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Abstract In this paper, we study the solvability of a system of vector equilibrium
problems. We extend the concept of topological pseudomonotonicity to a family of
mappings. We prove existence results for the system of vector equilibrium problems
under topological pseudomonotonicity conditions by the Kakutani–Fan–Glicksberg
fixed point theorem. As applications, we obtain existence results for systems of equi-
librium problems under topological pseudomonotonicity conditions.

Keywords Systems of vector equilibrium problems · Topological
pseudomonotonicity · Kakutani–Fan–Glicksberg fixed point · Solvability

Mathematics Subject Classification 49J40 · 47H10

1 Introduction

The equilibrium problem considered by Blum and Oettli [8] has wide applications in
the problems arising in game theory, economics, operations research, and engineering
science. The equilibrium problem is very general in the sense that it includes the vari-
ational inequality problem, the Nash equilibrium problem, the minimization problem,
the fixed point problem, and the complementarity problem as special cases (see, for
instance, Blum and Oettli [8]). Due to its wide applications, the equilibrium problem
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has been studied intensively(see e.g., [5,6,8,20,28]). The vector equilibrium, as a vec-
tor extension of the equilibrium problem, has also been studied by many authors (see
e.g., [7,10,21,27]). The studyof the vector equilibriumproblemwas initiallymotivated
by the earlier works on the vector variational inequalities([13,14,23,34]). Solvability
is one of the most interesting and important topics in the field of variational inequal-
ities and equilibrium problems. A very large number of papers in the literature deal
with the existence of solutions for variational inequalities and equilibrium problems.
In order to establish existence results, a usual and useful assumption is generalized
monotonicity (in the Karamardian’s sense [29]) (see e.g., [5–8,13,14,20,23,29]). In
recent years, some authors studied the existence of solutions for variational inequalities
and equilibrium problems by using (S+)-conditions instead of generalizedmonotonic-
ity conditions (see e.g., [11,16,21,25]). Recently, Chadli et al. [10] extended the
concept of topological pseudomonotonicity [9] to vector-valued bifunctions and
derived some existence results for vector equilibrium problems by using topologi-
cal pseudomonotonicity instead of generalized monotonicity and (S+)-conditions.

On the other hand, various systems of variational inequality problems and systems
of equilibrium problems have been introduced and studied by many authors. Kassay
and Kolumbán [30] introduced a system of variational inequalities and established
an existence theorem by using Ky Fan lemma. Kassay et al. [31] further introduced
and studied Minty and Stampacchia variational inequality systems. Fang and Huang
[22] established some existence results for systems of vector equilibriums by using
the Kakutani–Fan–Glicksberg fixed point theorem [24]. Ansari and others [1–3] intro-
duced and studied systems of vector equilibrium problems by using amaximal element
theorem due to Deguire et al. [17]. For more works on this topic, we refer the readers
to [12,18,19,32] and the references therein.

Motivated and inspired by the above works, in this paper, we study the solvability
of a system of vector equilibrium problems with topological pseudomonotonicity. We
extend the concept of topological pseudomonotonicity to a family of mappings. We
prove existence results for the system of vector equilibrium problems under topo-
logical pseudomonotonicity conditions. As applications, we obtain existence results
for systems of scalar equilibrium problems under topological pseudomonotonicity
conditions. Our results generalize the results of [10] to the system of vector equi-
librium problems. The rest of this paper is organized as follows: In Sect. 2, we give
some concepts and notations. In Sect. 3, we introduce some concepts of topological
pseudomonotonicity. Section 4 is devoted to the existence of solutions to the system
of vector equilibrium problems.

2 Preliminaries and Notations

In this section, we recall some concepts and notations. Let Z be a real Hausdorff
topological vector space with an ordering cone C , that is, C is a closed convex cone
in Z with int C �= ∅ and C �= Z , where int C denotes the interior of C . Let D be a
nonempty subset of a real Hausdorff topological vector space E .

Definition 2.1 [4] A mapping F : D → 2Z (the family of all nonempty subsets of
Z ) is said to be

123



Solvability of a System of Vector Equilibrium... 1381

(1) upper semicontinuous at x ∈ D if for any open set V containing F(x), there exists
a neighborhood U of x such that F(U ) ⊂ V ;

(2) upper semicontinuous on D if F is upper semicontinuous at every x ∈ D; and
(3) closed if the graph Graph F = {(x, u) ∈ D × X : u ∈ F(x)} of F is closed.

Remark 2.1 If the image of F is contained in a compact subset of Z , then F : D → 2Z

is upper semicontinuous if and only if F is closed.

