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1 Introduction

Gromov hyperbolicity grasps the essence of both negatively curved spaces and discrete
spaces. As observed in [5, Section 1.3], the hyperbolicity of a geodesic metric space is
equivalent to the hyperbolicity of a graph related to it. Characterizing hyperbolic graphs
is a main problem in the theory of hyperbolicity; since this is a very ambitious goal,
a more achievable (yet very difficult) problem is to characterize hyperbolic graphs in
particular classes of graphs. The papers [2,4,7–9,11,12,25,27,30–32,37,39] study the
hyperbolicity of complement of graphs, chordal graphs, periodic planar graphs, planar
graphs, strong product graphs, line graphs, Cartesian product graphs, cubic graphs,
short graphs, median graphs, and different generalizations of chordal graphs; however,
characterizations of the hyperbolicity in the corresponding classes are obtained only in
a few of them. In a previous work, [8], periodic planar graphs were considered. In this
work, we shall study how hyperbolicity is affected when considering general periodic
graphs, not necessarily planar; a simple characterization of the hyperbolic periodic
graphs will be obtained. The key ingredient will be the speed at which points and their
images under an isometry separate. The general setting is much more complicated
than the planar one and the characterization obtained is totally unexpected. X is a
geodesic metric space if for every x, y ∈ X there exists a geodesic joining x and y;
denote by [xy] any of such geodesics (since uniqueness of geodesics is not required,
this notation is ambiguous, but convenient). It is clear that every geodesic metric space
is path-connected. If the metric space X is a graph, [u, v] denotes the edge joining the
vertices u and v.

In order to consider a graph G as a geodesic metric space, one must identify any
edge [u, v] ∈ E(G) with the real interval [0, l] (

ifl := L([u, v])); therefore, any
point in the interior of any edge is a point of G and, if the edge [u, v] is considered
as a graph with just one edge, then it is isometric to [0, l]. A connected graph G is
naturally equipped with a distance defined on its points, induced by taking shortest
paths in G, inducing in G the structure of a metric graph. Note that edges can have
arbitrary lengths. As usual, the set of vertices of a graph G will be denoted by V (G).

Let (X, dX ) and (Y, dY ) be two metric spaces. A map f : X −→ Y is said to
be an (α, β)-quasi-isometric embedding, with constants α ≥ 1, β ≥ 0 if, for every
x, y ∈ X :

α−1dX (x, y) − β ≤ dY
(
f (x), f (y)

) ≤ αdX (x, y) + β.

The function f is ε-full if for each y ∈ Y there exists x ∈ X with dY
(
f (x), y

) ≤ ε.
A quasi-isometry from X to Y is a map f : X −→ Y that is an ε-full (α, β)-quasi-

isometric embedding for some α ≥ 1 and β, ε ≥ 0. Two metric spaces X and Y are
quasi-isometric if there exists a quasi-isometry f : X −→ Y . Quasi-isometry is an
equivalence relation on metric spaces.

An (α, β)-quasigeodesic of a metric space X is an (α, β)-quasi-isometric embed-
ding γ : I −→ X , where I is an interval of R. A quasigeodesic is an
(α, β)-quasigeodesic for some α ≥ 1, β ≥ 0. Note that a (1, 0)-quasigeodesic is
a geodesic. A geodesic line is a geodesic with domain R.
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Gromov Hyperbolicity of Periodic Graphs S91

This work deals with periodic graphs. A graphG is periodic if there exist a geodesic
line γ0 and an isometry T of G with the following properties:

(1) T γ0 ∩ γ0 = ∅,
(2) G\γ0 has two connected components,
(3) G\{γ0 ∪ T γ0} has at least three connected components, two of them, G1 and G2,

satisfy ∂G1 ⊂ γ0 and ∂G2 ⊂ T γ0, and the subgraph G∗ := G\{G1 ∪ G2} is
connected and ∪n∈ZT n(G∗) = G.

Such subgraph G∗ is a period graph of G.
In what follows and throughout the paper, G will denote a periodic graph and G∗

a period graph of G. In fact, given a periodic graph G, we will fix a geodesic line γ0,
an isometry T and their corresponding period graph G∗. By η0, we will denote an
arc-length parametrization of γ0 in G. Let ηk := T kη0 be a parametrization of T kγ0
for any k ∈ Z. Also, for any function f : G → R denote by lim supz→+∞,z∈γ0

f (z),
the limit

lim sup
z→+∞,z∈γ0

f (z) := lim sup
t→+∞

f (η0(t)),

and analogously for any other limit along the curve.
Our main result is the following:

Theorem 1.1 Let G be a periodic graph.

• If inf z∈γ0 dG(z, T z) > 0, then G is hyperbolic if only if G∗ is hyperbolic and
lim|z|→∞,z∈γ0

dG(z, T z) = ∞.

• If inf z∈γ0 dG(z, T z) = 0, then G is hyperbolic if and only if G∗ is hyperbolic and
G has quasi-exponential decay.

For the definition of quasi-exponential decay, let G be a periodic graph with
inf z∈γ0 dG(z, T z) = 0, let η0(t) be a parametrization of γ0 and define �η0(t) as
the greatest non-increasing minorant of F(t), where F(t) := dG

(
η0(t), Tη0(t)

)
on

[0,∞). The graphG has quasi-exponential decay if there exist a parametrization η0(t)
for which limt→−∞ dG

(
η0(t), Tη0(t)

) = ∞ and

sup
s2≥s1≥0

(s2 − s1)
�η0(s2)

�η0(s1)
< ∞.

In what follows, we will write �η0(t) as �(t).
Note that such condition is satisfied by any exponential function�(t) = e−at . Also,

on the other hand, if a positive function�(t) satisfies this condition, then�(t) ≤ ke−at

on [0,∞) for some k, a > 0. Consequently, if G has quasi-exponential decay, then
limt→∞ �(t) = 0 and lim inf t→∞ F(t) = 0. We obtain an equivalent definition of
quasi-exponential decay if we replace η0(t) by η0(t − t0), i.e., if one considers t ≥ t0
instead of t ≥ 0, for any fixed t0.

The outline of the paper is as follows. Section 2 states some definitions and back-
ground used throughout the paper. In Sect. 3, some technical and basic results on
periodic graphs are presented. Section 4 is devoted to the proof of the first part of
Theorem 1.1. Finally, the proof of the second part is shown in Sect. 5.
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2 Definitions and Background

If X is a geodesic metric space and J = {J1, J2, . . . , Jn} is a polygon, with sides
J j ⊆ X , the polygon J is δ-thin if for every x ∈ Ji the distance d(x,∪ j =i J j ) ≤ δ.
Denote by δ(J ) the sharp thin constant of J , i.e., δ(J ) := inf{δ : J is δ-thin } .

If x1, x2, x3 ∈ X , a geodesic triangle T = {x1, x2, x3} is the union of the three
geodesics [x1x2], [x2x3] and [x3x1]. The space X is δ-hyperbolic if every geodesic
triangle in X is δ-thin. Denote by δ(X) the sharp hyperbolicity constant of X , i.e.,
δ(X) := sup{δ(T ) : T is a geodesic triangle in X }. The space X is hyperbolic if
X is δ-hyperbolic for some δ. Note that if X is δ-hyperbolic, then every geodesic
polygon with n sides is (n − 2)δ-thin; in particular, every geodesic quadrilateral is
2δ-thin. In the classical references on this subject (see, e.g., [5,17]) appear several
different definitions of Gromov hyperbolicity, which are equivalent in the sense that
if X is δ-hyperbolic with respect to one definition, then it is δ′-hyperbolic with respect
to another definition (for some δ′ related to δ), see for example Theorem A in Sect. 5.
The definition that we have chosen has a deep geometric meaning (see, e.g., [17]).

Let X be a metric space, Y a non-empty subset of X and ε a positive number. The
ε-neighborhood of Y in X , denoted by Vε(Y ) is the set {x ∈ X : dX (x,Y ) ≤ ε}.
The Hausdorff distance between two non-empty subsets Y and Z of X , denoted by
HX (Y, Z) or H(Y, Z), is the number defined by:

inf{ε > 0 : Y ⊂ Vε(Z) and Z ⊂ Vε(Y )}.

A useful property of hyperbolic spaces is the invariance of hyperbolicity. Namely,
if f : X −→ Y is an (α, β)-quasi-isometric embedding between the geodesic metric
spaces X and Y , and if Y is δ-hyperbolic, then X is δ′-hyperbolic, where δ′ is a constant
which just depends on δ, α, and β. Besides, if f is ε-full for some ε ≥ 0 (a quasi-
isometry), then X is hyperbolic if and only if Y is hyperbolic. Furthermore, if X is
δ′-hyperbolic, then Y is δ-hyperbolic, where δ is a constant which just depends on δ′,
α, β, and ε.

Given a geodesic metric space X and a closed connected subset X0 ⊂ X , the inner
distance dX0 is defined by minimizing dX -length of paths contained in X0.

A subspace X0 of a geodesic metric space X is an isometric subspace if the inner
distance dX0 satisfies that dX0(x, y) = dX (x, y) for all x, y ∈ X0. If X0 is an isometric
subspace of X then every geodesic in X0 is also a geodesic in X , and therefore δ(X0) ≤
δ(X).

The following lemma shows that in order to prove the hyperbolicity of a geodesic
metric space it suffices to consider geodesic triangles verifying a useful property (see
[34, Lemma 2.1]):

Lemma A In any geodesic metric space X,

δ(X) = sup
{
δ(T ) : T is a geodesic triangle that is a simple closed curve

}
.

Another fundamental property of hyperbolic spaces is their geodesic stability: if
X is a δ-hyperbolic geodesic metric space (δ ≥ 0), and α ≥ 1 and β ≥ 0 are given
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constants, there exists a constant H = H(δ, α, β) such that for any pair of (α, β)-
quasigeodesics g, h with the same endpoints, H(g, h) ≤ H .

In view of this stability, one can extend the thinness to quasigeodesic polygons:

Lemma 2.1 Let X be a δ-hyperbolic geodesic metric space and P an (α, β)-
quasigeodesic polygon with n sides in X. Then P is 
-thin, where 
 depends only on
n, δ, α, β.

Proof Let P ′ be a geodesic polygon in X with the same vertices as P . By geodesic sta-
bility, the Hausdorff distance between a quasigeodesic side in P and its corresponding
geodesic side in P ′ is less than or equal to the constant H = H(δ, α, β). By splitting
P ′ in n − 2 geodesic triangles, one can check that P ′ is (n − 2)δ-thin. If p belongs
to a side of P , then there exists a point p′ on its corresponding geodesic side on P ′ at
distance from p less than or equal to H ; since P ′ is a geodesic polygon with n sides,
there exists a point q ′ on the union of the other n − 1 geodesic sides in P ′ at distance
from p′ less than or equal to (n − 2)δ; then, there exists a point q in the union of the
corresponding n − 1 quasigeodesic sides in P at distance from q ′ less than or equal
to H , and dG(p, q) ≤ (n − 2)δ + 2H . Hence, P is

(
(n − 2)δ + 2H

)
-thin. ��

3 Technical Results on Periodic Graphs

In this section, some definitions and results which will be used throughout the paper
are stated.

The following lemmaswill be of use in the proof ofTheorem1.1 (see [8, Lemma3.9]
and the proof of [8, Lemma 3.10]):

Lemma B Let G be a graph and let γ0 be a geodesic line in G such that G\γ0 has
two connected components G ′

1,G
′
2. Define G1 := G ′

1 ∪ γ0 and G2 := G ′
2 ∪ γ0. If G

is δ-hyperbolic, then G1,G2 are δ-hyperbolic. If G1,G2 are δ-hyperbolic, then G is
120δ-hyperbolic.

A geodesic γ = [xy] with x ∈ T jG∗, y ∈ T kG∗ and j ≤ k is a straight geodesic
if γ ∩ T iG∗ is a connected set for every j ≤ i ≤ k; note that then γ ⊂ ∪k

i= j T
iG∗.

