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1 Introduction

Let R = Fq [y] = Fq [y1, . . . , yn] be a polynomial ring over a finite field Fq and
let yv1 , . . . , yvs be a finite set of monomials in Fq [y]. As usual we denote the affine
and projective spaces over the field Fq of dimensions s and s − 1 by A

s and P
s−1,

respectively. Points of the projective spacePs−1 are denoted by [α], where 0 �= α ∈ A
s .

Communicated by Anton Abdulbasah Kamil.

Azucena Tochimani was partially supported by CONACyT. Rafael H. Villarreal was partially supported
by SNI.

B Rafael H. Villarreal
vila@math.cinvestav.mx

Azucena Tochimani
tochimani@math.cinvestav.mx

1 Departamento deMatemáticas,Centro de Investigación ydeEstudiosAvanzados del IPN,Apartado
Postal 14–740, 07000 Mexico City, DF, Mexico

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40840-015-0239-5&domain=pdf


82 A. Tochimani, R. H. Villarreal

We consider a set X, in the projective space Ps−1, parameterized by yv1 , . . . , yvs .
The set X consists of all points [(xv1 , . . . , xvs )] in P

s−1 that are well defined, i.e.,
x ∈ F

n
q and xvi �= 0 for some i . The set X is called of clutter type if supp(yvi ) �⊂

supp(yv j ) for i �= j , where supp(yvi ) is the support of the monomial yvi consisting
of the variables that occur in yvi . In this case, we say that the set of monomials
yv1 , . . . , yvs is of clutter type. This terminology comes from the fact that the condition
supp(yvi ) �⊂ supp(yv j ) for i �= j means that there is a clutter C, in the sense of [14],
with vertex set V (C) = {y1, . . . , yn} and edge set

E(C) = {supp(yv1), . . . , supp(yvs )}.

A clutter is also called a simple hypergraph, see Definition 2.8.
Let S = Fq [t1, . . . , ts] = ⊕∞

d=0Sd be a polynomial ring over the field Fq with the
standard grading. The graded ideal I (X) generated by the homogeneous polynomials
of S that vanish at all points of X is called the vanishing ideal of X.

There are good reasons to study vanishing ideals over finite fields. They are used
in algebraic coding theory [8] and in polynomial interpolation problems [5,18]. The
Reed–Muller-type codes arising fromvanishing ideals onmonomial parameterizations
have received a lot of attention [1,3,6,8,10,13,14,16].

The vanishing ideal I (X) is a complete intersection if I (X) is generated by s − 1
homogeneous polynomials. Notice that s−1 is the height of I (X) in the sense of [12].
The interest in complete intersection vanishing ideals over finite fields comes from
information and communication theory, and algebraic coding theory [4,7,9].

Let T be a projective torus in Ps−1 (see Definition 2.15) and letX be the set in Ps−1

parameterized by a clutter C (see Definition 2.9). Consider the set X = X∩ T . In [14]
it is shown that I (X) is a complete intersection if and only if X is a projective torus in
P
s−1 . If the clutter C has all its edges of the same cardinality, in [15] a classification

of the complete intersection property of I (X) is given using linear algebra.
Themain result of this paper is a classification of the complete intersection property

of I (X) when X is of clutter type (Theorem 2.19). Using the techniques of [13], this
classification can be used to study the basic parameters [11,19] of the Reed–Muller-
type codes associated to X.

For all unexplained terminology and additional information, we refer to [12] (for
commutative algebra), [2] (for Gröbner bases), and [13,18,19] (for vanishing ideals
and coding theory).

2 Complete Intersections

In this section, we give a full classification of the complete intersection property of
vanishing ideals of sets of clutter type over finite fields. We continue to employ the
notations and definitions used in Sect. 1.

Throughout this section Fq is a finite field, yv1 , . . . , yvs are distinct monomials
in the polynomial ring R = Fq [y] = Fq [y1, . . . , yn], with vi = (vi1, . . . , vin) and
yvi = yvi1

1 · · · yvin
n for i = 1, . . . , s, X is the set in P

s−1 parameterized by these
monomials, and I (X) is the vanishing ideal of X. Recall that I (X) is the graded ideal
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of the polynomial ring S = Fq [t1, . . . , ts] generated by the homogeneous polynomials
of S that vanish on X.

