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Abstract A signed graph is a graph in which every edge is designated to be either
positive or negative; it is balanced if every cycle contains an even number of negative
edges. A marked signed graph is a signed graph each vertex of which is designated to
be positive or negative, and it is consistent if every cycle in the signed graph possesses
an even number of negative vertices. Signed line graph L(S) of a given signed graph
S = (G, σ ), as given by Behzad and Chartrand (Element Math 24(3):49–52, 1969),
is the signed graph with the standard line graph L(G) of G as its underlying graph
and whose edges are assigned the signs according to the rule: for any ei e j ∈ E(L(S)),
ei e j ∈ E−L(S) ⇔ the edges ei and e j of S are both negative in S. Iterated signed
line graphs Lk(S)=L(Lk−1(S)), k ∈ N , S:= L0(S) is defined similarly. Further, L(S)

is S-consistent if to each vertex e of L(S), which is an edge of S, one assigns the sign
σ(e) then the resulting marked signed graph (L(S))μ is consistent. In this paper, we
give a characterization of signed graphs S whose iterated signed line graphs Lk(S) are
balanced or S-consistent.
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1 Introduction

Unless mentioned or defined otherwise, for all terminology and notation in graph
theory, the reader is referred to [27]. We consider only finite simple graphs without
self-loops.

Cartwright andHarary [12] considered graphs inwhich vertices represent persons in
a social group and edges represent dyadic (symmetric) relations amongst persons each
of which is given a positive or a negative sign according to whether the nature of the
corresponding relationship is positive (friendly, like, etc.) or negative (hostile, dislike,
etc.). Such a network (i.e. weighted graph) S is called a signed graph (Chartrand [13];
Harary et al. [16]). Thus, graphs may be regarded as signed graphs in which all the
edges are positive, or the so-called all-positive signed graphs (all-negative signed
graphs are defined similarly). A signed graph is said to be homogeneous if it is either
all-positive or all-negative and heterogeneous otherwise.

Signed graphs are much studied in literature because of their extensive use in mod-
elling a variety of cognitive and/or socio-psychological processes (e.g. see Acharya
[4]; Katai and Iwai [20,21]; Roberts [24]; Roberts and Xu [25]) and also because of
their interesting connections with many classical mathematical systems (Zaslavsky
[28]).

The number of positive (negative) edges incident at vertex v, denoted by d+(v)

(d−(v)), is called positive (negative) degree of the vertex v in S. The total degree d(v)

of the vertex v in S is the sum d(v) = d+(v) + d−(v).
A cycle in a signed graph S is said to be positive if the product of the signs of its

edges is positive or, equivalently, if the number of negative edges in it is even. A cycle
which is not positive is said to be negative. A signed graph is said to be balanced if
every cycle in it is positive (Harary [15]; Cartwright and Harary [12]; Acharya and
Acharya [5]). The following characterization of balanced signed graphs is well known.

Theorem 1 (Harary [15]) A signed graph is balanced if and only if there exists a
partition of its vertex set into two subsets, one of them possibly empty, such that every
positive edge joins two vertices in the same subset and every negative edge joins two
vertices from different subsets.

A spectral characterization of balanced signed graphs was given by Acharya [1].
Harary and Kabell [17,18] developed a simple algorithm to detect balance in signed
graphs as also enumerated them.

By a negative section (Gill and Patwardhan [14]) of a subgraph S′ of a signed graph
S, we mean a maximal edge-induced subgraph in S′ consisting of only the negative
edges of S; in particular, a negative section in a cycle of S is essentially a maximal
all-negative path in the cycle or the whole cycle itself. Since a cycle is positive if
and only if it has an even number of negative sections of odd length, the following is
another simple characterization of balanced signed graphs.
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Theorem 2 A signed graph is balanced if and only if every cycle in it has an even
number of negative sections of odd length.

Lemma 3 (Zaslavsky [29])A signed graph, in which every chordless cycle is positive,
is balanced.