The proof of [8, Lemma 3.11] gives:

Lemma C Let G be a periodic graph such that G∗ is δ∗-hyperbolic and lim|z|→∞,z∈γ0

dG(z, T z) = ∞. Assume also that there exists z0 ∈ γ0 with [z0, T z0] ∈ E(G) and
L
([z0, T z0]

) = dG(γ0, T γ0) > 0. Denote by γ a geodesic joining x ∈ T jG∗ and
y ∈ T kG∗, j ≤ k. Then:

(1) There exists a constant M that depends only on G∗ and a straight geodesic γ ′
joining x and y such that H(γ, γ ′) ≤ M.
(2) There exists a constant N that depends only on G∗ such that if σ :=
∪n∈Z[T nz0, T n+1z0] and j + 2 ≤ k, for each j < i < k there exists a point zi ∈ γ ′
with dT iG∗(zi , σ ∩ T iG∗) ≤ N.

A geometric consequence of the previous lemma is that two geodesics that start at
the same copy of G∗ and end at the same copy of G∗ are at bounded distance in the
intermediate copies of G∗. Namely,
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Lemma 3.1 Under the hypotheses of Lemma C, consider two geodesics γ, γ̃ in G
from points x, x̃ ∈ T jG∗ to points y, ỹ ∈ T kG∗, respectively, where k− j ≥ 4. If p ∈
T iG∗∩γ and q ∈ T iG∗∩ γ̃ with j+2 ≤ i ≤ k−2, then dG(p, q) ≤ 2M+6N+5d1,
where d1 = L

([z0, T z0]
) = dG(γ0, T γ0) and M, N are the constants in Lemma C.

Furthermore, if γ and γ̃ are straight geodesics, then dG(p, q) ≤ 6N + 5d1.

Proof By part (1) in Lemma C, it suffices to prove dG(p, q) ≤ 6N + 5d1 when γ

and γ̃ are straight geodesics. By Lemma C, there exist points zi ∈ T iG∗ ∩ γ and
z̃i ∈ T iG∗ ∩ γ̃ so that

dT iG∗(zi , σ ∩ T iG∗), dT iG∗(z̃i , σ ∩ T iG∗) ≤ N

for j + 1 ≤ i ≤ k − 1.
Consider p ∈ T iG∗ ∩ γ and q ∈ T iG∗ ∩ γ̃ , with j + 2 ≤ i ≤ k − 2. Then,

dG(p, zi ) ≤ max
{
dG(zi−1, zi ), dG(zi , zi+1)

} ≤ 2N + 2d1.

And, identically, dG(q, z̃i ) ≤ 2N + 2d1. Since dG(zi , z̃i ) ≤ 2N + d1, one gets the
desired result. ��

The following two lemmas will relate distances among points on γ0 and T γ0.

Lemma 3.2 Let G be a periodic graph. Assume that there exist a′ ∈ γ0, b′ ∈ T γ0
such that

dG(a′, b′) ≤ η−1
1 (b′) − η−1

0 (a′) = dG(b′, Ta′).

If a ∈ γ0 so that η
−1
0 (a) ≤ η−1

0 (a′) then, for every b ∈ T γ0

dG(a, b) ≥ η−1
0 (a) − η−1

1 (b).

Furthermore, if η−1
1 (b) ≤ η−1

0 (a), then dG(a, b) ≥ dG(a, Ta)/2.

Remark By symmetry, if dG(a′, b′) ≤ η−1
0 (a′) − η−1

1 (b′) and if b ∈ T γ0 is so that
η−1
1 (b) ≤ η−1

1 (b′) then dG(a, b) ≥ η−1
1 (b) − η−1

0 (a) for any a ∈ γ0.

Proof Seeking for a contradiction assume that there exist a ∈ γ0 and b ∈ T γ0 with
η−1
0 (a) − η−1

1 (b) > dG(a, b) and η−1
0 (a) ≤ η−1

0 (a′). Then

dG(b, b′) ≤ dG(b, a) + dG(a, a′) + dG(a′, b′)
< η−1

0 (a) − η−1
1 (b) + η−1

0 (a′) − η−1
0 (a) + η−1

1 (b′) − η−1
0 (a′)

= η−1
1 (b′) − η−1

1 (b) = dG(b, b′) ,

which is a contradiction. Thus, η−1
0 (a) − η−1

1 (b) ≤ dG(a, b).
If η−1

1 (b) ≤ η−1
0 (a), notice that dG(b, Ta) = η−1

0 (a)−η−1
1 (b) ≤ dG(a, b). Hence,

dG(a, Ta) ≤ dG(a, b) + dG(b, Ta) ≤ 2dG(a, b). ��
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The second lemma relating distances among points on the “boundary” ofG∗ states:

Lemma 3.3 Let G be a periodic graph and assume that there exist an unbounded
sequence {ζn} ⊂ γ0 and some constant c0 with dG(ζn, T ζn) ≤ c0 for every n ∈ N. Then
dG(z1, z2) ≤ dG(z1, T z2) + c0 for every z1, z2 ∈ γ0. Furthermore, dG(z1, T z1) ≤
2dG(z1, T z2) + c0 and dG(z1, T γ0) ≤ dG(z1, T z1) ≤ 2dG(z1, T γ0) + c0.

Proof Fix z1, z2 ∈ γ0. Let η0 be a fixed arc-length parametrization of γ0 with
η−1
0 (z1) ≥ η−1

0 (z2). By hypothesis, there exists n ∈ N with either η−1
0 (ζn) > η−1

0 (z1)
or η−1

0 (ζn) < η−1
0 (z2). Assume that η−1

0 (ζn) > η−1
0 (z1) (the case η−1

0 (ζn) < η−1
0 (z2)

is similar). Hence

dG(T z2, T z1) + dG(T z1, T ζn) = dG(T z2, T ζn) ≤ dG(T z2, z1) + dG(z1, ζn)

+dG(ζn, T ζn) ,

and, since T is an isometry and T γ0 is a geodesic,

dG(z1, z2) ≤ dG(z1, T z2) + c0 .

Moreover, dG(z1, T z1) ≤ dG(z1, T z2) + dG(T z1, T z2) ≤ 2dG(z1, T z2) + c0. ��
This last result has two corollaries which will be useful in the proof of the second

part of Theorem 1.1. Both give more specific quantitative relations between distances
among points. Namely,

Corollary 3.4 Let G be a periodic graph with inf z∈γ0 dG(z, T z) = 0. Then
dG(z1, z2) ≤ dG(z1, T z2) for every z1, z2 ∈ γ0. Furthermore, dG(z1, T z1) ≤
2dG(z1, T z2), dG(z1, T γ0) ≤ dG(z1, T z1) ≤ 2dG(z1, T γ0) and

1

3

(
dG(z1, z2)+max

i=1,2
{dG(zi , T zi )}

) ≤ dG(z1, T z2) ≤ dG(z1, z2)+min
i=1,2

{dG(zi , T zi )}.
(3.1)

Proof In order to prove the inequalities previous to (3.1), it suffices to apply Lemma
3.3 for any c0 > 0 and take the limit as c0 → 0+.

The right hand side of (3.1) follows from the triangle inequality and the fact
dG(T z1, T z2) = dG(z1, z2). The left hand side follows by symmetry and the pre-
vious inequalities. ��

Some notation is needed for the second corollary. Given z ∈ Tmγ0, w ∈ T nγ0,
define DG(z, w) as follows: if m = n, set DG(z, w) := dG(z, w); if m < n, then

DG(z, w) := inf

⎧
⎨

⎩

n−1∑

j=m

(
dG(x j , T

−1x j+1) + dG(T−1x j+1, x j+1)
)

+ dG(xn, w)

⎫
⎬

⎭
,

where the infimum is taken among all sets of points {x j }nj=m with x j ∈ T jγ0 and
xm = z; finally, if m > n define DG(z, w) := DG(w, z). (One can check that the
infimum above is in fact a minimum; see, e.g., [6, p. 24]).
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Corollary 3.5 Let G be a periodic graph with inf z∈γ0 dG(z, T z) = 0. Then
dG(z1, z2) ≤ dG(z1, T nz2) and DG(z1, T nz2)/3 ≤ dG(z1, T nz2) ≤ DG(z1, T nz2)
for every z1, z2 ∈ γ0 and n ∈ Z.

Lemma 3.6 Let G be a periodic graph. Assume that there exist an unbounded
sequence {ζn} ⊂ γ0 and some constant c0 with dG(ζn, T ζn) ≤ c0 for every n ∈ N.
Then, for each arc-length parametrization η0 of γ0 one of the following situations
holds:

(1) There exists R ∈ R such that if a ∈ γ0, b ∈ Tmγ0 (m ∈ Z) with η−1
0 (a), η−1

m (b) ≥
R then dG(a, b) ≥ η−1

m (b) − η−1
0 (a) − c0.

(2) For any m ≥ 0, a ∈ γ0, b ∈ Tmγ0 then dG(a, b) ≥ η−1
m (b) − η−1

0 (a).

(3) For any m ≤ 0, a ∈ γ0, b ∈ Tmγ0 then dG(a, b) ≥ η−1
m (b) − η−1

0 (a).

(Recall the notation ηm = Tm ◦ η0 for a parametrization of Tmγ0.)

Proof Case 1. Suppose that there exists R ∈ R so that

dG(z, w) ≥ |η−1
0 (z) − η−1

1 (w)| (3.2)

for all z ∈ η0([R,∞)) and w ∈ η1([R,∞)).
Let a ∈ γ0 and b ∈ Tmγ0 with η−1

m (b) ≥ η−1
0 (a) ≥ R and m ≥ 0 (if η−1

m (b) <

η−1
0 (a), then dG(a, b) ≥ 0 > η−1

m (b) − η−1
0 (a) − c0). Let g be a straight geodesic

joining a to b and choose points u j ∈ g ∩ T jγ0, for 0 ≤ j ≤ m, with a = u0 and
b = um . If η−1

j (u j ) ≥ R for 0 ≤ j ≤ m then by (3.2),

dG(a, b) =
m−1∑

j=0

dG(u j , u j+1) ≥
m−1∑

j=0

(
η−1
j+1(u j+1) − η−1

j (u j )
)

= η−1
m (um) − η−1

0 (u0) = η−1
m (b) − η−1

0 (a) .

Otherwise, there exists 0 < j0 < m such that η−1
j (u j ) ≥ R for all j0 < j ≤ m and

η−1
j0

(u j0) < R. Then,

dG(a, b) =
m−1∑

j=0

dG(u j , u j+1) ≥
m−1∑

j= j0

dG(u j , u j+1) .

By Lemma 3.3,

dG(u j0 , u j0+1) ≥ η−1
j0+1(u j0+1) − η−1

j0
(u j0) − c0 ,

and by (3.2),

dG(u j , u j+1) ≥ η−1
j+1(u j+1) − η−1

j (u j ) , j0 < j ≤ m − 1 .
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Therefore,

dG(a, b) ≥ η−1
j0+1(u j0+1) − η−1

j0
(u j0) − c0 +

m−1∑

j= j0+1

(
η−1
j+1(u j+1) − η−1

j (u j )
)

= η−1
m (um) − η−1

j0
(u j0) − c0 ≥ η−1

m (b) − η−1
0 (a) − c0 ,

where the last inequality follows from the fact that η−1
j0

(u j0) < R ≤ η−1
0 (a). The

same argument works when m < 0.
Case 2. Suppose that there exist a sequence Rk ↗ ∞ and sequences zk ∈

η0([Rk,∞)), wk ∈ η1([Rk,∞)) so that d(zk, wk) < η−1
0 (zk) − η−1

1 (wk).
As above, let g be a straight geodesic joining a to b and choose points u j ∈ g∩T jγ0,

for 0 ≤ j ≤ m, with a = u0 and b = um . There exists k such that η−1
j (u j ) < Rk for

every 0 ≤ j ≤ m. By (remark after) Lemma 3.2,

dG(u j , u j+1) ≥ η−1
j+1(u j+1) − η−1

j (u j )

and thus,

dG(a, b) =
m−1∑

j=0

dG(u j , u j+1) ≥
m−1∑

j=0

(
η−1
j+1(u j+1) − η−1

j (u j )
)

= η−1
m (um) − η−1

0 (u0) = η−1
m (b) − η−1

0 (a) .

