper, the method we proposed is to combine the
characteristic-nonconforming finite element methods developed in [24] and charac-
teristic stabilized finite element methods developed in [16] to solve the non-stationary
incompressible Navier—Stokes equations. The method is based on the NCP; — P
approximations for velocity and pressure, respectively, where NCP; is the space of the
nonconforming P elements. The optimal-order error estimates are derived. Numerical
results agreeing with the error estimates are obtained. Furthermore, numerical com-
parisons with characteristic stabilized finite element also show the better performance
of the present method.

The outline of the paper is as follows. In next section, we introduce the nota-
tion used in the paper and give a description of the model and method we study.
In Sect. 3, the characteristic-nonconforming stabilized finite element method is pro-
posed and the stability analysis is done. In Sect. 4, optimal-order error estimates for
the stabilized characteristic-nonconforming finite element solution are derived. Some
numerical experiments for illustrating the theoretical results are given in Sect. 5. The
article is concluded in final section.
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2 Problem Setting

Let 2 be a bounded domain in R?, with Lipschitz-continuous boundary I". Throughout
the paper, the standard notations for Sobolev space and their associated norms and
seminorms are used. The symbol C denotes a generic positive constant whose value
may change from place to place.

The governing equations we study read:

d

a—ltl—/LAu+(u~V)u+Vp:f inQ7,

divu =0 in QT, (21)
u(0) =ug in 2,

u=20 onl" x (0, T],

where Qr = Q2 x (0,T],0 < T < +00.u = (u1,up) and f = (f1, f») denote the
flow velocity and the external force, respectively, p(x, t) denotes the pressure, u > 0
is the viscous coefficient, and T is the given final time.

To obtain a mixed variational form of problem (2.1), the following spaces are
introduced

X =H}(Q)?, Y=L*Q)?> M=L}RQ), V={veX:divw=0},
D(A) = (H*(Q)’NV H={ve H}(Q)?V-v=0 inQ and v-n=0)},

and

LPO.T:X) ={v:{ti....tm} = X[Vl Lro.1m)

M 7
= [Atz ||v(t,-)||§j| <00}, 1<p<oo,
i=1

L0, T; X) ={v:{t, ...t} = X|llvllL=0,7:%)

= max lv@)llx < oo}, 1=<p<oo.
The bilinear forms a(-, -), d(-,-) on X x X, X x M are defined by
a(u,v) = pu(Vu, Vv), d(v,q) = (divv,q) = —(v, Vp),
and trilinear form b(-, -, -) onX x X x X by
b(u,v,w) = ((u-Vv), w).
So, we can define a generalized bilinear form on (X, M) x (X, M) as follows:
B((u, p); (v, q)) = a(u,v) —d(v, p) +d(u,q),
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which has the following properties [25,26]:

(1) |B((u, p); (u, p))| = p|lullf;
@) 1B((u, p); (v.g)| = c(l[ully + pllo)vIL + llgllo):

B((u,p); (v,
3) follulli +lIplo) < sup  IELPECOI,
(v.g)e(XxM)

The solution (u,p) of problem (2.1) satisfys the following regularity hypotheses:
(A) ue L>®0,T, HX Q)2 N Cc o (@ ncv),
(B) ¥ € L2(HX(Q?>NL>(H), DlueL*(H),
(©) p e L¥H"(Q) N L¥(L3(Q), L e L2(H ().

The mixed variational formulation of problem (2.1) reads: find (u, p) €
L%(0, T; X) x L*(0, T; M) such that

(2.2)

(uz, v) +b(u,u, v) + B((u, p); (v,q)) = (£, v) V(v,q) € X x M,
u(0) = uy.

The characteristic method is based on the fact that the term ?lel + (u - V)u can

be written as Du/Dt, the total derivative of u in the direction of flow u. Let ¢y =

1+ |u|2)%, then characteristic direction of operator %—‘t‘ + (u - V)u can be defined as
follows:

9 1a+"u,-a

Thus
D Ju @Y wau
u=—-+u-vVu=y—.
Y It

Accordingly, an equivalent variational form of (2.2) has the following form:

[ (Dyu, v) + B((u, p); (v,q)) = (£, V) V(v,q) € X x M, 03

u(0) = up.

