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1 Introduction

Let G = (V, E) be a simple graph with vertex set V = {vy, ..., v,} and edge set E.
Let dg (v;) (or simply d(v;)) denote the degree of the vertexv; € V (i = 1,2,...,n),
and D = D(G) = diag(d(vy),d(v2),...,d(v,)) be the diagonal matrix of vertex
degrees. The Laplacian matrix of G is defined by L(G) = D(G) — A(G), and the
normalized Laplacian matrix of G is defined by £(G) = D(G)™'?L(G)D(G)~'/?
(with the convention that if the degree of v is 0, then d (v) ™~ 172 = 0).1tis easy to see that
L(G) is a symmetric positive semidefinite matrix and D(G) 172 j ,, 1s an eigenvector of
L(G) with eigenvalue 0, where j, is the vector in R” whose entries are 1’s. Denote
the eigenvalues of L(G) by

0=21(G) = 22(6) = -+ = A—1(G) = M(G),

which are always enumerated in non-decreasing order and repeated according to their
multiplicity.

The largest eigenvalue 1, (G) of L(G) is called the normalized Laplacian spectral
radius of the graph G, denoted by A(G). Chung [4] proved that for a connected graph
G with n > 2 vertices, nnT1 < AM(G) < 2, the left equality holds if and only if G is a
complete graph, and the right equality holds if and only if G is a bipartite graph.

The normalized Laplacian is a rather new but important tool popularized by Chung
in the mid 1990s. As pointed out by Chung [4], the eigenvalues of the normalized
Laplacians are in a normalized form, and the spectra of the normalized Laplacians
relate well to other graph invariants for general graphs in a way that the other two
definitions (such as the eigenvalues of adjacency matrix) fail to do. The advantages
of this definition are perhaps due to the fact that it is consistent with the eigenvalues
in spectral geometry and in stochastic processes. For more details, see [1,2,4,5]. For
a fixed list {v, ..., v} of vertices of G. Let X = (x1,...,x,)T be a real vector. It
can be viewed as a labeling of G in which vertex v; is labeled by x; (or X (v;)). Such
labeling is sometimes called a valuation [8] of G. If X is a unit eigenvector of G
corresponding to A(G), then we have

2
1 1
MG) = max YTLGY =XTLG)X= D (—xi——xj) . (LD
i ek Vi Vi
<i<j<n

Let P, and C, denote the path and the cycle with n vertices, respectively. It is a
well-known fact [4] that if g is odd, then we have

(¢ —Dm

AMCg) = Ag(Pgy1) =1 —cos P

(1.2)

A unicyclic graph is a connected graph in which the number of vertices equals the
number of edges. So, if G is a unicyclic graph with girth g, then G consists of the
unique cycle (say Cy) of length g and a certain number of trees attached at vertices of
C, having in total n — g edges.
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In this paper, we firstly consider how the normalized Laplacian spectral radius of a
non-bipartite graph behaves by several graph operations. As applications, the largest
normalized Laplacian spectral radius of non-bipartite unicyclic graphs with fixed order
and girth is determined. Moreover, the largest normalized Laplacian spectral radius
among non-bipartite unicyclic graphs with fixed order is also determined.

2 The Normalized Laplacian Spectral Radius of a Graph Under
Perturbation

Lemma 2.1 Let X be an eigenvector of L(G) corresponding to M(G). Then for any
v € V(G), we have

X
> T = AW - MG,
wer(G) V4
Proof The result follows from D(G)~/?(D(G) — A(G))D(G)™'?X = M(G)X. O

In the following, we consider how the normalized Laplacian spectral radius of a
graph behaves by moving pendant edges from one vertex to another.

Theorem 2.2 Suppose that u, v are two distinct vertices of a connected non-bipartite
graph G, and vvy,...,vvg are s (s > 1) pendant edges of G. Let X be a unit
eigenvector of G corresponding to A = A(G). Let

G, =G —vvy —vvy — - —vvg +uvy +uvy + -+ uvs.

