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Abstract In this paper, we discuss a new class of nonlocal boundary value problems of
fractional differential equations and inclusionswith a new integral boundary condition.
This new boundary condition states that the value of the unknown function at an
arbitrary (local) point ξ is proportional to the contribution due to a sub-strip of arbitrary
length (1 − η), that is, x(ξ) = a

∫ 1
η
x(s)ds, where 0 < ξ < η < 1 and a is constant

of proportionality. The existence of solutions for the given problems is shown by
means of contraction mapping principle, a fixed point theorem due to O’Regan and
nonlinear alternative for multivalued maps. The results are well illustrated with the
aid of examples.
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1 Introduction

Fractional calculus has emerged as an effective and powerful tool in the modeling
of many physical and engineering phenomena. One of the reasons for the popu-
larity of this subject is that fractional derivatives naturally describe memory and
hereditary properties of several materials and processes. Specific applications of frac-
tional calculus can be found in a variety of disciplines such as physics, chemistry,
statistics, economics, biology, biophysics, blood flow phenomena, control theory,
signal and image processing, etc. [9,22,28,30]. For some recent development in
the theory, methods, and applications of fractional calculus, we refer the reader to
[2,4,5,7,8,10,18,19,23,32] and the references therein.

The concept of nonlocal Cauchy problems introduced by Byszewski [12] is found
to be more practical than the classical Cauchy problems with the initial conditions
[13,14]. In the last few decades, several kinds of nonlocal problems have been stud-
ied. More recently, the topic of nonlocal-integral boundary conditions has attracted
a considerable attention. In most of the work dealing with nonlocal boundary value
problems, the contribution expressed in terms of the integral is related to the value
of the unknown function at a fixed point (left/right end-point of the interval under
consideration), for instance, see [1,3,25,34] and references therein.

In the present study,we introduce amore general variant of nonlocal-integral bound-
ary conditions, which relates the integral contribution due to a strip of arbitrary length
with the value of the unknown function at an arbitrary (nonlocal) point of the interval
instead of its value at a fixed point. Precisely, we formulate this variant of nonlocal-
integral boundary conditions as follows: x(ξ) ∝ ∫ 1

η
x(s)ds, 0 < ξ < η < 1 or

x(ξ) = a
∫ 1
η
x(s)ds (a is constant of proportionality). Thus, we consider the fol-

lowing nonlocal boundary value problem of fractional differential equations with new
integral boundary conditions:

⎧
⎨

⎩

cDqx(t) = f (t, x(t)), t ∈ [0, 1], 1 < q ≤ 2,

x(0) = x0 + g(x), x(ξ) = a
∫ 1

η

x(s)ds, 0 < ξ < η < 1, x0 ∈ R,
(1.1)

where cDq denotes the Caputo fractional derivative of order q, f : [0, 1] × R → R

and g : C([0, 1],R) → R are given continuous functions, and a is real constant.
As a second problem, we study the multivalued analog of problem (1.1) given by

⎧
⎨

⎩

cDqx(t) ∈ F(t, x(t)), t ∈ [0, 1], 1 < q ≤ 2,

x(0) = x0 + g(x), x(ξ) = a
∫ 1

η

x(s)ds, 0 < ξ < η < 1, x0 ∈ R,
(1.2)

where F : [0, 1] × R → P(R) is a multivalued map, P(R) is the family of all
nonempty subsets of R, and g(x) and a are the same as defined in the problem
(1.1). Moreover, g(x) considered in the problems (1.1) and (1.2) may be under-
stood as g(x) = ∑p

j=1 α j x(t j ) where α j , j = 1, . . . , p, are given constants and
0 < t1 < · · · < tp ≤ 1. For more details we refer to the work by Byszewski [12,13].
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For some real-world problems and engineering applications involving the strip con-
ditions similar to the ones considered in the present study , we refer the reader to the
works [6,15,29,31,33].

