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1 Introduction

Let G = (V, E) be a simple graph with vertex set V = {v1, . . . , vn} and edge set E .
Let dG(vi ) (or simply d(vi )) denote the degree of the vertex vi ∈ V (i = 1, 2, . . . , n),
and D = D(G) = diag(d(v1), d(v2), . . . , d(vn)) be the diagonal matrix of vertex
degrees. The Laplacian matrix of G is defined by L(G) = D(G) − A(G), and the
normalized Laplacian matrix of G is defined by L(G) = D(G)−1/2L(G)D(G)−1/2

(with the convention that if the degree of v is 0, then d(v)−1/2 = 0). It is easy to see that
L(G) is a symmetric positive semidefinite matrix and D(G)1/2 jn is an eigenvector of
L(G) with eigenvalue 0, where jn is the vector in R

n whose entries are 1’s. Denote
the eigenvalues of L(G) by

0 = λ1(G) ≤ λ2(G) ≤ · · · ≤ λn−1(G) ≤ λn(G),

which are always enumerated in non-decreasing order and repeated according to their
multiplicity.

The largest eigenvalue λn(G) of L(G) is called the normalized Laplacian spectral
radius of the graph G, denoted by λ(G). Chung [4] proved that for a connected graph
G with n ≥ 2 vertices, n

n−1 ≤ λ(G) ≤ 2, the left equality holds if and only if G is a
complete graph, and the right equality holds if and only if G is a bipartite graph.

The normalized Laplacian is a rather new but important tool popularized by Chung
in the mid 1990s. As pointed out by Chung [4], the eigenvalues of the normalized
Laplacians are in a normalized form, and the spectra of the normalized Laplacians
relate well to other graph invariants for general graphs in a way that the other two
definitions (such as the eigenvalues of adjacency matrix) fail to do. The advantages
of this definition are perhaps due to the fact that it is consistent with the eigenvalues
in spectral geometry and in stochastic processes. For more details, see [1,2,4,5]. For
a fixed list {v1, . . . , vn} of vertices of G. Let X = (x1, . . . , xn)T be a real vector. It
can be viewed as a labeling of G in which vertex vi is labeled by xi (or X (vi )). Such
labeling is sometimes called a valuation [8] of G. If X is a unit eigenvector of G
corresponding to λ(G), then we have

λ(G) = max
Y∈Rn

‖Y‖=1

Y TL(G)Y = XTL(G)X =
∑

viv j∈E
1≤i< j≤n

(
1√
di
xi − 1√

d j
x j

)2

. (1.1)

Let Pn and Cn denote the path and the cycle with n vertices, respectively. It is a
well-known fact [4] that if g is odd, then we have

λ(Cg) = λg(Pg+1) = 1 − cos
(g − 1)π

g
. (1.2)

A unicyclic graph is a connected graph in which the number of vertices equals the
number of edges. So, if G is a unicyclic graph with girth g, then G consists of the
unique cycle (say Cg) of length g and a certain number of trees attached at vertices of
Cg having in total n − g edges.
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In this paper, we firstly consider how the normalized Laplacian spectral radius of a
non-bipartite graph behaves by several graph operations. As applications, the largest
normalized Laplacian spectral radius of non-bipartite unicyclic graphswith fixed order
and girth is determined. Moreover, the largest normalized Laplacian spectral radius
among non-bipartite unicyclic graphs with fixed order is also determined.

2 The Normalized Laplacian Spectral Radius of a Graph Under
Perturbation

Lemma 2.1 Let X be an eigenvector of L(G) corresponding to λ(G). Then for any
v ∈ V (G), we have

∑

uv∈E(G)

X (u)√
d(u)

= √
d(v)(1 − λ(G))X (v).

Proof The result follows from D(G)−1/2(D(G) − A(G))D(G)−1/2X = λ(G)X . ��
In the following, we consider how the normalized Laplacian spectral radius of a

graph behaves by moving pendant edges from one vertex to another.