A marked signed graph is an ordered pair Sμ = (S, μ) where S = (G, σ ) is a
signed graph on its underlying graph G = (V, E) and σ : E(G) → {+1,−1} is
a function from the edge set E(G) of G, called signing of G into the set {+1,−1},
whose elements are called signs and μ : V (G) → {+1,−1} is a function from the
vertex set V (G) of G into the set {+1,−1} whose elements are called marks. The
mark μ(G) (sign σ(G)) s(G ′) of a nonempty subgraph S′ of Sμ is then defined as the
product of the marks (signs) of vertices (edges) in S′. A cycle Z in Sμ is said to be
consistent if μ(Z) = +1; otherwise, it is said to be inconsistent. Further, S is said to
be consistent if every cycle in it is consistent (Beineke and Harary [10]). Beineke and
Harary [10,11] were the first to pose the problem of characterizing consistent marked
graphs, which was subsequently settled by Acharya [2,3], Rao [23] and Hoede [19].
Recently, new characterizations of consistent marked graphs have been obtained by
Roberts and Xu [25].

Theorem 4 (Hoede [19]). A marked graph Gμ is consistent if and only if for any
spanning tree T of G all fundamental cycles are consistent and all common paths of
pairs of fundamental cycles have end vertices with the same marking.

The following definition of signed line graph L(S) of a given signed graph S was
given by Behzad and Chartrand [9]: the vertices of L(S) correspond one-to-one with
the edges of S, ei e j ∈ E(L(S)) ⇔ the edges of S corresponding to the vertices
ei and e j of L(S) have a vertex in common in S, and for any ei e j ∈ E(L(S)), one
has ei e j ∈ E−L(S) ⇔ the edges of S corresponding to ei and e j are both negative in S.

A signed graph � = (H, ξ) is (S,R)-marked if there exists a signed graph S =
(G, σ ), a bijection ϕ : E(S) → V (H), a binary relation R on E(S) and marking
μ : V (H) → {+1,−1} of H satisfying the following compatibility conditions,

(CC1): for every u, v ∈ V (�), uv ∈ E(H) ⇔ {ϕ−1(u), ϕ−1(v)} ∈ R
(CC2): {μ(u), μ(v)} = {σ(ϕ−1(u)), σ (ϕ−1(v))}

Further, � is (S,R)-consistent if the following additional condition is satisfied:
(CC3):

∏
v∈V (Z) μ(v) = 1 ∀ Z ∈ C� where C� denotes the set of cycles in �;

The case whenR is defined by the condition that ϕ−1(u) ∩ ϕ−1(v) �= φ is treated
in Sinha [26] in respect of signed graph equations involving signed line graphs; in this
particular case, the term ‘(S,R)-marked’ and ‘(S,R)-consistent’ will be reduced to
‘S-marked’ and ‘S-consistent’, respectively, and similarly reduced terminology and
notation will be adopted without specific mention in other notions using ‘(S,R)-
format’ in the above sense.

We begin with the following formal definition: Given any signed graph S = (G, σ ),
L(S) is S-consistent if L(S) is consistent with respect to themarkingμσ : V (L(S)) →
{+1,−1} which assigns to each vertex e in L(S) the sign σ(e) of the edge e in S, i.e.
μσ (e) = σ(e) for every e ∈ V (L(S)) = E(S).
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Clearly, if �μ is S-consistent then S must be balanced.
The following characterization of signed graphs S whose signed line graphs L(S)

are S-consistent has been obtained recently.

Theorem 5 (Acharya et al. [8]) For any isolate-free signed graph S of order p, L(S)

is S-consistent if and only if the following conditions hold in S:
(1) S is balanced; and
(2) d(vi ) ≥ 3 in S for every vi , 1 ≤ i ≤ p

(a) if d(vi ) > 3 then d−(vi ) = 0; or
(b) if d(vi ) = 3 then either d−(vi ) = 0 or d−(vi ) = 2; and
(c) if d−(vi ) = 2 and vi lies on a cycle of S then the negative degree of vi is due

to the negative edges of the cycle.