Definition 2.2 [7,33] A mapping f : D → Z is said to be C-upper semicontinuous
on D if it satisfies one of the following three equivalent conditions:

(i) For any a ∈ Z , the set {x ∈ D : f (x) ∈ a − int C} is open in D (Bianchi et al.
[7]).

(ii) For any x0 ∈ D and any v ∈ int C , there exists an open neighborhood U of x0
such that f (x0) ∈ f (x) + v − int C for all x ∈ U )(Tanaka [33]).

(iii) For any x ∈ D, for any v ∈ int C , and any net {xα}α∈� in D converging to
x ∈ D, there exists α0 ∈ � such that

{ f (xβ) : β ≥ α} ⊂ f (x) + v − int C,∀α ≥ α0.

Remark 2.2 (a) The equivalence of conditions (i)–(iii) is shown in Proposition 2.1 of
Tanaka [33], Lemma 2.3 of Bianchi et al. [7], and Theorem 2.4 of Chadli et al. [10].
(b) f is said to be C-lower semicontinuous if − f is C-upper semicontinuous. (c) If
f is upper semicontinuous, then it is also C-upper semicontinuous. (d) If Z = R and
C = R+, then Definition 2.2 reduces to the definition of usual upper semicontinuous
functions.

Definition 2.3 Amapping f : D → Z is said to beC-concave-like if for any x1, x2 ∈
D, t ∈ [0, 1],

f (x1) ∈ f (t x1 + (1 − t)x2) − C or f (x2) ∈ f (t x1 + (1 − t)x2) − C.

Remark 2.3 (1) C-concave-likeness is called C-quasiconcaveness in [15]. (2) When
Z = R andC = R+,Definition2.3 reduces to the definitionof quasiconcave functions.

Definition 2.4 [15] A mapping h : D × D → Z is said to be

(I) C-quasiconvex-like if for any x, y1, y2 ∈ D, t ∈ [0, 1],

h(x, t y1+(1−t)y2) ∈ h(x, y1)−C or h(x, t y1 + (1 − t)y2) ∈ h(x, y2) − C;

(II) vector 0-diagonally convex if for any finite set {y1, y2, . . . , yn} ⊂ D,

n∑

j=1

t j h(x, y j ) /∈ −int C

whenever x = ∑n
j=1 t j y j with t j ≥ 0 and

∑n
j=1 t j = 1.
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Remark 2.4 When Z = R andC = R+, (II) of Definition 2.4 reduces to the definition
of 0-diagonally convex functions due to Zhou and Chen [35].

In what follows, unless otherwise specified, we always suppose that I is an index
set, Ki is a nonempty, closed, and convex subset of a real Hausdorff topological vector
space Xi , andCi is an ordering cone of a real Hausdorff topological vector space Zi for
each i ∈ I . Let X = ∏

i∈I Xi , K = ∏
i∈I Ki , Xī = ∏

j∈I, j �=i X j , Kī = ∏
j∈I, j �=i K j ,

and Fi : Kī × Ki × Ki → Zi be a mapping for each i ∈ I . The system of vector
equilibrium problems is to find x = (xi )i∈I ∈ K such that for each i ∈ I ,

(SV EP) Fi (xī , xi , yi ) /∈ −int Ci , ∀yi ∈ Ki ,

where xī = (x j ) j∈I, j �=i ∈ Kī .

Remark 2.5 :

(1) If for each i ∈ I , Zi = R, Ci = R+, and Fi = ϕi , where ϕi : Kī × Ki × Ki →
R is a function, then (SV EP) reduces to the system of equilibrium problems
formulated by finding x = (xi )i∈I ∈ K such that for each i ∈ I ,

(SE P) ϕi (xī , xi , yi ) ≥ 0, ∀yi ∈ Ki .

(2) If for each i ∈ I , Zi = R, Ci = R+, and Fi (xī , xi , yi ) = 〈Ti (xī , xi ), yi − xi 〉,
where Ti : Kī × Ki → X∗

i and X∗
i denotes the dual space of Xi , then (SV EP)

reduces to the system of variational inequality problems formulated by finding
x = (xi )i∈I ∈ K such that for each i ∈ I ,

(SV I P) 〈Ti (xī , xi ), yi − xi 〉 ≥ 0, ∀yi ∈ Ki .

