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Abstract Let R be a commutative ring with identity and Nil(R) be the set of nilpotent
elements of R. The nil-graph of ideals of R is defined as the graph AGN (R) whose
vertex set is {I : (0) �= I � R, and there exists a nontrivial ideal J such that
I J ⊆ Nil(R)} and twodistinct vertices I and J are adjacent if andonly if I J ⊆ Nil(R).
Here, some graph properties of AGN (R) are studied. For instance, some bounds for
the diameter, girth, and radius of AGN (R) are given. In case that AGN (R) is a finite
graph, it is proved that the center and median of AGN (R) coincide. Furthermore, we
determine when the edge chromatic number of AGN (R) equals its maximum degree.
Also, for every ring R, it is shown that both the clique number and vertex chromatic
number of AGN (R) equal n + t , where n is the number of minimal prime ideals of R
and t is the number of nonzero ideals of R which are contained in Nil(R).
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1 Introduction

Usually, after translating of algebraic properties of rings into graph-theoretic language,
some problems in ring theory might be more easily solved. When one assigns a graph
to a ring, numerous interesting algebraic problems arise from the translation of some
graph-theoretic parameters such as clique number, chromatic number, diameter, and
radius. There are many extensive studies of this topic; for instance, see [1,3–5,8,13].
Throughout this paper, all rings are assumed to be non-domain commutative rings with
identity. By I(R) (I(R)∗), Min(R) and Z(R), we mean the set of all proper (nontrivial)
ideals of R, the set of minimal prime ideals of R, and the set of zero-divisors of R,
respectively. Moreover, the set of all nilpotent elements of R is denoted by Nil(R).
The ring R is said to be reduced, if Nil(R) = (0).

Let G be a graph with the vertex set V (G) and the edge set E(G). The degree of a
vertex x of G is denoted by d(x), and the maximum degree of vertices of G is denoted
by �(G). Recall that a k-edge coloring of a graph G is an assignment of k colors
{1, . . . , k} to the edges of G such that no two adjacent edges have the same color. For
a graph G, let χ(G) (χ ′(G)) denote the vertex (edge ) chromatic number of the graph
G, i.e., the minimal number of colors which can be assigned to the vertices (edges)
of G in such a way that every two adjacent vertices (edges) have different colors. To
see the coloring of some special graphs, we refer the reader to [1,14–16]. A clique
of a graph G is a complete subgraph of G and the number of vertices in the largest
clique of graph G, denoted by ω(G), is called the clique number of G. The complete
graph of order n is denoted by Kn . Also, the girth of G and the diameter of G are
denoted by gir th(G) and diam(G), respectively. The distance between two vertices
x and y of a graph is denoted by d(x, y). For any vertex x of G, the eccentricity of
x , denoted by e(x), is the maximum of the distances to the other vertices of G. The
set of vertices with minimal eccentricity is called the center of the graph G, and this
minimum eccentricity value is the radius of G which is denoted by r(G). For every
vertex x of a connected graph G, the status of x , denoted by s(x), is the sum of the
distances from x to the other vertices of G. The set of vertices with minimal status is
called the median of the graph.

We call an ideal I of R, an annihilating-ideal if there exists a nonzero ideal J of R
such that I J = (0). We use the notation A(R) for the set of all annihilating-ideals of
R. By the annihilating-ideal graph of R, AG(R), we mean the graph with the vertex
set A(R)∗ = A(R) \ {0} and two distinct vertices I and J are adjacent if and only if
I J = 0. Some properties of this graph have been studied in [1,2,8]. For a ring R, we
define another kind of undirected graphAGN (R)with the vertex set {I : (0) �= I �R,
and there exists a nonzero ideal J such that I J ⊆ Nil(R)} and two distinct vertices
are adjacent if and only if I J ⊆ Nil(R). Obviously, our definition is different from
the one defined by Behboodi and Rakeei in [8], and it is easy to see that the usual
annihilating-ideal graph AG(R) is a subgraph of AGN (R).

