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2 D. Kang, Y. Kang

1 Introduction

In this paper, we study the following elliptic system:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−�pu − μ
u p−1

|x |p = η1

p∗ Hu(u, v) + η2

p∗(t)
Qu(u, v)

|x |t ,

−�pv − μ
v p−1

|x |p = η1

p∗ Hv(u, v) + η2

p∗(t)
Qv(u, v)

|x |t ,

u, v > 0, (u, v) ∈ D × D,

(1.1)

where 1 < p < N , 0 ≤ μ < μ̄ :=(
(N − p)/p

)p
, 0 < t < p, η1 > 0, η2 >

0, −�p· := −div(|∇ · |p−2·) is the p–Laplace operator, the space D := D1,p(RN )

denotes the completion of C∞
0 (RN ) with respect to (

∫

RN |∇ · |p dx)1/p, μ̄ is the
best Hardy constant, p∗ := Np/(N − p) is the critical Sobolev exponent, and
p∗(t) := p(N − t)/(N − p) is the critical Hardy–Sobolev exponent with p∗(0) =
p∗. Hu, Hv, Qu , and Qv are the partial derivatives of the 2–variable C1–functions
H(u, v) and Q(u, v), respectively. The functions H and Q satisfy the following con-
ditions:

(H) H, Q ∈ C1(R+ × R
+,R+),

Hu(u, 0) = Hu(0, v) = Hv(u, 0) = Hv(0, v) = 0, ∀ u, v ≥ 0,

Qu(u, 0) = Qu(0, v) = Qv(u, 0) = Qv(0, v) = 0, ∀ u, v ≥ 0,

H(λu, λv) = λp∗
H(u, v), ∀ λ ≥ 0, u, v ≥ 0, (p∗–homogeneity),

Q(λu, λv) = λp∗(t)Q(u, v), ∀ λ ≥ 0, u, v ≥ 0, (p∗(t)–homogeneity),

and the 1–homogenous functions G and Ḡ are concave, where G and Ḡ are defined
as follows:

G(α p∗
, β p∗

) = H(α, β), Ḡ(α p∗(t), β p∗(t)) = Q(α, β), ∀α, β ≥ 0.

The following properties are important and well known:
(H′) Suppose F(s, t) is a q-homogeneous differential function with q ≥ 1. Then

(i) sFs(s, t) + t Ft (s, t) = qF(s, t), ∀s, t ∈ R;
(ii) CF is attained at some (s0, t0) ∈ R

2, where

CF := max{F(s, t)|s, t ∈ R, |s|q + |t |q = 1};

(iii) |F(s, t)| ≤ CF (|s|q + |t |q), ∀ s, t ∈ R;
(iv) Fs(s, t) and Ft (s, t) are (q − 1)-homogeneous.

In this paper, we work in the product space D × D. The corresponding energy
functional of (1.1) is defined on D × D by
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On the Quasilinear Elliptic Systems Involving Critical 3

I (u, v) := 1

p

∫

RN

(
|∇u|p + |∇v|p − μ

|u|p + |v|p
|x |p

)
dx

− η1

p∗

∫

RN
H(|u|, |v|)dx − η2

p∗(t)

∫

RN

Q(|u|, |v|)
|x |t dx .

Then I ∈ C1(D × D,R). A pair of functions (u, v) ∈ D × D is said to be a solution
of (1.1) if u, v > 0, and

(u, v) 
= (0, 0), 〈I ′(u, v), (ϕ, φ)〉 = 0, ∀ (ϕ, φ) ∈ D × D,

where I ′(u, v) denotes the Fréchet derivative of I at (u, v).
Problem (1.1) is related to the Hardy and Hardy–Sobolev inequalities [8,20]):

∫

RN

|u|p
|x |p dx ≤ 1

μ̄

∫

RN
|∇u|p dx ,∀ u ∈ C∞

0 (RN ) , (1.2)

( ∫

RN

|u|p∗(t)

|x |t dx
) p

p∗(t) ≤ C(p, t)
∫

RN
|∇u|p dx ,∀ u ∈ C∞

0 (RN ) , (1.3)

where C(p, t) is a constant depending on p and t , 1 < p < N and 0 ≤ t < p.
By (1.2) the operator L := (−�p · −μ| · |p−2·/|x |p) is positive for all μ < μ̄, and

therefore, the following equivalent norm of D can be defined:

‖u‖ :=
( ∫

RN

(
|∇u|p − μ

|u|p
|x |p

)
dx

) 1
p
, ∀ u ∈ D.