The core of the characteristic method lies in the discretization of D,u. To achieve
this, let X (x, t,,41; t) denote the characteristic curves associated with the material
derivative, so

d m+1;
[W =u(X(x, tmy151), 1), 24

X (X, tug1; tn1) = X.
Noting that X (x, #,,+1; t) is the departure point and represents the position at time ¢

of a particle which locates at x at time t,,41. Hence, for all (x, ) € Q X [ty, t;m+1],
we have
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tm+1
x — XX, tyt1; tn) = / u(X (x, tyyy1; 1), t)dt
tm

Accurate estimation of the characteristic curve X (x, t,,,4+1; t) is crucial to the overall
accuracy of the method of characteristic. If the integral approximation is first order, it
yields

X (X, tt1s tm) R x — Ata(x, tyy1). (2.5)

Therefore, an approximation can be obtained:

ou
Dou(x, tyq1) = WE(X, tm+1)

1
UZ+ - uzl(XZl(xv Im+15 tm) s tm)

]
{Ix — XX, g 13 ) 12 + |t — 1 |?)2
ux, ty41) — (XX, tng1; tm), tm)
At '

Q

3 The Characteristic-Nonconforming Stabilized Finite Element
Approximation

Let Kj, be a regular triangulation of € into elements {K;} : Q = UK, where Q
and K; stand for the closure of €2 and K, respectively. The boundary of K; on 02 is
denoted by I'j = 9€2 N 9K ;. Denote an interior boundary between elements K ; and
Ky by

Ljx =Ty =0K; N0Ky.
and the centers of I'j and I j by & ; and & j¢, respectively. Therefore, the nonconforming

finite element space for the velocity and conforming finite element space are defined
as follows:

NCPy = {veY :vlg € (PI(K)*VK € Kn; v(Ejr) = v(Ekj), V(E;) =0 Vj, k),
P ={pecH Q) NM:plgeP(K) VK €Ky}

Notably, the nonconforming finite element space NCP; for the velocity is not a sub-

space of X. For Vv € NCPq, the following compatibility conditions hold for all j
and k:

[vldt =0 and/ vdt =0,

Tk r;

where [v] = v|p P v|r i denotes the jump of the function v across the interface I' j;.
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These two finite element spaces NCP; and P have the following property: for any
(v,q) € (HX(2))> N X) x (H' () N M), there exists(v;, g7) € (NCP; x Py) such
that

v =villo+ (v = villin + llg = qrllo) < CH*(IvI2 + llglh).

1
where || - [|1,» denotes the (broken) energy norm:||-[|1, 5 = (Zj |V|% Ki)f, Vv € NCP;.
Hence, we can define the discrete bilinear forms as follows: '

ap(u,v) = vZ(Vu, Vv);, u,v € NCPy,
J
dy(u,v) = D (divu,q);, v € NCP\,q € Py,
J

where (-, ); = (-, -)K_l.and () = (. ~)3K_/.den0te the L2-inner products on K; and
0K, respectively.

It is well known that the NCP; — P; pair does not satisfy the LBB condition.
However, as in [15], we introduce a standard L?-projection operator ITj:

I, : L2(Q) — Py,

where Py = {p € M : p|xk € Po(K) VK € K,}. Then a simple effective stabilization
term G, (-, -) can be defined as

Gu(p,q) = (p—Tlpp,q — Inq),

and the projection operator I1; has the following properties [10]:

(p,gn) = pp,qn) ¥Yp e M,q, € Py, 3.1
Txpllo < cllpllo Yp € M, (3.2)
lp—MHppllo < Chlipllh Yp e HI(Q)NM. (3.3)

In conclusion, a stabilized nonconforming mixed finite element approximation of
problem (2.3) reads

Definition Assume that uj’ and p}' are the approximations of velocity and pressure

at the point (x, t,,), respectively, seek (u}?“, p,’l"H) € NCP; x Py, such that

@™ ) 4 By (™t pt s (vi, qn)) = @ v, Vv, € NCPy, g € Py,
(3.4)

where

w T () — (X 1 1))

du T (x) = N

k]
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and

Bi((u, p); (v, q)) = ap(u, v) — dp(v, p) + dn(u, ) + aGp(p, q)

is the stabilized bilinear form defined on {NCP; x P} x {NCP; x P}, where the « is
a positive stabilization parameter and determined by numerical trials. The following
theorem establishes the weak coercivity of the bilinear form By, ((u, p); (v, ¢)) for the
lowest equal-order nonconforming finite element pairs.

Lemma 3.1 [27] The bilinear form By, ((-, -); (-, -)) satisfies the continuous property

|Br (g, pr); Vi, gn))l < cluglinn + pallo)Uvellng + llgrllo).
Y(uu, pn)s (Vi, gn) € NCPy x Py

and the coercive property

B ((an, pr); Vi, qn))
Bl llin + llprllo) < sup
0£vi.gneNcPix Py IVallin + llgnllo

V(uy, pn) € NCPy x Py

where the constants ¢ > 0 and B > 0 are independent of h.