2 Diameter, Radius, and Center

We start this section by the main definition of this paper.
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Definition 1 Let R be a ring. The nil-graph of ideals of R, denoted by AGN (R), is
an undirected graph whose vertex set is the set of all nontrivial ideals I of R such that
I J ⊆ Nil(R) for some nontrivial ideal J of R and two distinct vertices I and J are
adjacent if and only if I J ⊆ Nil(R).

Example 2 The following figures show the nil-graph of ideals of some rings:

R = 6 R = 12 R = 16 R = 30 R = 32

In this section, some upper bounds for the diameter, girth, and radius of the nil-
graph of ideals are given. Then the central vertices of AGN (R) are studied when R is
an Artinian ring. Finally, it is shown that the center and median of AGN (R) coincide,
for every ring R with finitely many ideals.

Remark 3 Let R be a ring. Then every nontrivial ideal of R which is contained in
Nil(R) is adjacent to every other vertex of AGN (R). In particular, if R is an Artinian
local ring, thenAGN (R) is a complete graph. It isworthy tomention that ifNil(R) �= 0,
then every ideal of R is a vertex of AGN (R). However, the converse is not true in
general. For example, if F1 and F2 are fields and R ∼= F1 × F2, then every ideal of R
is a vertex of AGN (R) (Indeed AGN (R) = K2), whereas Nil(R) = 0.

In the first theorem of this paper, we study the connectedness, diameter, and girth
of AGN (R).

Theorem 4 For every ring R,AGN (R) is connected and diam(AGN (R)) ≤ 3. More-
over, if AGN (R) contains a cycle, then girth(AGN (R)) ≤ 4.

Proof If R is reduced, then the assertion follows from [8, Theorem 2.1]. So, suppose
that Nil(R) �= (0). In this case, Remark 3 implies that AGN (R) is connected and
diam(AGN (R)) ≤ 2.Now, suppose thatAGN (R) contains a cycle. Then byRemark 3,
Nil(R) is adjacent to every other vertex of AGN (R) and so girth(AGN (R)) = 3. �	

The next theorem characterizes all rings whose nil-graphs of ideals are complete.

Theorem 5 Let R be a ring. Then AGN (R) is complete if and only if one of the
following holds:

(i) (R,Nil(R)) is a local ring.
(ii) R ∼= F1 × F2, where F1 and F2 are two fields.

Proof One side is clear. To prove the other side, suppose that AGN (R) is complete.
Hence we infer two cases:
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Case 1. Every vertex of AGN (R) is contained in Nil(R). Thus one may assume
that Nil(R) �= 0. By Remark 3, every (maximal) ideal of R is a vertex of AGN (R). It
is well known that Nil(R) is the intersection of all minimal prime ideals of R and so
Nil(R) is the unique maximal ideal of R.

Case 2. There exists a vertex I ∈ V (AGN (R)) such that I � Nil(R). Let x ∈
I \Nil(R) and consider two ideals Rx and Rx2. It is easily seen that Rx and Rx2 are
vertices of AGN (R). Since AGN (R) is complete, we deduce that Rx = Rx2. Thus
x = t x2, for some t ∈ R. It is not hard to see that 1− t x �= 1 is a nonzero idempotent.
By [6, Proposition 5.10], R ∼= R1 × R2, for some rings R1 and R2. Now, we show
that R1 and R2 are two fields. Assume to the contrary, R1 is not field. If R1 is not
an integral domain, then R1 contains a nontrivial annihilating-ideal, say J . Then the
vertices J × R2 and (0)× R2 are not adjacent, which is impossible. If R1 is an integral
domain, then consider two arbitrary ideals I and J of R1. So, the vertices I × (0) and
J × (0) are not adjacent, a contradiction. Thus R1 is a field. By a similar argument,
one can show that R2 is a field, and this completes the proof. �	

Now, we study the radius of the nil-graph of ideals of a Noetherian ring R.