Suppose (H) holds. By (H′), (1.2) and (1.1), the following best Hardy–Sobolev con-
stants are well defined:

S(μ, t) := inf
u∈D\{0}

∫

RN

(
|∇u|p − μ

|u|p
|x |p

)
dx

( ∫

RN

|u|p∗(t)

|x |t dx
) p

p∗(t)

, (1.4)

SH (μ, 0) := inf
u,v∈D\{0}

∫

RN

(
|∇u|p + |∇v|p − μ

|u|p + |v|p
|x |p

)
dx

( ∫

RN
H(|u|, |v|)dx

) p
p∗

, (1.5)

SQ(μ, t) := inf
u,v∈D\{0}

∫

RN

(
|∇u|p + |∇v|p − μ

|u|p + |v|p
|x |p

)
dx

( ∫

RN

Q(|u|, |v|)
|x |t dx

) p
p∗(t)

, (1.6)

where 0 ≤ t < p,−∞ < μ < μ̄. It should be mentioned that the strongly coupled
terms

∫

RN H(|u|, |v|)dx and
∫

RN
Q(|u|,|v|)

|x |t dx are critical in the senses of Sobolev or
Hardy–Sobolev embedding. Morais Filho et al. studied the constant SH (0, 0) and
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4 D. Kang, Y. Kang

proved the existence of solutions for a quasilinear elliptic systems in [17]. Alves et al.
studied in [3] the following best constant and found its extremals:

A(σ, τ ) := inf
u,v∈D1,2(RN )\{0}

∫

RN

(|∇u|2 + |∇v|2)dx
( ∫

RN
|u|σ |v|τdx

) 2
2∗

, (1.7)

where 1 < σ, τ < 2∗ − 1, σ + τ = 2∗ := 2N/(N − 2). Note that A(σ, τ ) in (1.7)
is a special case of SH (0, 0). The methods and conclusions in [3] and [17] are very
stimulating.

In recent years, much attention has been paid to the semilinear and quasilinear
elliptic problems involving the Hardy and Hardy–Sobolev inequalities, and many
results were obtained providing us very good insight into the problems (e.g., [1,5,6,9–
11,14,15,18,19,22,23,30,32,33], and the references therein). In particular, Filippucci
et al. studied in [18] the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

−�pu − μ
u p−1

|x |p = u p∗−1 + u p∗(s)−1

|x |s ,

u ∈ D, u > 0 in R
N ,

−∞ < μ < μ̄, 0 < s < p.

(1.8)

The main difficulty of studying (1.8) is that the critical Hardy–Sobolev and Sobolev
exponents appear simultaneously in the equation and induce more difficulties. By
very technic and complicated analysis, the authors of [18] proved the existence of
positive solutions to (1.8) by the Mountain–Pass theorem [4] and the concentration
compactness principle [26,27]. The extremals of the best constant S(μ, t) in (1.4) and
some related singular quasilinear elliptic problems were investigated in [1,18,19] and
[23], and we infer that, for all 0 ≤ t < p, 0 ≤ μ < μ̄, the best constant Sμ,t is
achieved by the implicit extremal function:

V ε
μ,t (x) = ε

p−N
p Uμ,t (ε

−1x) , ∀ ε > 0 , (1.9)

which satisfies

∫

RN

(
|∇V ε

μ,t (x)|p − μ
|V ε

μ,t (x)|p
|x |p

)
=

∫

RN

|V ε
μ,t (x)|p∗(t)

|x |t = (Sμ,t )
N−t
p−t ,

where Uμ,t (x) is some radial function.
On the other hand, the singular elliptic systems involving the Hardy and Hardy–

Sobolev inequalities have been seldom studied, we can only find several results in
[2,7,16,21,24,25,28] and [29], where some nonlinear singular critical systems were
investigated, the corresponding best Hardy–Sobolev constants were studied and exis-
tence results of solutions were obtained. The main difficulties of studying singular
elliptic systems are that the singularity may occur and the strongly coupled terms may
cause more difficulties.
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On the Quasilinear Elliptic Systems Involving Critical 5

To continue, we define

MH := max
{
H(|α|, |β|) p

p∗
∣
∣α, β ∈ R, |α|p + |β|p = 1

}; (1.10)

MQ := max
{
Q(|α|, |β|) p

p∗(t)
∣
∣α, β ∈ R, |α|p + |β|p = 1

}
. (1.11)

Then there exist (αi , βi ) ∈ R
+ × R

+, i = 1, 2, such that MH and MQ are achieved
respectively, that is,

MH = H(α1, β1)
p
p∗ , α

p
1 + β

p
1 = 1, (1.12)

MQ = Q(α2, β2)
p

p∗(t) , α
p
2 + β

p
2 = 1. (1.13)

In this paper, stimulated by the references mentioned above, we investigate (1.1).
The main results of this paper are summarized in the following theorems. To the best
of our knowledge, the conclusions are new even in the case μ = 0.

