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Abstract We prove some inequalities involving fourth central moment of a random
variable that takes values in a given finite interval. Both discrete and continuous cases
are considered. Bounds for the spread are obtained when a given n × n complex
matrix has real eigenvalues. Likewise, we discuss bounds for the spans of polynomial
equations.
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1 Introduction

The r th central moment μr of a random variable X in [m, M] for the continuous and
discrete cases respectively are defined as

μr =
M∫

m

(
x − μ′

1

)r
f (x) dx or μr =

n∑
i=1

pi
(
xi − μ′

1

)r
, (1.1)
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where

μ′
1 =

M∫

m

x f (x) dx or μ′
1 =

n∑
i=1

pi xi , (1.2)

f (x) and pi are corresponding probability densities and probability functions, respec-
tively, such that

M∫

m

f (x) dx = 1 or
n∑

i=1

pi = 1. (1.3)

We denote by mr the r th central moment of n real numbers x1, x2, . . . , xn ,

mr = 1

n

n∑
i=1

(
xi − m′

1

)r
, (1.4)

where m′
1 = 1

n

n∑
i=1

xi is the arithmetic mean.

Bounds on the variance (σ 2 = μ2, S2 = m2), their extensions and applications
have been studied extensively in the literature; see, [5,16] and [18]. The well-known
Popoviciu inequality [16] gives an upper bound for the variance of a random variable

μ2 ≤ (M − m)2

4
. (1.5)

A complementary inequality due to Nagy [14] says that for the variance of n real
numbers xi with m ≤ xi ≤ M , we have

S2 ≥ (M − m)2

2n
. (1.6)

For more details, see [1]. Such inequalities are also useful in many other contexts. For
example, Wolkowicz and Styan [23] have observed that if the eigenvalues of an n × n
complex matrix are all real, as in the case of Hermitian matrices, the inequalities (1.5)
and (1.6) provide bounds for the spread of a matrix, spd(A) = max

i, j

∣∣λi − λ j
∣∣. Let

B = A − trA
n I , where trA denotes the trace of A. Then,

4

n
trB2 ≤ spd (A)2 ≤ 2trB2. (1.7)

Further, let M(n) denote the C∗−algebra of all n × n complex matrices and let � :
M(n) → M(k) be a positive unital linear map, see [6]. The inequality of Bhatia and
Davis [5] says that if the spectrum of a Hermitian matrix A is contained in the interval
[m, M], then

�
(
A2

)
− �(A)2 ≤ (M − m)2

4
= spd (A)2

4
, (1.8)
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for every positive unital linear map �. This gives a noncommutative analogue of the
inequality (1.5) and yields many old and new bounds for the spread of a matrix, see
[7]. The inequality (1.8) provides an inequality complementary toKadison’s inequality
[9],

�
(
A2

)
≥ �(A)2 .

The Cauchy–Schwarz and some related inequalities in a semi-inner product module
over a C∗ algebra are studied by Arambasic et al., see [2] and references therein.

Likewise, the inequalities, (1.5) and (1.6), provide bounds for the span of polyno-
mial, see [17] and Sect. 4, below.

Such basic inequalities, their further refinements, extensions and alternative proofs
have been studied by several authors. In particular, Sharma et al. [18] and [19] have
proved that

μ2
2 − (

μ′
1 − m

)2
μ2

μ′
1 − m

≤ μ3 ≤
(
M − μ′

1

)2
μ2 − μ2

2

M − μ′
1

(1.9)

and

σ 2 +
( μ3

2σ 2

)2 ≤ (M − m)2

4
. (1.10)

The inequality (1.10) provides a refinement of the Popoviciu inequality (1.5). The
inequalities, (1.9) and (1.10), yield bounds for the eigenvalues and spread of a Her-
mitian matrix. Likewise, these inequalities provide bounds for the roots of polynomial
equations, see [18].