(3) If for each i ∈ I , Fi (xī , xi , yi ) = �i (xī , yi )−�i (xī , xi ), where�i : Kī ×Ki →
Zi , then (SV EP) reduces to the vector Nash equilibrium problem formulated by
finding x = (xi )i∈I ∈ K such that for each i ∈ I ,

(V NEP) �i (xī , yi ) − �i (xī , xi ) /∈ −int Ci , ∀yi ∈ Ki .

(4) If for each i ∈ I , Zi = R, Ci = R+, and �i = φi , where φi : Kī × Ki → R
is a function, then (V NEP) reduces to the classical Nash equilibrium problem
formulated by finding x = (xi )i∈I ∈ K such that for each i ∈ I ,

(NEP) φi (xī , yi ) ≥ φi (xī , xi ), ∀yi ∈ Ki .

(5) If I is a singleton, then (SV EP) reduces to the known vector equilibrium problem
(V EP), which also includes as special cases the classical equilibrium problem
and variational inequality problem.
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3 Topological Pseudomonotonicity

In this section, we shall extend the concept of topological pseudomonotonicity to a
family of mappings. First, recall some concepts and notations presented in [10,16,21].

Let A be a nonempty subset of a real Hausdorff topological space Z and C ⊂ Z be
an ordering cone. The superior of A with respect to C is defined by

Sup A = {z ∈ Ā : A ∩ (z + int C) = ∅}

and the inferior of A with respect to C is defined by

I n f A = {z ∈ Ā : A ∩ (z − int C) = ∅},

where Ā denotes the closure of A.
As pointed out in [10,16], the superior and inferior of a subset of Z with respect to

C are, respectively, extensions of the usual supremum and infimum of a subset of R. If
A is a nonempty compact subset of Z , then both Sup A and I n f A are nonempty. Let
{zα}α∈� be a net in Z . The limit superior and limit inferior of {zα}α∈� (with respect
to C) are defined by

Limsup zα = I n f
⋃

α∈�

Sup Sα Limin f zα = Sup
⋃

α∈�

I n f Sα,

where Sα = {zβ : β  α}. The limit superior and limit inferior of {zα}α∈� (with
respect to C) are also extensions of the usual limit superior and limit inferior of {zα},
respectively (see [10,16]).

In the sequel, we recall some concepts of topological pseudomonotonicity. Let D
be a nonempty closed subset of a real Hausdorff topological vector space of E .

Definition 3.1 A mapping T : D → E∗ is said to be topological pseudomonotone
(or pseudomonotone in the sense of Brézis [9]) if for any net {xα} ⊂ D,

xα ⇀ x and lim sup〈T xα, xα − x〉 ≤ 0 ⇒ 〈T x, x − y〉
≤ lim inf〈T xα, xα − y〉,∀y ∈ D,

where ⇀ means weak convergence.

The concept of topological pseudomonotonicity has been generalized to bifunc-
tions.

Definition 3.2 [4,26] A bifunction f : D × D → R is said to be topologically
pseudomonotone if for any net {xα} ⊂ D contained a compact subset of D,

xα → x and lim inf
α

f (xα, x) ≥ 0 ⇒ f (x, y) ≥ lim sup
α

f (xα, y),∀y ∈ D.

Chadli et al. [10] extended the notion of topological pseudomonotonicity to vector-
valued bifunctions.
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Definition 3.3 [10] A vector-valued bifunction f : D × D → Z is said to be topo-
logically pseudomonotone if for any v ∈ int C and any net {xα} in D satisfying

xα → x ∈ D and Limin fα f (xα, x) ∩ (−int C) = ∅,

there is some index α0 such that

{ f (xβ, y) : β ≥ α} ⊂ f (x, y) + v − int C,∀α ≥ α0 and ∀y ∈ D.

Remark 3.1 As pointed out by Chadli [10], Definition 3.3 generalizes Definitions 3.1
and 3.2 in a natural way.

Now, we extend the concept of topological pseudomonotonicity to a family of
mappings.

Definition 3.4 Let I be an index set and 	i : Kī × Ki × Ki → Zi be a mapping
for all i ∈ I . We say that {	i }i∈I is topologically pseudomonotone if for any net
{xα} = {(xi )αi∈I } ⊂ K satisfying

xα → x = (xi )i∈I ∈ K and Limin fα	i (x
α

ī
, xα

i , xi ) ∩ (−int Ci ) = ∅,∀i ∈ I,

and for any i0 ∈ I and any vi0 ∈ int Ci0 , there exists α0 such that

{
	i0

(
xβ

ī0
, xβ

i0
, yi0

)
: β ≥ α

}
⊂ 	i0(xī0 , xi0 , yi0) + vi0 − int Ci0 ,∀α

≥ α0 and ∀yi0 ∈ Ki0 .