Theorem 1.1 Suppose that 0 ≤ t < p, −∞ < μ < μ̄ and (H) holds. Then

(i) SH (μ, 0) = M−1
H S(μ, 0), SQ(μ, t) = M−1

Q S(μ, t).

(ii) For all 0 ≤ μ < μ̄, SH (μ, 0) has the minimizers
(
α1V ε

μ,0(x), β1V ε
μ,0(x)

)
,

SQ(μ, t) has the minimizers
(
α2V ε

μ,t (x), β2V ε
μ,t (x)

)
, where V ε

μ,t (x) are defined
as in (1.9).

Theorem 1.2 Suppose that 1 < p < N , 0 ≤ μ < μ̄, 0 < t < p, η1 > 0, η2 > 0
and (H) holds. Then the problem (1.1) has a solution.

Remark 1.1 The coefficients 1/p∗ and 1/p∗(t) in (1.1) are only used for the con-
venience of computation and have no particular meanings. By Theorem 1.1, the
existence of solutions to (1.1) is obvious in anyone of the following cases: (i)
η1 = 0, η2 > 0, t ≥ 0; (ii) η1 > 0, η2 = 0, t ≥ 0; (iii) t = 0, η1 > 0, η2 > 0.

Remark 1.2 The following problem is an example of (1.1) :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−�pu − μ
u p−1

|x |p = σ1

p∗ u
σ1−1vτ1 + σ2

p∗(t)
uσ2−1vτ2

|x |t ,

−�pv − μ
v p−1

|x |p = τ1

p∗ u
σ1vτ1−1 + τ2

p∗(t)
uσ2vτ2−1

|x |t ,

u, v > 0, (u, v) ∈ D × D,

(1.14)

where the parameters satisfy the following condition:

(H′′) N ≥ 3, 1 < p < N , 0 ≤ μ < μ̄ =
(
N − p

p

)p

, 0 < t < p, σi , τi > 1,

i = 1, 2,

σ1 + τ1 = p∗ = Np

N − p
, σ2 + τ2 = p∗(t) = p(N − t)

N − p
.
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6 D. Kang, Y. Kang

Note that (1.14) involves the critical Hardy–Sobolev and Sobolev exponents and
admits a solution by Theorem 1.2.

This paper is organized as follows: Theorem 1.1 is verified in Sect. 2, and some
preliminary results are established in Sect. 3, and Theorem 1.2 is proved in Sect. 4. In
the following argument, ‖u‖ = (

∫

RN (|∇u|p − μ|u|p|x |−p)dx)1/p denotes the equiv-
alent norm of the space D, and ‖(u, v)‖D×D = (‖u‖p + ‖v‖p)1/p is the norm of
the space D × D. For all ε > 0 small enough, O(εt ) denotes the quantity satisfying
|O(εt )|/εt ≤ C, o(εt ) means |o(εt )|/εt → 0 as ε → 0 and o(1) is a generic infin-
itesimal value. In particular, the quantity O1(ε

t ) means that there exist the constants
C1,C2 > 0 such that C1ε

t ≤ O1(ε
t ) ≤ C2ε

t as ε small. We always denote positive
constants as C and omit dx in integrals for convenience.

2 The Best Constants SH(µ, 0) and SQ(µ, t)

In this section, we study SH (μ, 0) and SQ(μ, t) and verify Theorem 1.1.

Proof of Theorem 1.1 (i)Weonly show the proof for SQ(μ, t). The argument is similar
to that of [17], where the best constant SH (0, 0) was studied.