We focus here on inequalities involving fourth central moment (μ4). One such
inequality in the literature due to Pearson [15] gives an interesting relation between two
important parameters of statistical distributions, namely skewness (α3) and kurtosis
(α4),

α4 ≥ 1 + α2
3 ,

where

α3 =
√
m2

3

m3
2

and α4 = m4

m2
2

. (1.11)

For more details, see [19,20] and references therein.
We derive some inequalities involving fourth central moment and discuss related

extensions and applications. We prove an analogue of the Popoviciu inequality (1.5)
for the fourth central moment (Theorem 2.1, below). Our main result (Theorem 2.2)
gives bounds for the fourth central moment in terms of the second and third central
moments. The inequalities involving first four central moments and range of the ran-
dom variable are obtained (Corollary 2.3–2.4). This also provides a relation among
skewness, kurtosis and studentized range (Corollary 2.5). It is shown that the inequality
(1.10) provides a refinement of the inequality for third central moment in terms of the
range of the random variable (Theorem 2.6). A generalization of the Nagy inequality
(1.6) is proved for the sth central moment, s = 2r (Theorem 2.7). We obtain bounds
for the spread of a Hermitian matrix (Theorem 3.1 and 3.3). Likewise, bounds for the
span of polynomial are discussed (Theorem 4.1–4.2).
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2 Main Results

It is enough to prove the following results for the case when X is a discrete random
variable taking finitely many values x1, x2, . . . , xn with probabilities p1, p2, . . . , pn ,
respectively. The arguments are similar for the case when X is a continuous random
variable.

Theorem 2.1 Let X be a discrete or continuous random variable taking values in
[m, M]. Then

μ4 ≤ (M − m)4

12
. (2.1)

Proof For α ≤ y ≤ β, we have

(y − α) (y − β)

((
y + α + β

2

)2

+ α2 + β2 + (α + β)2

4

)
≤ 0. (2.2)

Putting y = xi − μ′
1, α = m − μ′

1 and β = M − μ′
1 in (2.2); multiply both sides by

pi ; add n inequalities, i = 1, 2, . . . , n; and use (1.1)–(1.3), we see that

μ4 ≤ (
μ′
1 − m

) (
M − μ′

1

) ((
μ′
1 − m

)2 + (
M − μ′

1

)2 − (
μ′
1 − m

) (
M − μ′

1

))
.

(2.3)
The inequality (2.1) now follows from (2.3) and the fact that the function

h(x) = (x − m) (M − x)
(
(x − m)2 + (M − x)2 − (x − m) (M − x)

)
,

achieves its maximum at

x = m + M

2
± m − M

2
√
3

,

where

h(x) ≤ (M − m)4

12
.

�	
The sign of equality holds in (2.3) if and only if n = 2. In this case, m4 = (M−m)4

16 .
Equality holds in (2.1) for n = 2; x1 = m and x2 = M with p1 = 1

2 ± 1
2
√
3
and

p2 = 1
2 ∓ 1

2
√
3
.

Pearson [15] gives a lower bound for the fourth central moment:

μ4 ≥ μ2
3

μ2
+ μ2

2. (2.4)

We derive a complementary upper bound in the following theorem.
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Theorem 2.2 Let X be a discrete or continuous random variable taking values in
[m, M]. Then,

μ4 ≤ (
μ′
1 − m

) (
M − μ′

1

)
μ2 + (

m + M − 2μ′
1

)
μ3

−
(
μ3 − (

m + M − 2μ′
1

)
μ2

)2
(
μ′
1 − m

) (
M − μ′

1

) − μ2
, (2.5)

where μ2 �= (
μ′
1 − m

) (
M − μ′

1

)
.

Proof Let α ≤ y ≤ β. Then, for any real number γ ,

(y − α) (y − β) (y − γ )2 ≤ 0. (2.6)

Putting y = xi − μ′
1, α = m − μ′

1 and β = M − μ′
1 in (2.6); multiply both sides by

pi ; add n inequalities, i = 1, 2, . . . , n; and use (1.1)–(1.3), we get

μ4 ≤ ((
μ′
1 − m

) (
M − μ′

1

) − μ2
)
γ 2 − 2

((
m + M − 2μ′

1

)
μ2 − μ3

)
γ

+ (
m + M − 2μ′

1

)
μ3 + (

μ′
1 − m

) (
M − μ′

1

)
μ2. (2.7)

The inequality (2.7) is valid for every real number γ and gives least upper bound for

γ =
(
m + M − 2μ′

1

)
μ2 − μ3(

μ′
1 − m

) (
M − μ′

1

) − μ2
. (2.8)

Substitute the value of γ from (2.8) in (2.7); a little calculation leads to (2.5). �	
Note that μ2 = (

μ′
1 − m

) (
M − μ′

1

)
if and only if every xi is equal either to m or to

M , see [5]. Hence, (2.5) is not valid for n = 2. Equality holds in (2.5) when

x1 = m, x2 =
(
m + M − 2μ′

1

)
μ2 − μ3(

μ′
1 − m

) (
M − μ′

1

) − μ2
and x3 = M; n = 3.