Theorem 2.2 Suppose that u, v are two distinct vertices of a connected non-bipartite
graph G, and vv1, . . . , vvs are s (s ≥ 1) pendant edges of G. Let X be a unit
eigenvector of G corresponding to λ = λ(G). Let

Gu = G − vv1 − vv2 − · · · − vvs + uv1 + uv2 + · · · + uvs .

If |X (u)|√
d(u)

≥ |X (v)|√
d(v)

, then λ(Gu) ≥ λ. Furthermore, if λ(Gu) = λ, then X (u) = X (v)

= 0.

Proof Let Y be a valuation of Gu defined by

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Y (u) =
√

d(u)+s
d(u)

X (u);
Y (v) =

√
d(v)−s
d(v)

X (v);
Y (vi ) = X (u)

(1−λ)
√
d(u)

, i = 1, . . . , s;
Y (w) = X (w), w 	= u, v, v1, . . . , vs .

From Lemma 2.1, we have

(1 − λ)X (vi ) = 1√
d(v)

X (v), i = 1, . . . , s. (2.1)

Then, we have

λ(Gu) = max
Z 	=0

ZTL(Gu)Z

ZT Z
≥ Y TL(Gu)Y

Y T Y
.
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Note that

Y T Y − 1 = Y T Y − XT X

= (d(u) + s)X (u)2

d(u)
+ (d(v) − s)X (v)2

d(v)
+ sX (u)2

d(u)(1 − λ)2

− sX (v)2

d(v)(1 − λ)2
− X (u)2 − X (v)2

= sX (u)2

d(u)
− sX (v)2

d(v)
+ sX (u)2

d(u)(1 − λ)2
− sX (v)2

d(v)(1 − λ)2

= s

[
1 + 1

(1 − λ)2

] [
X (u)2

d(u)
− X (v)2

d(v)

]
.

So Y T Y = 1 + s
[
1 + 1

(1−λ)2

] [
X (u)2

d(u)
− X (v)2

d(v)

]
.

For easy to illustrate, we rearrange the order of vertices as u, v, v1, . . . , vs
and others are arranged after vs arbitrary. We partition XT D(G)−1/2 into three
parts (X1, X2, X3), where XT

1 ∈ R
2, XT

2 ∈ R
s and XT

3 ∈ R
n−s−2. Namely,

X1 = (
X (u)√
d(u)

,
X (v)√
d(v)

) and X2 = X (v)

(1−λ)
√
d(v)

jTs . We also partition Y T D(Gu)
−1/2 into

three parts (Y1,Y2,Y3) accordingly. Then Y1 = X1, Y3 = X3 and Y2 = X (u)

(1−λ)
√
d(u)

jTs .

Write L(G) =
⎛

⎝
A11 AT

21 AT
31

A21 Is OT

A31 O A33

⎞

⎠, where A11 =
(
d(u) a
a d(v)

)
, a = 0 or −1 depen-

dent on uv ∈ E(G) or not; A21 = (
0s − j s

)
; 0s is a zero column vector of length

s; O is a zero matrix of certain size, A31 and A33 are some matrices of certain sizes.

Accordingly, L(Gu) =
⎛

⎝
B11 BT

21 AT
31

B21 Is OT

A31 O A33

⎞

⎠, where B11 =
(
d(u) + s a

a d(v) − s

)
and

B21 = (− j s 0s
)
.

Next

Y TL(Gu)Y = Y1B11Y
T
1 + 2Y2B21Y

T
1 + Y2Y

T
2 + 2Y3A31Y

T
1 + Y3A33Y

T
3

= (X1B11X
T
1 + 2Y2B21X

T
1 + Y2Y

T
2 ) + 2X3A31X

T
1 + X3A33X

T
3

= (X1B11X
T
1 + 2Y2B21X

T
1 + Y2Y

T
2 ) + λ − 2X2A21X

T
1 − X2X

T
2 − X1A11X

T
1

=
(
X1(B11 − A11)X

T
1 − 2sX (u)2

d(u)(1 − λ)
+ sX (u)2

d(u)(1 − λ)2

)
+ λ

+ 2sX (v)2

d(v)(1 − λ)
− sX (v)2

d(v)(1 − λ)2

=
(
sX (u)2

d(u)
− sX (v)2

d(v)
− 2sX (u)2

d(u)(1 − λ)
+ sX (u)2

d(u)(1 − λ)2

)
+ λ

+ 2sX (v)2

d(v)(1 − λ)
− sX (v)2

d(v)(1 − λ)2
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= λ + s

[
X (u)√
d(u)