Letw ∈ D\{0} and (α2, β2) be defined as in (1.13). Choosing (u, v) = (α2w, β2w)

in (1.6) we have

(|α2|p + |β2|p)
∫

RN

(
|∇w|p − μ

|w|p
|x |p

)

|Q(α2, β2)|
p

p∗(t)

( ∫

RN

|w|p∗(t)

|x |t
) p

p∗(t)

≥ SQ(μ, t). (2.1)

Taking the infimum as w ∈ D \ {0} in (2.1), by (1.4) and (1.10)–(1.13) we have

M−1
Q S(μ, t) ≥ SQ(μ, t). (2.2)

For any u, v ∈ D \ {0}, by Proposition 1 of [17] we have that

∫

RN

Q(|u|, |v|)
|x |t =

∫

RN
Q

(|x |− t
p∗(t) |u|, |x |− t

p∗(t) |v|)

≤ Q
(‖ |x |− t

p∗(t) u‖L p∗(t)(RN ), ‖ |x |− t
p∗(t) v‖L p∗(t)(RN )

)
. (2.3)

Set

θ :=
(
‖ |x |− t

p∗(t) u‖p
L p∗(t)(RN )

+ ‖ |x |− t
p∗(t) v‖p

L p∗(t)(RN )

)− 1
p
.

Then

‖θ |x |− t
p∗(t) u‖p

L p∗(t)(RN )
+ ‖θ |x |− t

p∗(t) v‖p
L p∗(t)(RN )

= 1. (2.4)
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On the Quasilinear Elliptic Systems Involving Critical 7

From (1.11), (1.13), (2.3), and (2.4) it follows that

∫

RN

(
|∇u|p + |∇v|p − μ

|u|p + |v|p
|x |p

)

( ∫

RN

Q(|u|, |v|)
|x |t

) p
α+β

≥ S(μ, t)

( ∫

RN

|u|p∗(t)

|x |t
) p

p∗(t) +
( ∫

RN

|v|p∗(t)

|x |t
) p

p∗(t)

(
Q

(‖ |x |− t
p∗(t) u‖L p∗(t)(RN ), ‖ |x |− t

p∗(t) v‖L p∗(t)(RN )

)) p
p∗(t)

= S(μ, t)
‖ |x |− t

p∗(t) u‖p
L p∗(t)(RN )

+ ‖ |x |− t
p∗(t) v‖p

L p∗(t)(RN )
(
Q

(‖ |x |− t
p∗(t) u‖L p∗(t)(RN ), ‖ |x |− t

p∗(t) v‖L p∗(t)(RN )

)) p
p∗(t)

= S(μ, t)
‖θ |x |− t

p∗(t) u‖p
L p∗(t)(RN )

+ ‖θ |x |− t
p∗(t) v‖p

L p∗(t)(RN )
(
Q

(‖θ |x |− t
p∗(t) u‖L p∗(t)(RN ), ‖θ |x |− t

p∗(t) v‖L p∗(t)(RN )

)) p
p∗(t)

≥ 1

|Q(α2, β2)|
p

p∗(t)

S(μ, t) = M−1
Q S(μ, t).

Taking the infimum as u, v ∈ D \ {0} we have

M−1
Q S(μ, t) ≤ SQ(μ, t),

which together with (2.2) implies that

SQ(μ, t) = M−1
Q S(μ, t).

(ii) From (i), (1.5), and (1.6) the desired result follows. ��

3 Appropriate Palais–Smale Sequence

To find positive solutions of (1.1), we define the functional J on D × D by

J (u, v) := 1

p
‖(u, v)‖p − η1

p∗

∫

RN
H(u+, v+) − η2

p∗(t)

∫

RN

Q(u+, v+)

|x |t ,

wherew+ = max{w, 0} for allw ∈ D. Then J ∈ C1(D×D,R) according to (H) and
a solution of (1.1) is a nontrivial critical point of J . We follow the argument similar
to that of [16], where the problem (1.8) was investigated.

Lemma 3.1 (Mountain–Pass lemma, [4]) Let E be a Banach space and  ∈ C1(E).
Assume that

(i) (0) = 0.
(ii) There exist λ, R > 0 such that (u) ≥ λ for all u ∈ E with ‖u‖E = R.

123



8 D. Kang, Y. Kang

(iii) There exists v0 ∈ E such that lim supt→∞ (tv0) < 0.

Take t0 > 0 such that ‖t0v0‖E > R and (t0v0) < 0. Set

� := {γ ∈ C([0, 1], E)|γ (0) = 0 and γ (1) = t0v0}, c := inf
γ∈�

sup
t∈[0,1]

(γ (t)).

Then there exists a Palais–Smale sequence at level c for , that is, there exists a
sequence {uk} ⊂ E such that

lim
k→∞ (uk) = c, lim

k→∞ ′(uk) = 0 strongly in E−1.

Lemma 3.2 Suppose that (H) holds. Set

c∗ := min

{
1

N
η

p−N
p

1 SH (μ, 0)
N
p ,

p − t

p(N − t)
η

p−N
p−t
2 SQ(μ, t)

N−t
p−t

}

.