Pearson’s inequality (2.4) implies thatμ2μ4−μ3
2−μ2

3 ≥ 0.Weprove a complementary
upper bound in the following theorem.

Corollary 2.3 Under the conditions of Theorem 2.2, we have

μ2μ4 − μ3
2 − μ2

3 ≤
((

μ′
1 − m

) (
M − μ′

1

)
(M − m)

)2
27

≤ (M − m)6

432
. (2.9)

Proof From (2.5), we have

μ2μ4 − μ3
2 − μ2

3 ≤ (
μ′
1 − m

) (
M − μ′

1

)
μ2
2 + (

m + M − 2μ′
1

)
μ2μ3

+ μ2
(
μ3 − (

m + M − 2μ′
1

)
μ2

)2
μ2 − (

μ′
1 − m

) (
M − μ′

1

) − μ3
2 − μ2

3 . (2.10)
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One can easily see, on using derivatives that the right-hand side expression in (2.10)
is maximum at

μ3 = 1

2

(
m + M − 2μ′

1

)
μ2(

μ′
1 − m

) (
M − μ′

1

) (
μ2 + (

μ′
1 − m

) (
M − μ′

1

))
.

So,

μ2μ4 − μ3
2 − μ2

3 ≤
(
1 − μ2(

μ′
1 − m

) (
M − μ′

1

)
) (

M − m

2

)2

μ2
2. (2.11)

The first inequality (2.9) now follows from (2.11) and the fact that the right-hand side
expression (2.11) is maximum at

μ2 = 2

3

(
μ′
1 − m

) (
M − μ′

1

)
.

Using arithmetic–geometric mean inequality, we have

(
μ′
1 − m

) (
M − μ′

1

) ≤
(
M − m

2

)2

. (2.12)

The second inequality (2.9) follows from (2.12). �	
We now prove one more inequality complementary to Pearson’s inequality μ4 −

μ2
2 − μ2

3
μ2

≥ 0 in the following theorem.

Corollary 2.4 Under the conditions of Theorem 2.2, we have

μ4 − μ2
2 − μ2

3

μ2
≤ (

μ′
1 − m

) (
M − μ′

1

) (
M − m

4

)2

≤ (M − m)4

64
. (2.13)

Proof From (2.11), we have

μ4 − μ2
2 − μ2

3

μ2
≤

(
1 − μ2(

μ′
1 − m

) (
M − μ′

1

)
) (

M − m

2

)2

μ2. (2.14)

The first inequality (2.13) follows from the fact that the right-hand side expression in
(2.14) is maximum at

μ2 = 1

2

(
μ′
1 − m

) (
M − μ′

1

)
.

The second inequality (2.13) follows from (2.12). �	
The studentized range q of n real numbers xi ; m ≤ xi ≤ M, i = 1, 2, . . . , n is

defined as

q = M − m

S
, (2.15)
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where S is standard deviation. We now find an interesting relation among studentized
range, skewness and kurtosis.

Corollary 2.5 For m ≤ xi ≤ M, i = 1, 2, . . . , n, we have

α4 − α2
3 ≤ q2

4
, (2.16)

where α3, α4 and q are respectively defined by (1.11) and (2.15).

Proof Dividing both sides of (2.11) by μ3
2, we see that

μ4

μ2
2

− μ2
3

μ3
2

≤ (M − m)2

4μ2
+

(
1 − (M − m)2

4
(
μ′
1 − m

) (
M − μ′

1

)
)

. (2.17)

Combining (2.12) and (2.17), we get that

μ4

μ2
2

− μ2
3

μ3
2

≤ (M − m)2

4μ2
. (2.18)

The inequality (2.18) implies (2.16), and uses (1.11) and (2.15). �	
Remark 1 The r th-order moment about origin is defined as

μ′
r =

M∫

m

xr f (x) dx or μ′
r =

n∑
i=1

pi x
r
i .