Remark 3.2 (1) If for each i ∈ I , Zi = R, Ci = R+, then Definition 3.4 reduces to
the definition of topological pseudomonotonicity for a family of functions {ϕi }i∈I ,
i.e., {ϕi }i∈I is said to be topologically pseudomonotone if for any net {xα} =
{(xi )αi∈I } ⊂ K satisfying

xα → x = (xi )i∈I ∈ K and lim inf
α

ϕi (x
α

ī
, xα

i , xi ) ≥ 0,∀i ∈ I,

and for any i0 ∈ I and any εi0 > 0, there exists α0 such that

ϕi0

(
xα

ī0
, xα

i0 , yi0
)

< ϕi0
(
xī0 , xi0 , yi0

) + εi0 ,∀α ≥ α0 and ∀yi0 ∈ Ki0 ,

where ϕi : Kī × Ki × Ki → R is a function for all i ∈ I .
(2) If for each i ∈ I , Zi = R, Ci = R+, and 	i (xī , xi , yi ) = 〈Ti (xī , xi ), yi − xi 〉,

where Ti : Kī × Ki → X∗
i , then Definition 3.4 reduces to the definition of

topological pseudomonotonicity for {Ti }i∈I , i.e., {Ti }i∈I is said to be topologically
pseudomonotone if for any net {xα} = {(xi )αi∈I } ⊂ K satisfying

xα → x = (xi )i∈I ∈ K and lim inf
α

〈Ti (xα

ī
, xα

i ), xi − xα
i 〉 ≥ 0,∀i ∈ I,
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for any i0 ∈ I and any εi0 > 0, there exists α0 such that

〈
Ti0

(
xα

ī0
, xα

i0

)
, yi0 −xα

i0

〉
<

〈
Ti0

(
xī0 , xi0

)
, yi0 −xi0

〉+εi0 ,∀α ≥ α0 and yi0 ∈ Ki0 .

(3) If I is a singleton, then Definition 3.4 coincides with Definition 3.3.

4 Existence Results

In this section, we study the existence of solutions to (SV EP) by using topological
pseudomonotonicity. First we need the following lemmas.

Lemma 4.1 See Lemma 3.6 of [10] and Lemma 3.1 of [21]. Let D be a nonempty,
compact, and convex subset of a real Hausdorff topological vector space E and C be
an ordering cone of a real Hausdorff topological space Z. Let f : D × D → Z be a
mapping satisfying the following conditions:

(1) for every y ∈ D, f (·, y) is C-upper semicontinuous;
(2) f is vector 0-diagonally convex; and
(3) for every y ∈ D, f (·, y) is C-concave-like.

Then the problem formulated by finding x̄ ∈ D such that

f (x̄, y) /∈ −int C, ∀y ∈ D

admits a nonempty, compact, and convex solution set.

Lemma 4.2 Let D be a nonempty, compact, and convex subset of a real Hausdorff
topological vector space E and C be an ordering cone of a real Hausdorff topological
space Z. Let f : D × D → Z be a mapping satisfying the following conditions:

(1) f (x, x) /∈ −int C for all x ∈ D;
(2) for every y ∈ D, f (·, y) is C-upper semicontinuous;
(3) f is C-quasiconvex-like; and
(4) for every y ∈ D, f (·, y) is C-concave-like.

Then the problem formulated by finding x̄ ∈ D such that

f (x̄, y) /∈ −int C, ∀y ∈ D

admits a nonempty, compact, and convex solution set.

Proof The conclusion follows from the same arguments of the proofs of Lemma 3.9
of [10] and Lemma 3.1 of [21]. ��
Theorem 4.1 Let Fi : Kī × Ki × Ki → Zi be a mapping for all i ∈ I . Assume that

(1) for each i ∈ I and for all x = (xi )i∈I ∈ K, Fi (xī , ·, xi ) is Ci -upper semicontin-
uous on the convex hull of every nonempty finite subset of Ki ;

(2) for each i ∈ I and for all xī ∈ Kī , Fi (xī , ·, ·) is vector 0-diagonally convex;
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(3) for each i ∈ I and for all x = (xi )i∈I ∈ K, Fi (xī , ·, xi ) is Ci -concave-like;
(4) for each i ∈ I and for all xi ∈ Ki , Fi (·, ·, xi ) is Ci -upper semicontinuous on the

convex hull of every nonempty finite subset of K ;
(5) for each i ∈ I , there is a nonempty compact set Ai ⊂ Ki , and there is a nonempty,

compact, and convex set Bi ⊂ Ki such that if xi ∈ Ki ∩ Ac
i , where Ac

i denotes the
complement of Ai in Xi , then Fi (xī , xi , yi ) ∈ −int Ci for some yi ∈ Bi ; and

(6) {Fi }i∈I is topologically pseudomonotone.
Then (SV EP) is solvable.