Then for some c ∈ (0, c∗), there exists a Palais–Smale sequence at level c for J , that
is there exists a sequence {(uk, vk)} ⊂ D × D such that

lim
k→∞ J (uk, vk) = c, lim

k→∞ J ′(uk, vk) = 0 strongly in (D × D)−1.

Proof We divide the argument into several steps. ��
Claim 1 The functional J verifies the hypotheses of Lemma 3.1 at any (u, v) ∈ D×D
with (u+, v+) 
= (0, 0).

In fact, J ∈ C1(D × D,R), J (0, 0) = 0. From (1.6) it follows that

J (u, v) ≥ 1

p
‖(u, v)‖p− η1

p∗SH (μ, 0)
p∗
p

‖(u, v)‖p∗ − η2

p∗(t)SQ(μ, t)
p∗(t)
p

‖(u, v)‖p∗(t)

=
(
C1 − C2‖(u, v)‖p∗−p − C3‖(u, v)‖p∗(t)−p

)
‖(u, v)‖p,

where Ci , i = 1, 2, 3, are positive constants. Then there exist λ, R > 0, such that
J (u, v) ≥ λ for all (u, v) ∈ D ×D with ‖(u, v)‖ = R. Furthermore, for any (u, v) ∈
D × D with (u+, v+) 
= (0, 0), we have

lim
t→+∞ J (tu, tv) = −∞,

which implies that there exists t(u,v) > 0 such that ‖(t(u,v)u, t(u,v)v)‖ > R and
J (tu, tv) < 0 for all t > t(u,v). Define

�(u,v) := {γ ∈ C([0, 1],D × D)|γ (0) = (0, 0) and γ (1) = (t(u,v)u, t(u,v)v)},
c(u,v) := inf

γ∈�(u,v)

sup
t∈[0,1]

J (γ (t)).
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On the Quasilinear Elliptic Systems Involving Critical 9

Then the hypotheses of Lemma 3.1 are satisfied and there exists a sequence
{(uk, vk)} ⊂ D × D such that

lim
k→∞ J (uk, vk) = c(u,v), lim

k→∞ J ′(uk, vk) = 0 strongly in (D × D)−1.

In particular, we have that

c(u,v) ≥ λ > 0, ∀ (u, v) ∈ D × D \ {(0, 0)}.

Claim 2 There exists (u, v) ∈ D × D \ {(0, 0)} such that u, v ≥ 0 and

c(u,v) <
1

N
η

p−N
p

1 SH (μ, 0)
N
p .

In fact, since μ ∈ [0, μ̄), by Theorem 1.1 we can choose (u, v) =(
α1V ε

μ,0(x),

β1V ε
μ,0(x)

)
, the extremals of SH (μ, 0). Then

c(u,v) ≤ sup
t≥0

J (tu, tv) ≤ sup
t≥0

K (t)

= 1

N

( ‖(u, v)‖p

(
η1

∫

RN H(u, v)
)p/p∗

)p∗/(p∗−p)

= 1

N
η

p−N
p

1 SH (μ, 0)
N
p ,

where

K (t) := t p

p
‖(u, v)‖p − η1

t p
∗

p∗

∫

RN
H(u, v).

Let t1, t2 > 0 be the points where supt≥0 J (tu, tv) and supt≥0 K (t) are attained,
respectively. Suppose that J (t1u, t1v) = K (t2). Then

K (t1) − η2
t p

∗(t)
1

p∗(t)

∫

RN

Q(u, v)

|x |t = K (t2),

which implies that K (t2) < K (t1), a contradiction with the definition of t2. Conse-
quently,

c(u,v) ≤ sup
t≥0

J (tu, tv) < sup
t≥0

K (t) = 1

N
η

p−N
p

1 SH (μ, 0)
N
p .

Claim 3 There exists (u, v) ∈ D × D \ {(0, 0)} such that u, v ≥ 0 and

0 < c(u,v) < c∗.

123



10 D. Kang, Y. Kang

In fact, by Theorem 1.1 we can choose (u, v) =(
α2V ε

μ,t (x), β2V ε
μ,t (x)

)
> 0, the

extremals of SQ(μ, t). Then arguing as above we can obtain that

c(u,v) ≤ sup
t≥0

J (tu, tv)

< sup
t≥0

( t p

p
‖(u, v)‖p − η2

t p
∗(t)

p∗(t)

∫

RN

Q(u, v)

|x |t
)

= p − t

p(N − t)
η

p−N
p−t
2 SQ(μ, t)

N−t
p−t ,

which together with claim 2 implies that claim 3 holds.
From Lemma 3.1 and claims 1–3 it follows the conclusions of Lemma 3.2 for a

suitable (u, v) ∈ D × D.