Theorem 6 If R is a Noetherian non-domain ring, then the radius of AGN (R) is at
most 2.

Proof If R is nonreduced, thenNil(R) is adjacent to every other vertex ofAGN (R) and
so r(AGN (R)) = 1. Now, suppose that R is reduced. By [11, Corollary 2.4], Z(R) =⋃n

i=1 pi , where each pi is a minimal prime ideal of R. We claim that Z(R) is not an
ideal of R. Suppose to the contrary, Z(R) is an ideal of R. By the Prime Avoidance
Theorem (see [7, Proposition 1.11]), there exists 1 ≤ k ≤ n such that Z(R) = pk .
Since R is reduced, we conclude that R is an integral domain, a contradiction. So,
the claim is proved. Since Z(R) is not an ideal, we deduce that n ≥ 2. For every
1 ≤ j ≤ n, define p̂ j = ⋂

i �= j pi . To complete the proof, we show that e(̂p j ) ≤ 2.
Choose a vertex I . Then there exists 1 ≤ m ≤ n such that I ⊆ pm . If m = j , then
I p̂ j = (0). Thus we can assume thatm �= j and so I p̂m p̂ j is a path inAGN (R)

and so d(I, p̂ j ) ≤ 2, as desired. �	
In the next theorem, we determine all rings R for which r(AGN (R)) = 1.

Theorem 7 For every ring R, r(AGN (R)) = 1 if and only if either R is nonreduced
or R ∼= F × D, where F is a field and D is an integral domain.

Proof The proof of the previous theorem shows that for every nonreduced ring R,
r(AGN (R)) = 1. Also, if R ∼= F ×D, where F is a field and D is an integral domain,
then F × (0) is adjacent to every other vertex of AGN (R). Hence r(AGN (R)) = 1.
Conversely, suppose that r(AGN (R)) = 1. Then there exists a vertex, say I , which
is adjacent to every other vertex of AGN (R). Now, let R be reduced. We show that
R ∼= F × D, where F is a field and D is an integral domain. To see this, we choose
0 �= e ∈ I . Clearly, Re is adjacent to every other vertex of AGN (R). Since R is
reduced, Re is a minimal ideal of R, otherwise there exists a nonzero ideal J such that
J � Re and so J 2 ⊆ J Re = (0), a contradiction. Thus by Brauer’s Lemma (see [12,
10.22]), e is idempotent and so R ∼= Re × R(1− e). Since Re is a minimal ideal, we

123



The Nil-Graph of Ideals of a Commutative Ring S7

deduce that Re is a field. To complete the proof, it is enough to show that R(1− e) is
an integral domain. Suppose to the contrary, 0 �= y is a zero-divisor in R(1− e). Then
Re× (y) is a vertex ofAGN (R). On the other hand, we know that Re× (0) is adjacent
to every other vertex of AGN (R). Thus (Re × (0))(Re × (y)) = Re × (0) = (0), a
contradiction. �	

In the next theorem, the center of AGN (R) is determined, for every Artinian ring
R. Before this, we need the following notation.

Notation Let R be an Artinian ring. Using [7, Theorem 8.7], with no loss of
generality, one can deduce that there exists a positive integer n such that R =
R1 × · · · × Rn , where each (Ri ,mi ), 1 ≤ i ≤ n, is an Artinian local ring. It
is clear that Nil(R) = m1 × · · · × mn . We denote by N (R) and F(R), the set
of nontrivial ideals of R, contained in Nil(R) and the set of ideals of the form
I j = (0) × · · · × (0) × R j × (0) × · · · × (0), where 1 ≤ j ≤ n, respectively.

Theorem 8 Let R be an Artinian ring such that R � F × S, for every field F and
every Artinian local ring S. Then the center of AGN (R) is F(R) if R is reduced and
it is N (R) if R is nonreduced.