If‘f/(;(Lu)‘ ‘f/(% then M(Gy) > A. Furthermore, if A\(G,) = A, then X (u) = X (v)

Proof Let Y be a valuation of G, defined by

Y(u) =/ X ();
Y () = /45X (v);
) — X(w) s .
Y(vl)——(l_)\)m, i=1,...,s;
Y(w)=X(w), w#u,v,vi,...,7s.
From Lemma 2.1, we have
(1I-=MX() = ! —X), i=1 2.1
- Vi) = v 1=1,...,s. .
Y Jdw)

Then, we have

ZTL(G)Z - YTL(G,)Y

AMG,) =
(G =max—77,— = —y1y
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Note that

Yy —1=vTy-xTx
_dw)+9)Xw? | (dw) — )X (v)? sX (u)?

d(u) d(v) du)(1 —X1)2
sX (v)? 5 )
ORI Xw)” — X(v)
_ sX (u)? B sX (v)? sX (u)? sX (v)?

d(u) dw)  dw(1 =12  d@)(1 -2
[ 1 } |:X(u)2 X(v)z]
=s|1+ - .

(1 —2)2 d(u) d(v)

Ty _ 1 Xw?  X©)?
So¥Y ¥ =1+s [1 + (1—x)2] [ dw) ~ dQ) ]

For easy to illustrate, we rearrange the order of vertices as u, v, v, ..., Ug
and others are arranged after v, arbitrary. We partition X7 D(G)™'/? into three
parts (X1, X2, X3), where XI e R?, XI' € R® and X € R"™°~2. Namely,

_(Xw X — X() T s T —1/2 ;

X1 =( IOk d(v)) and X, = aTnvao s . We also partition Y* D(G,,) into
. X .

three parts (Y1, Y2, ¥3) accordingly. Then Y1 = X1,Y3 = X3and Y, = ﬁjz.

An Ale A3T1 dw) a
1 = T = = —_— -
Write L(G) Ay I, OT |, where Ay ( u d(v))’a 0 or —1 depen
Az O Az
dent on uv € E(G) or not; Ay = (()S —js); 0, is a zero column vector of length
s; O is a zero matrix of certain size, A3 and A3z are some matrices of certain sizes.
B Ble A3Tl
Accordingly, L(G,) = | B,y I. OT |, where B = d(w) +s N and
’ “ 21 A ’ a dw)—s
Azl O Az
By = (—jy 05).
Next

YTL(G)Y = Vi BnY] +2Y2Bo YL + 1o¥] 427345 Y] + v3A5Y]
= (X1B11X] +2V2By XT + Vo¥)) + 2X3A5 X] + X3A3:3X7
= (X1Bi X! +2V2Bu XT + Vo¥)) + 1 —2X0An X — XoXT — X1 A1 XT

25X (u)? sX (u)?
- (Xl(B“ —AXT -G F dwa —A)z)
25X (v)? sX (v)?
dw(1 =21 d@)(1—r)?
sXW)?  sX(v)? 25X (u)? X (u)?
- ( dw) — d)  dwd - dw( —A)z) *
25X (v)? sX (v)?

+ dw)y(1 — 1) d)(1 — )2
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a4 Y[ X __ X@ T _ s[ X X@ ]2
U Vd@ (= 0Jdw) NI RS WNZIO)
el 22 Xw)? X®©w)?
ST =2 ( dw) — d(v) )
5 Q-1 (Xw? )2
T SA _7)\ X X
WGy — i > Y L(GLY = =1 ( d(u) d(v) ) 2.2)

YTy B YTy
Since G is a connected non-bipartite graph and G # K,,, we have 1 < A(G) < 2 [4].

Therefore, we have A(G,) > A when LZ%)' > ‘fd((Lj‘

If 4(Gy) = A, then the equality in Eq. (2.2) holds. So 4(G,,) = Y29 We have
L(G,)Y = A(G,)Y (see [6]). Thus, from Lemma 2.1 we have

Vd@) —s(1 = A(Gu))Y (v) =

> WX(U)) (2.3)

weV(Gy),wveE(Gy)

Jd)(1 — W)X ) = — X (w) + Z X (v;). (2.4)

weV(Gy),wveE(Gy) d(

Note that ¥ (v) = \/“%=2 X (v). Thus, from Egs. (2.1), (2.3) and (2.4), we have

dv) —s S
—— (1 —M)XW) =/dw) (1 —NXW) — —X(v).
Jd(v) Vd@)(1 —2)
Simplifying the above equation, we have A(A — 2) X (v) = 0. Since A # 2, we have
X (v) = 0. From Eq. (2.2) we get X () = 0. So we have the last result. O

From Theorem 2.2, we immediately have the following result.