Lemma 3.2 [10] There exists a positive constant C such that

ChllVpullo < lpn — Opprllo Ypr € Py.

Existence and uniqueness of the approximate solution of problem (3.4) can be easily
checked as in [15].

Lemma 3.3 [28] It holds that
(u,u) — (u,u) < CAt(u,u)Vu € X,

where u = u(x — u(x, t)At).
Now, we present the stability of the numerical solutions for problem (3.4).

Theorem 3.1 Under the assumptions of f € L0, T; L3(Q)?), forl <m<k+1,

the solution (u;':H, pZ’H) of (3.4) satisfies

k k
Iy G+ e D0 IVap TG AL+ 207 D Py IGAr < C.
m=0

m=0

Proof. At t = t"*1, choosing (vy,, qp) = (u';:“, pZ”H) in (3.4), we get

um+1__ﬁm
( h ~ h , uZ’l-‘rl + M||Vui’hn+1”(% + G(le+1, p;ln-Fl) — (fm+17uhm+1). (35)
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Noting that

= (um+1 _ﬁzz’uzl+l)
= 55 g wt ey )t —a

> E[(“mH uth — @y, up]

_E{ [y uy ) — @, w)] + [, uf) — @, whHl),

and by Lemma 3.2, we obtain

ChIVpI o < I = THp o,

(3.6)

together with the Poincaré-Friedrichs inequality: || pm"'1 llo < Cll me'H llo, we have

W1y G < Gyt i h.
For the right terms of (3.5), using the Young inequality, we have

1 1 1 1 1 1
[Tt h < e ol o < CIE™ T o Ve o

A

IA

—Mcnf’"+1 13 + EIIVu;’f“ I13.

(3.7)

(3.8)

Substituting (3.6)—(3.8) into (3.5), multiplying by 2At, and summing from m = 0 to

m =k, we get

k

711G + Z IV IGAL + 207 D I pp G A
m=0

k
<C Z IE" M IGAL + M5+ C D g lIgAL.
m=0 m=0

Applying the discrete Gronwall inequality, we arrive at
k

T IG + Z IVay T IGAL + 207 D I pp G A
m=0

k
< c(z I 5 AL + ||u2||%).

m=0

according to the assumptions, the proof is completed.
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4 Error Analysis

To obtain error estimates for the finite element solution (uy, py,), we define the Galerkin
projection operator Ry, Q;:X x M — NCP; x Pj as follows

Bi((Ri(u, p), Qn(u, p); (Vir, pn)) = Br((u, p); (Vi, pr))
Y(u, p) € X x M, (vj,, pp) € NCP; x Py, 4.1)

which is well defined and have the following properties.
Lemma 4.1 [27] For¥(u, p) € (H*(2)? N X) x (H'(Q) N M), there holds
IRa(u, p)—ullo+h([|Ry(u, p)—ull1n+11Qn(, p)=pllo) < CR*(lul2+pl1).
And we define (uf), pj)) = (R (o, po), Qn(uo, po)).
As in [29], the initial approximation velocity ug will be chosen and have the fol-
lowing estimates

la(:, 1) —ullo + Allu(-, 0) —udll1.n < Ch>. (4.2)

Lemma 4.2 [21] Foranys,w € X UNCP,

Iw 2 2
> 3.5 | = Chliwlizlislhg Yw e X0 (H7(8))"
J

D las-ny),| < Chiglhlislg Vg € H' ().
J

Theorem 4.1 Under assumption (A-C) and At = O (h), it holds that
I —wll e 0,72 12(02) < C(AL+h?).
Proof According to (4.2),

lu(-, 10) —ulllo < C(Ar + h?),
lu(-, t0) —udll1.n < C(AL +h). “3)

Let m be an integer, 0 < k < M — 1, we suppose the below conclusion already
holds forVO < m <k,

max [lu(-, ;) — ulllo < C(AL + h?). 4.4)

0<i<m

We shall prove that (4.4) holds for m = k + 1 and by induction.
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Subtracting (3.4) from (4.1) gives

By(Rp(u, p) —u ™ 0uu, p) — p (i, qn)) — (@) v

= By ((u, p); (Vi, qn)) — "1 vp)
Y(vu, qn) € NCPy x Py.