Definition 2.1 Given a = (a1, . . . , an) ∈ N
n , we set ya := ya11 · · · yann . The support

of ya , denoted supp(ya), is the set of all yi such that ai > 0.

Definition 2.2 The set X is of clutter type if supp(yvi ) �⊂ supp(yv j ) for i �= j .

Definition 2.3 A binomial of S is an element of the form f = ta − tb, for some a, b
in Ns . An ideal generated by binomials is called a binomial ideal.

The set S = P
s−1 ∪ {[0]} is a monoid under componentwise multiplication, that

is, given [α] = [(α1, . . . , αs)] and [β] = [(β1, . . . , βs)] in S, the operation of this
monoid is given by

[α] · [β] = [α1β1, . . . , αsβs],

where [1] = [(1, . . . , 1)] is the identity element.

Theorem 2.4 ([17, Corollary 3.7]) If Fq is a finite field and Y is a subset of Ps−1,
then I (Y) is a binomial ideal if and only if Y ∪ {[0]} is a submonoid of Ps−1 ∪ {[0]}.
Remark 2.5 Since X is parameterized by monomials, the set X ∪ {[0]} is a monoid
under componentwise multiplication. Hence, by Theorem 2.4, I (X) is a binomial
ideal.

Lemma 2.6 Let yv1 , . . . , yvs be a set of monomials such that supp(yvi ) �⊂ supp(yv j )

for any i �= j and let G be a minimal generating set of I (X) consisting of binomials.
The following hold.

(a) If 0 �= f = t
a j
j − tc for some 1 ≤ j ≤ s, some positive integer a j , and some

c ∈ N
s , then f /∈ I (X).

(b) For each pair 1 ≤ i < j ≤ s, there is gi j in G such that gi j = ±(t
ci j
i t j − tbi j ),

where ci j is a positive integer less than or equal to q and bi j ∈ N
s \ {0}.

(c) For each pair 1 ≤ i < j ≤ s, there is hi j in G such that hi j = ±(ti t
ai j
j − tei j ),

where ai j is a positive integer less than or equal to q and ei j ∈ N
s \ {0}.

(d) If I (X) is a complete intersection, then s ≤ 4.

Proof (a) We proceed by contradiction. Assume that f is in I (X). Since I (X) is a
graded binomial ideal, the binomial f is homogeneous of degree a j , otherwise t

a j
j

and tc would be in I (X) which is impossible. Thus c ∈ N
s \ {0}. Hence, as f �= 0, we

can pick ti ∈ supp(tc) with i �= j . By hypothesis there is yk ∈ supp(yvi ) \ supp(yv j ),
i.e., vik > 0 and v jk = 0. Making yk = 0 and y� = 1 for � �= k, we get that
f (yv1 , . . . , yvs ) = 1, a contradiction.
(b) The binomial h = tqi t j − ti t

q
j vanishes at all points of P

s−1, i.e., h is in I (X).

Thus there is gi j inG such that tqi t j is a multiple of one of the two terms of the binomial
gi j . Hence, by part (a), the assertion follows.

(c) Since h = tqi t j − ti t
q
j is in I (X), there is hi j in G such that ti t

q
j is a multiple of

one of the two terms of the binomial hi j . Hence, by part (a), the assertion follows.
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(d) Since I (X) is a complete intersection, there is a set of binomials G =
{g1, . . . , gs−1} that generate I (X). The number of monomials that occur in g1, . . . ,
gs−1 is at most 2(s − 1). Thanks to part (b) for each pair 1 ≤ i < j ≤ s, there
is a monomial t

ci j
i t j , with ci j ∈ N+, and a binomial gi j in G such that the mono-

mial t
ci j
i t j occurs in gi j . As there are at least s(s − 1)/2 of these monomials, we get

s(s − 1)/2 ≤ 2(s − 1). Thus s ≤ 4. 
�
Lemma 2.7 Let K be a field and let I be the ideal of S = K [t1, t2, t3, t4] generated
by the binomials g1 = t1t2 − t3t4, g2 = t1t3 − t2t4, g3 = t2t3 − t1t4. The following
hold.