Proof Set

M =
{
M ⊂ K : M =

∏

i∈I
Mi with Mi being the convex hull of a finite subset of

Ki for all i ∈ I } .

For given M ∈ M and z = (zi )i∈I ∈ K , consider the following problems:

(AP)iM find xi ∈ Mi such that Fi (zī , xi , yi ) /∈ −int Ci ,∀yi ∈ Mi .

It follows from conditions (1)–(3) and Lemma 4.1 that for each i ∈ I , (AP)iM has
a nonempty, compact, and convex solution set. For each i ∈ I , define a multivalued
mapping T i

M : Mī → 2Mi by

T i
M (zī ) = {xi ∈ Mi : Fi (zī , xi , yi ) /∈ −int Ci ,∀yi ∈ Mi }, ∀zī ∈ Mī .

Then for any i ∈ I and any zī ∈ Mī , T
i
M (zī ) is nonempty, compact, and convex.

Furthermore, for each i ∈ I , it is easy to verify that T i
M has a closed graph from

condition (4). By Remark 2.1, T i
M is upper semicontinuous for all i ∈ I . Define

TM : M → 2M by

TM (z) = (T i
M (zī ))i∈I , ∀z = (zi )i∈I ∈ M.

By the above arguments, TM is upper semicontinuous with nonempty, compact, and
convex values. By Kakutani–Fan–Glicksberg fixed point theorem (see [24]), TM has
a fixed point u on M , i.e., there exists u = (ui )i∈I ∈ M such that for each i ∈ I ,

Fi (uī , ui , yi ) /∈ −int Ci ,∀yi ∈ Mi .

For any M = ∏
i∈I Mi ∈ M, let

SM = {u = (ui )i∈I ∈ M : Fi (uī , ui , yi ) /∈ −int Ci ,∀yi ∈ Mi ,∀i ∈ I }
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and

NM =
{
u = (ui )i∈I ∈ A =

∏

i∈I
Ai : Fi (uī , ui , yi ) /∈ −int Ci ,∀yi

∈ co(Mi ∪ Bi ),∀i ∈ I } ,

where co denotes the convex hull operator. By the above arguments SM is nonempty.
We also have SM̃ ⊂ NM by condition (5), where M̃ = ∏

i∈I M̃i with M̃i = co(Mi ∪
Bi ). Thus NM is nonempty compact for all M ∈ M, where NM is the closure of
NM . Let M j = ∏

i∈I M
j
i ∈ M, j = 1, 2, . . . , n and L = ∏

i∈I Li with Li being the

convex hull of ∪n
j=1M

j
i for all i ∈ I . It is easy to see that NL ⊂ ∩n

j=1NM j . Hence

{NM : M ∈ M} has the finite intersection property. It follows that

∩M∈MNM �= ∅.

Let u∗ = (u∗
i )i∈I ∈ ∩M∈MNM . We assert that u∗ is a solution of (SV EP). Assume

by contradiction that there exist i0 ∈ I and yi0 ∈ Ki0 such that

Fi0(u
∗̄
i0
, u∗

i0 , yi0) ∈ −int Ci0 .

Let y = (yi )i∈I ∈ K and M̂ = ∏
i∈I M̂i ∈ M with M̂i = co{u∗

i , yi } for all i ∈ I .
Since u∗ ∈ N M̂ , there exists a net {uα} = {(ui )αi∈I } ∈ NM̂ such that uα → u∗. It
follows that for each i ∈ I ,

Fi (u
α

ī
, uα

i , u∗
i ) /∈ −intCi , ∀α.

Hence

Limin f Fi (u
α

ī
, uα

i , u∗
i ) ∩ (−int Ci ) = ∅, ∀i ∈ I.

By condition (6), for i0 ∈ I and vi0 = −Fi0(u
∗̄
i0
, u∗

i0
, yi0) ∈ intCi0 , there exists α0

such that

{
Fi0

(
uβ

ī0
, uβ

i0
, yi0

)
: β ≥ α

}
⊂ Fi0(u

∗̄
i0
, u∗

i0 , yi0) − Fi0(u
∗̄
i0
, u∗

i0 , yi0) − int Ci0

= −int Ci0 ,∀α ≥ α0.