Lemma 3.3 Let {(uk, vk)} ⊂ D ×D be a Palais–Smale sequence at the level c < c∗
as in Lemma 3.2. If uk ⇀ 0 and vk ⇀ 0 weakly in D as k → ∞, then there exists
ε0 > 0 such that for all δ > 0, either

lim
k→∞

∫

Bδ(0)
H

(
(uk)+, (vk)+

) = 0 or lim
k→∞

∫

Bδ(0)
H

(
(uk)+, (vk)+

) ≥ ε0.

Proof The argument needs several steps. ��

Claim 4 For all � ⊂⊂ R
N \ {0}, up to a subsequence, we have

lim
k→∞

∫

�

|uk |p
|x |p = lim

k→∞

∫

�

|vk |p
|x |p = lim

k→∞

∫

�

Q(|uk |, |vk |)
|x |t = 0, (3.1)

lim
k→∞

∫

�

|∇uk |p = lim
k→∞

∫

�

|∇vk |p = lim
k→∞

∫

�

H(|uk |, |vk |) = 0. (3.2)

In fact, since � ⊂⊂ R
N \ {0}, the embedding D ↪→ Lq(�) is compact for any

1 ≤ q < p∗, |x |−1 is bounded on � and p∗(t) < p∗. Then (3.1) follows from (H′)
and we only need to verify (3.2).

Arguing as in Proposition 2 of [18], take ϕ ∈ C∞
0 (RN \ {0}) such that 0 ≤ ϕ ≤ 1

and ϕ|� ≡ 1. Note that the weak convergence of {uk} and {vk} in D implies the
boundedness. Then

∫

RN
|∇uk |p−1|∇(ϕ p)||uk | ≤ ‖∇uk‖p−1

p ‖uk‖L p(supp|∇ϕ|) = o(1),
∫

RN
|∇vk |p−1|∇(ϕ p)||vk | ≤ ‖∇vk‖p−1

p ‖vk‖L p(supp|∇ϕ|) = o(1),
∫

RN

(
|ϕ∇uk |p + |ϕ∇vk |p

)
=

∫

RN

(
|∇(ϕuk)|p + |∇(ϕvk)|p

)
+ o(1).
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Furthermore,

o(1) = 〈J ′(uk, vk), (ϕ puk, ϕ
pvk)〉

=
∫

RN

(
|ϕ∇uk |p + |ϕ∇vk |p

)
− η1

∫

RN
ϕ pH((uk)+, (vk)+)

+ O
( ∫

RN
(|∇uk |p−1|∇(ϕ p)||uk | + |∇vk |p−1|∇(ϕ p)||vk |)

)
+ o(1)

=
∫

RN

(
|ϕ∇uk |p + |ϕ∇vk |p

)
− η1

∫

RN
ϕ p(H((uk)+, (vk)+) + o(1)

=
∫

RN

(
|∇(ϕuk)|p + |∇(ϕvk)|p

)
− η1

∫

RN
ϕ p(H((uk)+, (vk)+) + o(1)

≥ ‖ϕuk‖p + ‖ϕvk‖p − η1

∫

RN
ϕ pH((uk)+, (vk)+) + o(1),

which implies that

‖ϕuk‖p + ‖ϕvk‖p

≤ η1

∫

RN
ϕ pH((uk)+, (vk)+) + o(1)

≤ η1

( ∫

RN
H((uk)+, (vk)+)

)(p∗−p)/p∗( ∫

RN
H(|ϕuk |, |ϕvk |)

)p/p∗
+ o(1)

≤ η1

( ∫

RN
H((uk)+, (vk)+)

)(p∗−p)/p∗
SH (μ, 0)−1‖(ϕuk, ϕvk)‖p + o(1),

and therefore,

(

1 − η1

( ∫

RN
H((uk)+, (vk)+)

)(p∗−p)/p∗
SH (μ, 0)−1

)

‖(ϕuk, ϕvk)‖p ≤ o(1).

(3.3)

On the other hand,

J (uk, vk) − 1

p
〈J ′(uk, vk), (uk, vk)〉 = c + o(1)‖(uk, vk)‖ = c + o(1),

which implies that

c + o(1) = η1

( 1

p
− 1

p∗
) ∫

RN
H((uk)+, (vk)+)

+ η2

( 1

p
− 1

p∗(t)

) ∫

RN

Q((uk)+, (vk)+)

|x |t .