Corollary 2.3 Suppose that u, v are two distinct vertices of a connected non-bipartite
graph G, uuy, ..., uu; and vvy, ..., vvs aret (t > 1) and s (s > 1) pendant edges
of G at vertices u and v, respectively. Let X be a unit eigenvector of G corresponding
to AM(G). Let

G, =G —vvy —vvy —-- —vvy +uvy +uvy + -+ uvg;
Gy, =G —uuy —uupy — -+ —uuy +vuy +vuy + -+ -+ vuy.

Then either A(G,) > MG) or M(Gy) > MG) holds. Furthermore, if X(u) # 0 or
X (v) # 0, then either A(G,) > A(G) or M(Gy) > M(G).

Corollary 2.4 Suppose that v is a vertex of a connected non-bipartite graph G, and
vUy, VU2, ..., 005 are s (s > 2) pendant edges of G at vertex v. Let X be a unit
eigenvector of G corresponding to M(G). Let

G =G —vvy—---— vy +vjv2 + -+ v1vg

@ Springer



S82 J.-M. Guo et al.

Then we have L.(G') > M(G). Furthermore, if X (v) # 0, then we have M.(G') > A(G).

Proof From Lemma 2.1, we have (1 —A(G))X (v1) = ﬁX(v). Since 1 < A(G) <
2, we have | X (vy)| > ﬁlX(vN. Note that if X (v) # 0, then X (vy) # 0. The result
follows from Theorem 2.2. O

In [3,7], the authors considered how the normalized Laplacian eigenvalues of a
graph behave by deleting an edge.

Lemma 2.5 Let G be a simple graph and H = G — e be the graph obtained from G
by removing an edge e. Then 1i—1(G) < Ai(H) < Aj+1(G) fori = 1,...,n, where
r0(G) =0 and Ayy1(G) = 2.

For the normalized Laplacian spectral radius of a non-bipartite graph, we have the
following further result.

Theorem 2.6 Suppose that u is a vertex of a non-bipartite graph G. Let G, be the
graph obtained from G by attaching a pendant edge uv at u of G. Let X be a unit
eigenvector of G corresponding to A(G). Then we have A\(G,) > ,(G), the inequality
is strict if X (u) # 0.

Proof Let Y be a valuation of G, such that
Y () = /X (w);

— _Xw .
Y(v) = - 7755+

Y(w) =Xw), w#u,v.

Then, we have

ZTL(G)Z YT L(Gy)Y
MGy) = MG) = gax —— 77— —MG) = —r " — MO)
2 2
AMG) + (M) 22-1(G)X ()
= Vd(zu) —AMG) = d(u) _
1 (u) 1 4 2X@w
d(u) d(u)

Since G is a connected non-bipartite graph, we have 1 < A(G) < 2 [4]. From the
above equation, the result follows. O

3 The Largest Normalized Laplacian Spectral Radius of Non-Bipartite
Unicyclic Graphs

A pendant is a vertex with degree 1. A pendant neighbor (which is also called support
in some articles) is a vertex adjacent to a pendant. Suppose that vy, ..., v, are all
the pendant neighbors of G. Let ¢ (v;) be the number of pendants adjacent to v; (i =
1,...,q),and t(G) = max{t(vy), ..., t(vy)}. As an application of Corollary 2.3, in

@ Springer



The Largest Normalized Laplacian Spectral Radius... S83

Fig. 1 Tadpole graph C;; ¢ ’—\
. C R
. 9 7 Up—g U2 U1

the following, we give the largest normalized Laplacian spectral radius of non-bipartite
unicyclic graphs with fixed girth and order.

Actadpole graph C,, ¢, shownin Fig. 1, is the graph obtained by appending a g-cycle
C, to a pendant of a path on n — g vertices.

Theorem 3.1 Let G be a non-bipartite unicyclic graph on n vertices with girth g > 3.
Then M(G) < A(Cyg). The equality holds if and only if G is isomorphic to C g.

Proof Let q(G) be the number of pendant neighbors of G. We consider the following
three cases:

Case 1. Suppose g(G) = 0. Then G = C,,. The result is obvious.

Case 2. Suppose g(G) = 1. Then G = C; ¢(s), where C, ¢(s) is the graph of
order n obtained from C, and K ¢ by joining a vertex w in C, and the center u of
K1 by apath wwy -+ wy_g_g_qu. If s = 1, then C,, ¢ (s) = Cy 4, and the result is
obvious. Suppose s > 2.Let vy, ..., vy be all the pendant vertices of Cy, 4 (s). Let X be
the unit eigenvector of Cy, 4(s) corresponding to A(Cy, ¢ (s)). Applying Corollary 2.4
repeatedly, we have A(C;, ¢ (s)) < A(Cy g).