Case 3. Suppose that there exist a sequence Rk ↗ ∞, and sequences zk ∈
η0([Rk,∞)), wk ∈ η1([Rk,∞)) such that d(zk, wk) < η−1

1 (wk) − η−1
0 (zk). Let

g be the straight geodesic from a to b and define points u j := g ∩ T− jγ0, for
0 ≤ j ≤ |m|, with a = u0 and b = u|m|. There exists k such that η−1

− j (u j ) < Rk for
every 0 ≤ j ≤ |m|. By Lemma 3.2,

dG(u j , u j+1) ≥ η−1
− j−1(u j+1) − η−1

− j (u j )

and thus,

dG(a, b) =
|m|−1∑

j=0

dG(u j , u j+1) ≥
|m|−1∑

j=0

(
η−1

− j−1(u j+1) − η−1
− j (u j )

)

= η−1
m (u|m|) − η−1

0 (u0) = η−1
m (b) − η−1

0 (a) .

��

4 Proof of the First Part of Theorem 1.1

This section is devoted to the proof of the first part of Theorem 1.1. For clarity’s sake,
we shall begin by stating some lemmas and claims which will be used along the proof.
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The first lemma introduces a new graph, G ′ (quasi-isometric to G) which will
guarantee the existence of a transversal geodesic.

Lemma 4.1 Let G be a periodic graph such that dG(γ0, T γ0) =: d1 > 0. Fix
z0 ∈ γ0 and define G ′ by adding to G the edges

{[T nz0, T n+1z0]
}
n∈Z with

L
([T nz0, T n+1z0]

) = d1 for every n ∈ Z. Then, the graphs G ′ and G are quasi-
isometric and, moreover, ∪n∈Z[T nz0, T n+1z0] is a geodesic in G ′.

Proof It is clear that∪n∈Z[T nz0, T n+1z0] is a geodesic inG ′. It will be shown that the
inclusion i : G → G ′ is a quasi-isometry. Clearly, the inequality dG ′(x, y) ≤ dG(x, y)
holds for every x, y ∈ G.

Consider x, y ∈ G. If x, y are so that dG ′(x, y) = dG(x, y), then there is nothing
to prove. If dG ′(x, y) < dG(x, y), then there exist m, n ∈ Z such that dG ′(x, y) =
dG(x, Tmz0) + dG ′(Tmz0, T nz0) + dG(T nz0, y). Hence,

dG(x, y) ≤ dG(x, Tmz0) + dG(Tmz0, T
nz0) + dG(T nz0, y) ≤ dG(x, Tmz0)

+ |m − n|dG(z0, T z0) + dG(T nz0, y)

≤ dG(z0, T z0)

d1

(
dG(x, Tmz0) + |m − n|d1 + dG(T nz0, y)

)

= dG(z0, T z0)

d1

(
dG(x, Tmz0) + dG ′(Tmz0, T

nz0) + dG(T nz0, y)
)

= dG(z0, T z0)

d1
dG ′(x, y) .

Since L([T nz0, T n+1z0]) = d1 for every n ∈ Z, the map i is (d1/2)-full, and we
conclude that G ′ and G are quasi-isometric. ��

The next lemma will show that a certain curve on the graph G is a quasi-geodesic.

Lemma 4.2 Let G be a periodic graph such that inf z∈γ0 dG(z, T z) =: d0 > 0. Let
ζ ∈ γ0 and let σ be a geodesic in G∗ joining ζ and T ζ . Then, for each m ∈ N the
curve σm := ⋃m−1

j=0 T jσ is an (α0, β0)-quasi-geodesic in G, with α0, β0 depending
only on dG(ζ, T ζ ), d0 and dG(γ0, T γ0).

In fact, the explicit expressions for α0 and β0 will be obtained in the proof of this
lemma.

Proof Notice that σm is a continuous curve in G joining ζ and Tmζ . Define c0 :=
dG(ζ, T ζ ). Fix an arc-length parametrization of σm starting at ζ and s, t ∈ R in the
domain of σm with s < t . Clearly dG(σm(t), σm(s)) ≤ L(σm |[s,t]) = t − s. Let
j, r ∈ N be so that σm(s) ∈ T jσ and σm(t) ∈ T j+rσ . The following inequality
holds

t − s ≤ (r + 1)L(σ ) = (r + 1)dG(ζ, T ζ ) = (r + 1)c0 . (4.1)

For the lower bound, notice first that if d1 := dG(γ0, T γ0) > 0,

dG(σm(t), σm(s)) ≥ (r − 1)d1 = (r + 1)d1 − 2d1 ≥ d1
c0

(t − s) − 2d1 .
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Assume next that dG(γ0, T γ0) = 0. Since d0 > 0, there exist monotonous
unbounded sequences {z′n} ⊂ γ0 and {w′

n} ⊂ T γ0 with dG(z′n, w′
n) < d0/2. Fix

an arc-length parametrization η0 of γ0 such that there exists a subsequence {z′nk } with
limk→∞ η−1

0 (z′nk ) = ∞; without loss of generality by replacing {z′n} by the subse-

quence {z′nk } if necessary, one can assume that limk→∞ η−1
0 (z′n) = ∞. Recall the

notation for ηk .
Assume that η−1

1 (w′
n) − η−1

0 (z′n) ≥ 0 for infinitely many n′s (otherwise, the argu-
ment is symmetric). By choosing a subsequence if necessary, one can assume without
loss of generality that η−1

1 (w′
n) − η−1

0 (z′n) ≥ 0 for every n. Then,

η−1
1 (w′

n) − η−1
0 (z′n) = dG(w′

n, T z
′
n) ≥ dG(z′n, T z′n) − dG(z′n, w′

n)

> d0 − d0
2

= d0
2

≥ dG(z′n, w′
n) . (4.2)

Let s′ ≤ s ≤ t ≤ t ′ such that σm(s′) is the first point of σm in T jσ and
σm(t ′) is the last point of σm in T j+rσ ; then dG(σm(s′), σm(s)) = s − s′ ≤ c0
and dG(σm(t ′), σm(t)) = t ′ − t ≤ c0. Let  be a geodesic joining σm(s′) and σm(t ′).
Define x0 := σm(s′) ∈ T jγ0, xr+1 := σm(t ′) ∈ T j+r+1γ0, and let xi be any point of
 in T j+iγ0 for 1 ≤ i ≤ r .

Define N1, N21, N22, as the sets of indices

N1 := {
0 ≤ i ≤ r : η−1

j+i (xi ) ≥ η−1
j+i+1(xi+1)

}
,

N21 := {
0 ≤ i ≤ r : η−1

j+i (xi ) < η−1
j+i+1(xi+1) and dG(xi , xi+1) ≥ d0/2

}
,

N22 := {
0 ≤ i ≤ r : η−1

j+i (xi ) < η−1
j+i+1(xi+1) and dG(xi , xi+1) < d0/2

}
.

Then card N1 + card N21 + card N22 = r + 1. For i ∈ N1, η−1
j+i (xi ) ≥

η−1
j+i+1(xi+1). Take n ∈ N so that η−1

0 (z′n) > η−1
j+i (xi ). Then, by (4.2) the points

xi and xi+1 are under the hypothesis of Lemma 3.2, and hence

dG(xi , xi+1) ≥ η−1
j+i (xi ) − η−1

j+i+1(xi+1) = dG(xi+1, T xi ) ≥ dG(xi , T xi )

−dG(xi+1, xi ) ≥ d0 − dG(xi , xi+1)

and conclude dG(xi , xi+1) ≥ d0/2.
If card N1 + card N21 ≥ (r + 1)/2, then

dG(σm(s), σm(t)) + 2c0 ≥ dG
(
σm(s′), σm(t ′)

) =
r∑

i=0

dG(xi , xi+1) ≥ d0
4

(r + 1) .

Hence, by (4.1),

dG(σm(t), σm(s)) ≥ d0
4

(r + 1) − 2c0 ≥ d0
4c0

(t − s) − 2c0 .
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Assume now that card N22 ≥ (r + 1)/2. Note that if i ∈ N22, then

η−1
j+i+1(xi+1) − η−1

j+i (xi ) = dG(xi+1, T xi ) ≥ dG(xi , T xi ) − dG(xi+1, xi )

≥ d0 − d0
2

= d0
2

,

and therefore

∑

i∈N22

(
η−1
j+i+1(xi+1) − η−1

j+i (xi )
)

≥ d0
2

card N22 ≥ d0
4

(r + 1).

Note that

∑

i∈N22

(
η−1
j+i+1(xi+1) − η−1

j+i (xi )
)

≤
∑

i∈N22∪N21

(
η−1
j+i+1(xi+1) − η−1

j+i (xi )
)

=
∑

i∈N1

(
η−1
j+i (xi ) − η−1

j+i+1(xi+1)
)

since η−1
j+r+1(xr+1) = η−1

j (x0). Therefore, applying Lemma 3.2,

∑

i∈N1

(
η−1
j+i (xi ) − η−1

j+i+1(xi+1)
)

≤
∑

i∈N1

dG(xi , xi+1)

≤
r∑

i=0

dG(xi , xi+1) = dG(σm(s′), σm(t ′))

≤ dG(σm(s), σm(t)) + 2c0 .

Hence,

dG
(
σm(t), σm(s)

) ≥ d0
4

(r + 1) − 2c0 ≥ d0
4c0

(t − s) − 2c0 .

One concludes that σm is an (α0, β0)-quasigeodesic (for every m), where α0 = c0/d1
if d1 > 0 (note that c0 ≥ d0 ≥ d1), α0 = 4c0/d0 if d1 = 0, and β0 =
max{2c0, 2d1}. ��

With these previous lemmas established, let us proceed to prove the first part of
Theorem 1.1, the main goal of this section.

Proof (First part of Theorem 1.1). Assume first that G is hyperbolic. Since γ0 and
T γ0 are geodesic lines, G∗ is an isometric subgraph of G and δ(G∗) ≤ δ(G). Thus,
it remains to show that lim|z|→∞,z∈γ0 dG(z, T z) = ∞.

Assume that there exists an unbounded sequence {ζn}n≥1 ⊂ γ0 and a constant
c0 with dG(ζn, T ζn) ≤ c0 for every n. Choosing a subsequence of {ζn}n≥1 if it is
necessary, one can assume that there exists an arc-length parametrization η0 of γ0 with
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η−1
0 (ζn) ↗ ∞. Let σn be a geodesic in G∗ joining ζn and T ζn . Let σm

n := ∪m−1
k=0 T

kσn
and γ n

0 be the subcurve of γ0 joining ζn0 and ζn , where n0 is chosen as follows: if (1)
in Lemma 3.6 holds, take n0 with η−1

0 (ζn0) ≥ R; otherwise, take n0 = 1. Hence, by
Lemma 4.2, Qn,m := {γ n

0 , σm
n , Tmγ n

0 , σm
n0} is an (α0, β0)-quasigeodesic quadrilateral

for every n,m, where α0 and β0 do not depend on n and m.
Since G is hyperbolic, by Lemma 2.1, Qn,m is (2δ(G) + 2H)-thin, with H =

H(δ(G), α0, β0) for any n,m. Let M be a constant with M > 2δ(G) + 2H .
Taking n ∈ N large enough, L(γ n

0 ) > 2M + 4c0, and taking m = m(n) large
enough, dG

(
γ n
0 , Tmγ n

0

)
> M . Choose a point p ∈ γ n

0 so that,

(1) dG(p, ζn0) = η−1
0 (p) − η−1

0 (ζn0) > M + 2c0,
(2) dG(p, ζn) = η−1

0 (ζn) − η−1
0 (p) > M + 2c0.

We also have dG(p, Tmγ n
0 ) ≥ dG(γ n

0 , Tmγ n
0 ) > M .