Consequently,

η1

∫

RN
H((uk)+, (vk)+) ≤ cN + o(1), (3.4)
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12 D. Kang, Y. Kang

which together with (3.3) implies that

(
1 − η

N−p
N

1 (cN )p/N SH (μ, 0)−1
)
‖(ϕuk, ϕvk)‖p ≤ o(1).

Since c < c∗, we have that

lim
k→∞ ‖(ϕuk, ϕvk)‖p = 0,

and therefore,

lim
k→∞

∫

RN
H(|ϕuk |, |ϕvk |) = 0.

Then the definition of ϕ implies that (3.2) holds and claim 4 is proved.

Claim 5 For all δ > 0, define the quantities:

τ = lim sup
k→∞

∫

Bδ(0)
H((uk)+, (vk)+), ω = lim sup

k→∞

∫

Bδ(0)

Q((uk)+, (vk)+)

|x |t ,

γ = lim sup
k→∞

∫

Bδ(0)

(
|∇uk |p + |∇vk |p − μ

|uk |p + |vk |p
|x |p

)
.

Then

SH (μ, 0) τ
p
p∗ ≤ γ, SQ(μ, t) ω

p
p∗(t) ≤ γ. (3.5)

Furthermore,

γ ≤ η1τ + η2ω. (3.6)

In fact, according to claim 4, τ, ω, and γ are well defined and independent of δ.
Take ϕ ∈ C∞

0 (RN ) such that 0 ≤ ϕ ≤ 1 and ϕ|Bδ(0) ≡ 1. Then we have

SH (μ, 0)
( ∫

RN
H((φuk)+, (φvk)+)

) p
p∗ ≤ ‖(ϕuk, ϕvk)‖p.

As k → ∞, claim 4 implies that

SH (μ, 0)
( ∫

Bδ(0)
H((uk)+, (vk)+)

) p
p∗

≤
∫

Bδ(0)

(
|∇uk |p + |∇vk |p − μ

|uk |p + |vk |p
|x |p

)
+ o(1).

Consequently,

SH (μ, 0) τ
p
p∗ ≤ γ.
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The second inequality in (3.5) can be verified similarly.
Since ϕuk, ϕvk ∈ D and limk→∞〈J ′(uk, vk), (ϕuk, ϕvk)〉 = 0, by claim 4 and the

definitions of τ, ω, and γ, we deduce that γ ≤ η1τ + η2ω. Claim 5 is verified.
From (3.6) it follows that

SH (μ, 0) τ
p
p∗ ≤ γ ≤ η1τ + η2ω,

which implies that

τ
p
p∗

(

SH (μ, 0) − η1τ
p∗−p
p∗

)

≤ η2ω. (3.7)

From (3.4) it follows that

η1τ ≤ cN < c∗N < η

p−N
p

1 SH (μ, 0)
N
p = η

p−N
p

1 SH (μ, 0)
p∗

p∗−p . (3.8)

By (3.7) and (3.8), there exists a constant C1 = C1(μ, c, η1, η2) > 0 such that

τ
p
p∗ ≤ C1ω. (3.9)

Similarly, there exists a positive constant C2 = C2(μ, c, t, η1, η2) such that

ω
p

p∗(t) ≤ C2τ. (3.10)

Then it follows from (3.9) and (3.10) that there exists a positive constant ε0 =
ε0(N , p, μ, c, t) such that

either τ = ω = 0 or min{τ, ω} ≥ ε0.

The proof of Lemma 3.3 is complete.

4 Existence of Positive Solutions

Lemma 4.1 Let {(uk, vk)} be the sequence defined as in Lemma 3.3. Then

� := lim sup
k→∞

∫

RN
H((uk)+, (vk)+) > 0. (4.1)

Proof Arguing by contradiction, we assume that

lim
k→∞

∫

RN
H((uk)+, (vk)+) = 0. (4.2)

123



14 D. Kang, Y. Kang

Since limk→∞〈J ′(uk, vk), (uk, vk)〉 = 0, by (4.1) we have

‖(uk, vk)‖p = η2

∫

RN

Q((uk)+, (vk)+)

|x |t + o(1), k → ∞.