On using the well-known relations, μ2 = μ′
2 − μ′2

1 , μ3 = μ′
3 − 3μ′

1μ
′
2 + 2μ′3

1

and μ4 = μ′
4 − 4μ′

1μ
′
3 + 6μ′2

1 μ′
2 − 3μ′2

1 in the above inequalities, we can write the
inequalities involving moments about origin of discrete and continuous distributions.
For example, the inequalities (2.5), (2.9) and (2.13), respectively, give

μ′
4 ≤ (m + M) μ′

3 − mMμ′
2 −

(
μ′
3 − (m + M) μ′

2 − mMμ′
1

)2
(m + M) μ′

1 − μ′
2 − mM

,

(
μ′
4 − μ′2

2

) (
μ′
2 − μ′2

1

)
− (

μ′
3 − μ′

1μ
′
2

)2 ≤ (M − m)6

432

and

μ′
4 − μ′2

2 −
(
μ′
3 − μ′

1μ
′
2

)2
μ′
2 − μ′2

1

≤ (M − m)4

64
.

The inequalities (1.5) and (2.1), respectively, give the upper bound for μ2 and μ4
in terms of the range of the random variable, M − m. It is interesting to note that
the analogous upper bound for the third central moment μ3 follows easily from the
inequality (1.10).
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Theorem 2.6 Let X be a discrete or continuous random variable taking values in
[m, M]. Then

|μ3| ≤ (M − m)3

6
√
3

. (2.19)

Proof From the inequality (1.10), we have

μ2
3 ≤ (M − m)2 σ 4 − 4σ 6. (2.20)

The inequality (2.19) follows from (2.20) and the fact that the function

h (x) = (M − m)2 x4 − 4x6,

achieves its maximum at x = M−m√
6

where h (x) ≤ (M−m)6

108 . �	

Equality holds in (2.19) for n = 2; x1 = m and x2 = M with p1 = 1
2 ± 1

2
√
3
and

p2 = 1
2 ∓ 1

2
√
3
.

It remains to prove an analogous of the Nagy inequality (1.6) for the fourth central
moment. We show that a generalization of the Nagy inequality (1.6) follows easily for
the central moment m2r .

Theorem 2.7 Let m2r be the central moment of n real numbers xi such that m ≤ xi ≤
M; then for n ≥ 3, we have

m2r ≥ (M − m)2r

22r−1n
+

(
n

n − 2

)r−1
(
m2 − (M − m)2

2n

)r

. (2.21)

Proof From (1.4), we have

m2r =
(
M − m′

1

)2r + (
m′

1 − m
)2r

n
+ n − 2

n

(
1

n − 2

n−1∑
i=2

(
xi − m′

1

)2r
)

. (2.22)

It is well known that for m positive real numbers y1, y2, . . . , ym ,

1

m

m∑
i=1

yki ≥
(
1

m

m∑
i=1

yi

)k

, k = 1, 2, . . . . (2.23)

Applying (2.23) to n − 2 positive real numbers
(
xi − m′

1

)2
, i = 2, . . . , n − 1, we get

1

n − 2

n−1∑
i=2

(
xi − m′

1

)2r ≥
(

1

n − 2

n−1∑
i=2

(
xi − m′

1

)2
)r

. (2.24)
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We also have

n−1∑
i=2

(
xi − m′

1

)2 = nm2 − (
m − m′

1

)2 − (
M − m′

1

)2
. (2.25)

Combining (2.22), (2.24) and (2.25), we have

m2r ≥
(
M − m′

1

)2r + (
m′

1 − m
)2r

n
+ 1

n (n − 2)r−1

(
nm2 − (

m − m′
1

)2

− (
M − m′

1

)2)r
. (2.26)

The right-hand side expression (2.26) isminimumatm′
1 = m+M

2 , and so (2.21) follows
from (2.26). �	

The inequality (2.21) provides a generalization of the Nagy inequality (1.6):

m2r ≥ (M − m)2r

22r−1n
. (2.27)

When n = 2, the inequality (2.27) becomes equality. For n = 3, equality holds when
x1 = m, x2 = x3 = · · · = xn−1 = m+M

2 and xn = M . Also, for r = 2 and n = 3,
the inequalities (1.6) and (2.27) give equal estimates.

3 Bounds on the Spread of a Matrix

LetM(n) be the space of all n×n complexmatrices.A linear functionalϕ : M(n) → C

is said to be positive if ϕ (A) is non-negative whenever A is positive semidefinite. It
is unital if ϕ (I ) = 1. For more details, see [6]. Let A = (

ai j
)
be an element ofM(n)

with eigenvalues λi , i = 1, 2, . . . , n. The spread of A is defined as

spd (A) = max
i, j

∣∣λi − λ j
∣∣ .