In this note, we give a characterization of signed graphs S whose iterated signed
line graphs Lk(S)=L(Lk−1(S)), k ∈ N , S:= L0(S), are S-consistent.

Length of a path P in S is the number of edges in it and is denoted by �(P).
Towards solving the above problem, we first need to characterize signed graphs S
for which Lk(S) is balanced. Hence, we need to have an extension of the following
characterization of signed graphs whose signed line graphs are balanced, which is our
objective in the next section.

Theorem 6 (Acharya and Sinha [6]) For any signed graph S, L(S) is balanced if
and only if the following conditions hold in S:
(1) for any cycle Z in S;

(a) if Z is all-negative then Z is of even length;
(b) if Z is heterogeneous then there is an even number of negative sections of

non-zero even length in Z;
(2) for any vertex v in S, if the degree exceeds two then there is at most one negative

edge incident at v.

2 Balanced Iterated Signed Line Graphs

In this section, we extend Theorem 6 to any iterated signed line graph Lk(S), k ∈ N .

Theorem 7 For any signed graph S, and for any positive integer k, Lk(S) is balanced
if and only if the following conditions are satisfied by S:
(1) for any cycle Z in S;

(a) if Z is all-negative then Z is of even length; and
(b) if Z is heterogeneous then the number of negative sections of odd (even) length

greater than k is even if k is even (odd); and
(2) for any vertex v in S, if d(v) > 2 then, d−(v) < 3 and if d−(v) = 2 then the

length of any negative section through v is at most k.

Proof Necessity Suppose Lk(S), k ∈ N is balanced for a given signed graph S. Then,
by the definition of balanced signed graphs, every cycle Z ′ in Lk(S) must have an
even number of negative edges.
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Now, every vertex of Lk(S), k ∈ N , corresponds to an edge of Lk−1(S), k ≥ 1, and
hence the edges of every cycle in Lk−1(S), k ≥ 1, create a cycle Z ′ in Lk(S). Since
the length of every negative section in S is reduced by one in its image in L(S) as
per definition of the latter and the same continues to hold in each subsequent iterated
signed line graph Lt (S), t = 2, 3, . . . , k, we see that at the kth iteration the length of
a negative section greater than k in a cycle Z of S is reduced by k, and all the other
negative sections of lengths ≤ k in Z vanish when we see its image Z ′ in Lk(S). Now,
if there exists an all-negative cycle Z in S then it must be of even length due to our
hypothesis that Lk(S) is balanced and hence (1)(a) follows.

Next, let Z be heterogeneous and N1, N2, N3, . . . , Nr be the negative sections of
even lengths > k and P1, P2, . . . , Pm be the negative sections of odd lengths > k.
Now, if �(Ni ), 1 ≤ i ≤ r , and �(Pj ), 1 ≤ j ≤ m, denote the lengths of negative
sections in Z then the length of each negative section in Z ′ will be �(Ni ) − k and
�(Pj ) − k.

Therefore, Lk(S) is balanced

⇔
r∑

i=1

{�(Ni ) − k} +
m∑

j=1

{�(Pj ) − k} ≡ 0 (mod 2);

⇔
r∑

i=1

�(Ni ) − kr +
m∑

j=1

�(Pj ) − km ≡ 0 (mod 2);

⇔
r∑

i=1

�(Ni ) +
m∑

j=1

�(Pj ) − k(r + m) ≡ 0 (mod 2).

Now, we consider the following cases:
Case 1 k is even.
Then we have,

m∑

j=1

�(Pj ) ≡ 0 (mod 2)

whence,

m ≡ 0 (mod 2). (A)

Case 2 k is odd.
Then, we see that if m is odd whence,

kr ≡ 0 (mod 2)

�⇒ r ≡ 0 (mod 2) (B)
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If m is even then,

m∑

j=1

{�(Pj )} − kr ≡ 0 (mod 2)

�⇒ r ≡ 0 (mod 2) (C)