Let us proceed to show that dG(p, σm
n0) > M . Let Vm be the set of points Vm :={

ζn0 , T ζn0 , T
2ζn0 , . . . , T

mζn0
}
. By the triangle inequality, it is enough to show that

dG(p, Vm) > M + c0.
Case I. Assume that (1) in Lemma 3.6 holds. Since R ≤ η−1

0 (ζn0) = η−1
k (T kζn0) <

η−1
0 (p) for 0 ≤ k ≤ m, Lemma 3.6 (1) gives,

dG(p, T kζn0) ≥ η−1
0 (p) − η−1

0 (ζn0) − c0 > M + c0 ,

thus dG(p, Vm) > M + c0.
Case II. Suppose that (2) in Lemma 3.6 holds. Then,

dG(p, T kζn0) ≥ η−1
0 (p) − η−1

k (T kζn0) = η−1
0 (p) − η−1

0 (ζn0) > M + 2c0 ,

thus dG(p, Vm) > M + 2c0 > M + c0.
Case III. If (3) in Lemma 3.6 holds, the argument in case II gives the result, taking
now m ≤ k ≤ 0.

A similar argument shows also that dG(p, σm
n ) > M . Hence, dG(p, Tmγ n

0 ∪ σm
n0 ∪

σm
n ) > M . Since M > 2δ(G)+2H , the quadrilateral Qn,m is not (2δ(G)+2H)-thin,

which is a contradiction. Therefore, G is not hyperbolic.
Let us prove the converse implication to conclude that G is hyperbolic. Since

lim|z|→∞,z∈γ0 dG(z, T z) = ∞, then dG(γ0, T γ0) =: d1 > 0. By Lemma 4.1, without
loss of generality one can assume that there exists a vertex z0 ∈ V (G) ∩ γ0 such
that [z0, T z0] ∈ E(G), with L([z0, T z0]) = dG(γ0, T γ0) = d1, and so that σ0 :=
∪n∈Z[T nz0, T n+1z0] is a geodesic in G. Define δ∗ := δ(G∗) and consider a geodesic
triangle T = {x1, x2, x3} with xi ∈ T ji G∗ and j1 ≤ j2 ≤ j3. By Lemma C, one can
assume that the geodesics of T are straight.

Suppose first that max{ j2 − j1, j3 − j2} ≤ 2. Then, T ⊂ ∪ j2+2
j= j2−2T

jG∗ is δ0-

thin, with δ0 = (120)4δ∗ since T jG∗ is δ∗-hyperbolic (apply at most four times
Lemma B). Otherwise, T ∩ (

T j2−1γ0 ∪T j2+2γ0
) = ∅. If T ∩ (

T j2−1γ0
) = ∅, choose

y1 ∈ [x1x2] ∩ T j2−1γ0 and y2 ∈ [x1x3] ∩ T j2−1γ0. By Lemma 3.1,

dG(y1, y2) ≤ 6N + 5d1 . (4.3)
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Analogously, if T ∩ (
T j2+2γ0

) = ∅, let z1 ∈ [x1x3] ∩ T j2+2γ0 and z2 ∈ [x2x3] ∩
T j2+2γ0. Again, by Lemma 3.1,

dG(z1, z2) ≤ 6N + 5d1 . (4.4)

Let p ∈ T . If p ∈ T jG∗ with j ∈ [ j1 +2, j2 −2]∪ [ j2 +2, j3 −2], apply Lemma
3.1 to find q ∈ T jG∗ on another side of T with dG(p, q) ≤ 6N + 5d1.

If p ∈ T jG∗ with j ∈ [ j2 − 1, j2 + 1], let P ⊂ ∪ j2+1
j= j2−1T

jG∗ be the geodesic

polygon formed by T ∩ ∪ j2+1
j= j2−1T

jG∗ and [y1y2] ⊂ T j2−1γ0 and [z1z2] ⊂ T j2+2γ0
whenever they exist. Thus, P is either a pentagon or a quadrilateral contained in
∪ j2+2

j= j2−2T
jG∗ and therefore it is 3δ0−thin. Therefore, there exists a point q ′ ∈ P on

another side of P so that dG(p, q ′) ≤ 3δ0. If q ′ /∈ T , then q ′ ∈ [y1y2] ∪ [z1z2] and
equations (4.3) and (4.4) imply that there is q ∈ P ∩ T on another side of T with
dG(p, q) ≤ 3δ0 + 6N + 5d1.

If p ∈ T jG∗ with j ∈ { j1, j1+1, j3−1, j3}, a similar argument with a triangle (in
T j1G∗∪T j1+1G∗ or T j3−1G∗∪T j3G∗) instead ofP gives dG(p, q) ≤ δ0+6N+5d1.

Hence, δ(T ) ≤ 3δ0 + 6N + 5d1 and Lemma C gives δ(G) ≤ 2M + 3δ0 +
6N + 5d1. ��

5 Proof of the Second Part of Theorem 1.1

To prove the second part of Theorem 1.1, some auxiliary metric spaces will be defined,
and some results relating these new sets with the original one will be given.

LetG be a periodic graph. Sometimeswewill require the arc-length parametrization
η0 of γ0 to also satisfy:

0 = lim inf
t→∞ dG(η0(t), Tη0(t)) ≤ lim sup

t→∞
dG(η0(t), Tη0(t)) < ∞. (5.1)

Fix t0 ∈ R and η0. Define G1 as the geodesic metric space given by G ∪( ∪n∈Z,t≥t0 Un,t
)
, where Un,t is a segment joining T nη0(t) with T n+1η0(t) of

length dG(η0(t), Tη0(t)). Set G2 to be the geodesic metric space given by
( ∪n∈Z

T nη0([t0,∞))
) ∪ ( ∪n∈Z,t≥t0 Un,t

)
. The isometry T can be extended to G1 in an

obvious way; also denote this extension by T . Define a period graph of G1 as
G∗

1 := G∗ ∪ ( ∪t≥t0 U0,t
)
. Below, the constant t0 will be chosen as the constant

in Lemma 5.12.
It is clear that G,G2 are contained in G1, G ∪ G2 = G1, and G is an isometric

subspace of G1; thus δ(G) ≤ δ(G1).
With these definitions in mind, let us state some results on hyperbolicity.

Lemma 5.1 If a periodic graph G is hyperbolic and satisfies (5.1) and
lim inf t→−∞ dG(η0(t), Tη0(t)) > 0, then G2 is hyperbolic.

Proof Given any fixed t0 ∈ R, the hypotheses imply that there exist constants M,m
such that dG

(
η0(t), Tη0(t)

) ≤ M for every t ∈ [t0,∞) and dG
(
η0(t), Tη0(t)

) ≥ m
for every t ∈ (−∞, t0]; then every segment Un,t has length at most M and DG ≤

123



Gromov Hyperbolicity of Periodic Graphs S103

dG2 ≤ (M/m)DG on ∪n∈ZT nη0([t0,∞)). Consider the map f : G2 → G defined by
f (x) = T nη0(t) for every x ∈ Un,t\T n+1η0(t). By Corollary 3.5, the restriction of f
to ∪n∈ZT nη0([t0,∞)) (the identity map) is a (3M/m, 0)-quasi-isometric embedding.
Since L(Un,t ) ≤ M for every n ∈ Z, t ≥ t0, f is a quasi-isometric embedding and
invariance of hyperbolicity gives the result. ��
Lemma 5.2 Consider a periodic graph G satisfying (5.1). Then G∗ is hyperbolic if
and only if G∗

1 is hyperbolic.

Proof By (5.1), there exists a constant M such that dG
(
η0(t), Tη0(t)

) ≤ M for
every t ∈ [t0,∞); then every segment Un,t has length at most M . The inclusion
map i : G∗ → G∗

1 is a (M/2)-full (1, 0)-quasi-isometry, and thus, the invariance of
hyperbolicity gives the result. ��

Finally, the last auxiliary space will be defined and its hyperbolicity related to that
of G will be stated.

Given t0 ∈ R and η0, define G3 as the geodesic metric space given by
( ∪n∈Z

T nη0([t0,∞))
) ∪ ( ∪n∈Z,t≥t0 Vn,t

)
, where Vn,t is a segment joining T nη0(t) with

T n+1η0(t) of length �(t), where � is the greatest non-increasing minorant of
dG

(
η0(t), Tη0(t)

)
on [t0,∞), i.e., �(t) = min

{
dG

(
η0(s), Tη0(s)

) : s ∈ [t0, t]
}
.

Lemma 5.3 Let G be a periodic graph satisfying (5.1) and sup
{
t2 − t1 : �(t1) =

�(t2), t2 ≥ t1 ≥ t0
}

< ∞. Then G2 and G3 are quasi-isometric.

Proof Consider the map f : G3 → G2 defined as the identity on ∪n∈ZT nη0([t0,∞))

and as a dilation on each Vn,t with f (Vn,t ) = Un,t for every n ∈ Z, t ≥ t0.
Clearly, f is 0-full and dG2( f (x), f (y)) ≥ dG3(x, y) for every x, y ∈ G3. By

(5.1), there exists a constant M such that L(Un,t ) ≤ M for every n ∈ Z, t ≥ t0. Also
L(Vn,t ) ≤ L(Un,t ) ≤ M for every n ∈ Z, t ≥ t0. Define N := sup

{
t2 − t1 : �(t1) =

�(t2), t2 ≥ t1 ≥ t0
}

< ∞.
Given x0 ∈ Tmη0([t0,∞)) and y0 ∈ T nη0([t0,∞))withm ≤ n, let γ be a geodesic

in G3 joining x0 and y0 such that γ = [x0ηm(t)] ∪ Vm,t ∪ · · · ∪ Vn−1,t ∪ [ηn(t)y0] for
some t ≥ t0. Let t ′ ≥ t be defined as t ′ := sup

{
s : �(s) = �(t), s ≥ t

} ≤ t + N ;
thus dG3

(
η0(t ′), Tη0(t ′)

) = �(t ′) = �(t) and L(Vk,t ) = L(Uk,t ′) for every k ∈ Z.
Consider the curve γ1 inG2 joining x0 and y0 given by γ1 := [x0ηm(t ′)]∪Um,t ′ ∪· · ·∪
Un−1,t ′ ∪[ηn(t ′)y0]; then dG2( f (x0), f (y0)) ≤ L(γ1) ≤ L(γ )+2N = dG3(x0, y0)+
2N .

Finally, since L(Vn,t ) ≤ L(Un,t ) ≤ M for every n ∈ Z, t ≥ t0, given x, y ∈ G3,

then dG2( f (x), f (y)) ≤ dG3(x, y) + 2N + 2M . ��
Lemmas 5.1 and 5.3 and the invariance of hyperbolicity, imply the following result.

Lemma 5.4 Let G be a periodic graph satisfying (5.1), lim inf t→−∞ dG(η0(t),
Tη0(t)) > 0 and sup

{
t2 − t1 : �(t1) = �(t2), t2 ≥ t1 ≥ t0

}
< ∞. If G is

hyperbolic, then G3 is hyperbolic.

Recall the definition of quasi-exponential decay given below Theorem 1.1.
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Lemma 5.5 Let G be any periodic graph. If G has quasi-exponential decay, then, for
any fixed t0, sup{t2 − t1 : �(t1) = �(t2), t2 ≥ t1 ≥ t0} < ∞ and (5.1) holds.