− X (u)

(1 − λ)
√
d(u)

]2
− s

[
X (v)√
d(v)

− X (v)

(1 − λ)
√
d(v)

]2

= λ + sλ2

(1 − λ)2

(
X (u)2

d(u)
− X (v)2

d(v)

)
.

So

λ(Gu) − λ ≥ Y TL(Gu)Y

Y T Y
− λ =

sλ(2−λ)
λ−1

(
X (u)2

d(u)
− X (v)2

d(v)

)

Y T Y
. (2.2)

Since G is a connected non-bipartite graph and G 	= Kn , we have 1 < λ(G) < 2 [4].
Therefore, we have λ(Gu) ≥ λ when |X (u)|√

d(u)
≥ |X (v)|√

d(v)
.

If λ(Gu) = λ, then the equality in Eq. (2.2) holds. So λ(Gu) = Y TL(Gu)Y
Y T Y

. We have
L(Gu)Y = λ(Gu)Y (see [6]). Thus, from Lemma 2.1 we have

√
d(v) − s(1 − λ(Gu))Y (v) =

∑

w∈V (Gu),wv∈E(Gu)

1√
d(w)

X (w); (2.3)

√
d(v)(1 − λ)X (v) =

∑

w∈V (Gu),wv∈E(Gu)

1√
d(w)

X (w) +
s∑

i=1

X (vi ). (2.4)

Note that Y (v) =
√

d(v)−s
d(v)

X (v). Thus, from Eqs. (2.1), (2.3) and (2.4), we have

d(v) − s√
d(v)

(1 − λ)X (v) = √
d(v)(1 − λ)X (v) − s√

d(v)(1 − λ)
X (v).

Simplifying the above equation, we have λ(λ − 2)X (v) = 0. Since λ 	= 2, we have
X (v) = 0. From Eq. (2.2) we get X (u) = 0. So we have the last result. ��

From Theorem 2.2, we immediately have the following result.

Corollary 2.3 Suppose that u, v are two distinct vertices of a connected non-bipartite
graph G, uu1, . . . , uut and vv1, . . . , vvs are t (t ≥ 1) and s (s ≥ 1) pendant edges
of G at vertices u and v, respectively. Let X be a unit eigenvector of G corresponding
to λ(G). Let

Gu = G − vv1 − vv2 − · · · − vvs + uv1 + uv2 + · · · + uvs;
Gv = G − uu1 − uu2 − · · · − uut + vu1 + vu2 + · · · + vut .

Then either λ(Gu) ≥ λ(G) or λ(Gv) ≥ λ(G) holds. Furthermore, if X (u) 	= 0 or
X (v) 	= 0, then either λ(Gu) > λ(G) or λ(Gv) > λ(G).

Corollary 2.4 Suppose that v is a vertex of a connected non-bipartite graph G, and
vv1, vv2, . . . , vvs are s (s ≥ 2) pendant edges of G at vertex v. Let X be a unit
eigenvector of G corresponding to λ(G). Let

G ′ = G − vv2 − · · · − vvs + v1v2 + · · · + v1vs
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Then we have λ(G ′) ≥ λ(G). Furthermore, if X (v) 	= 0, then we have λ(G ′) > λ(G).

Proof From Lemma 2.1, we have (1−λ(G))X (v1) = 1√
d(v)

X (v). Since 1 < λ(G) <

2, we have |X (v1)| ≥ 1√
d(v)

|X (v)|. Note that if X (v) 	= 0, then X (v1) 	= 0. The result
follows from Theorem 2.2. ��

In [3,7], the authors considered how the normalized Laplacian eigenvalues of a
graph behave by deleting an edge.