Combining (2.1) and with the fact D;u = %—‘t‘ + (u - V)u yields

E" 1 vi) = D {Diw, Vi) j — w(Au, Vi) + (Vp, vi) ).
J
Using the Green formula on each element in K, we see that

0
" v) = (Do, vi)+ By (W, p): (v, qh)>—uz<£, vh> +> (povi-nj),.
j / I

Let§ =u—uy, n =u—Ry(u, p),o =n—=§ =w—Ru(u, p), A = pp—Qn(u, p),
and using these three equations, we have

(d o™ Vi) + a@™ T vy —dvi, A"+ d( 0™ gn) + GO gn)
= (Deu(-, tys1) — du(c, 1), V1) + @G, 1), Vi)

ou
—u;<%,vh>j +;<p, vpnj). (4.5)

Taking vj, = o™+, g = A1, yields
(do™ o™ 4 | Vo T Z 11— AR
= (Dau(, tys1) — deu(, tyg1), o™t
Ju
+ (@, tmt1), GmH) -0 z <BT’ Um+1> + Z<P7 UmH : nj),/-
J J J

Thus

1
—— (o™ 3 = llo™ 13 + o™ — o™ 13) + ul Vo™ 13 + (1 — DA™ 2

2At
u(, i+ —uX-,tm+;tm,tm

4 ‘(U(X(a tm+15 tm) > tm) — u(in(.’ tm+15 tm) > tm) Gm_H)
At ’

+ ‘(7)(, tm+1) - 77(7 tm) , O_m_l,_])‘

=<

At
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+ (7’)(', tm) — (X, bt s tn)» ) ’ 0m+1)
At
(H(X(', tm+15 tm)s tm) — U(le(', Im+15 tm) > tm) m+l)
+ , O
At
N (om(~) —am(X(~,fm+1§tm))’Um+1)‘
At
I " (X tmtts tm)) — O'm(X’;?('s Im+1; tm)) oMt
At ’
ou 2
+ MZ<W,0’”“> + 1> poo™npy =D B, (4.6)
- j =
J i=1

J j

In order to estimate term B;, i = 1...9, we use the conclusion in [29] and Lemma 4.2

to obtain

€ 1,2 2.2
B; < Z[lo" |5+ CAt| D;ul;,

-3 (tmatm-%—l;Lz(Q)z),

2
£ u
By < §||am+1||6+c IE™ (12 + At -
U L2 3ty 15 L2 ()2
£ C |dn 2
B3 < §||a’"+‘ I+ — - ,
At 1At 12, 0,410 02(202)

&1 m—+1)2 2
B4 S 6 ”VU ”() + C”’?”Loo(Lz(Q)z),

2

2
Bs < Vo™ + C(us'"u% +Ar |
t
€1
Bs < < IVa" g + Clla™ 5,

2
&1
By < gn%’”“n% + C(usmn% + At

dr

For the terms Bg, Bg, under the condition of At = O (h), we have

)

9
Lz(l‘m,tmﬂ;Lz(Q)z)

9
L? (tm > tm+15 LZ(Q)Z)

€1
Bg < Chllulllo™ )y, < CAP a3 + gnwm*ln%,

&1
By < Chllplille™  l1n < CAP|IpI? + gu%’"“n%.

Substituting the above estimates into (4.6), multiplying by 2A¢, summing fromm = 0

to m = k and choosing ¢ = lT, £l

2

= £ we obtain the recursion relation
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k+1 k
lo* 12 + ,u(At Z ||Vam||(2)) +2At Z GO D

m=0

m=0
du

2
dl LZ(L2(Q)2)
2
+ c (”n”Loo(LZ(Q)Z) + H E

2
LZ(LZ(Q)Z))
k k

+CAL D JEM G+ CAL D o™ 1§+ CAZ T2 2002,

m=0 m=0

+ CA[2||P||§2(H1(Q)2)

< CAr? (IlDzz‘l”iZ(Lz(Q)Z) + ‘

dn

By the discrete version of Gronwall’s lemma, (4.2) and Lemma 4.1

2
L2(L2(Q)2

Sl 1
L22@) (H'(2)%)

k12 k+1 2 k12
IEE < 21015 + 21 11

du

2 2.2
<CAr (nDtuan -

@@y T ‘

du |2

dr

+ Ch4 (”u”ioc(HZ(Q)Z) + ‘

2
d
&
dt L2(H1(Q))

k
+CAP (3 g2y + 121721 @) + CAL D IE G-

m=0

Finally, the discrete Gronwall’s Lemma yields (4.4), which holds form =k + 1. O

. .. 2 .
Theorem 4.2 Under assumption (A—C) and under condition 2170 < % < Cay, it

holds that
o —wpll oo, 7;m1(02) < C(AL +h).
where Cpn; = min{At?, CLO}.
Proof According to (4.2)
-, to =l n < C(AL +h).