(i) G = {t2t3 − t1t4, t1t3 − t2t4, t1t2 − t3t4, t22 t4 − t23 t4, t
2
1 t4 − t23 t4, t

3
3 t4 − t3t34 } is a

Gröbner basis of I with respect to the GRevLex order ≺ on S.
(ii) If char(K ) = 2, then rad(I ) �= I .
(iii) If char(K ) �= 2 and ei is the i-th unit vector, then I = I (X), where

X = {[e1], [e2], [e3], [e4], [(1,−1,−1, 1)], [(1, 1, 1, 1)],
[(−1,−1, 1, 1)], [(−1, 1,−1, 1)]}.

Proof (i) Using Buchberger’s criterion [2, p. 84], it is seen that G is a Gröbner basis
of I .

(ii) Setting h = t1t2 − t1t3, we get h2 = (t1t2)2 − (t1t3)2 = t1t2g1 + t1t3g2, where
g1 = t1t2 − t3t4 and g2 = t1t3 − t2t4. Thus h ∈ rad(I ). Using part (i) it is seen that
h /∈ I .

(iii) As gi vanishes at all points ofX for i = 1, 2, 3, we get the inclusion I ⊂ I (X).
SinceX∪{0} is a monoid under componentwise multiplication, by Theorem 2.4, I (X)

is a binomial ideal. Take a homogeneous binomial f in S that vanishes at all points of
X. Let h = ta − tb, a = (ai ), b = (bi ), be the residue obtained by dividing f by G.
Hence we can write f = g + h, where g ∈ I and the terms ta and tb are not divisible
by any of the leading terms of G. It suffices to show that h = 0. Assume that h �= 0.
As h ∈ I (X) and [ei ] is in X for all i , we get that |supp(ta)| ≥ 2 and |supp(tb)| ≥ 2.
It follows that h has one of the following forms:

h = t1t
i
4 − t2t

i
4, h = t1t

i
4 − t3t

i
4, h = t2t

i
4 − t3t

i
4,

h = t23 t
i−1
4 − t3t

i
4, h = t23 t

i−1
4 − t2t

i
4, h = t23 t

i−1
4 − t1t

i
4,

where i ≥ 1, a contradiction because none of these binomials vanishes at all points of
X. 
�
Definition 2.8 A hypergraphH is a pair (V (H), E(H)) such that V (H) is a finite set
and E(H) is a subset of the set of all subsets of V (H). The elements of E(H) and
V (H) are called edges and vertices, respectively. A hypergraph is simple if f1 �⊂ f2
for any two edges f1, f2. A simple hypergraph is called a clutter and will be denoted
by C instead of H.

One example of a clutter is a graph with the vertices and edges defined in the usual
way.
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Definition 2.9 LetC be a clutterwithvertex setV (C) = {y1, . . . , yn}, let f1, . . . , fs be
the edges of C and let vk = ∑

xi∈ fk ei be the characteristic vector of fk for 1 ≤ k ≤ s,

where ei is the i-th unit vector. The set in the projective space Ps−1 parameterized by
yv1 , . . . , yvs , denoted by XC , is called the projective set parameterized by C.
Lemma 2.10 Let Fq be a finite field with q �= 2 elements, let C be a clutter with
vertices y1, . . . , yn, let v1, . . . , vs be the characteristic vectors of the edges of C and
let XC be the projective set parameterized by C. If f = ti t j − tk t� ∈ I (XC), with
i, j, k, l distinct, then yvi yv j = yvk yv� .

Proof For simplicity assume that f = t1t2 − t3t4. Setting A1 = supp(yv1 yv2), A2 =
supp(yv3 yv4), S1 = supp(yv1) ∩ supp(yv2), and S2 = supp(yv3) ∩ supp(yv4), it
suffices to show the equalities A1 = A2 and S1 = S2. If A1 �⊂ A2, pick yk ∈ A1 \ A2.
Making yk = 0 and y� = 1 for � �= k, and using that f vanishes on XC , we get
that f (yv1 , . . . , yv4) = −1 = 0, a contradiction. Thus A1 ⊂ A2. The other inclusion
follows by a similar reasoning. Next we show the equality S1 = S2. If S1 �⊂ S2, pick a
variable yk ∈ S1 \ S2. Let β be a generator of the cyclic group F∗