Lemma 2.5 Let G be a simple graph and H = G − e be the graph obtained from G
by removing an edge e. Then λi−1(G) ≤ λi (H) ≤ λi+1(G) for i = 1, . . . , n, where
λ0(G) = 0 and λn+1(G) = 2.

For the normalized Laplacian spectral radius of a non-bipartite graph, we have the
following further result.

Theorem 2.6 Suppose that u is a vertex of a non-bipartite graph G. Let Gv be the
graph obtained from G by attaching a pendant edge uv at u of G. Let X be a unit
eigenvector of G corresponding to λ(G). Then we have λ(Gv) ≥ λ(G), the inequality
is strict if X (u) 	= 0.

Proof Let Y be a valuation of Gv such that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Y (u) =
√

d(u)+1
d(u)

X (u);
Y (v) = − X (u)√

d(u)
;

Y (w) = X (w), w 	= u, v.

Then, we have

λ(Gv) − λ(G) = max
Z 	=0

ZTL(Gv)Z

ZT Z
− λ(G) ≥ Y TL(Gv)Y

Y T Y
− λ(G)

=
λ(G) + ( 2X (u)√

d(u)

)2

1 + 2X (u)2

d(u)

− λ(G) =
2(2−λ(G))X (u)2

d(u)

1 + 2X (u)2

d(u)

.

Since G is a connected non-bipartite graph, we have 1 < λ(G) < 2 [4]. From the
above equation, the result follows. ��

3 The Largest Normalized Laplacian Spectral Radius of Non-Bipartite
Unicyclic Graphs

A pendant is a vertex with degree 1. A pendant neighbor (which is also called support
in some articles) is a vertex adjacent to a pendant. Suppose that v1, . . . , vq are all
the pendant neighbors of G. Let t (vi ) be the number of pendants adjacent to vi (i =
1, . . . , q), and t (G) = max{t (v1), . . . , t (vq)}. As an application of Corollary 2.3, in

123



The Largest Normalized Laplacian Spectral Radius… S83

Fig. 1 Tadpole graph Cn,g

Cg vn−g v2 v1

the following, we give the largest normalized Laplacian spectral radius of non-bipartite
unicyclic graphs with fixed girth and order.

A tadpole graphCn,g , shown in Fig. 1, is the graph obtained by appending a g-cycle
Cg to a pendant of a path on n − g vertices.

Theorem 3.1 Let G be a non-bipartite unicyclic graph on n vertices with girth g ≥ 3.
Then λ(G) ≤ λ(Cn,g). The equality holds if and only if G is isomorphic to Cn,g.

Proof Let q(G) be the number of pendant neighbors of G. We consider the following
three cases:

Case 1. Suppose q(G) = 0. Then G = Cn . The result is obvious.
Case 2. Suppose q(G) = 1. Then G = Cn,g(s), where Cn,g(s) is the graph of

order n obtained from Cg and K1,s by joining a vertex w in Cg and the center u of
K1,s by a path ww1 · · · wn−g−s−1u. If s = 1, then Cn,g(s) = Cn,g , and the result is
obvious. Suppose s ≥ 2. Let v1, . . . , vs be all the pendant vertices ofCn,g(s). Let X be
the unit eigenvector of Cn,g(s) corresponding to λ(Cn,g(s)). Applying Corollary 2.4
repeatedly, we have λ(Cn,g(s)) ≤ λ(Cn,g).

Suppose λ(Cn,g(s)) = λ(Cn,g). From Corollary 2.4 we have X (v1) = 0. Applying
Lemma 2.1 repeatedly, we have

X (v1) = · · · = X (vs) = X (u) = X (wn−g−s−1) = · · · = X (w1) = X (w) = 0.
(3.1)

Then X is an eigenvector of Cn,g corresponding to λ(Cn,g). According Eq. (3.1)
we see that λ(Cn,g) is also a normalized Laplacian eigenvalue of the graph Cn−k,g

(1 ≤ k ≤ n − g). From Theorem 2.6, we have λ(Cn,g) = λ(Cg+2,g) = λ(Cg).
From Lemma 2.5 and Eq. (1.2), we have λ(Cg+2,g) ≥ λg+1(Pg+2) = 1− cos gπ

g+1 >

1 − cos (g−1)π
g = λ(Cg), which yields a contradiction.