Let us suppose that k is an integer, 0 < k < M — 1, and that we have already shown
the estimate

max [[u(, ) — w1, < C(Ar + h), (4.7)
m

0<i<
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for all m, 0 < m < k, we shall prove that (4.7) holds for m = k + 1 and by induction,

this will complete the proof.
. m+1_ _m )Lerl
Taking v, = %.qh = 57

oM+l _ gm 2 1 . 1

A +5ENVH”HOIW’W@+d(Atﬂw)

2
-I-LG()L'"'H )L”H'l) T ﬁ grn+1 — o
’ T
At 2 (AD)?2 .
U, tpg1) — WX G, g1 tm)s B) o™ — o™

< D ot _ ’
- ( (s tmt1) A o

WX Cs 15 tm)s tm) — u(Xm( tm+1; tm) > tm) oMl —gm
+ 9
At At
n(, fm+1) — (o ty) o™t —gm
’ At 0
(’7(', ) = 77(X(_’ o413 ), tm) 0" — Gm)‘
t

+

At ’ A

DX Cy bty )y tm) — X CL b1y )y tm) 0L — o™
At ’ At

( " () = 0" (X (s tug1; tm) 0" = G’")‘
t

At ’ A
o™ (X (-, tmg1s tm)) — 6" (XP (- tg1s ) o™ T — o™
At ’ At

du omtl —gm
+“Z@n >
J J
o o™ 18
+ Z(p,T'n]‘>]’ = ZB,'. (48)

J i=10

using Lemma 3.2, the term A% G(Am+1, A’"“) can be treated as below, for a positive
constant Cy

h? 1
C . V)\.m+1 < I _ 1—[ )\‘m-ﬁ-l 2
vl llo = <2 I¢ ) llo

for the term d (% X5 "ol ), using e-inequality, with ¢ = 2C()h2

m |2

RA|VAmHZ Ar
At 4Coh?

o

o™ 1
d (A_t’ )\m+l) — _A_t(o,m’ V}\‘m+l) Z _CO
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So the left side of (4.8) can be bounded from below by

2

Um+l —on w
— | + E(IIVU”’“ 15— 11Ve™113)

At
At o™ |? w oMt —gm ?
“acn2 1A D [
4Coh= | At |y 2 (A1)2 '
For the term || ”mi—t_”m ||(2), we have
omtl _ gm 2 B oM+l 2 oM 2 2(6m+1’ o™)
At o I Aty A, NG
e Coh?\ | o™t 2 (i At o™ |?
- At At 4Coh? ) || At ||y
Then the left side of (4.8) can be bounded from below by
s +132 2 Coh?\ o™+
—(IVo™ —||Va™ 1-—
ZAt(” oy — Vo ||o)+( AL ) A |,
2
N (1 At ) om |2 m oM+l _ gm 49)
2Coh? At g 2 (At)% . ’
For Cy < % < 2Cy, choosing C = min{l — CX—’ZZ, - ZCAOthz}, together with (4.8),
(4.9), it yields
M m-+1)2 mi2
2—N(||VU lo = 1IVa™llp)
2 18
B O.m+1 2 _ g™ 2 o.m+l — o™
+C H +c| = +£ | <> B
At o Atllo 2] anz || 5%

For the estimates of right term of (4.8), similar to [29]:

O_m+l — o™ 2

€ 2,12
Bio =7 At 0 +CAID N, 2 @)
€ |lgmtl — gm 2 ) 2
B < - A +C\ lEllg + At o
4 0 EN L2t tmg1: L2202
e o™t —om > ¢ dn|?
Bp<-|———|| +—||—
7 At 0 At dt Lz(tmstm+1;L2(Q)2)
€ O,m+l —gm 2 )
BI3S_ +C||n||Loo HI(Q)?
7 At o (H'(2)?)
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2
B <€ ot _gm |2 € oMt —gm o1 2
] Bl Ky vt i Il ) LL LAt
1
€ 0,m+1 —gm 5
Bis < A — + ClIVollg
0
2
3 <€ 0,m+1_am 2+€l 0m+l_am +C(1+°‘k)||v m||2
— || — — — o
o= 7 At 0o 4 (AI)% : At 0

where @, = Dy (h)*(Ar% + At || 9% ||L2(tm L2 @) DN (h) = n'- 7(log 1yl=g
By lemma 4.2 and the equlvalence of norm, we have

m+1 _ _m m+1 —om
By7 < Chlul|2 < Ch|ul2
2
At2 ) €1h2 m+1 _ oM
< C2_€1||u”2+4Al3 Atl )
2 L.h
m+1 _ oM m+l _ -m
Big < Chllplh = Chlplh
At Lh At 1h
2
<CAt2” ”2+ €1h2 m+1_am
=52e PTAAS T AL L