q = Fq \ {0}. Making
yk = β, y� = 1 for � �= k, and using that f vanishes onXC and the equality A1 = A2,
we get that f (yv1 , . . . , yv4) = β2 −β = 0. Hence β2 = β and β = 1, a contradiction
because q �= 2. Thus S1 ⊂ S2. The other inclusion follows by a similar argument. 
�
Remark 2.11 Let Fq be a finite field with q odd and let X be the set of clutter type in
P
3 parameterized by the following monomials:

yv1 = yq−1
1 yr2 y

r
3 y

q−1
4 yq−1

5 yq−1
6 yq−1

7 ,

yv2 = yr1 y
r
2 y

q−1
3 yq−1

4 yq−1
5 yq−1

6 yq−1
8 ,

yv3 = yr1 y
q−1
2 yr3 y

q−1
4 yq−1

5 yq−1
7 yq−1

8 ,

yv4 = yq−1
1 yq−1

2 yq−1
3 yq−1

4 yq−1
6 yq−1

7 yq−1
8 ,

where r = (q − 1)/2. Then

X = {[e1], [e2], [e3], [e4], [(1,−1,−1, 1)],
[(1, 1, 1, 1)], [(−1,−1, 1, 1)], [(−1, 1,−1, 1)]},

|X| = 8 and I (X) = (t1t2 − t3t4, t1t3 − t2t4, t2t3 − t1t4).

Below we show that the setX of Remark 2.11 cannot be parameterized by a clutter.

Remark 2.12 Let Fq be a finite field with q �= 2 elements. Then the ideal

I = (t1t2 − t3t4, t1t3 − t2t4, t2t3 − t1t4)

cannot be the vanishing ideal of a set in P3 parameterized by a clutter. Indeed assume
that there is a clutter C such that I = I (XC) and XC ⊂ P

3. If v1, . . . , v4 are the
characteristic vectors of the edges ofC. Then, byLemma2.10,we get v1+v2 = v3+v4,
v1 + v3 = v2 + v4 and v2 + v3 = v1 + v4. It follows that v1 = v2 = v3 = v4, a
contradiction.
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Lemma 2.13 Let K be a field and let I be the ideal of S = K [t1, t2, t3] generated by
the binomials g1 = t1t2 − t2t3, g2 = t1t3 − t2t3. The following hold.

(i) G = {t1t3 − t2t3, t1t2 − t2t3, t22 t3 − t2t23 } is a Gröbner basis of I with respect to
the GRevLex order ≺ on S.

(ii) I = I (X), where X = {[e1], [e2], [e3], [(1, 1, 1)]}.
Proof It follows using the arguments given in Lemma 2.7. 
�
Remark 2.14 Let Fq be a finite field with q elements and let X be the projective set
in P2 parameterized by the following monomials:

yv1 = yq−1
1 yq−1

2 , yv2 = yq−1
2 yq−1

3 , yv3 = yq−1
1 yq−1

3 .

Then X = {[e1], [e2], [e3], [(1, 1, 1)]} and I (X) = (t1t2 − t2t3, t1t3 − t2t3).

Definition 2.15 The set T = {[(x1, . . . , xs)] ∈ P
s−1| xi ∈ F

∗
q for all i} is called a

projective torus in Ps−1.

Lemma 2.16 Let β be a generator of F∗
q and 0 �= r ∈ N. Suppose s = 2. If I =

(tr+1
1 t2 − t1t

r+1
2 ) and r divides q − 1, then I = I (X), where X is the set of clutter

type in P1 parameterized by yq−1
1 , yq−1

2 yk3 and r = o(βk).

Proof We set f = tr+1
1 t2 − t1t

r+1
2 . Take a point P = [(xq−1

1 , xq−1
2 xk3 )] in X. Then

f (P) = (xq−1
1 )r+1(xq−1

2 xk3 ) − (xq−1
1 )(xq−1

2 xk3 )
r+1.

We may assume x1 �= 0 and x2 �= 0. Then f (P) = xk3 − (xk3 )
r+1. If x3 �= 0, then

x3 = β i for some i and (xk3 )
r+1 = xk3 , that is, f (P) = 0. Therefore, one has the

inclusion ( f ) ⊂ I (X).
Next we show the inclusion I (X) ⊂ ( f ). By Theorem 2.4, I (X) is a binomial ideal.