This is a contradiction since

Fi0
(
uα

ī0
, uα

i0 , yi0
)

/∈ −int Ci0 ,∀α.

Thus u∗ is a solution of (SV EP). ��
By using Lemma 4.2 and similar proof as in Theorem 4.1, we obtain the following

result.
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Theorem 4.2 Let Fi : Kī × Ki × Ki → Zi be a mapping for all i ∈ I . Assume that

(1) for each i ∈ I and for all x = (xi )i∈I ∈ K, Fi (xī , xi , xi ) /∈ −int Ci ;
(2) for each i ∈ I and for all x = (xi )i∈I ∈ K, Fi (xī , ·, xi ) is Ci -upper semicontin-

uous on the convex hull of every nonempty finite subset of Ki ;
(3) for each i ∈ I and for all xī ∈ Kī , Fi (xī , ·, ·) is Ci -quasiconvex-like;
(4) for each i ∈ I and for all x = (xi )i∈I ∈ K, Fi (xī , ·, xi ) is Ci -concave-like;
(5) for each i ∈ I and for all xi ∈ Ki , Fi (·, ·, xi ) is Ci -upper semicontinuous on the

convex hull of every nonempty finite subset of K ;
(6) for each i ∈ I , there is a nonempty compact set Ai ⊂ Ki , and there is a nonempty,

compact, and convex set Bi ⊂ Ki such that if xi ∈ Ki ∩ Ac
i , then Fi (xī , xi , yi ) ∈

−int Ci for some yi ∈ Bi ; and
(7) {Fi }i∈I is topologically pseudomonotone.
Then (SV EP) is solvable.

Corollary 4.1 Let ϕi : Kī × Ki × Ki → R be a function for all i ∈ I . Assume that

(1) for each i ∈ I and for all x = (xi )i∈I ∈ K, ϕi (xī , ·, xi ) is upper semicontinuous
on the convex hull of every nonempty finite subset of Ki ;

(2) for each i ∈ I and for all xī ∈ Kī , ϕi (xī , ·, ·) is 0-diagonally convex;
(3) for each i ∈ I and for all x = (xi )i∈I ∈ K, ϕi (xī , ·, xi ) is quasiconcave;
(4) for each i ∈ I and xi ∈ Ki , ϕi (·, ·, xi ) is upper semicontinuous on the convex

hull of every nonempty finite subset of K ;
(5) for each i ∈ I , there is a nonempty compact set Ai ⊂ Ki , and there is a nonempty,

compact, and convex set Bi ⊂ Ki such that if xi ∈ Ki ∩Ac
i , then ϕi (xī , xi , yi ) < 0

for some yi ∈ Bi ; and
(6) {ϕi }i∈I is topologically pseudomonotone.
Then (SE P) is solvable.

Proof The conclusion follows directly from Theorem 4.1. ��
Corollary 4.2 Let ϕi : Kī × Ki × Ki → R be a function for all i ∈ I . Assume that

(1) for each i ∈ I and for all x = (xi )i∈I ∈ K, ϕi (xī , xi , xi ) ≥ 0;
(2) for each i ∈ I and for all x = (xi )i∈I ∈ K, ϕi (xī , ·, xi ) is upper semicontinuous

on the convex hull of every nonempty finite subset of Ki ;
(3) for each i ∈ I and for all x = (xi )i∈I ∈ K, ϕi (xī , xi , ·) is quasiconvex;
(4) for each i ∈ I and for all x = (xi )i∈I ∈ K, ϕi (xī , ·, xi ) is quasiconcave;
(5) for each i ∈ I and for all xi ∈ Ki , ϕi (·, ·, xi ) is upper semicontinuous on the

convex hull of every nonempty finite subset of K ;
(6) for each i ∈ I , there is a nonempty compact set Ai ⊂ Ki , and there is a nonempty,

compact, and convex set Bi ⊂ Ki such that if xi ∈ Ki ∩Ac
i , then ϕi (xī , xi , yi ) < 0

for some yi ∈ Bi ; and
(7) {ϕi }i∈I is topologically pseudomonotone.
Then (SE P) is solvable.

Proof The conclusion follows directly from Theorem 4.2. ��
Remark 4.1 The approach used in the proof of Theorem 4.1 is quite different from
those in [1–3,18,19,22,32], where some existence results for (SV EP) and (SE P)

with different assumptions were also established.
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