Case 3. Suppose q(G) ≥ 2. Let u1 and u2 be two of pendant neighbors of G such
that 1 ≤ t (u2) ≤ t (u1) = t (G). Let G1 (resp. G2) be the graph obtained from G
by removing t (u1) (resp. t (u2)) pendant edges from vertex u1 (resp. u2) to vertex u2
(resp. u1). Then we have t (G1) = t (G2) > t (G) and from Corollary 2.3, we have
either λ(G1) ≥ λ(G) or λ(G2) ≥ λ(G). Note that the number of pendant neighbors
may not decrease.We continue the above process until there remains only one pendant
neighbor. Since the t value of graph is strictly increasing and the number of vertices
outside the cycle Cg is finite, the process will stop. Then the last constructed graph is
Cn,g(s), for some s (s ≥ 2). Moreover, λ(G) ≤ λ(Cn,g(s)). It refers to Case 2. ��

For the largest normalized Laplacian spectral radius among all non-bipartite uni-
cyclic graphs, we have the following result.

Theorem 3.2 Let G be a non-bipartite unicyclic graph on n vertices. Then λ(G) ≤
λ(Cn,3), the equality holds if and only if G = Cn,3.
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Proof If G is a unicyclic graph with girth 3, then the result follows from Theorem 3.1.
Now suppose that G is a non-bipartite unicyclic graph with girth g ≥ 5. Then from
Theorem 3.1, we only need to prove that for g ≥ 5, λ = λ(Cn,g) < λ(Cn,3). Suppose
that the unique cycle of Cn,g is Cg = u1u2 · · · ugu1 with d(u1) = 3. Let X be a unit
eigenvector of Cn,g corresponding to λ. Since g is odd, there exist two vertices, say
ui and ui+1, such that X (ui )X (ui+1) ≥ 0 (if i = g, then i + 1 = 1). We consider the
following two cases.

Case 1. If d(ui ) = d(ui+1) = 2, then after rearranging the indices of the vertices in
Cg , we may suppose that

X (ui ) ≥ 0, X (ui+1) ≥ 0,
X (ui−1)√
d(ui−1)

− X (ui+2)√
d(ui+2)

≤ 0. (3.2)

From Lemma 2.1, we have

√
d(ui )(1 − λ)X (ui ) = X (ui−1)√

d(ui−1)
+ X (ui+1)√

d(ui+1)
;

√
d(ui+1)(1 − λ)X (ui+1) = X (ui )√

d(ui )
+ X (ui+2)√

d(ui+2)
.

From the above two equations, we have

X (ui−1)√
d(ui−1)

+ X (ui+2)√
d(ui+2)

=
[√

d(ui )(1 − λ) − 1√
d(ui )

]
X (ui )

+
[
√
d(ui+1)(1 − λ) − 1√

d(ui+1)

]
X (ui+1). (3.3)

Let H = Cn,g − uiui−1 + uiui+2. It is obvious that H is a unicyclic graph with girth
3. Note that λ(H) ≤ λ(Cn,3) by Theorem 3.1. Let Y be a valuation of H such that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Y (ui−1) =
√

d(ui−1)−1
d(ui−1)

X (ui−1);
Y (ui+2) =

√
d(ui+2)+1
d(ui+2)

X (ui+2);
Y (w) = X (w), w 	= ui−1, ui+2.

Similar to the proof of Theorem 2.2, we rearrange the order of vertices as
ui−1, ui+2, ui , ui+1 and the others are arranged after ui+1 arbitrary and partition
XT D(Cn,g)

−1/2 into three parts (X1, X2, X3), where XT
1 , XT

2 ∈ R
2 and XT

3 ∈ R
n−4.