Take a non-zero binomial g = ta11 ta22 −tb11 tb22 that vanishes onX. Thena1+a2 = b1+b2
because I (X) is graded. We may assume that b1 > a1 and a2 > b2. We may also
assume that a1 > 0 and b2 > 0 because {[e1], [e2]} ⊂ X. Then g = ta11 tb22 (ta2−b2

2 −
tb1−a1
1 ). As g vanishes on X, making y3 = β and y1 = y2 = 1, we get (βk)a2−b2 = 1.

Hence a2 − b2 = λr for some λ ∈ N+, where r = o(βk). Thus ta2−b2
2 − tb1−a1

1 is
equal to tλr2 − tλr1 ∈ (tr1 − tr2 ). Therefore, g is a multiple of f = t1t2(tr1 − tr2 ) because
a1 > 0 and b2 > 0. Thus g ∈ ( f ). 
�
Lemma 2.17 If {[e1], [e2]} ⊂ Y ⊂ P

1 andY∪{0} is a monoid under componentwise
multiplication, then there is 0 �= r ∈ N such that I (Y) = (tr+1

1 t2 − t1t
r+1
2 ) and r

divides q − 1.

Proof We set f = tr+1
1 t2 − t1t

r+1
2 and X = Y ∩ T , where T is a projective torus

in P
1. The set X is a group, under componentwise multiplication, because X is a

finite monoid and the cancellation laws hold. By Theorem 2.4, I (Y) is a binomial
ideal. Clearly ( f ) ⊂ I (Y). To show the other inclusion take a non-zero binomial
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g = ta11 ta22 − tb11 tb22 that vanish onY. Then a1 +a2 = b1 +b2 because I (Y) is graded.
We may assume that b1 > a1 and a2 > b2. We may also assume that a1 > 0 and
b2 > 0 because {[e1], [e2]} ⊂ X. Then g = ta11 tb22 (ta2−b2

2 − tb1−a1
1 ). The subgroup of

F
∗
q given by H = {ξ ∈ F

∗
q | [(1, ξ)] ∈ X} has order r = |X |. Pick a generator β of

the cyclic group F
∗
q . Then H is a cyclic group generated by βk for some k ≥ 0. As g

vanishes onY, one has that ta2−b2
2 −tb1−a1

1 vanishes on X . In particular (βk)a2−b2 = 1.
Hence a2 − b2 = λr for some λ ∈ N+, where r = o(βk) = |X |. Proceeding as in the
proof of Lemma 2.16 one derives that g ∈ ( f ). Noticing that H is a subgroup of F∗

q ,
we obtain that r divides q − 1. 
�
Definition 2.18 An ideal I ⊂ S is called a complete intersection if there exists
g1, . . . , gr in S such that I = (g1, . . . , gr ), where r is the height of I .

Recall that a graded ideal I is a complete intersection if and only if I is
generated by a homogeneous regular sequence with ht(I ) elements (see [20, Proposi-
tion 2.3.19, Lemma 2.3.20]).

Theorem 2.19 Let Fq be a finite field and letX be a set inPs−1 parameterized by a set
of monomials yv1 , . . . , yvs such that supp(yvi ) �⊂ supp(yv j ) for any i �= j . Then I (X)

is a complete intersection if and only if s ≤ 4 and, up to permutation of variables,
I (X) has one of the following forms:

(i) s = 4, q is odd and I = (t1t2 − t3t4, t1t3 − t2t4, t2t3 − t1t4).
(ii) s = 3 and I = (t1t2 − t2t3, t1t3 − t2t3).
(iii) s = 2 and I = (tr+1

1 t2 − t1t
r+1
2 ), where 0 �= r ∈ N is a divisor of q − 1.

(iv) s = 1 and I = (0).