The paper is organized as follows. In Sect. 2, we recall some basic definitions from
fractional calculus and establish a lemma which plays a pivotal role in the sequel.
Section 3 deals with the existence results for the problem (1.1) which are shown by
applying Banach’s contraction principle and a fixed point theorem due to D. O’Regan.
In Sect. 4, we discuss the existence of solutions for the problem (1.2) by means of
the nonlinear alternative for contractive maps and the combination of the nonlinear
alternative of Leray–Schauder type for single-valuedmaps and a selection theoremdue
to Bressan and Colombo for lower semi-continuous multivalued maps with nonempty
closed and decomposable values. Some examples are constructed for the illustration
of main results.

2 Preliminaries

In this section, some basic definitions on fractional calculus and an auxiliary lemma
are presented [22,28].

Definition 2.1 The Riemann–Liouville fractional integral of order q for a continuous
function g is defined as

I q g(t) = 1

�(q)

∫ t

0

g(s)

(t − s)1−q
ds, q > 0,

provided the integral exists.

Definition 2.2 For at least n-times continuously differentiable function g : [0,∞) →
R, the Caputo derivative of fractional order q is defined as

cDqg(t) = 1

�(n − q)

∫ t

0
(t − s)n−q−1g(n)(s)ds, n − 1 < q < n, n = [q] + 1,

where [q] denotes the integer part of the real number q.

Lemma 2.1 For any y ∈ L[0, 1] the unique solution of the linear fractional boundary
value problem

⎧
⎨

⎩

cDqx(t) = y(t), 1 < q ≤ 2,

x(0) = x0 + g(x), x(ξ) = a
∫ 1

η

x(s)ds, t ∈ [0, 1] (2.1)
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is

x(t) =
∫ t

0

(t − s)q−1

�(q)
y(s)ds + t

A

{

a
∫ 1

0

(1 − s)q

�(q + 1)
y(s)ds

− a
∫ η

0

(η − s)q

�(q + 1)
y(s)ds −

∫ ξ

0

(ξ − s)q−1

�(q)
y(s)ds

}

(2.2)

+
[
1 + t

A

(
a(1 − η) − 1

)]
(x0 + g(x)),

where

A = ξ − a

2
(1 − η2) �= 0. (2.3)

Proof It is well known that the general solution of the fractional differential equation
in (2.1) can be written as

x(t) = c0 + c1t +
∫ t

0

(t − s)q−1

�(q)
y(s)ds, (2.4)

where c0, c1 ∈ R are arbitrary constants.
Applying the given boundary conditions, we find that c0 = x0 + g(x), and

c1 = 1

A
(a(1 − η) − 1) (x0 + g(x)) + 1

A

{

a
∫ 1

0

(1 − s)q

�(q + 1)
y(s)ds

− a
∫ η

0

(η − s)q

�(q + 1)
y(s)ds −

∫ ξ

0

(ξ − s)q−1

�(q)
y(s)ds

}

. (2.5)

Substituting the values of c0, c1 in (2.4), we get (2.2). This completes the proof. �	
3 Existence results for single-valued problem (1.1)

We denote by C = C([0, 1],R) the Banach space of all continuous functions from
[0, 1] → R endowed with a topology of uniform convergence with the norm defined
by ‖x‖ = sup{|x(t)| : t ∈ [0, 1]}. Also by L1([0, 1],R) we denote the Banach space
of measurable functions x : [0, 1] → R which are Lebesgue integrable and normed

by ‖x‖L1 =
∫ 1

0
|x(t)|dt.

In view of Lemma 2.1, we define an operator P : C → C by

(Px)(t) =
∫ t

0

(t − s)q−1

�(q)
f (s, x(s))ds + t

A

{

a
∫ 1

0

(1 − s)q

�(q + 1)
f (s, x(s))ds

− a
∫ η

0

(η − s)q

�(q + 1)
f (s, x(s))ds −

∫ ξ

0

(ξ − s)q−1

�(q)
f (s, x(s))ds

}

+
[
1 + t

A

(
a(1 − η) − 1

)]
(x0 + g(x)), t ∈ [0, 1]. (3.1)
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Let us define P1,2: C → C by