2 .
Now we assume that ﬁ < Z—l < Cps, where Cay = min {At2 L}

) CO
2
€ m+1 —om
Bl7<C_|| ||2+4 T )
At2 1,h
2
€1 O,m—H —_gm
B18<C—I| ”1+Z T .
At2 1,h

Substituting the above estimates into (4.8), multiplying by 2A¢, summing from

m = 0 tom = k, and choosing € = 1C e = % we obtain
~ k 2 ~ k 112 k ma1 m 2
C o™ C oMt 1 o"tl _¢o
IV I+ ar— > H— +Ar=>" +§Atz 1
K m=0 At 0 K m=0 Az 0 m=0 (At)7 1
du?
< CAP|IDul}2 200 +H—
( CorEen i aep
dn |
+C| 2T + A ||’7|| oo (H1(0)2 +C”
( mZ:‘) ) ErEn dt 2292
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k k
+C (At > ||§’"||5) +C D (am +2A0)[ VoI5

m=0 m=0

+ CR2 I 2 2 a2y + CRIPI 21 22y (4.10)

L 2 du|?
> o =Da)*At| T+ | = ,
0 d[ L2(L2(Q)2)

together with the discrete Gronwall’s Lemma, Lemma 4.1 and (4.2) imply that

Since

[VERIE < 2 vkt 3 4 2 Vo k2

du?
< cA?| | D?u)? + |—
- (” Pl dt | 2202
du?
2 2 “- 2
+ Ch (”u”LOO(HZ(Q)Z) + C H d[ Lz(HZ(Q)Z) + ”p”Loo(Hl(Q)Z)
dp k
+”— +CAr Y E™ 5.
dl LZ(HI(Q)Z) =0

By the Poincaré-Friedrichs inequality||§™ (o < C||VE™|lo, the discrete Gronwall’s
Lemma yields (4.7) hold form =k + 1. O

. . 2 .
Theorem 4.3 Under assumption (A-C) and under condition 2170 < % < Chpy, it

holds that
P = pullr2o, 102 < C(AL+ h).
Proof From the formulation (4.5), we obtain the following expression:

B (o™, A (v, qn)
= (DA(-, tyg1) — du(c, 1), Vi) + (@G tms1), Vi) — (dro™ T w)

ou
03 () + e m,
J J J

From Lemma 3.1, yields

BAle™ My + A lo)
By (0™, 27 (i, qn))

< su
(Vi qn)ENCPy xP; v llt.n =+ lignllo
< sup

(Vh.qn)ENCP xPy

(DG, 1) =druC, 1), Vi) @ Gyt 1), Vi) = (dro™ v —p 3 <:T“ Vh>j+zj (P, Vi -mj);

s
J

X
v lla+lignllo
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we can obtain

u(e, 1) — (X bt 15 Im), tm)
At
WX, tnt1s tm), ) — u(XZl('» Im+15 tm) s tm)
At 0
nC, tm1) = 0Cs ) NGy tm) = DX C, g1 tm) s Im)
+ +
At 0 At
N(XC, 15 tm) s tm) — U(XZ"(', Im+15 tm) s tm)
At
o"() =" (X(s tmy1: tm))
At 1
(Um(X('» tm+15 tm)) — O’m(X;’:('a fm+15 tm))

BIA™ o <

D, tyy1) —
0

-1

+C

0,1

+

c
c| v

0,1
O,m—i—l —ogm

+
At

+ Chllullz + Chllpl:.
0

Furthermore, we have

UG, 1) — WXy b1 )y 1) |2

At
u(X (s It 15 tm) s tm) — u(X}r,n(H Im+15 tm)» tm)
At

A5 < € H Dou(, tyy1) —

0
2

+C

0
NGy tmt1) — 0C, ) NG, tm) — (X C, but15 tm) )
+C
At 0 At
N(XC, 15 tm) s tm) — U(X;?(', Im+15 tn) s tm)
At
o () = o™ (X(, tmi1; tm))
At
(O'm(X(‘a Im+1; tm)) — Um(X;,n('a tm+1; tm))
At

2

+C

-1
2

+C

0,1

+C

2
-1

2
+C

0,1
O_m+l — o™ 2

C
+ At

0
26

+Ch* ull3 + Ch*|Ipllf = D Bi + CR*|ul3 + CR*|plf.  (4.11)
i=19
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By similar argument in [29], we have