Proof ⇒): Assume that I (X) is a complete intersection. By Lemma 2.6(d) one has
s ≤ 4.Case (i):Assume that s = 4. Setting I = I (X), by hypothesis I is generated by3
binomials g1, g2, g3. By parts (b) and (c) of Lemma 2.6, for each pair 1 ≤ i < j ≤ 4
there are positive integers ci j and ai j such that t

ci j
i t j and ti t

ai j
j occur as terms in

g1, g2, g3. Since there are at most 6 monomials that occur in the gi ’s, we get that
ci j = ai j = 1 for 1 ≤ i < j ≤ 4. Fixing the monomial t1t2 as a member of the first
binomial, up to permutation of variables, there are 3 subcases to consider:

(a) : g1 = t1(t2 − t3), g2 = t1t4 − t2t3, g3 = t4(t2 − t3).

(b) : g1 = t1(t2 − t3), g2 = t4(t1 − t3), g3 = t2(t3 − t4).

(c) : g1 = t1t2 − t3t4, g2 = t1t3 − t2t4, g3 = t2t3 − t1t4.

Subcase (a): This case cannot occur because the ideal (g1, g2, g3) has height 2.
Subcase (b): The reduced Gröbner basis of I = (g1, g2, g3) with respect to the

GRevLex order ≺ is given by

g1 = t1t2 − t1t3, g2 = t1t4 − t3t4, g3 = t2t3 − t2t4,

g4 = t23 t4 − t2t
2
4 , g5 = t1t

2
3 − t2t

2
4 , g6 = t22 t

2
4 − t2t

3
4 .
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Hence the binomial h = t2t4 − t3t4 /∈ I because t2t4 does not belong to in≺(I ), the
initial ideal of I . Since h2 = −2t24 g3+ t4g4+g6, we get that h ∈ rad(I ). Thus I is not
a radical ideal which is impossible because I = I (X) is a vanishing ideal. Therefore,
this case cannot occur.

Subcase (c): In this case, one has I = (t1t2−t3t4, t1t3−t2t4, t2t3−t1t4), as required.
From Lemma 2.7, we obtain that q is odd.

Case (ii): Assume that s = 3. By hypothesis I = I (X) is generated by 2 binomials
g1, g2. By parts (b) and (c) of Lemma 2.6, for each pair 1 ≤ i < j ≤ 3 there are
positive integers ci j and ai j such that t

ci j
i t j and ti t

ai j
j occur as terms in g1, g2. Since

there are at most 4 monomials that occur in the gi ’s it is seen that, up to permutation
of variables, there are 2 subcases to consider:

(a) : g1 = t1t3 − t2t3, g2 = tc121 t2 − t1t
a12
2 with c12 = a12 ≥ 2.

(b) : g1 = t1t2 − t2t3, g2 = t1t3 − t2t3.

Subcase (a) cannot occur because the ideal I = (g1, g2), being contained in (t1 − t2),
has height 1. Thus we are left with subcase (b), that is, I = (t1t2 − t2t3, t1t3 − t2t3),
as required.

Case (iii): If s = 2, then X is parameterized by yv1 , yv2 . Pick yk ∈ supp(yv1) \
supp(yv2). Making yk = 0 and y� = 1 for � �= k, we get that [e2] ∈ X, and by a similar
argument [e1] ∈ X. As X ∪ {[0]} is a monoid under componentwise multiplication,
by Lemma 2.17, I (X) has the required form.

Case (iv): If s = 1, this case is clear.
⇐) The converse is clear because the vanishing ideal I (X) has height s − 1. 
�

Proposition 2.20 If I is an ideal of S of one of the following forms:

(i) s = 4, q is odd and I = (t1t2 − t3t4, t1t3 − t2t4, t2t3 − t1t4),
(ii) s = 3 and I = (t1t2 − t2t3, t1t3 − t2t3),
(iii) s = 2 and I = (tr+1

1 t2 − t1t
r+1
2 ), where 0 �= r ∈ N and r divides q − 1,

then there is a set X in Ps−1 of clutter type such that I is the vanishing ideal I (X).

Proof The result follows from Lemma 2.7 and Remark 2.11, Lemma 2.13 and
Remark 2.14, and Lemma 2.16, respectively. 
�
Problem 2.21 LetX be a set of clutter type such that I (X) is a complete intersection.
Using the techniques of [4,10,13,14] and Theorem 2.19 find formulae for the basic
parameters of the Reed–Muller-type codes associated to X.

Acknowledgements We thank the referees for their careful reading of the paper and for the improvements
they suggested.
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