(P1x)(t) =
∫ t

0

(t − s)q−1

�(q)
f (s, x(s))ds + t

A

{

a
∫ 1

0

(1 − s)q

�(q + 1)
f (s, x(s))ds

− a
∫ η

0

(η − s)q

�(q + 1)
f (s, x(s))ds −

∫ ξ

0

(ξ − s)q−1

�(q)
f (s, x(s))ds

}

, (3.2)

and

(P2x)(t) =
[

1 + t

A
(a(1 − η) − 1)

]

(x0 + g(x)). (3.3)

Clearly

(Px)(t) = (P1x)(t) + (P2x)(t), t ∈ [0, 1]. (3.4)

For convenience we introduce the notations:

p0 := 1

�(q + 1)

[

1 + 1

|A|
{ |a|(1 + ηq+1)

q + 1
+ ξq

}]

, (3.5)

and

k0 :=
∣
∣
∣
∣1 + 1

A
(a(1 − η) − 1)

∣
∣
∣
∣ . (3.6)

Theorem 3.1 Let f : [0, 1] × R → R be a continuous function. Assume that

(A1) | f (t, x) − f (t, y)| ≤ L‖x − y‖,∀t ∈ [0, 1], L > 0, x, y ∈ R;
(A2) g : C([0, 1],R) → R is a continuous function satisfying the condition:

|g(u) − g(v)| ≤ �‖u − v‖, � < k−1
0 , ∀ u, v ∈ C([0, 1],R), � > 0;

(A3) γ := Lp0 + k0� < 1.

Then the boundary value problem (1.1) has a unique solution.

Proof For x, y ∈ C and for each t ∈ [0, 1], from the definition of P and assumptions
(A1) and (A2), we obtain

|(Px)(t) − (P y)(t)| ≤
∫ t

0

(t − s)q−1

�(q)

∣
∣ f (s, x(s)) − f (s, y(s))

∣
∣ds

+ 1

|A|
{

|a|
∫ 1

0

(1 − s)q

�(q + 1)

∣
∣ f (s, x(s)) − f (s, y(s))

∣
∣ds

+ |a|
∫ η

0

(η − s)q

�(q + 1)

∣
∣ f (s, x(s)) − f (s, y(s))

∣
∣ds
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+
∫ ξ

0

(ξ − s)q−1

�(q)
| f (s, x(s)) − f (s, y(s))|ds

}

+
∣
∣
∣1 + 1

A

(
a(1 − η) − 1

)∣
∣
∣|g(x) − g(y)|

≤ L‖x − y‖
[ ∫ t

0

(t − s)q−1

�(q)
ds + 1

|A|
{

|a|
∫ 1

0

(1 − s)q

�(q + 1)
ds

+ |a|
∫ η

0

(η − s)q

�(q + 1)
ds +

∫ ξ

0

(ξ − s)q−1

�(q)
ds

}]

+
∣
∣
∣1 + 1

A

(
a(1 − η) − 1

)∣
∣
∣�‖x − y‖

≤ L‖x − y‖
[

1

�(q + 1)
+ 1

|A|
{ |a|(1 + ηq+1)

(q + 1)�(q + 1)
+ ξq

�(q + 1)

}]

+
∣
∣
∣1 + 1

A

(
a(1 − η) − 1

)∣
∣
∣�‖x − y‖

= L

�(q + 1)

([

1 + 1

|A|
{ |a|(1 + ηq+1)

q + 1
+ ξq

}]

+
∣
∣
∣1 + 1

A

(
a(1 − η) − 1

)∣
∣
∣�

)

‖x − y‖
= (Lp0 + k0�)‖x − y‖.

Hence

‖(Px) − (P y)‖ ≤ γ ‖x − y‖.

As γ < 1 by (A3), the operator P is a contraction map from the Banach space C
into itself. Hence the conclusion of the theorem follows by the contraction mapping
principle (Banach fixed point theorem). �	
Example 3.1 Consider the following fractional boundary value problem

⎧
⎪⎪⎨

⎪⎪⎩

cD3/2x(t) = 1

t + 16
(sin x + x) + 1, t ∈ [0, 1],

x(0) = 1

2
+ 1

12
tan−1(x(1/8)), x

(
1

4

)

= 1

4

∫ 1

1/3
x(s)ds.