Proof Fix t0 and let K := sups2≥s1≥t0(s2 − s1)�(s2)/�(s1) < ∞. If t2 ≥ t1 ≥ t0
and �(t1) = �(t2), then t2 − t1 = (t2 − t1)�(t2)/�(t1) ≤ K . Recall that
lim inf t→∞ F(t) = 0 and that �(t) ≤ F(t). Given ε > 0, take tε = inf{t ∈ R :
�(s) ≤ ε for all s ≥ t}. Clearly, F(tε) = �(tε) = ε. Let t > tε. If F(t) = �(t),
then F(t) ≤ ε < K + ε. Otherwise F(t) > �(t) and there exist t1, t2 such that tε ≤
t1 < t < t2 and F(t1) = �(t1) = �(t) = �(t2) = F(t2) ≤ ε. Then, F(t) > F(t1)
and, since F is Lipschitz, F(t) − F(t1) ≤ 2(t − t1), F(t) − F(t2) ≤ 2(t2 − t), and
thus F(t) ≤ t2 − t1 + F(t1) ≤ t2 − t1 + ε. Using that t2 − t1 ≤ K , one deduces
F(t) ≤ K + ε. Consequently, lim supt→∞ F(t) ≤ K < ∞ and (5.1) holds. ��

Given a periodic graph G, a geodesic in G3 is a fundamental geodesic if it is
equal to ∪n2

n=n1Vn,t for some n1, n2 ∈ Z, t ≥ t0. Define L(G3) := sup
{
L(γ ) :

γ is a fundamental geodesic in G3
}
.

Lemma 5.6 Let G be a periodic graph.
(1) If L(G3) = ∞, then G3 is not hyperbolic.
(2) L(G3) < ∞ if and only if sups2≥s1≥t0(s2 − s1)�(s2)/�(s1) < ∞. In fact, if

sups2≥s1≥t0(s2 − s1)�(s2)/�(s1) =: K < ∞, then L(G3) ≤ 8K.

Proof (1) Assume first that L(G3) = ∞. Note that if ∪n2
n=n1Vn,t is a fundamental

geodesic, then ∪n2+k
n=n1+kVn,t is also a fundamental geodesic for every k ∈ Z; hence,

L(G3) = sup{L(γ ) : γ = ∪n2
n=0Vn,t is a fundamental geodesic in G3} .

Consider any fixed fundamental geodesic σ = ∪n2
n=0Vn,t for some n2 ∈ N, t ≥ t0,

with L(σ ) = �. Since L(G3) = ∞, one can find t ′ ≥ t + � such that σ ′ = ∪n2
n=0Vn,t ′

is also a fundamental geodesic. Define σ1 := η0([t, t ′]), σ2 := ηn2+1([t, t ′]) and the
geodesic quadrilateral Q := {σ, σ1, σ2, σ

′}.
If p = η0(t + �/4), then dG3(p, σ ) = �/4, dG3(p, σ

′) ≥ 3�/4; choose s ≥ 0 so
that dG3(p, σ2) = s+(1+n2)�(s+ t+�/4). If s > �/4, then dG3(p, σ2) ≥ s > �/4.
If 0 ≤ s ≤ �/4, then dG3(p, σ2) ≥ 2(s + �/4) − 3�/4 + (1 + n2)�(s + t + �/4).
Since σ is a geodesic, � ≤ 2(s + �/4) + (1 + n2)�(s + t + �/4), and therefore,
dG3(p, σ2) ≥ � − 3�/4 = �/4. Hence, 2δ(G3) ≥ δ(Q) ≥ �/4 and we conclude that
G3 is not hyperbolic, since L(G3) = ∞.

(2) Assume now that l := L(G3) < ∞. Let s1 ≥ t0 and n ∈ N with n�(s1) > l.
Therefore, ∪n−1

k=0Vk,s1 is not a geodesic joining η0(s1) and ηn(s1); then there exits
s2,n > s1 with n�(s1) > 2(s2,n −s1)+n�(s2,n) = dG3

(
η0(s1), ηn(s1)

)
. It is possible

to choose the sequence {s2,n} with s2,n+1 ≥ s2,n . Hence, 2(s2,n − s1) < n�(s1),
∪n−1
k=0Vk,s2,n is a fundamental geodesic and n�(s2,n) ≤ l. We conclude that 2(s2,n −

s1)�(s2,n)/�(s1) < n�(s1)�(s2,n)/�(s1) ≤ l.
Furthermore, dG3

(
η0(s2,n), ηn+1(s2,n)

) ≤ (n + 1)�(s2,n) ≤ 2n�(s2,n) ≤ 2l.
Since any sub-arc of a geodesic is again a geodesic, it is clear that 2(s2,n+1 − s2,n) <

2(s2,n+1−s2,n)+(n+1)�(s2,n+1) ≤ (n+1)�(s2,n) ≤ 2l, and then s2,n+1 < s2,n+l.
If s2 ∈ [s2,n, s2,n+1], then

123



Gromov Hyperbolicity of Periodic Graphs S105

(s2 − s1)
�(s2)

�(s1)
< (s2,n + l − s1)

�(s2,n)

�(s1)
≤ l

2
+ l

�(s2,n)

�(s1)
≤ 3l

2
.

Let n0 be the least integer such that n0�(s1) > l. Thus, n0�(s1) = (n0−1)�(s1)+
�(s1) ≤ l + �(t0) and 2(s2,n0 − s1) < 2(s2,n0 − s1) + n0�(s2,n0) ≤ n0�(s1) ≤
l + �(t0). If s2 ∈ [s1, s2,n0 ], then

(s2 − s1)
�(s2)

�(s1)
≤ s2,n0 − s1 ≤ 1

2

(
l + �(t0)

)
,

and we conclude, since L(G3) < ∞ implies limn→∞ s2,n = ∞, that

sup
s2≥s1≥t0

(s2 − s1)
�(s2)

�(s1)
≤ max

{3l
2

,
1

2

(
l + �(t0)

)}
.

For the reverse implication, let K := sups2≥s1≥t0(s2−s1)�(s2)/�(s1) < ∞. Then,
any fundamental geodesic ∪k1≤n<k2Vn,s satisfies

(k2 − k1)�(s) ≤ 2K + (k2 − k1)�(s + 2K ) + 2K ≤ 4K + (k2 − k1)K
�(s)

2K
,

L
( ∪k1≤n<k2 Vn,s

) = (k2 − k1)�(s) ≤ 8K .

Notice that thismeans that for a fixed s, a fundamental geodesic cannot cross arbitrarily
many T nγ0(s). ��
Lemma 5.7 Let G be any periodic graph with quasi-exponential decay. Then G3 is
hyperbolic.

Proof It will be enough to show this result for triangleswhose sides are certain geodes-
ics which will be introduced below, the canonical geodesics, since any other geodesic
of G3 will be close to one of these.

Consider a parametrization η0 of γ0 satisfying

sup
s2≥s1≥t0

(s2 − s1)�(s2)/�(s1) =: K < ∞. (5.2)

Let x1, x2 ∈ ∪n∈ZT nη0([t0,∞)). Without loss of generality, x1 = T n1η0(t1) and
x2 = T n2η0(t2) with n1 ≤ n2. Define g(t) := t − t1 + (n2 − n1)�(t) + t − t2, and
let t ′ be such that

g(t ′) = inf
{
g(t) : t ≥ max{t1, t2}

}
.

Note that this infimum is, in fact, a minimum, and that the curve

γx1x2 := [x1T n1η0(t
′)] ∪ (∪n1≤n<n2Vn,t ′) ∪ [T n2η0(t

′)x2]

is a geodesic in G3 with dG3(x1, x2) = L(γx1x2) = g(t ′), referred to as a canonical
geodesic joining x1 and x2. If n1 = n2, then γx1x2 is a segment on T n1γ0.
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Any other canonical geodesic σ in G3 joining x1 and x2 will be at a fixed distance
from a canonical geodesic: indeed, if there exists another canonical geodesic with
g(t ′′) = g(t ′) (one can assume that t ′′ ≥ t ′), then 8K ≥ (n2 − n1)�(t ′) = 2(t ′′ −
t ′) + (n2 − n1)�(t ′′) by Lemma 5.6, and hence t ′′ − t ′ ≤ 4K .

More generally, if σ is any geodesic joining x1 and x2 which contains just one
fundamental geodesic, ∪n1≤n<n2Vn,t , for which t0 ≤ t < max{t1, t2} := τ , then
�(τ) = �(t) and the curve σ ′ := [x1T n1η0(τ )] ∪ (∪n1≤n<n2Vn,τ ) ∪ [T n2η0(τ )x2] is
a canonical geodesic. By (5.2), τ − t ≤ K ; since t ′ − τ ≤ 4K , t ′ − t ≤ 5K , and thus
H(σ, γx1x2) ≤ 5K + �(t0)/2.

Finally, if σ contains at least two fundamental geodesics, applying the same argu-
ment one also gets H(σ, γx1x2) ≤ 5K + �(t0)/2.

Consider a geodesic triangle T = {x1, x2, x3} in G3 with its vertices lying on
∪n∈ZT nγ0, concretely, x1 = T n1η0(t1), x2 = T n2η0(t2) and x3 = T n3η0(t3)
with n1 ≤ n2 ≤ n3. Let T0 be the geodesic triangle in G3 given by T0 =
{γx1x2 , γx2x3, γx1x3}. If T0 is δ-thin, then T is (δ + 10K + �(t0))-thin.

There exist three fundamental geodesics g12 := ∪n1≤n<n2Vn,s1 ⊆ γx1x2 , g23 :=
∪n2≤n<n3Vn,s2 ⊆ γx2x3 and g13 := ∪n1≤n<,n3Vn,s3 ⊆ γx1x3 . Assume that s1 ≤ s2 ≤ s3
(the other cases are similar). Note that L(∪n1≤n<n2Vn,s2) ≤ L(∪n1≤n<n2Vn,s1) =
L(g12) ≤ 8K ; thus L(∪n1≤n<n3Vn,s2) ≤ 16K and s3 − s2 ≤ 8K . Clearly, from these
estimates, if p lies on one side of T0, then the distance from p to the union of the
other two sides is less than 24K . Any other combination of vertices x1, x2, x3 gives
the same estimate.

Hence, δ(T0) ≤ 24K and δ(T ) ≤ 34K +�(t0). Consequently, if H is any geodesic
hexagon in G3 with every vertex in ∪n∈ZT nη0([t0,∞)), then δ(H) ≤ 4(34K +
�(t0)) = 136K + 4�(t0).

Consider now any fixed geodesic triangle T = {x1, x2, x3} in G3 that is a sim-
ple closed curve. Assume that x1, x2, x3 /∈ ∪n∈ZT nη0([t0,∞)) (the other cases are
similar). For each xi , there exist ni ∈ Z and ti ≥ 0 such that xi ∈ Vni ,ti ; let x

′
i and

x ′′
i be the endpoints of Vni ,ti ; since T is a simple closed curve, Vni ,ti ⊂ T . Consider
the geodesic hexagon H = {x ′

1, x
′′
1 , x ′

2, x
′′
2 , x ′

3, x
′′
3 }. Since the vertices of H lie on

∪n∈ZT nη0([t0,∞)), δ(H) ≤ 136K + 4�(t0).
Given p ∈ T , denote by δ(p) the distance from p to the union of the two other

sides of T . Assume p lies on a side of H that is contained in a side of T . Then,
δ(p) ≤ δ(H) + L(Vni ,ti ) for some i = 1, 2, 3. Since L(Vni ,ti ) ≤ �(ti ) ≤ �(t0), then
δ(p) ≤ δ(H) + �(t0) ≤ 136K + 5�(t0).

If p lies on Vni ,ti , (i = 1, 2, 3), then δ(p) ≤ L(Vni ,ti ) ≤ �(t0). Hence, δ(p) ≤
136K + 5�(t0) and G3 is (136K + 5�(t0))-hyperbolic by Lemma A. ��

Let G be a periodic graph with quasi-exponential decay. Fix a ≤ b in {−∞} ∪
Z ∪ {∞}. Define Ga,b

3 ⊆ G3 as the geodesic metric space given by
( ∪a≤n≤b+1

T nη0([t0,∞))
) ∪ ( ∪a≤n≤b,t≥t0 Vn,t

)
. Lemmas B and 5.7 have the following conse-

quence.

Corollary 5.8 Let G be any periodic graph with quasi-exponential decay. Then there
exists a constant δ such that Ga,b

3 is δ-hyperbolic for every a ≤ b in {−∞}∪Z∪{∞}.
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Next, some results on curves which are shown to be quasi-geodesic are given.
The aim will be to construct a quasi-geodesic quadrilateral with large δ. Recall the
definition of DG(z, w) given before Corollary 3.5.