Suppose A(Cp,4(s)) = A(Cp ). From Corollary 2.4 we have X (v1) = 0. Applying
Lemma 2.1 repeatedly, we have

X)) =-=X(y) =Xu) = X(wh—g—s—1) == X(w1) = X(w) =0.
3.D
Then X is an eigenvector of C, ¢ corresponding to A(C, ). According Eq. (3.1)
we see that A(Cy ) is also a normalized Laplacian eigenvalue of the graph C,,— ¢
(I < k < n— g). From Theorem 2.6, we have A(Cp ) = A(Cgy2e) = A(Cy).
From Lemma 2.5 and Eq. (1.2), we have A(Cgy2.¢) > Ag11(Pgy2) = 1 —cos ST

g+l
1 — cos =0T — A(Cyg), which yields a contradiction.

Case 3. guppose q(G) > 2. Let u; and u; be two of pendant neighbors of G such
that 1 < r(u2) < t(u1) = t(G). Let G (resp. G2) be the graph obtained from G
by removing 7 (u1) (resp. f(u2)) pendant edges from vertex u (resp. us) to vertex us
(resp. u1). Then we have t(G1) = t(G2) > t(G) and from Corollary 2.3, we have
either A(G1) > A(G) or A(G2) > A(G). Note that the number of pendant neighbors
may not decrease. We continue the above process until there remains only one pendant
neighbor. Since the ¢ value of graph is strictly increasing and the number of vertices
outside the cycle Cy is finite, the process will stop. Then the last constructed graph is
Ch,¢(s), for some s (s > 2). Moreover, A(G) < A(C, 4 (s)). It refers to Case 2. O

For the largest normalized Laplacian spectral radius among all non-bipartite uni-
cyclic graphs, we have the following result.

Theorem 3.2 Let G be a non-bipartite unicyclic graph on n vertices. Then M(G) <
A(Cy.3), the equality holds if and only if G = Cy, 3.
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Proof 1f G is a unicyclic graph with girth 3, then the result follows from Theorem 3.1.
Now suppose that G is a non-bipartite unicyclic graph with girth g > 5. Then from
Theorem 3.1, we only need to prove that for g > 5, A = A(Cy,,¢) < A(Cy,3). Suppose
that the unique cycle of Cj, ¢ is Cy = ujuy - - -uguy with d(uy) = 3. Let X be a unit
eigenvector of Cy, , corresponding to A. Since g is odd, there exist two vertices, say
u; and u; 41, such that X (u;) X (uj4+1) > 0 (ifi = g, theni + 1 = 1). We consider the
following two cases.

Case 1. If d(u;) = d(uj+1) = 2, then after rearranging the indices of the vertices in
Cg, we may suppose that

Xui-1)  X(uit2) <0 (3.2)

X)) >0, X(uit1) =0, <
! i Jdwi) A

From Lemma 2.1, we have

X(ui—1) X(uiy1)
VA@D 1 = )X () = + :
! T Jd | A

X (up) X(uis2)
d(u; 1 —A)X (u; = + '
V(i) = 2)X (i) VAw)  Jdwisa)

From the above two equations, we have

X(ui_1) n X (ui42) _ [\/M(l —) -

1
X (u;
Vdwi—y)  Jduiy2) \/d(”i):| (ui)

+ |:\/d(ui+l)(l —A) —

(3.3)

1
— | X (Uj11).
\/d<u,-+1>} (i)

Let H=Cy ¢ —u;u;—1 +u;u;yo. Itis obvious that H is a unicyclic graph with girth
3. Note that L(H) < A(Cp3) by Theorem 3.1. Let Y be a valuation of H such that

d(ui—1)—1
Y(uio1) = | S X i );

d(u; 1 B
Y (i42) = | LRI X (4);

Y(w) = X(w), w#uj—1,ui.

Similar to the proof of Theorem 2.2, we rearrange the order of vertices as
ui—1,Ujy2, u;j, uj+1 and the others are arranged after u; | arbitrary and partition
XTD(C,W)_I/2 into three parts (X1, X», X3), where X7, X2T € R? and X3T e R4,

_ ( Xwi-)  Xuiy) _ (X))  Xiy1) .
Namely, X| = (Jd(ui_l)’ \/d(u,-_,_z)) and X, = (W, m). We also parti

tion Y7 D(G,)~'/? into three parts (Y7, Y2, Y3) accordingly. We have (Y1, Y2, Y3) =
(X1, X2, X3).