Bhatia and Sharma [7] and [8] have shown that how positive unital linear maps can be
used to derive many inequalities for the spread of a matrix. Enhancing this technique,
we derive here some more inequalities for the positive unital linear functional and
obtain bounds for the spread of a Hermitian matrix.

Beginning with Mirsky [12], several authors have obtained bounds for the spread
of a matrix A in terms of the functions of its entries. Mirsky [13] proves that for every
Hermitian matrix A,

spd (A)2 ≥ max
i �= j

((
aii − a j j

)2 + 4
∣∣ai j ∣∣2

)
.
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Barnes and Hoffman [3] prove the following sharper bound,

spd (A)2 ≥ max
i, j

⎛
⎝(

aii − a j j
)2 + 2

∑
k �=i

|aik |2 + 2
∑
k �= j

∣∣a jk
∣∣2

⎞
⎠ . (3.1)

One more inequality of our current interest is, see [7],

spd (A)2 ≥ 4max
j

∑
k �= j

∣∣a jk
∣∣2 . (3.2)

The inequalities (3.1) and (3.2) are independent. Bhatia and Sharma [7] and [8] have
shown that such inequalities follow easily from the inequalities for positive linear
maps. We pursue this topic further and obtain bounds for the spread in the following
theorems.

Theorem 3.1 Let ϕ : M(n) → C be a positive unital linear functional and A be any
Hermitian element of M(n). Then

ϕ
(
B4

)
≤ spd (A)4

12
(3.3)

and

ϕ
(
B2

)
ϕ

(
B4

)
− ϕ

(
B2

)3 − ϕ
(
B3

)2 ≤ spd (A)6

432
, (3.4)

where B = A − ϕ (A) I .

Proof Let λi be the eigenvalues of A, i = 1, 2, . . . , n. By the spectral theorem,

B =
n∑

i=1

(λi − ϕ (A)) Pi ,

where λi − ϕ (A) are the eigenvalues of B and Pi the corresponding projections with
n∑

i=1
Pi = I , see [6]. Then, for r = 1, 2, . . ., we have

Br =
n∑

i=1

(λi − ϕ (A))r Pi . (3.5)

Applying ϕ to both sides of (3.5), we get

ϕ
(
Br ) =

n∑
i=1

(λi − ϕ (A))r ϕ (Pi ) .
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Since λi −ϕ (A) are real numbers and ϕ (Pi ) are non-negative real numbers such that
n∑

i=1
ϕ (Pi ) = 1, the inequalities, (3.3) and (3.4), follow, respectively, from (2.1) and

(2.9). �	
Note that an equivalent form of (3.4) says that the determinant

∣∣∣∣∣∣
1 ϕ (A) ϕ

(
A2

)
ϕ (A) ϕ

(
A2

)
ϕ

(
A3

)
ϕ

(
A2

)
ϕ

(
A3

)
ϕ

(
A4

)
∣∣∣∣∣∣ ≤ spd (A)6

432
.

Also the lower bounds for the spread in terms of traces of A and A2 are studied in
[21]. Our current bound of interest (3.4) involves entries of A, A2, A3 and A4.

Likewise, it follows from (2.19) that

ϕ
(
B3

)
≤ spd (A)3

6
√
3

.

In this connection, we prove one more inequality in the following theorem.

Theorem 3.2 Let ϕ : M(n) → C be a positive unital linear functional. Then for
0 ≤ A ≤ MI , we have

0 ≤
∣∣∣∣ ϕ (A) ϕ

(
A2

)
ϕ

(
A2

)
ϕ

(
A3

)
∣∣∣∣ ≤ M4

27
. (3.6)

Proof On using arguments similar to those used in the proof of the above theorem, it
follows from the second inequality (1.9) that

ϕ
(
A3

)
≤ Mϕ

(
A2

)
−

(
Mϕ (A) − ϕ

(
A2

))2
M − ϕ (A)

. (3.7)

Since ϕ (A) ≥ 0, the inequality (3.7) implies that for A < MI ,

ϕ
(
A3

)
ϕ (A) − ϕ

(
A2

)2 ≤ Mϕ
(
A2

)
ϕ (A)