Proof First suppose that R is reduced. From Theorem 6, we know that r(AGN (R)) ≤
2. If r(AGN (R)) = 1, then Theorem 7 implies that R ∼= F1×F2 (since R is Artinian).
HenceAGN (R) ∼= K2 and so the center ofAGN (R) equalsF(R). Thuswe can assume
that R ∼= F1 × · · · × Fn , where each Fi is a field and n ≥ 3. In this case, Theorem 6
implies that r(AGN (R)) = 2. Now, we show that the center of AGN (R) is F(R).
To see this, let I j ∈ F(R) and J = J1 × · · · × Jn be a vertex of AGN (R). Assume
that �J = {1 ≤ i ≤ n : Ji = Fi }. If j /∈ �J , then I j and J are adjacent. So,
suppose that j ∈ �J . Then it is clear that there exists t �= j such that Jt = (0). Thus
It is adjacent to both I j and J . Therefore, the distance between I j and J is at most
r(AGN (R)) = 2 and so F(R) is contained in the center of AGN (R). Now, assume
that J = J1 × · · · × Jn is a vertex of AGN (R) with J /∈ F(R). Then there exist the
indices i and j such that Ji = Fi and J j = Fj . In this case, we claim that the distance
between J and K = F1 × · · · × Fi−1 × (0) × Fi+1 × · · · × Fn is more than 2. It is
clear that J and K are not adjacent. Suppose to the contrary, there is a vertex such
as I = I1 × · · · × In , which is adjacent to both J and K . Since I is adjacent to J ,
we have Ii = I j = (0). On the other hand, the adjacency of I and K implies that
It = (0), for every t �= i . Thus I = (0), a contradiction. So, the claim is proved and
hence the center of AGN (R) is F(R). Now, suppose that R is nonreduced. It follows
from Theorem 7 that r(AGN (R)) = 1. By Remark 3,N (R) is contained in the center
of AGN (R) and we can assume that R is not local. So, [7, Theorem 8.7] implies that
R ∼= T × S, where T is an Artinian local ring. By hypothesis, we can suppose that S
is not a field. To complete the proof, we show that the center of AGN (R) is contained
in N (R). Suppose to the contrary, I × J is a vertex in the center of AGN (R) and
I × J /∈ N (R). Then either I � Nil(T ) or J � Nil(S). If I � Nil(T ), then I = T .
Since S is not a field, we deduce that there exists a proper ideal of S, say K , such
that K �= J . It is easy to check that I × J and I × K are not adjacent and so I × J
does not belong to the center of AGN (R), a contradiction. Also, if J � Nil(S), then
J 2 � Nil(S) and so I × J is not adjacent to L × J , for every ideal L of T with L �= I ,
a contradiction. So, the proof is complete. �	
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Remark 9 If R ∼= F × S, where F is a field and S is an Artinian local ring, then the
center of AGN (R) is N (R) ∪ {(0) × S}.

We are interested here in finite graphs. Hence, in the following theorem, we suppose
that all rings have finitely many ideals. Although both the center and the median relate
to the topic of centrality in a graph, they need not coincide. In general, finding the
median of a graph is more involved than finding the center. However, in the case of
nil-graphs of ideals of rings, the following theorem shows that the center and median
coincide. It is trivial to see that in any connected graph of radius one, the center and
median coincide.

Theorem 10 Let R be a ring with finitely many ideals. Then the center and median
of AGN (R) are equal.