Let G be a periodic graph. In the next lemma, for t ∈ R and fixed s1 < s2, define φt

as a geodesic inG joiningη0(s2+t)with Tη0(s2+t),ψt as a geodesic joiningη0(s1−t)
with Tη0(s1 − t), and the curves ξn,t := η0

([s2, s2 + t]) ∪ φt ∪ Tφt ∪ · · · ∪ T n−1φt ∪
T nη0

([s2, s2+t]), ζn,t := η0
([s1, s1−t])∪ψt∪Tψt∪· · ·∪T n−1ψt∪T nη0

([s1, s1−t])
parameterized by arc-length.

Lemma 5.9 Let G be a periodic graph with inf z∈γ0 dG(z, T z) = 0. Let s1 < s2
and define the constants c1 := dG

(
η0(s1), Tη0(s1)

)
, c2 := dG

(
η0(s2), Tη0(s2)

)

and c∗ := max{c1, c2}. Let n ∈ N and c ∈ R
+ be so that c∗n ≤ 2(s2 −

s1) and dG
(
η0(s), Tη0(s)

) ≥ c for all s ∈ [s1, s2]. If r, u ≥ 0 satisfy
L(ξn,r ) = mint≥0 L(ξn,t ) and L(ζn,u) = mint≥0 L(ζn,t ), then the quadrilateral
Q := {η0

([s1, s2]
)
, ξn,r , T nη0

([s1, s2]
)
, ζn,u} is a (3c∗/c, 2c∗)-quasigeodesic quadri-

lateral and δ(Q) ≥ c(n−2)/12. In particular, if n is the integer part of 2(s2 − s1)/c∗,
then δ(Q) ≥ c(s2 − s1)/(6c∗) − c/4.

Proof To show that Q is a quasi-geodesic quadrilateral, it suffices to show that ξn,r

and ζn,t are quasi-geodesics. In fact, by symmetry, it is enough to show it just for, e.g.,
ξn,r .

Let ξn,r (s) and ξn,r (t) be any two points on ξn,r . Without loss of generality, t ≥ s.
Since ξn,r is parameterized by arc-length, dG

(
ξn,r (s), ξn,r (t)) ≤ LG(ξn,r |[s,t]

) = t−s.
For the lower bound, suppose ξn,r (s) ∈ T j1G∗, ξn,r (t) ∈ T j2−1G∗ with 0 ≤ j1 <

j2 ≤ n. Assume that ξn,r (s), ξn,r (t) /∈ η0
([s2, s2 + r ])∪ T nη0

([s2, s2 + r ]) (the other
cases are similar). Let t1 ≤ s ≤ t ≤ t2 be so that ξn,r (t1) ∈ T j1γ0 and ξn,r (t2) ∈ T j2γ0.

Recall the definition of DG . By Corollary 3.5, it will be enough to bound DG below.
Note that DG

(
ξn,r (t1), ξn,r (t2)

) = ∑ j2−1
j= j1

(
dG(x j , T−1x j+1) + dG(T−1x j+1,

x j+1)
) + dG

(
x j2 , ξn,r (t2)

)
for appropriate {x j }. Choose i so that j1 ≤ i < j2 and

dG
(
T−1xi+1, xi+1

) = min j1≤ j< j2 dG
(
T−1x j+1, x j+1

)
. Consider ηk := T kη0 as a

parametrization of T kγ0 for any k ∈ Z. Then

dG
(
ξn,r (t1), T

j1−i−1xi+1
)

+( j2 − j1) dG
(
T−1xi+1, xi+1

) + dG
(
T j2−i−1xi+1, ξn,r (t2)

)

≤
j2−1∑

j= j1

(
dG(x j , T

−1x j+1) + dG(T−1x j+1, x j+1)
) + dG(x j2 , ξn,r (t2))

≤ ( j2 − j1) dG
(
η0(s2 + r), Tη0(s2 + r)

)
. (5.3)

If the second inequality in (5.3) is an equality, then DG(ξn,r (t1), ξn,r (t2)) = t2 − t1
and dG(ξn,r (t1), ξn,r (t2)) ≥ (t2 − t1)/3. Otherwise, the second inequality in (5.3) is
strict.

Define a := η−1
i+1(xi+1). Then (5.3) gives that L(ξn,a−s2) < L(ξn,r ). Therefore

a < s2 by the definition of ξn,r . Also, a > s1, since otherwise L(ξn,r ) > L(ξn,a−s2) >

2(s2 − s1) ≥ c2n = L(ξn,0) ≥ L(ξn,r ).
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Hence s1 < a < s2 and then dG(T−1xi+1, xi+1) ≥ c = dG
(
η0(s2), Tη0(s2)

)
c/c2

and (5.3) gives

DG
(
ξn,r (t1), ξn,r (t2)

) ≥ dG
(
ξn,r (t1), T

j1−i−1xi+1
) + ( j2 − j1) dG

(
T−1xi+1, xi+1

)

+ dG
(
T j2−i−1xi+1, ξn,r (t2)

)

≥ c

c2
( j2 − j1) dG

(
η0(s2), Tη0(s2)

)

≥ c

c2
( j2 − j1) dG

(
η0(s2 + r), Tη0(s2 + r)

)

= c

c2
(t2 − t1) .

By Corollary 3.5, (t2 − t1)c/(3c2) ≤ dG
(
ξn,r (t1), ξn,r (t2)

)
, and, by the triangle

inequality,

dG
(
ξn,r (s), ξn,r (t)

) ≥ dG
(
ξn,r (t1), ξn,r (t2)

) − 2c2 ≥ c

3c2
(t2 − t1) − 2c2

≥ c

3c2
(t − s) − 2c2 .

Any other case gives the same inequality. Thus, ξn,r is a (3c2/c, 2c2)-quasigeodesic.
Finally, let us estimate δ(Q).
Let p be the midpoint in η0([s1, s2]). By Corollary 3.5,

dG
(
p, ξn,r ∩ (∪kT

kγ0)
) ≥ dG(p, η0(s2)) = s2 − s1

2
≥ c∗n

4
.

Therefore,

dG(p, ξn,r ) ≥ dG
(
p, ξn,r ∩ (∪kT

kγ0)
) − (1/2)dG

(
η0(s2 + r), Tη0(s2 + r)

)

≥ dG
(
p, ξn,r ∩ (∪kT

kγ0)
) − (1/2)dG

(
η0(s2), Tη0(s2)

) ≥ c∗n
4

− c∗

2

= c∗(n − 2)

4
.

Similarly, dG(p, ζn,u) ≥ c∗(n − 2)/4.
As above, DG

(
p, T nη0([s1, s2])

) ≥ min{cn, (s2 − s1)/2} ≥ min{cn, c∗n/4} ≥
cn/4 and then, by Corollary 3.5, dG

(
p, T nη0([s1, s2])

) ≥ cn/12 and, since c ≤ c∗,
δ(Q) ≥ c(n − 2)/12. ��

For Lemma 5.10 below, it will be useful to keep in mind the definition of fine
triangles. Given a geodesic triangle T = {x, y, z} in a geodesic metric space X , let
TE be a Euclidean triangle with sides of the same length than T . Since there is no
possible confusion, denote the corresponding points in T and TE by the same letters.
The maximum inscribed circle in TE meets the side [xy] (respectively [yz], [zx])
in a point z′ (respectively x ′, y′) such that d(x, z′) = d(x, y′), d(y, x ′) = d(y, z′)
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and d(z, x ′) = d(z, y′). We call the points x ′, y′, z′, the internal points of {x, y, z}.
There is a unique isometry f of the triangle {x, y, z} onto a tripod (a star graph
with one vertex w of degree 3, and three vertices x0, y0, z0 of degree one, such that
d(x0, w) = d(x, z′) = d(x, y′), d(y0, w) = d(y, x ′) = d(y, z′), and d(z0, w) =
d(z, x ′) = d(z, y′)). The triangle {x, y, z} is δ-fine if f (p) = f (q) implies that
d(p, q) ≤ δ. The space X is δ-fine if every geodesic triangle in X is δ-fine.

There are two definitions of Gromov hyperbolicity (the second one is the definition
of fine space) whose equivalence will be useful to quantify (see, e.g, [17, Proposi-
tion 2.21, p. 41]):

Theorem A Let us consider a geodesic metric space X.
(1) If X is δ-hyperbolic, then it is 4δ-fine.
(2) If X is δ-fine, then it is δ-hyperbolic.

Finally, for Lemma 5.10 below, some notation needs to be introduced. Let G be a
periodic graph. Fix a parametrization η0 of γ0 and t0 ∈ R. Consider points x ∈ T nG∗,
y ∈ T n+kG∗, with n ∈ N, k ≥ 4, so that if γ is a straight geodesic in G from x to y,
then there exists x j ∈ γ ∩ T n+ jγ0 with s j := η−1

n+ j (x j ) ≥ t0 for 2 ≤ j ≤ k − 1.
In G1, consider the curves g j := Un+ j,s j ∪ [x j+1T x j ] joining x j and x j+1 for

2 ≤ j ≤ k−2, and the curve g := [xx1]∪[x1x2]∪(∪(2≤ j≤k−2)g j )∪[xk−1xk]∪[xk y]
joining x and y in G1.

Lemma 5.10 With the above notation, if G satisfies (5.1) and G∗ is hyperbolic,
then g with its arc-length parametrization is an (α, β)-quasi-geodesic in G1 and
HG1(g, γ ) ≤ H, where α, β and H are constants depending just on δ(G∗

1) and
M := supt≥t0 dG

(
η0(t), Tη0(t)

)
. In fact, (α, β) = (

3, 8δ(G∗
1) + 6M

)
.

Proof Let γ : [0, l0] → G be an arc-length parametrization of γ and let g : [0, l] →
G1 be an arc-length parametrization of g; then dG1

(
g(t1), g(t2)

) ≤ |t1 − t2| for every
t1, t2 ∈ [0, l].

To obtain a lower bound, note that M < ∞ by (5.1); then every segment Un,t

with t ≥ t0 has length at most M . Fix t1, t2 ∈ [0, l] with t1 < t2. Assume first
that g(t1), g(t2) ∈ T n+ j G∗

1 for some j with 2 ≤ j ≤ k − 2. Consider the geodesic
triangle T j = {[x j x j+1],Un+ j,s j , [x j+1T x j ]} in T n+ j G∗

1. Since G∗ is hyperbolic,
G∗

1 is hyperbolic by Lemma 5.2 and the triangle T j is 4δ(G∗
1)-fine by Theorem A.

Let [a0, b0] := γ −1
([x j x j+1]

)
, [a, b] := g−1(g j ) and c := g−1(T x j ). By the

triangle inequality, b0 − a0 ≤ b − a, thus one can choose c1, c2 ∈ [a, b] such that
c−c1 = c2−c > 0 satisfying (c1−a)+(b−c2) = b0−a0. Finally, pick c0 ∈ [a0, b0]
with c1 − a = c0 − a0 and b − c2 = b0 − c0.

Define u : [a, b] → [a0, b0] as the piecewise linear continuous function

u(t) :=

⎧
⎪⎨

⎪⎩

t − a + a0, if t ∈ [a, c1],
c0, if t ∈ (c1, c2),

t − b + b0, if t ∈ [c2, b].

Since T j is 4δ(G∗
1)-fine, dG1

(
g(t), γ (u(t))

) ≤ 4δ(G∗
1) + c − c1 ≤ 4δ(G∗

1) + M .
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Therefore, by the triangle inequality,

dG1

(
g(t1), g(t2)

) ≥ dG1

(
γ (u(t1)), γ (u(t2))

) − 8δ(G∗
1) − 2M

= u(t2) − u(t1) − 8δ(G∗
1) − 2M

≥ t2 − t1 − (c2 − c1) − 8δ(G∗
1) − 2M ≥ t2 − t1 − 8δ(G∗

1) − 4M.