−
(
Mϕ (A) − ϕ

(
A2

))2
ϕ (A)

M − ϕ (A)
− ϕ

(
A2

)2
. (3.8)

The inequality (3.6) follows from (3.8) and the fact that the function

h (x, y) = bxy − (bx − y)2

b − x
x − y2,

achieves its maximum at x = 2
3b and y = x(b+x)

2 , where h (x, y) ≤ b4
27 . �	
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We now consider an upper bound for the spread of a matrix. Mirsky [12] proves
that for any n × n matrix A,

spd (A)2 ≤ 2trA∗A − 2

n
|trA|2 .

See also [4] and [23].Weprove an extension of this inequality in the following theorem.

Theorem 3.3 Let A be a complex n × n matrix and let B = A − trA
n I . Then the

inequality
spd (A)2r ≤ 22r−1tr

(
Br (

B∗)r ) , (3.9)

holds true for r = 1, 2, . . . .

Proof Let λi be the eigenvalues of A, i = 1, 2, . . . , n. Then

1

n
tr

(
Br (

B∗)r ) ≥ 1

n

n∑
i=1

∣∣∣∣λi − trA

n

∣∣∣∣
2r

. (3.10)

From (3.10), we see that the inequality

1

n
tr

(
Br (

B∗)r ) ≥ 1

n

(∣∣∣∣λ j − trA

n

∣∣∣∣
2r

+
∣∣∣∣λk − trA

n

∣∣∣∣
2r

)
, (3.11)

holds for any j, k = 1, 2, . . . , n with j �= k. Also, for two positive real numbers x1
and x2, 2r−1

(
xr1 + xr2

) ≥ (x1 + x2)r ; therefore,

∣∣∣∣λ j − trA

n

∣∣∣∣
2r

+
∣∣∣∣λk − trA

n

∣∣∣∣
2r

≥ 1

22r−1

(∣∣∣∣λ j − trA

n

∣∣∣∣ +
∣∣∣∣λk − trA

n

∣∣∣∣
)2r

. (3.12)

On using the triangle inequality for complex numbers, we have

∣∣∣∣λ j − trA

n

∣∣∣∣ +
∣∣∣∣λk − trA

n

∣∣∣∣ ≥ ∣∣λ j − λk
∣∣ . (3.13)

Combining (3.11)–(3.13), we immediately get (3.9). �	
Several inequalities for the spread canbeobtained from (3.3) and (3.4). For example,

if we choose ϕ (A) = trA
n , then we have

spd (A)4 ≥ 12

n
trB4 (3.14)

and

spd (A)6 ≥ 432

n3

(
ntrB2trB4 −

(
trB2

)3 − n
(
trB3

)2)
. (3.15)
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Note that (1.8) yields first inequality (1.7) for ϕ (A) = trA
n . Also, (1.8) gives (3.1)

and (3.2) for ϕ (A) = aii+a j j
2 and ϕ (A) = aii . The corresponding estimates for the

spread from (3.3) and (3.4) can be calculated numerically, see Example 1, below.
We give examples and compare the bound (1.7) in terms of the traces with our

corresponding bounds (3.9), (3.14) and (3.15). Likewise, we compare (3.1) and (3.2)
with (3.3) and (3.4), respectively.

Example 1 Let

A =
⎡
⎣ 3 2 1
2 0 2
1 2 3

⎤
⎦ .

Then, from the bound (1.7), spd(A) ≥ 5.6569 while from our current bounds, (3.14)
and (3.15), we respectively, have spd (A) ≥ 5.8259 and spd (A) ≥ 6.9282. Here n =
3, the inequalities, (1.7) and (3.9), therefore, give equal estimates spd (A) ≤ 6.9282,
r = 2. Further, from (3.1), spd (A) ≥ 5.9161, while from our bounds, (3.3) and (3.4)
for ϕ (A) = aii+a j j

2 give spd (A) ≥ 6.0181 and spd (A) ≥ 6.8252. Likewise, from
(3.2) , spd (A) ≥ 5.6569 and from (3.3) and (3.4), we have spd (A) ≥ 6.9282 and
spd (A) ≥ 6.2947, ϕ (A) = aii . Hence, our bounds give better estimates.