Proof First suppose that R is nonreduced. In this case, Theorem 7 implies that
r(AGN (R)) = 1. Thus the center andmedian coincide.Now, assume that R is reduced.
Since R is Artinian, we deduce that R ∼= F1 × · · · × Fn , where n is a positive inte-
ger and every Fi is a field. If n = 2, then AGN (R) ∼= K2 and so the center and
median of AGN (R) are equal. Now, suppose that n ≥ 3. We claim that for every
I ∈ F(R), s(I ) = 3(2n−1 − 1) − 2. With no loss of generality, we can assume that
I = F1 × (0) × · · · × (0). By Theorems 6 and 7, r(AGN (R)) = 2 and hence the
distance between I and every other vertex of AGN (R) is either 1 or 2. Clearly, I is
adjacent to exactly 2n−1 − 1 vertices. Since AGN (R) has 2n − 2 vertices, we deduce
that s(I ) = 2n−1 − 1 + 2(2n−1 − 2) = 3(2n−1 − 1) − 2 and so the claim is proved.
Now, we show that s(J ) > 3(2n−1 − 1) − 2, for every J1 × · · · × Jn = J /∈ F(R).
Let t be the number of indices in which Ji = Fi . Then J is adjacent to exactly
2n−t − 1 vertices. Since t > 1 and AGN (R) has 2n − 2 vertices, we deduce that
s(J ) > 2n−1 − 1 + 2(2n−1 − 2) = 3(2n−1 − 1) − 2. Therefore, Theorem 8 implies
that both the center and median of AGN (R) are equal to F(R). �	

3 The Edge and Vertex Chromatic Number

In this section, first we determine conditions under which the edge chromatic number
of AGN (R) equals the maximum degree. Then we show that for every ring R, the
vertex chromatic number and the clique number of AGN (R) are equal.

Vizing’s Theorem (see [17, p. 16]) states that if G is a simple graph, then either
χ ′(G) = �(G) or χ ′(G) = �(G) + 1. If G ∼= Kn , for some odd number n, then
χ ′(G) = �(G) + 1. We guess that unless in this case, χ ′(AGN (R)) = �(AGN (R)),
for every ring R. The next theorem provides some sufficient conditions under which
χ ′(AGN (R)) = �(AGN (R)). First of all, we recall the following lemma.

Lemma 11 ([9, Corollary 5.4]) Let G be a simple graph. Suppose that for every
vertex u of maximum degree, there exists an edge {u, v} such that �(G) − d(v) + 2 is
more than the number of vertices with maximum degree in G. Then χ ′(G) = �(G).

Theorem 12 Let R be an Artinian ring which is not a field.

(i) If R is reduced, then χ ′(AGN (R)) = �(AGN (R)).
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(ii) Let R ∼= R1 × · · · × Rn, where every Ri is an Artinian local ring and t =
max{|I(Ri )| : 1 ≤ i ≤ n}. If n log3((t + 1)/t) ≥ 1, then χ ′(AGN (R)) =
�(AGN (R)) unless R is a local ring such that |I(R)∗| is an odd number.

Proof Let R be an Artinian ring. Then by [7, Theorem 8.7], there exists a positive
integer n such that R ∼= R1 × · · · × Rn , where every Ri is an Artinian local ring.
If R contains infinitely many ideals, then with no loss of generality, we can assume
that I(R1) is an infinite set. Thus by Remark 3, χ ′(AGN (R1)) = �(AGN (R1)) = ∞
and so there is nothing to prove. Therefore, we can suppose that |I(R)∗| < ∞. If
R is a local ring, then by Remark 3, we can suppose that AGN (R) ∼= K|I(R)∗|. By
[17, Theorem 1.2], we have χ ′(AGN (R)) = �(AGN (R)) if |I(R)∗| is even and
χ ′(AGN (R)) = �(AGN (R)) + 1 if |I(R)∗| is odd. For the nonlocal case, we follow
the proof in the following two cases:

Case 1. R is a reduced ring. Since R is Artinian, we conclude that R ∼= F1×· · ·×Fn ,
where every Fi is a field. If n = 2, then it is clear that χ ′(AGN (R)) = �(AGN (R)) =
1. So, let n > 2. Then � = {(0) × · · · × (0) × Fi × (0) × · · · × (0) | 1 ≤ i ≤ n} is the
set of all vertices with maximum degree and |�| = n. Also, one can easily check that
�(AGN (R)) = 2n−1 − 1. Now, let u be a vertex with maximum degree in AGN (R).
With no loss of generality, one can suppose that u = F1×(0)×· · ·×(0). In this case,we
choose the vertex v = (0)×F2×· · ·×Fn . Then�(AGN (R))−d(v)+2 = 2n−1 > n
and so by Lemma 11, χ ′(AGN (R)) = �(AGN (R)). This proves (i).