Namely, X1 = (
X (ui−1)√
d(ui−1)

,
X (ui+2)√
d(ui+2)

) and X2 = (
X (ui )√
d(ui )

,
X (ui+1)√
d(ui+1)

). We also parti-

tion Y T D(Gu)
−1/2 into three parts (Y1,Y2,Y3) accordingly. We have (Y1,Y2,Y3) =

(X1, X2, X3).
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Write L(G) =
⎛

⎜⎝
A11 A12 A13

AT
12 A22 A23

AT
13 AT

23 A33

⎞

⎟⎠, where A11 =
(
d(ui−1) 0

0 d(ui+1)

)
and

A12 =
(−1 0

0 −1

)
. Accordingly, L(H) =

⎛

⎜⎝
B11 B12 A13

BT
12 A22 A23

AT
13 AT

23 A33

⎞

⎟⎠, where B11 =
(
d(ui−1) − 1 0

0 d(ui+1) + 1

)
and B12 =

(
0 0

−1 −1

)
.

Similarly we have

Y TL(H)Y = XTL(Cn,g)X + X1(B11 − A11)X
T
1 + 2X1(B12 − A12)X

T
2

= λ −
(

X (ui−1)√
d(ui−1)

)2

+
(

X (ui+2)√
d(ui+1)

)2

+ 2

(
X (ui−1)√
d(ui−1)

) (
X (ui )√
d(ui )

)
− 2

(
X (ui+2)√
d(ui+2)

) (
X (ui )√
d(ui )

)

= λ +
[

X (ui )√
d(ui )

− X (ui+2)√
d(ui+2)

]2

−
[

X (ui )√
d(ui )

− X (ui−1)√
d(ui−1)

]2

λ(H) − λ = max
Z 	=0

ZTL(H)Z

ZT Z
− λ ≥ Y TL(H)Y

Y T Y
− λ

=
λ +

[
X (ui )√
d(ui )

− X (ui+2)√
d(ui+2)

]2
−

[
X (ui )√
d(ui )

− X (ui−1)√
d(ui−1)

]2

1 + X (ui+2)
2

d(ui+2)
− X (ui−1)

2

d(ui−1)

− λ

=
(λ − 1)

[
X (ui−1)

2

d(ui−1)
− X (ui+2)

2

d(ui+2)

]
+ 2X (ui )√

d(ui )

[
X (ui−1)√
d(ui−1)

− X (ui+2)√
d(ui+2)

]

1 + X (ui+2)
2

d(ui+2)
− X (ui−1)

2

d(ui−1)

=

[
X (ui−1)√
d(ui−1)

− X (ui+2)√
d(ui+2)

] [
(λ − 1)

(
X (ui−1)√
d(ui−1)

+ X (ui+2)√
d(ui+2)

)
+ 2X (ui )√

d(ui )

]

1 + X (ui+2)
2

d(ui+2)
− X (ui−1)

2

d(ui−1)

.

From Eq. (3.3), we have

(λ − 1)

(
X (ui−1)√
d(ui−1)

+ X (ui+2)√
d(ui+2)

)
+ 2X (ui )√

d(ui )

=
[
(λ − 1)

(√
d(ui )(1 − λ) − 1√

d(ui )

)
+ 2√

d(ui )

]
X (ui )

+ (λ − 1)

[
√
d(ui+1)(1 − λ) − 1√

d(ui+1)

]
X (ui+1).
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Since 1 < λ < 2, we have (λ − 1)

[√
d(ui+1)(1 − λ) − 1√

d(ui+1)

]
< 0.

(λ − 1)

(√
d(ui )(1 − λ) − 1√

d(ui )

)
+ 2√

d(ui )

= (λ − 1)

(√
2(1 − λ) − 1√

2

)
+ 2√

2

= − 1√
2
[2λ2 − 3λ − 1] < 0 if λ >

3 + √
17

4
.

Thus, λ ≤ λ(H) ≤ λ(Cn,3) when λ > 3+√
17

4 .