Since [xx1] ∪ [x1x2] and [xk−1xk] ∪ [xk y] are geodesics in G1, the above inequality
also holds if g(t1), g(t2) ∈ T n+ j G∗

1 for some j ∈ {0, 1, k − 1, k}.
Assume now that g(t1) ∈ T n+ j1G∗

1 and g(t2) ∈ T n+ j2G∗
1 with j1 < j2. Let

r1, r2 ∈ [t1, t2] such that g(r1) = x j1+1 and g(r2) = x j2 . The previous argu-
ment with the function u provides t∗1 , t∗2 satisfying γ (t∗1 ) ∈ T n+ j1G∗

1, γ (t∗2 ) ∈
T n+ j2G∗

1, dG1

(
g(t1), γ (t∗1 )

) ≤ 4δ(G∗
1) + M , dG1

(
g(t2), γ (t∗2 )

) ≤ 4δ(G∗
1) + M ,

dG1

(
γ (t∗1 ), x j1+1

) ≥ r1 − t1 − 2M and dG1

(
γ (t∗2 ), x j2

) ≥ t2 − r2 − 2M . Now, using
Corollary 3.5,

dG1

(
g(t1), g(t2)

) ≥ dG1

(
γ (t∗1 ), γ (t∗2 )

) − 8δ(G∗
1) − 2M

= dG1

(
γ (t∗1 ), x j1+1

) + dG1

(
x j1+1, x j2

) + dG1

(
γ (t∗2 ), x j2

)

− 8δ(G∗
1) − 2M

≥ r1 − t1 − 2M + 1

3
(r2 − r1) + t2 − r2 − 2M − 8δ(G∗

1) − 2M

≥ 1

3
(t2 − t1) − 8δ(G∗

1) − 6M,

andwe conclude that g is a
(
3, 8δ(G∗

1)+6M
)
-quasi-geodesic inG1. SinceG∗

1 is hyper-
bolic, the geodesic stability gives that HG1

(
g j , [x j x j+1]

) = HT n+ j G∗
1

(
g j , [x j x j+1]

)

≤ H for 2 ≤ j ≤ k − 2, where H is a constant depending just on δ(G∗
1) and M .

Hence, HG1(g, γ ) ≤ H . ��

Remark 5.11 The argument in the proof of Lemma 5.10 proves, in fact, a more general
result. On the one hand, the conclusion holds (with the same constants) if one replaces
g j by [x j x j+1] for any subset of {2 ≤ j ≤ k − 2}. On the other hand, the conclusion
also holds (with the same constants) for non-straight geodesics: it suffices to consider
each connected subcurve of γ ∩ T n+ j G∗ joining T n+ jγ0 with T n+ j+1γ0 instead of
[x j x j+1] (if a connected subcurve of γ ∩T n+ j G∗ joins two points in T n+ jγ0 one can
replace it, in order to obtain g, by the geodesic contained in T n+ jγ0 with the same
endpoints; in a similar way, if it joins two points in T n+ j+1γ0 one can replace it by
the geodesic contained in T n+ j+1γ0 with the same endpoints).

Lemma 5.12 Consider a periodic graph G and a parametrization η0 of γ0 satisfying
both (5.1) and limt→−∞ dG

(
η0(t), Tη0(t)

) = ∞. If G∗ is hyperbolic, then there exists
a constant t0 with the following properties:

(1) If x ∈ T nγ0, y ∈ T n+1γ0 and [xy] is a geodesic in T nG∗ joining them, then
there exist p, sx , sy so that p ∈ [xy] and sx , sy ≥ t0+6δ(G∗)with dG

(
p, T nη0(sx )

) ≤
2δ(G∗) and dG

(
p, T n+1η0(sy)

) ≤ 2δ(G∗).
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(2) Let γ = [xy] be a geodesic in G, with x ∈ T n(G∗), y ∈ T n+k(G∗) and k ≥ 3.
Let x j ∈ T n+ jγ0 ∩ γ , 2 ≤ j ≤ k − 1. Then x j = T n+ jη0(s j ) with s j ≥ t0 for
2 ≤ j ≤ k − 1.

Proof (1)Given x ∈ T nγ0 and y ∈ T n+1γ0, since lim inf t→+∞ dG
(
η0(t), Tη0(t)

) =
0, there exists t large enough such that the geodesic [T nη0(t)T n+1η0(t)] in T nG∗
satisfies dG

([xy], [T nη0(t)T n+1η0(t)]
)

> 2δ(G∗). Consider the geodesic quadri-
lateral Q := {x, y, T n+1η0(t), T nη0(t)} in T nG∗, that is 2δ(G∗)-thin. Then for
every q ∈ [xy] one has dG

(
q, [xT nη0(t)] ∪ [yT n+1η0(t)]

) ≤ 2δ(G∗). Hence,
there exist a point p ∈ [xy] such that dG

(
p, [xT nη0(t)]

) ≤ 2δ(G∗) and
dG

(
p, [yT n+1η0(t)]

) ≤ 2δ(G∗). Choose sx , sy such that dG
(
p, T nη0(sx )

) ≤ 2δ(G∗)
and dG

(
p, T n+1η0(sy)

) ≤ 2δ(G∗). Then dG
(
T nη0(sx ), T n+1η0(sy)

) ≤ 4δ(G∗)
and by Corollary 3.4, dG

(
T nη0(sx ), T n+1η0(sx )

) ≤ 2dG
(
T nη0(sx ), T n+1γ0

) ≤
2dG

(
T nη0(sx ), T n+1η0(sy)

) ≤ 8δ(G∗).
A symmetric argument gives dG

(
T nη0(sy), T n+1η0(sy)

) ≤ 8δ(G∗). Since
limt→−∞ dG

(
η0(t), Tη0(t)

) = ∞, there exists a constant t0 such that dG
(
η0(t),

Tη0(t)
)

> 8δ(G∗) for every t < t0 + 6δ(G∗); hence, sx , sy ≥ t0 + 6δ(G∗).
(2) Fix x j = T n+ jη0(s j ) with 2 ≤ j ≤ k − 1. By (1), there exist p ∈

[x j−1x j ] ∩ T n+ j−1G∗, p′ ∈ [x j x j+1] ∩ T n+ j G∗ and s, s′ ≥ t0 + 6δ(G∗) such
that dG

(
p, T n+ jη0(s)

) ≤ 2δ(G∗) and dG(p′, T n+ jη0(s′)) ≤ 2δ(G∗).
By symmetry, assume that s ≥ s′. Assume also that s j < s′, since otherwise

s j ≥ s′ ≥ t0 + 6δ(G∗). Thus

dG(p, p′) ≤ dG
(
p, T n+ jη0(s)

) + dG
(
T n+ jη0(s), T

n+ jη0(s
′)
)

+ dG
(
T n+ jη0(s

′), p′)

≤ 4δ(G∗) + dG
(
T n+ jη0(s), T

n+ jη0(s
′)
)
,

dG
(
x j , T

n+ jη0(s
′)
) + dG

(
T n+ jη0(s

′), T n+ jη0(s)
)

= dG
(
x j , T

n+ jη0(s)
)

≤ dG
(
x j , p

) + dG
(
p, T n+ jη0(s)

)

≤ dG
(
x j , p

) + 2δ(G∗) ≤ dG
(
p′, p

) + 2δ(G∗)
≤ 6δ(G∗) + dG

(
T n+ jη0(s), T

n+ jη0(s
′)
)
,

and thus dG
(
x j , T n+ jη0(s′)

) ≤ 6δ(G∗). Since 6δ(G∗) ≥ dG
(
x j , T n+ jη0(s′)

) =
s′ − s j ≥ t0 + 6δ(G∗) − s j , one gets s j ≥ t0. ��
Lemma 5.13 Let G be a periodic graph with quasi-exponential decay and G∗ hyper-
bolic. Then there exists a constant N such that HG(g1, g2) ≤ N for every geodesics
g1, g2 in G with the same endpoints and g1 ⊂ γ0.

Proof Consider first the case g2 ⊂ ∪ j≥0T jG∗. Define n2 := max{ j ∈ Z : g2 ∩
T jG∗ = ∅}. Let {g1j , . . . , g

r j
j } be the connected components of g2 ∩ T jG∗ and

G := {gij | 1 ≤ i ≤ r j , 0 ≤ j ≤ n2}.
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If n2 = 0, then HG(g1, g2) ≤ H(δ(G∗), 1, 0), where H is the function of the
geodesic stability (see the paragraph after Lemma A).

If n2 > 0, for each gin2 , define γ i
n2 as follows: if g

i
n2 joins T

n2η0(si ) and T n2η0(t i )
with si ≤ t i , then γ i

n2 := T n2η0([si , t i ]). Let g′
2 be the geodesic in ∪0≤ j≤n2−1T jG∗

obtained from g2 by replacing each gin2 by γ i
n2 ; then HG(g2, g′

2) ≤ H(δ(G∗), 1, 0).
In a similar way one can find a geodesic g′′

2 contained in ∪0≤ j≤n2−2T jG∗ with
HG(g2, g′′

2 ) ≤ 2H(δ(G∗), 1, 0) (if n2 ≥ 2). Hence, if n2 ≤ 2, then HG(g1, g2) ≤
3H(δ(G∗), 1, 0). Assume now that n2 ≥ 3.

For each gij ∈ G with 1 ≤ j ≤ n2 − 2, define γ i
j as follows: if g

i
j joins T

jη0(sij )

and T j+1η0(t ij ) with sij ≤ t ij , then γ i
j := T jη0([sij , t ij ]) ∪ Uj,t ij

; if sij > t ij , then

γ i
j := T jη0([t ij , sij ]) ∪ Uj,sij

; if gij joins T
jη0(sij ) and T jη0(t ij ) with sij ≤ t ij , then

γ i
j := T jη0([sij , t ij ]); if gij joins T j+1η0(sij ) and T

j+1η0(t ij )with s
i
j ≤ t ij , then γ i

j :=
T j+1η0([sij , t ij ]). Define I as the set of indices 1 ≤ i ≤ r0 such that gi0 joins Tη0(si0)

and Tη0(t i0) with si0 ≤ t i0; define γ i
0 := Tη0([si0, t i0]) for every i ∈ I . By Lemma 5.5,

the relation (5.1) holds and then, by Lemma 5.12, sij , t
i
j ≥ t0, where t0 is the constant

in Lemma 5.12, and therefore γ i
j ⊂ G1. By Remark 5.11, HG1(g

i
j , γ

i
j ) ≤ H0, where

H0 is a constant depending just on δ(G∗
1) and on supt≥t0 dG(η0(t), Tη0(t)).

Define γ2 := (
g′′
2\

((∪n2−2
j=1 ∪ jr

i=1g
i
j

)∪ (∪i∈I gi0
)))∪ (∪n2−2

j=1 ∪ jr
i=1γ

i
j

)∪ (∪i∈I γ i
0

)
.

Therefore, HG1(g2, γ2) ≤ H1 := H0 + 2H(δ(G∗
1), 1, 0).

By Remark 5.11, γ2 is an (α, β)-quasigeodesic in G1 (with its arc-length parame-
trization),whereα, β are the constants inLemma5.10. Letγ ′

2 := γ2∩
(∪n2−2

j=1 T jG∗) ⊂
G2. Note that γ ′

2 is connected and joins two points in T γ0. Since dG1 ≤ dG2 on G2,
γ ′
2 is also an (α, β)-quasigeodesic in G2.
By Lemma 5.5, sup

{
t2 − t1 : �(t1) = �(t2), t2 ≥ t1 ≥ t0

}
< ∞ and (5.1)

holds. Hence, by Lemma 5.3, there exists a quasi-isometry f −1 : G2 → G3 and there
also exist constants α′, β ′, which just depend on G, such that f −1(γ ′

2) is an (α′, β ′)-
quasigeodesic inG3. Note thatG3 is hyperbolic by Lemma 5.7; therefore, if γ ′

3 ⊂ T γ0
is the geodesic joining the endpoints of f −1(γ ′

2) in G3, then HG3

(
γ ′
3, f −1(γ ′

2)
) ≤

H3 := H
(
δ(G3), α

′, β ′). Since f is the identity map on∪n∈ZT nη0([t0,∞)), f (γ ′
3) ⊂

T γ0 is a geodesic in G2 joining the endpoints of γ ′
2; since f is a quasi-isometry, there

exists a constant H4, which just depend on G, such thatHG2( f (γ
′
3), γ

′
2) ≤ H4. Since

dG1 ≤ dG2 on G2, HG1( f (γ
′
3), γ

′
2) ≤ H4. Define γ3 := (γ2\γ ′

2) ∪ f (γ ′
3) ⊂ G; then

HG1(γ3, γ2) = HG1( f (γ
′
3), γ

′
2) ≤ H4 and HG(g2, γ3) = HG1(g2, γ3) ≤ H1 + H4.