Example 2 Let

A1 =

⎡
⎢⎢⎣
6 3 4 2
3 1 0 3
4 0 2 1
2 3 1 2

⎤
⎥⎥⎦ and A2 =

⎡
⎢⎢⎣
6 0 4 2
3 1 0 3
4 0 2 1
2 3 1 2

⎤
⎥⎥⎦ .

For the Hermitian matrix A1, (1.7) gives spd(A1) ≤ 13. 620 while from our bound
(3.9) spd(A1) ≤ 13.559, r = 2. Likewise, for arbitrary matrix A2, the Mirsky bound
(3.9) with r = 1 gives spd (A2) ≤ 12. 227, while from our bound (3.9), spd (A2) ≤
11.934, r = 2.

4 Bounds for the Span of a Polynomial

In the theory of polynomial equations, the study of polynomials with real roots is of
special interest, see [11] and [17]. The span of a polynomial is the length b − a of
the smallest interval [a, b] containing all the zeros of polynomial. It is also of interest
to find bounds on the roots and span of a polynomial in terms of its coefficients; see
[10,17] and [18]. We obtain here some bounds for the span of polynomial.

It is sufficient to consider the polynomial equation in which the coefficient of xn−1

is zero,
f (x) = xn + a2x

n−2 + a3x
n−3 + · · · + an−1x + an = 0. (4.1)

Let x1, x2, . . . , xn be the roots of (4.1). On using the well-known Newton’s identity,

αk + a1αk−1 + a2αk−2 + · · · + ak−1α1 + kak = 0,

123



188 R. Sharma et al.

where αk =
n∑

i=1
xki and k = 1, 2, . . . n, we have

m1 = 1

n

n∑
i=1

xi = 0, m2 = 1

n

n∑
i=1

x2i = −2

n
a2, m3 = 1

n

n∑
i=1

x3i = −3

n
a3 (4.2)

and

m4 = 1

n

n∑
i=1

x4i = 2

n

(
a22 − 2a4

)
. (4.3)

The span of polynomial (4.1) is spn ( f ) = max
i, j

∣∣xi − x j
∣∣. Then, from (1.6), we get

spn ( f ) ≤ 2
√−a2, (4.4)

see [14] and [17]. Likewise, from (1.5) we have

spn ( f ) ≥ 2

√−2a2
n

, (4.5)

see [17].
In a similar spirit, we obtain some further estimates for spn ( f ) in the following

theorems.

Theorem 4.1 If the roots of the polynomial (4.1) are all real, then for n ≥ 5, we have

(
24

n

(
a22 − 2a4

)) 1
4 ≤ spn ( f ) ≤ 2

(
a22 − 2a4

) 1
4
. (4.6)

Proof Let xi be the roots of polynomial (4.1) such that x1 ≤ xi ≤ xn, i = 1, 2, . . . , n.
Then from the inequality (2.1), we have

(xn − x1)
4 ≥ 12m4. (4.7)

Combine (4.3) and (4.7), we immediately get the first inequality (4.6), xn − x1 =
spn ( f ). Similarly, the inequality (2.27) gives xn − x1 ≤ (8nm4)

1
4 , r = 2. This

implies the second inequality (4.6). �	
Theorem 4.2 Under the conditions of Theorem 4.1, we have

spn ( f ) ≥
(
432

n3

(
4 (2 − n) a32 − 9na23 + 8na2a4

)) 1
6

. (4.8)

Proof As in the proof of above theorem, it follows from the inequality (2.9) that

(xn − x1)
6 ≥ 432

(
m2m4 − m3

2 − m2
3

)
. (4.9)

Combining (4.2), (4.3) and (4.9), we immediately get (4.8). �	
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Example 3 Let

f (x) = x5 + 80x4 + 1500x3 + 5000x2 + 3750x + 1

5
= 0. (4.10)

The roots xi of (4.10) are real, i = 1, 2, . . . , 5; see [22]. Let yi = xi − 16 be the roots
of the diminished equation:

f (y) = y5 − 1060y3 + 14,920y2 + 12,710y − 3,648,479

5
= 0.

The Nagy inequality (4.4) gives s ( f ) ≤ 65.116 while from (4.6) s ( f ) ≤ 64.744.
Also, the Popoviciu inequality (4.5) gives s ( f ) ≥ 41.183, while from our bounds,
(4.6) and (4.8), we have s ( f ) ≥ 47.916 and s ( f ) ≥ 48.435.
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