Thus, (1)(b) follows from (A), (B) and (C). On the other hand, suppose that not all
the vertices of the cycle Z ′ in Lk(S) correspond to the edges of a cycle in Lk−1(S) for
some k ≥ 1. Such a cycle Z ′ must arise in Lk(S) due to a vertex v of d(v) ≥ 3 in S.
Suppose d−(v) ≥ 3. Then any of the three negative edges incident to v will form an
all-negative triangle in L(S), and hence at every iteration k, k ≥ 1, Lk(S)would have
an all-negative triangle, contradicting the hypothesis that Lk(S) is balanced. Therefore,
d−(v) < 3. Now, the negative section through v is a path in S. If d−(v) = 0 or 1,
then the clique formed in L(S) due to the edges incident at v would comprise all-
positive triangles and hence will not affect the balance of Lk(S) within the clique in
Lk(S) constituted by the vertices which have evolved through the iterative process
of obtaining Lk(S) from the edges incident at v in S. Next, let d−(v) = 2 and
the length of a negative section through v be greater than k; specifically, let P :
v0, e1, v1, e2, v2, . . . , e j , v j = v, e j+1, v j+1 . . . , et , vt be the negative section in S
containing v, where t ≥ k + 1. Then, there arise the following two cases:

Case (a) None of the edges in P lies on a cycle.
In this case, P would reduce to a path having only t − k negative edges and at least

one of these must create a negative triangle Z ′ in Lk(S) since it is contained in a clique
in Lk(S) constituted by the vertices which have evolved through the iterative process
of obtaining Lk(S) from the edges incident at v ∈ P in S. Clearly, this contradicts the
balance of Lk(S).

Case (b) Some edge in P lies on a (heterogeneous) cycle.
Without loss of generality, let v lie on a cycle. In this case, P will again reduce to

a path having only t − k negative edges. At least one of these must tend to create a
negative triangle Z ′ in Lk(S)by the sameargument as above since P is an edge-induced
subgraph of S containing v, contradicting our hypothesis that Lk(S) is balanced.

Hence (2) follows.
SufficiencySuppose conditions (1) and (2) hold for a given signed graph S.We shall

show that Lk(S) is balanced. If S is all-positive, Lk(S) is trivially balanced. So, let S be
heterogeneous and suppose Lk(S) is unbalanced. Then there exists a cycle Z ′ in Lk(S)

which has an odd number of negative edges. Without loss of generality, let Z ′ have the
least possible length. First, suppose that the vertices of Z ′ correspond to the edges of
a cycle in Lk−1(S). If Z ′ is all-negative, it must then be of odd length, contradicting
(1)(a). Therefore, Z ′ must be heterogeneous. If all its vertices correspond to the edges
of a cycle in Lk−1(S), k ≥ 1, then by definition, the length of each negative section
of length greater than k in the cycle Z of S resulting in Z ′ is reduced by k in Z ′. Let
�(Ni ), 1 ≤ i ≤ r , and �(Pj ), 1 ≤ j ≤ m, denote the lengths of negative sections
Ni and Pj of even and odd lengths > k, respectively, in Z . Since Z ′ contains an odd
number of negative edges and
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r∑

i=1

�(Ni ) ≡ 0 (mod 2)

it follows that

m∑

j=1

�(Pj ) − k(r + m) �≡ 0 (mod 2). (∗)

Hence, if k is even, then

m∑

j=1

�(Pj ) �≡ 0 (mod 2)

whence m �≡ 0 (mod 2), contradicting (1)(b). So, k must be odd. Then, m cannot
be even, for otherwise from (∗) we see that r must be odd, contradicting (1)(b). But,
then, (∗) implies that r should be odd, contradicting (1)(b). Thus, we see that Z ′
must contain a vertex e′

i which corresponds to an edge ei in Lk−1(S) which is not
on any cycle of Lk−1(S), k ≥ 1, but incident to a vertex x in Lk−1(S) such that its
degree dk−1(x) ≥ 3 in Lk−1(S). Let e′