2,112
Bl9 =< CAIHD[ u||L2(Im,lm+1;L2(Q)2)’

u 2
By < CIE™IG + At | — :
At 121, 11 L2(2)2
C |dnl?
By < —|— ,
AL At 126, 4,00 12@02)
2
322 < C”TI”LOC(Lz(Q)z)’

du |?
By < C(Ilfmll(z)—FAt )

AN 126y 1522 (202
2
By < Cllo™ I

dul|?
Bys < C(llé:mll%—i- At | — )

At L2001 1512202

and

2

+C
0

m+1 m 112

o
At

By <C H

.
Substituting the above estimates into (4.11), multiplying by A¢, and summing from
m=0tom = M — 1, we obtain

||(P - ph)”iZ(o’T;LZ(Q)) S 2”)"”%‘2(0’7‘;[‘2(9)) + 2||p - Qh(uv P)”iz(o’T;Lz(Q))

dul?
L2(L2(Q)2

2 2u1?
< CAt (IID;“”LZ(LZ(Q)Z) +c ‘ dt

+cf i +Hd” 2
co(12 2 -
LR(LA($2)%) dt LZ(L2(Q)2)
M—1 M—1
+CI (135 ) + 1P 1T g1 py) + €T D7 IE™ G+ CAL D o™ I
m=0 m=0
M=l il 2 M=Ty 2 M
+CAr + CAt —| +2ar — On(u, p)l3.
2| ; 2= ) > llp = Qnw, p)i
m=0 m=0 m=0

Together with (4.2), (4.10), Theorem 4.1 and Lemma 4.1, yields

Ip = puliz2o, 1120 < C(At +h)
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5 Numerical Results

In this section, we present numerical results to compare the stabilized characteristic-
nonconforming finite element method for the non-stationary incompressible Navier—
Stokes equation described in Sect. 3. The software Freefem++ developed by Hecht et
al. is used in our experiments.

In this paper, we consider the problem (2.1) in the fixed domain [0, 1] x [0, 1]. The
exact solution is given by

u(x, y) = (Ml(x, y)v uZ(x’ y))’ P(x: )’) = 10(2x - 1)(2)’ - l)COS(I),
ui(x, y) = 10x2y(x — D*(y — D2y — Dcos(r),
ur(x, y) = —10xy>(x — D)(2x — 1)(y — 1)%cos(7).

Let the natural projection of exact solution onto NCP; x P to be the initial condition
and f is computed by evaluating the momentum equation of problem (2.1) for the
exact solution. The domain is divided into triangles; see Fig 1. For simplicity, the
Reynolds number for this problem is defined as Re = 1/u. We choose @ = 0.1 in
our experiments. Result is shown by the below table and figure, in which K4;y, =
maxgek, | [ divu,dx|.

We first compare the stabilized characteristic-nonconforming finite element method
with characteristic stabilized finite element method for Re =1, T =1, dt =0.1 in
Tables 1 and 2. Secondly, computations are made on a fixed mesh size with different
time steps (mesh size 60 x60,Re = 10, T = 1.5), and the resultis presented in Tables 3
and 4. The numerical order of accuracy for stabilized characteristic-nonconforming
finite element method we plot in Fig. 2. Finally, the error contours of streamline,
pressure, velocity, and velocity divergence are presented in Figs. 3, 4, 5 (mesh size
50 x 50, T =1, dt =0.01, Re = 10).

From the Tables 1 and 2, we can observe that there are some minor differences
for the relative error of velocity and pressure between two methods. However, the
convergence rate of the L> norm of velocity in the mesh size are more close to the
theoretical results. The pressure approximation show a supper convergence behavior

Fig. 1 The domain ©
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Table 1 Characteristic stabilized P; — P element with different mesh sizes

1 u—wllo  lla—wplli  [lp—pallo

T U,orate Uy rate P,orate  Kgj CPU(s)

Bl llull; lipllo L " L "

20 0.084396 0.190023 0.024371 7.06817e—5  7.926

30 0.047101 0.117006 0.012062 1.43844  1.19596 1.73468 2.69671e—5 18.851

40 0.035458 0.085211 0.007353 0.98700 1.10224 1.72020 1.16130e—5 31.932

50 0.030829 0.067897 0.005029 0.62692 1.01791 1.70242 6.02637e—6 51.270

Table 2 Stabilized characteristic-nonconforming NCP1 — Py element with different mesh size

1 lla—wllo llo—wuullipn  1lp— pallo

T Ujorate Uy jrate Pyarate  Kgj CPU(s)