Since γ3 is a geodesic in G∗ with the same endpoints that g1, one getsHG(γ3, g1) ≤
H(δ(G∗), 1, 0) and HG(g1, g2) ≤ H1 + H4 + H(δ(G∗), 1, 0).

Hence, if g2 ⊂ ∪ j≥0T jG∗ the lemma holds with N = H1 + H4 + H(δ(G∗), 1, 0).
If g2 ⊂ ∪ j<0T jG∗, the same result holds by symmetry. The general case follows
by applying these two cases to the connected components g2,1, . . . , g2,m of g2 ∩
∪ j≥0T jG∗ and to the closure of the connected components of g2\ ∪m

j=1 g2, j . ��
Corollary 5.14 Let G be a periodic graph with quasi-exponential decay and G∗
hyperbolic. Then for each geodesic γ in G there exists a straight geodesic γ ′ with the
same endpoints and HG(γ, γ ′) ≤ N, where N is the constant in Lemma 5.13.
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Proof Fix a geodesic γ : [a, b] → G with γ (a) ∈ T n1G∗, γ (b) ∈ T n2G∗ and
n1 ≤ n2. Assume that γ ∩ T n1γ0 = ∅ (otherwise, we consider T n1+1γ0 instead of
T n1γ0) and that γ ∩T n2+1γ0 = ∅ (otherwise, we consider T n2γ0 instead of T n2+1γ0).
Define inductively s j , t j (n1 ≤ j ≤ n2 + 1) as follows: sn1 := min{t ∈ [a, b] :
γ (t) ∈ T n1γ0}, tn1 := max{t ∈ [a, b] : γ (t) ∈ T n1γ0}, s j := min{t ∈ (t j−1, b] :
γ (t) ∈ T jγ0}, t j := max{t ∈ (t j−1, b] : γ (t) ∈ T jγ0}. We define also γ j :=
[γ (s j )γ (t j )] ⊂ T jγ0 for n1 ≤ j ≤ n2 + 1.

By Lemma 5.13, HG(γ ([s j , t j ]), γ j ) ≤ N . Then γ ′ := (
γ \ ∪n2+1

j=n1
γ ([s j , t j ])

) ∪
( ∪n2+1

j=n1
γ j

)
is a straight geodesic in G and that HG(γ, γ ′) ≤ N . ��

Finally, let us show the proof of the second part of Theorem 1.1.

Proof (Second part of Theorem 1.1). Assume that G is hyperbolic. Lemma B implies
that G∗ is also hyperbolic.

Since inf z∈γ0 dG(z, T z) = 0, without loss of generality one can consider only
arc-length parametrizations η0 of γ0 for which lim inf t→+∞ dG

(
η0(t), Tη0(t)

) = 0.
Fix one of these. It will be shown that limt→−∞ F(t) = ∞, where F(t) :=
dG(η0(t), Tη0(t)). Indeed,

(a) Assume that lim inf t→−∞ F(t) = 0. Then there exists a sequence of posi-
tive numbers {ck} converging to 0 and two sequences {s1,k}, {s2,k} ⊂ R such that
limk→∞ s2,k = ∞, limk→∞ s1,k = −∞, F(s1,k) = F(s2,k) = ck , and F(t) ≥ ck for
every t ∈ [s1,k, s2,k] and every k. Therefore, Lemmas 2.1 and 5.9 imply that G is not
hyperbolic.

(b) If 0 < lim inf t→−∞ F(t) and lim supt→−∞ F(t) < ∞, one can also easily
construct quasi-geodesic quadrilaterals Q with δ(Q) arbitrarily large, and thusG is not
hyperbolic (by lemmas 2.1 and 5.9). (TheCayley graph ofZ2, forwhich 1 ≤ F(t) ≤ 3

2 ,
is a basic example of this situation.)

(c) Assume that lim inf t→−∞ F(t) < ∞ and lim supt→−∞ F(t) = ∞. Note that
F is a Lipschitz function; in fact, |F(t1) − F(t2)| ≤ 2|t1 − t2|. Fix a constant c >

lim inf t→−∞ F(t). There exist two sequences {s1,k}, {s2,k} ⊂ R
− such that F(s1,k) =

F(s2,k) = c, F(t) ≥ c for every t ∈ [s1,k, s2,k] and F(tk) ≥ k for some tk ∈
[s1,k, s2,k], for every k. Since F is 2-Lipschitz, s2,k − s1,k ≥ k − c for every k, and
then limk→∞(s2,k − s1,k) = ∞. Therefore, Lemmas 2.1 and 5.9 give that G is not
hyperbolic.

Thus, limt→−∞ F(t) = ∞.
The argument in (c) also gives lim supt→+∞ F(t) < ∞ since lim inf t→+∞ F(t) =

0; then (5.1) holds.
Assume thatG has not quasi-exponential decay, so sups2≥s1≥0(s2−s1)�(s2)/�(s1)

= ∞. By Lemma 5.6, L(G3) = ∞ and G3 is not hyperbolic and, by Lemma 5.4,
since G is hyperbolic, sup

{
t2 − t1 : �(t1) = �(t2), t2 ≥ t1 ≥ 0

} = ∞. Consider
t2 > t1 > 0 with �(t1) = �(t2) < �(0) which are maximal in the following
sense: �(t1 − ε) > �(t1) and �(t2) > �(t2 + ε) for every ε > 0. Therefore,
�(t1) = F(t1) = �(t2) = F(t2) and F(t) ≥ F(t1) = F(t2) for every t ∈ [t1, t2].
Lemma 5.9 (taking c1 = c2 = c∗ = c = F(t1) < �(0)) provides a (3, 2�(0))-
quasigeodesic quadrilateral Q with δ(Q) ≥ (t2 − t1)/6 − �(0)/4. Hence, Lemma
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2.1 shows that G is not hyperbolic. This is a contradiction. Therefore, G has quasi-
exponential decay.

Let us show the other direction by assuming that G∗ is hyperbolic and G has quasi-
exponential decay. By Lemma 5.5, sup{t2 − t1 : �(t1) = �(t2), t2 ≥ t1 ≥ t0} < ∞
for any fixed t0, and (5.1) holds.

Fix any geodesic triangle T0 := {z1, z2, z3} in G, with zi ∈ T ni G∗ for 1 ≤ i ≤ 3
and n1 ≤ n2 ≤ n3. One just needs to deal with the case n1 + 4 ≤ n2 ≤ n3 − 4; the
other cases are similar and simpler.

By Corollary 5.14, without loss of generality, assume that the geodesics of T0 are
straight.

By Lemma 5.12 there exists a constant t0 such that if x ∈ T0 ∩ T nγ0 with either
n1 + 2 ≤ n ≤ n2 − 1 or n2 + 2 ≤ n ≤ n3 − 1, then (T nη0)

−1(x) ≥ t0. Consider the
geodesic metric spaces G1 and G2 defined after (5.1) (with this constant t0) and recall
G1 = G ∪ G2; since G is an isometric subspace of G1, T0 is also a geodesic triangle
in G1.

Since (T nη0)
−1(x) ≥ t0 if x ∈ T0 ∩ T nγ0 with either n1 + 2 ≤ n ≤ n2 − 1

or n2 + 2 ≤ n ≤ n3 − 1, and the geodesics of T0 are straight, by Lemma
5.10, there exist (α, β)-quasigeodesics g12, g13 and g23 in G1 such that gi j joins
zi and z j , and HG1(gi j , [zi z j ]) ≤ H , where H only depends on δ(G∗

1) and
ν := supt≥t0 dG(η0(t), Tη0(t)), α = 3 and β = 8δ(G∗

1)+6ν (recall that G∗
1 is hyper-

bolic by Lemma 5.2). Furthermore, g12 = [z1z2] in T n1G∗
1 ∪ T n1+1G∗

1 ∪ T n2−1G∗
1 ∪

T n2G∗
1, g23 = [z2z3] in T n2G∗

1 ∪ T n2+1G∗
1 ∪ T n3−1G∗

1 ∪ T n3G∗
1, g13 = [z1z3]

in T n1G∗
1 ∪ T n1+1G∗

1 ∪ T n2−1G∗
1 ∪ T n2G∗

1 ∪ T n2+1G∗
1 ∪ T n3−1G∗

1 ∪ T n3G∗
1,

g12 ∩ (∪n1+1<n<n2−1T nG∗
1) ⊂ G2, g23 ∩ (∪n2+1<n<n3−1T nG∗

1) ⊂ G2, g13 ∩
{(∪n1+1<n<n2−1T nG∗

1) ∪ (∪n2+1<n<n3−1T nG∗
1)} ⊂ G2. Then T1 := {g12, g13, g23}

is an (α, β)-quasi-geodesic triangle in G1.
Define G2(T1) and G3(T1) as the geodesic metric spaces given by

G2(T1) := T n1G∗
1 ∪ T n1+1G∗

1 ∪ ( ∪n1+1<n<n2−1,t≥t0 Un,t
)

∪ T n2−1G∗
1 ∪ T n2G∗

1 ∪ T n2+1G∗
1

∪ ( ∪n2+1<n<n3−1,t≥t0 Un,t
) ∪ T n3−1G∗

1 ∪ T n3G∗
1,

G3(T1) := T n1G∗
1 ∪ T n1+1G∗

1 ∪ ( ∪n1+1<n<n2−1,t≥t0 Vn,t
)

∪ T n2−1G∗
1 ∪ T n2G∗

1 ∪ T n2+1G∗
1

∪ ( ∪n2+1<n<n3−1,t≥t0 Vn,t
) ∪ T n3−1G∗

1 ∪ T n3G∗
1.

Note that G2(T1) is contained in G1.
By Corollary 5.8 there exists a constant δ, which does not depend on n1, n2, n3, T0,

such that the subspaces ∪n1+1<n<n2−1,t≥t0Vn,t and ∪n2+1<n<n3−1,t≥t0Vn,t are δ-
hyperbolic.

Since G∗ is hyperbolic, by Lemma 5.2 there exists a constant δ∗, which does not
depend on n1, n2, n3, T0, such that G∗

1 is δ∗-hyperbolic. By Lemma B, T n1G∗
1 ∪

T n1+1G∗
1, T

n2−1G∗
1 ∪ T n2G∗

1 ∪ T n2+1G∗
1 and T n3−1G∗

1 ∪ T n3G∗
1 are (120)2δ∗-

hyperbolic. Hence, by Lemma B, G3(T1) is (120)4 max{δ, (120)2δ∗}-hyperbolic.
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As in the proof of Lemma 5.3, one can check that G3(T1) and G2(T1) are
quasi-isometric (with constants which just depend on G∗); thus, by invariance of
hyperbolicity, there exists a constant δ2 which does not depend on n1, n2, n3, T0,
such that G2(T1) is δ2-hyperbolic. Since T1 is also an (α, β)-quasi-geodesic trian-
gle in G2(T1) ⊂ G1, T1 is δ′

2-thin, where δ′
2 is a constant that does not depend on

n1, n2, n3, T0. Since dG1 ≤ dG2(T1), we have that T1 is also δ′
2-thin in G1. Since

HG1(gi j , [zi z j ]) ≤ H , the triangle T0 is (δ′
2 + 2H)-thin in G1. Since T0 ⊂ G and

G is an isometric subspace of G1, the geodesic triangle T0 is also (δ′
2 + 2H)-thin

in G. ��
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