i−1 and e′
i+1 be the vertices adjacent to e′

i in
Z ′. Suppose Z ′ = (e′

i−1, e
′
i , e

′
i+1, e

′
i−1) is of length three. Since e

′
i does not belong to

any cycle in Lk−1(S), the edges ei−1 and ei+1 in Lk−1(S) corresponding to vertices
e′
i−1 and e′

i+1 in Z ′, respectively, must both be incident at x in Lk−1(S). Since Z ′ is
unbalanced, it has either one negative edge or all its three edges are negative. If Z ′ is
all-negative then it follows that d−

k−1(x) ≥ 3. Thus, by definition of L if k = 1 then
Lk−1(S) = L0(S) = S has a vertex x := v such that if d−

k−1(v) ≥ 3, contradicting (2).
But, again, due to a result of Menon [22], it follows that if d−

k−1(v) ≥ 3 then S has an
all-negative edge-induced subgraph with at least one vertex of negative degree three,
contradicting (2). Hence, Z ′ must be a triangle in Lk(S) with just one negative edge.
Since the length of a negative section gets reduced by one in every iterated operation of
L , it must be due to two negative edges incident at x in Lk−1(S) such that dk−1(x) ≥ 3.
Therefore, length of a negative section through x is at least two. Again, if k = 1 then
S would have a vertex x := v of d(v) ≥ 3 such that d−(v) = 2, contradicting (2).
So k ≥ 2. By definition of L , S would then have a vertex x := v on Z such that
d(v) ≥ 3 through which there would be a negative section of length greater than k+1
(Menon [22]), contradicting (2). Thus, it follows that Z ′ is of length at least four. Let
Z ′ = (e′

1, e
′
2, . . . , e

′
i−1, e

′
i , e

′
i+1, . . . e

′
r , e

′
1), r ≥ 4, where ei does not belong to any

cycle in Lk−1(S). Therefore, there exists a vertex e′ in Z ′ corresponding to an edge e
on a cycle Z in Lk−1(S). Clearly, the vertex x at which ei is incident lies on Z . Now by
condition (2) and the definition of L(S), in (k − 1)th iteration d−

k−1(x) ≤ 1, which
implies that the triangles in the clique formed in Lk(S) due to dk−1(x) ≥ 3 edges will
all be positive and also by condition (1) the cycle in Lk(S) due to the edges of the cycle
Z in Lk−1(S) is balanced. Thus Z ′ being the symmetric difference of the edge sets of
the positive triangles and that of the balanced cycle Z is also balanced due to Lemma 3,
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contradicting our assumption that Z ′ is unbalanced. Thus, by contraposition, it follows
that Lk(S) must be balanced and the proof is complete. ��
Corollary 8 Lk(S) is balanced for all k if and only if S satisfies following conditions:

(1) For every cycle Z in S,

(a) if Z is all-negative then Z is of even length; and
(b) if Z is heterogeneous then the number of negative sections of each length

greater than one is even; and
(2) if for a vertex v, d(v) > 2, then there is at most one negative edge incident at

v, v ∈ V (S).

Corollary 9 For a heterogeneous signed tree S, Lk(S) is balanced for every k ∈ N
if and only if for any vertex of degree greater or equal to 3, its negative degree is at
most 1.

Theorem 10 For a heterogeneous signed graph S, Lk(S) is all-positive, for k ∈ N if
and only if

(i) d−(v) ≤ 2, ∀ v ∈ V (S), and
(ii) Each cycle Z of S is either all-positive or heterogeneous.

Moreover, the value of k is at least as large as the length of maximum negative section
in S.

Proof Necessity Suppose Lk(S) is all-positive, for k ∈ N . Now we shall show that
both the conditions are satisfied by S. On the contrary, condition (i) or condition (ii)
does not hold. First suppose S does not satisfy condition (i). That means there is a
vertex v ∈ V (S) such that d−(v) ≥ 3. It follows that L(S) has all-negative cycle of
length 3. That means Lk(S) has a all-negative cycle of length 3, ∀ k ∈ N , contradicting
our assumption that Lk(S) is all-positive for k ∈ N .