@ Springer
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Al A Az
Write L(G) = | Al, Ay Axz |, where A = (d(u(i)_l)d(u(.) )) and
A1T3 A2T3 A33 "
Bi1 Bia Az
Ap = (_01 _01) Accordingly, L(H) = BITZ A2y Ap3 |, where By =

ATy AJy Az

dwi)—1 0 (0 0
( 0 d(u,-+1)+l) andB‘z—(—l —1)'

Similarly we have

YTLH)Y = XTL(Ch o)X + X1(B11 — A1) X] +2X1 (B2 — A1) X5
(X Y (X )2
Vd(ui—y) NZIUT)
5 X (ui—1) ( X (u;) )_2 X(uit2) ( X (u;) )
Vdwi—y) ) \Vdu;) Vduizo) ) \Vdu;)

o [xe xee V[ xe)  xwen |
Vdw)  /d(uiy2) Vd(ui)  Jd(ui—y)

ACH) — A ZTL(H)Z - YTL(H)Y
—A=maxX ——— — —_—
7z ZTZ - YTy

A

2
X)) X Xw) X(uil)}

At |:\/d(ui) ,/d(uiﬂ)] - |:«/d(ui) N2 N
- 1+ Xuir2)® _ Xui1)?
d(uit2) d(ui-1)

O —1) I:X(u,'—|)2 _ X(Mi+2)2] n X)) | Xwim) X(uit2)
dui- 4lu2) V(i) \/d(ui—l) \/d(ui+2)

Xuiy2)?  X(ui—)?
d(uit2) d(ui-1)

Xi—1)  Xuit2) r—1 X (ui—1) X (uit2) 2X(u;)
[\/d(uil) \/d(ui+2):| |:( ) (\/d(uil) + \/d(ui+2) + Vd(ui)
X(it)? _ Xui-)? )
U ey Ml [y

1+

From Eq. (3.3), we have

G- 1)( Xi) | X(uiso) )+ 2X (ui)

Vdwi—y)  Jduis2) NVd(u;)

1 2
= [“ - ( ) =2 = m) * m} X

+@G =1 [\/d(ui+1)(1 —A) -

1
— | X (u; .
w/d<u,-+1>} (i)
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Sincel<A<2,wehave()»—1)|:\/d(T_H)(1_)L)_ d(] )i|<0
A/ alUit]

1 2
A= (Vdu)a—xr — +
( )( (=) Jﬂm) NZI)
=(,\—1)(«/§(1—/\)—L)+i
V2] V2
= —%[2,\2—3,\— 11<0ifr > 3+T V17

Thus, . < A(H) < A(Cy.3) when & > 3/17,

Ifx < %m, then by direct calculation . < A(Cs3) ~ 1.85657.1 Hence, » <
A(Cp 3) from Theorem 2.6.

Suppose A = A(Cy3). Then A = A(H) = A(Cp3). It implies that Xy

dui—y) o

X (ui42) ~ P — * —
N Moreover, by Theorem 3.1, H = C,, 3, and hence, i = 2. Let H Chyg

u3ug+uszuy. Then H 2 C, 3. By a similar argument, we have A < L(H*) < A(Cp3).

Case 2. If d(u;) = 3, thatis i = 1, then suppose that ujv, g - - - v2v; are the pendant
path of C;, ¢ and d(v1) = 1 (see Fig. 1). Let Y be another valuation of C, , such that

Y) = Xgiva), i=1,....8
Y (i) = X (v, i=1,....n—g.

If we swap the order of u; with ug_; 4 fori = 1,..., g (i.e., reverse the order of
vertices in Cy ), then the matrix £(C,, ;) does not change. So Y is still a unit eigenvector
of £L(Cy,g). Since X —Y is a vector belonging to the eigenspace corresponding to A and
X (v1) = Y (v1), by the same proof of Case 2 of Theorem 3.1, we know that X —Y is not
an eigenvector of £(C,, ). Thatmeans X —Y = 0,.So X (u2) = Y (u2) = X (u,),and
hence, we have X (u1) X (u2) > Oand X (1) X (ug) > 0. Since g is odd, there exist two
vertices, say u; and u 1, such that X (u;) X (uj11) > Oand d(u;) = d(u 1) = 2.
It refers to Case 1.

The proof is complete. O
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