B lull llull; lIpllo L 1 L "

20 0.156492 0.799109 0.034550 9.36479¢—5  7.158

30 0.075275 0.544422 0.017538 1.80512 0.94651 1.67226 5.28544e—5 16.188

40 0.047379 0412171 0.010702 1.60931 0.96734 1.71705 2.12261e—5 28.783

50 0.035854 0.331535 0.007257 1.24905 0.97563 1.74084 7.58049¢—6 45.619

Table 3 Characteristic stabilized Py — P element with different time step

At llu —upllo llu—wplls [Ip = Pallo ULzrate Uleate PLzrate Kgiv CPU(s)
[lullo [lafly llpllo

0.05  0.575527 0.571444 0.0019019 6.76744e—7 214.819

0.025 0.323944 0.325085 0.0015866  0.82914 0.81379 0.26156 6.79922¢—7 367.494

0.02  0.266488 0.269309 0.0015333  0.87496 0.84353 0.15311 6.81312e—7 395.871

0.01  0.143023 0.152062 0.0014501  0.89782 0.82460 0.08049 6.84960e—7 784.597

Table 4 Stabilized characteristic-nonconforming NCP; — P element with different time step

ar Mezwillo Nw—willin le=pallo ey irate Pporate Kay CPU(s)
[lallo [lully llpllo

0.05 0.616414 2.79408 0.0048432 1.22588e—6 187.799

0.025 0.372589 2.75306 0.0045640  0.72632 0.02134 0.08567 1.22473e—6 343.459

0.02 0.324228 2.74759 0.0044899  0.62305 0.00891 0.07326 1.22440e—6 371.158

0.01  0.240455 2.74099 0.0042761  0.43124 0.00347 0.07041 1.22318e—6 752.516

in both two methods. From the Tables 3 and 4, as the time size is decreasing, there
is a deterioration in the velocity and pressure approximation by these two methods.
Observing the convergence rates depending the time size, we find that the convergence
rate of velocity of the stabilized characteristic-nonconforming finite element method
is in a good agreement with the theoretical analysis. However, on pressure, the con-
vergence rate present badly deteriorated for both these two methods. Simultaneously,
comparing Table 1 with Tables 2 and 3 with Table 4, we can conclude that the stabilized
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On different time size h On different time size t

—_—

o L I

’g =

= o

= 8 & 4

QL 4 2o

> =3 >~ —o——°

95 2
-6 —v— ulL2 error —¥— uL2 error

—— uH1 error -8 —— uH1 error
-7 —o— pL2 error —e— plL2 error
_g| —— 2 10 —a 2
-4 -38 -36 -34 -32 -3 -28 -26 -24 -22 -5 -45 -4 -35 -3 -2.5
log(h) log(t)

Fig. 2 The numerical order of accuracy for stabilized characteristic-nonconforming finite element method

of "0l oz 0w osm smm om om smm s Iw

4

error contours of pressure

s

error contours of velocity u; error contours of velocity us

Fig. 3 The error contours for characteristic stabilized finite element: Py — P} 7' =1 dt =0.01

characteristic-nonconforming finite element method is more efficient than the charac-
teristic stabilized finite method when they have the same order convergence rate. We
can obtain the numerical order of accuracy for stabilized characteristic-nonconforming
finite element method intuitively in Fig. 2. From Figs. 3 and 4, it can be found that
the error of approximate solution and exact solution for two methods is small and
also has the same accuracy. In addition, from Tables 1, 2, 3, 4, and Fig 5, we can
observe that the velocity divergence is approximates to zero for two methods, and
in other words, same as the characteristic stabilized finite element method, the stabi-
lized characteristic-nonconforming finite element method can also maintain the flow
incompressibility.
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4

error contours of velocity uy error contours of velocity us

Fig. 4 The error contours for stabilized characteristic-nonconforming finite element: NCP1 — P} T = 1
dt=0.01

conforming finite element:P; — P nonconforming finite element: NC'P; — Py

Fig. 5 The error contours of velocity divergence for two methods: 7 = 1 dt = 0.01

6 Conclusion

In this paper, we have studied a stabilized characteristic-nonconforming finite ele-
ment method for the non-stationary incompressible Navier—Stokes equations based
on pressure projection and characteristic-nonconforming finite element method. The
discretization uses a pair of spaces of nonconforming finite element NCP; — P; over
triangles. This method has a number of attractive computational properties, such as the
difficulties caused by trilinear terms can be avoided. Compared with some established
methods, numerical result shows that new method exhibited good shape, and even
large time steps are used in computation. In addition, it can save a lot of CPU time.
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