Next suppose that condition (ii) does not hold. That means there exists an all-
negative cycle ∀ k ∈ N , contradicting our assumption. This completes the necessity.

Sufficiency Conversely, let S be a heterogeneous signed graph and it satisfies above
given conditions (i) and (ii). Now we shall show that Lk(S) is all-positive, for k ∈ N .
It is given that d−(v) ≤ 2, ∀ v ∈ V (S). Now let us suppose that there is a vertex
v ∈ V (S), of degree greater or equal to 3. Then by the definition of signed line graph
its signed line graph generates clique, but its clique never all-negative i.e. every edge
of clique is not negative. Because by the condition (i), negative degree of every vertex
of signed graph is less or equal to 2. Now let us suppose that the signed graph contains
a negative section of length q. Then by the definition of signed line graph, length of
negative section is reduced by one in each iteration. Its line signed graph has negative
section of length q−1, now repeating this process q times, then its iterated signed line
graph Lq(S) has negative section of length of q−q = 0, therefore Lk(S) is all-positive
when k = q.

Now let Z is a cycle of S. Then by the condition (ii), If Z is all-positive, then
theorem is trivially true.

If Z is heterogeneous, then it contains negative sections, let us suppose that the
signed graph S has a negative section of maximum length p. Then again by the similar
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procedure Lk(S) is all- positive if k = p. Hence, if S is a signed graph which satisfies
conditions (i) and (ii), then Lk(S) is all-positive for a natural number k. Moreover, the
value of k is the length of the maximal negative section in S. ��

3 S-Consistent Iterated Signed Line Graphs

Invoking the results of obtained in Theorems 5 and 7 in the foregoing section, we
derive the following main result of this paper.

Theorem 11 For any isolate-free signed graph S of order p, and any positive integer
k, Lk(S) is S-consistent if and only if the following conditions are satisfied by S:
(1) for any cycle Z in S;

(a) if Z is all-negative then Z is of even length; and
(b) if Z is heterogeneous then the number of negative sections of even (odd) length

≥ k is even if k is even (odd); and
(2) for any vertex vi , 1 ≤ i ≤ p, in S of d(vi ) ≥ 3, d−(vi ) < 3 and exactly one of

the following conditions is satisfied by S:
(a) k = 1 and there exists a vertex vi with d(vi ) = 3 such that it either lies on

no cycle and d−(vi ) = 2, or it lies on an all-negative cycle of even length
and there is no other vertex whose total degree is at least three and negative
degree is exactly one, or it lies on a heterogeneous cycle, d−(vi ) = 2 and this
negative degree is due to the edges of the heterogeneous cycle, whence again
there is no other vertex whose total degree is at least three and negative degree
is exactly one;

(b) k > max. {lengths of negative sections through vi }.

4 Conclusions and Scope

In this paper, we have given a characterization of a signed graph S whose iterated
signed line graph Lk(S) is S-consistent for some (all) natural number(s) k. Hence,
given any signed graph H , let LH = {S : S is a signed graph for which L(S) ∼= H}.
Call H a signed line graph if LH �= φ and then any S ∈ LH a line-root of H
(cf.: Acharya and Sinha [7]). At the very outset, minimization (maximization) of k
such that Lk(S) remains S-consistent for some S ∈ LH might be of some interest.
Further, it can be easily shown that if H is not an all-negative signed line graph then it
must have at least one heterogeneous line-root. Hence, some problems of immediate
interest could be to minimize (maximize) the number of negative edges in a marker
signed graphM , here a line-root, for a givenS-consistent signed line graph H , develop
algorithms for attainment of these bounds and for identification and/or enumeration
of line-root markers with the corresponding number of negative edges. For instance,
if H is an S-consistent all-negative signed line graph, then since its line-root is a
unique all-negative signed graph both the minimum and the maximum of the number
of negative edges in a line-root marker of H are equal to the order of H ; in general,
the same conclusion holds for any S-consistent signed line graphs having unique line-
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root markers and there do exist such heterogeneous signed graphs (characterization of
these signed graphs might itself be an interesting problem).
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