If λ ≤ 3+√
17

4 , then by direct calculation λ < λ(C5,3) ≈ 1.85657.1 Hence, λ <

λ(Cn,3) from Theorem 2.6.
Suppose λ = λ(Cn,3). Then λ = λ(H) = λ(Cn,3). It implies that X (ui−1)√

d(ui−1)
=

X (ui+2)√
d(ui+2)

. Moreover, by Theorem 3.1, H ∼= Cn,3, and hence, i = 2. Let H∗ = Cn,g −
u3u4+u3u1. Then H � Cn,3. By a similar argument, we have λ < λ(H∗) < λ(Cn,3).

Case 2. If d(ui ) = 3, that is i = 1, then suppose that u1vn−g · · · v2v1 are the pendant
path of Cn,g and d(v1) = 1 (see Fig. 1). Let Y be another valuation of Cn,g such that

{
Y (ui ) = X (ug−i+2), i = 1, . . . , g;
Y (vi ) = X (vi ), i = 1, . . . , n − g.

If we swap the order of ui with ug−i+2 for i = 1, . . . , g (i.e., reverse the order of
vertices inCg), then thematrixL(Cn,g) does not change. So Y is still a unit eigenvector
ofL(Cn,g). Since X−Y is a vector belonging to the eigenspace corresponding to λ and
X (v1) = Y (v1), by the same proof of Case 2 of Theorem3.1, we know that X−Y is not
an eigenvector ofL(Cn,g). That means X−Y = 0n . So X (u2) = Y (u2) = X (ug), and
hence, we have X (u1)X (u2) ≥ 0 and X (u1)X (ug) ≥ 0. Since g is odd, there exist two
vertices, say u j and u j+1, such that X (u j )X (u j+1) ≥ 0 and d(u j ) = d(u j+1) = 2.
It refers to Case 1.

The proof is complete. ��
Acknowledgments This paper was partially supported by General Research Fund of Hong Kong; Faculty
ResearchGrant of HongKongBaptist University; NSF of China (Nos. 11371372, 11101358); NSF of Fujian
(Nos. 2011J05014, 2011J01026); and Project of Fujian Education Department (No. JA11165).

References

1. Banerjee, A.: The spectrum of the graph Laplacian as a tool for analyzing structure and evolution of
networks. Von der Fakultät für Mathematik und Informatik der Universität Leipzig, Ph.D. dissertation
(2008)

1 Actually the characteristic polynomial ofL(C5,3) is
1
12 x(2x −3)(6x3 −21x2 +21x −5) and the largest

eigenvalue is
√
7
3 sin

(
1
3 arctan

(
3
√
31
8

)
+ π

6

)
+ 7

6 .

123



The Largest Normalized Laplacian Spectral Radius… S87

2. Butler, S.: Eigenvalues and structures of graphs. Ph.D. Dissertation, University of California, San Diego
(2008)

3. Chen,G.,Davis,G.,Hall, F., Li, Z., Patel,K., Stewart,M.:An interlacing result onnormalizedLaplacians.
SIAM J. Discret. Math. 18, 353–361 (2004)

4. Chung, F.R.K.: Spectral Graph Theory. American Mathematical Society, Providence (1997)
5. Guo, J.-M., Li, J., Shiu, W.C.: On the Laplacian, signless Laplacian and normalized Laplacian charac-

teristic polynomials of a graph. Czechoslov. Math. J. 63(3), 701–720 (2013)
6. Haemers, W.H.: Interlacing eigenvalues and graphs. Linear Algebr. Appl. 227/228, 593–616 (1995)
7. Li, C.-K.: A short proof of interlacing inequalities on normalized Laplacians. Linear Algebr. Appl. 414,

425–427 (2006)
8. Merris, R.: Laplacian graph eigenvectors. Linear Algebr. Appl. 278, 221–236 (1998)

123


	The Largest Normalized Laplacian Spectral Radius  of Non-Bipartite Graphs
	Abstract
	1 Introduction
	2 The Normalized Laplacian Spectral Radius of a Graph Under Perturbation
	3 The Largest Normalized Laplacian Spectral Radius of Non-Bipartite Unicyclic Graphs
	Acknowledgments
	References