Case 2. R is a nonreduced ring. For every 1 ≤ i ≤ n, let ti = |I(Ri )|. It is
clear that Nil(R) is adjacent to every other vertex of AGN (R) and so �(AGN (R)) =∏n

i=1(ti + 1) − 3. On the other hand, a vertex J1 × · · · × Jn is adjacent to every other
vertex of AGN (R) if and only if Ji ⊆ Nil(Ri ), for every i . So the number of vertices
with maximum degree is

∏n
i=1 ti − 1. For every vertex u of AGN (R) with maximum

degree, choose v = R1 × · · · × Rn−1 × (0). Then by an easy calculation, one can see
that

d(v) = (tn + 1)
n−1∏

i=1

ti − 1 =
n∏

i=1

ti +
n−1∏

i=1

ti − 1 < 2
n∏

i=1

ti .

Thus we have

�(AGN (R)) − d(v) + 2 >

n∏

i=1

(ti + 1) − 2
n∏

i=1

ti − 1.

Now, one can easily show that the condition n log3((t + 1)/t) ≥ 1 implies that

n∏

i=1

(ti + 1) > 3
n∏

i=1

ti .

So Lemma 11 completes the proof. �	
The following example shows that the condition n log3((t + 1)/t) ≥ 1 in Theo-

rem 12(ii) is necessary.
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Example 13 Let R = Zp2×Zq2 , for someprimenumbers p andq. Clearly, t = 2.Thus
the above condition does not hold. On the other hand, we have |E(AGN (R))| = 19,
|V (AGN (R))| = 7 and |�(AGN (R))| = 6. Therefore, by [10, Exercise 17.2.1],
χ ′(AGN (R)) = �(AGN (R)) + 1.

In the sequel, we study the vertex chromatic number of AGN (R). The following
lemma is needed.

Lemma 14 (See [1, Theorem 6]) Let R be a ring and {p1, . . . , pn} be a finite set of
distinct minimal prime ideals of R. Then there exists a clique of AG(R) of size n.

We close this paper with the following result.

Theorem 15 For every ring R, χ(AGN (R)) = ω(AGN (R)) = |Min(R)| + t , where
t is the number of nonzero ideals of R contained in Nil(R).

Proof If Nil(R) contains infinitely many ideals, then Remark 3 implies that
χ(AGN (R)) = ω(AGN (R)) = ∞. Thus we can assume that Nil(R) contains t
nonzero ideals, say I1, . . . , It . If R has infinitely many minimal prime ideals, then
the assertion follows from Lemma 14. Thus we can assume that R has finitely many
minimal prime ideals, say p1, · · · , pn . In this case, we define c : V (AGN (R)) −→
{1, . . . , n + t} by

c(I ) =
{
min{1 ≤ i ≤ n| I � pi }; I � Nil(R)

n + j; I = I j , for some 1 ≤ j ≤ t.

Weshow that c is a proper vertex coloring ofAGN (R). Suppose to the contrary, I and J
are two distinct adjacent vertices inAGN (R) and c(I ) = c(J ) = k. Then it is clear that
neither I ⊆ Nil(R) nor J ⊆ Nil(R) and so 1 ≤ k ≤ n. Since I and J are adjacent,
I J ⊆ Nil(R) ⊆ pk . Thus either I ⊆ pk or J ⊆ pk , a contradiction. Therefore,
χ(AGN (R)) ≤ n + t . Now, let C = {I1, . . . , It } ∪ {⋂n

i=1,i �=r pi | 1 ≤ r ≤ n}. Then C
is a clique of size n + t in AGN (R). Thus χ(AGN (R)) = ω(AGN (R)) = n + t . �	
Acknowledgments The authors would like to thank the referee for her/his valuable comments and sug-
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