Then

SQ(μ, t)
( ∫

RN

Q((uk)+, (vk)+)

|x |t
) p

p∗(t)

≤ ‖(uk, vk)‖p = η2

∫

RN

Q((uk)+, (vk)+)

|x |t + o(1),

( ∫

RN

Q((uk)+, (vk)+)

|x |t
) p

p∗(t)

×
(

SQ(μ, t) − η2

( ∫

RN

Q((uk)+, (vk)+)

|x |t
) p∗(t)−p

p∗(t)

)

≤ o(1).
(4.3)

From (3.4) and (4.2) it follows that

η2

∫

RN

Q((uk)+, (vk)+)

|x |t = cp(N − t)

p − t
+ o(1) <

c∗ p(N − t)

p − t
+ o(1),

which together with (4.3) implies that

lim
k→∞

∫

RN

Q((uk)+, (vk)+)

|x |t = 0,

a contradiction with (3.4) and the fact that c ∈ (0, c∗). ��
Lemma 4.2 Let {(uk, vk)} be defined as in Lemma 3.3. Then there exists ε1 ∈
(0, ε0/2], with ε0 given in Lemma 3.3, such that for all ε ∈ (0, ε1), there exists a posi-
tive sequence {rk} ⊂ R such that {(ũk, ṽk)} :={(

r (N−p)/p
k uk(rk x), r

(N−p)/p
k vk(rk x)

)}

⊂ D × D, is again a Palais–Smale sequence of the type given in Lemma 3.3 and sat-
isfies

∫

B1(0)
H((ũk)+, (ṽk)+) = ε, ∀ k ∈ N. (4.4)

Proof Let ε0,� be defined as in Lemma 3.3 and (4.1), respectively. Set ε1 :=
min{ε0/2,�} and fix ε ∈ (0, ε1). Up to a subsequence (still denoted by {(uk, vk)}),
for any k ∈ N, there exists rk > 0 such that

∫

Brk (0)
H((uk)+, (vk)+) = ε, ∀ k ∈ N.

Then the scaling invariance implies that {(ũk, ṽk)} satisfies (4.4) and is also a Palais–
Smale sequence of the type given in Lemma 3.3. ��
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Proof of Theorem 1.2 Since {(ũk, ṽk)} satisfies (4.4) and is also a Palais–Smale
sequence, we have that

C(1 + ‖(ũk, ṽk)‖)
≥ J (ũk, ṽk) − 1

p∗(t)
〈J ′(ũk, ṽk), (ũk, ṽk)〉

=
(
1

p
− 1

p∗(t)

)

‖(ũk, ṽk)‖p + η1

(
1

p(t)
− 1

p∗

) ∫

RN
H((ũk)+, (ṽk)+)

≥
(
1

p
− 1

p∗(t)

)

‖(ũk, ṽk)‖p,

which implies that {(ũk, ṽk)} is bounded in D ×D. Up to a subsequence, there exists
ũ, ṽ ∈ D such that

ũk ⇀ ũ weakly, ṽk ⇀ ṽ weakly, k → ∞.

If ũ ≡ ṽ ≡ 0, from Lemma 3.3 it follows that either

lim
k→∞

∫

B1(0)
H((ũk)+, (ṽk)+) = 0 or lim

k→∞

∫

B1(0)
H((ũk)+, (ṽk)+) ≥ ε0,

which contradicts (4.4) as 0 < ε < ε0/2. Then (ũ, ṽ) 
≡ (0, 0). Arguing as in [12]
(see also [13,31,33]), we deduce that (ũ, ṽ) is a solution of the following problem:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−�pu − μ
u p−1

|x |p = η1

p∗ Hu(u+, v+) + η2

p∗(t)
Qu(u+, v+)

|x |t ,

−�pv − μ
v p−1

|x |p = η1

p∗ Hv(u+, v+) + η2

p∗(t)
Qv(u+, v+)

|x |t ,

(u, v) ∈ D × D.

(4.5)

Set w− = max{−w, 0} for all w ∈ D \ {0}. Multiplying the first equation in (4.5)
by ũ− and the second by ṽ−, and integrating, we have that ‖ũ−‖ = ‖ṽ−‖ = 0, which
implies that ũ− = ṽ− = 0, and therefore, (ũ, ṽ) is a nonnegative nontrivial solution
of (4.5). If ũ ≡ 0, by (H) and (4.5) we get ṽ ≡ 0. Similarly, ṽ ≡ 0 also implies ũ ≡ 0.
Then ũ 
≡ 0 and ṽ 
≡ 0. From the maximum principle it follows that ũ, ṽ > 0 in R

N

and (ũ, ṽ) is a solution of the problem (1.1).
The proof of Theorem 1.2 is complete. ��
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