(3.7)

Here, q = 3/2, x0 = 1/2, a = 1/4, ξ = 1/4, η = 1/3, f (t, x) = 1

t + 16
(sin x +

x)+1, and g(x) = 1
12 tan

−1(x(1/8)). Since | f (t, x)− f (t, y)| ≤ 1

8
‖x − y‖, |g(x)−

g(y)| ≤ 1

12
‖x − y‖, therefore, (A1) and (A2) are respectively satisfied with L = 1/8

and � = 1/12.Using the given values, it is found that A = 5/36, p0 ≈ 2.00565, k0 =
5. Clearly γ = Lp0 + k0� ≈ 0.667373 < 1. Thus, the conclusion of Theorem 3.1
applies, and the boundary value problem (3.7) has a solution on [0, 1].

123



Nonlocal-integral Fractional Boundary Value Problems... 1349

Our next existence result relies on a fixed point theorem due to O’Regan in [26].

Lemma 3.1 Denote by U an open set in a closed, convex set C of a Banach space E .

Assume 0 ∈ U. Also assume that F(Ū ) is bounded and that F : Ū → C is given by
F = F1 + F2, in which F1 : Ū → E is continuous and completely continuous and
F2 : Ū → E is a nonlinear contraction (i.e., there exists a nonnegative nondecreasing
function φ : [0,∞) → [0,∞) satisfying φ(z) < z for z > 0, such that ‖F2(x) −
F2(y)‖ ≤ φ(‖x − y‖) for all x, y ∈ Ū ). Then, either

(C1) F has a fixed point u ∈ Ū or
(C2) there exist a point u ∈ ∂U and λ ∈ (0, 1) with u = λF(u), where Ū and ∂U,

respectively, represent the closure and boundary of U.

Let

�r = {x ∈ C([0, 1],R) : ‖x‖ < r}

and denote the maximum number by

Mr = max {| f (t, x)| : (t, x) ∈ [0, 1] × [−r, r ]} .

Theorem 3.2 Let f : [0, 1] × R → R be a continuous function. Suppose that
(A1), (A2) hold. In addition we assume that

(A4) g(0) = 0;
(A5) there exist a nonnegative function p ∈ C([0, 1],R) and a nondecreasing func-

tion ψ : [0,∞) → (0,∞) such that

| f (t, u)| ≤ p(t)ψ(|u|) for any (t, u) ∈ [0, 1] × R;

(A6) sup
r∈(0,∞)

r

k0|x0| + p0ψ(r)‖p‖ >
1

1 − k0�
, where p0 and k0 are defined in (3.5)

and (3.6), respectively.

Then the boundary value problem (1.1) has at least one solution on [0, 1].

Proof By the assumption (A6), there exists a number r0 > 0 such that

r0
k0|x0| + p0ψ(r0)‖p‖ >

1

1 − k0�
. (3.8)

We shall show that the operators P1 and P2 defined by (3.2) and (3.3), respectively,
satisfy all the conditions of Lemma 3.1.
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Step 1. The operator P1 is continuous and completely continuous. We first show
that P1(�̄r0) is bounded. For any x ∈ �̄r0 , we have

‖P1x‖ ≤
∫ t

0

(t − s)q−1

�(q)

∣
∣ f (s, x(s))

∣
∣ds + 1

|A|
{

|a|
∫ 1

0

(1 − s)q

�(q + 1)

∣
∣ f (s, x(s))

∣
∣ds

+ |a|
∫ η

0

(η − s)q

�(q + 1)

∣
∣ f (s, x(s))

∣
∣ds +

∫ ξ

0

(ξ − s)q−1

�(q)

∣
∣ f (s, x(s))

∣
∣ds

}

≤ Mr

�(q + 1)

[

1 + 1

|A|
{ |a|(1 + ηq+1)

q + 1
+ ξq

}]

‖p‖ = Mr p0‖p‖.

Thus, the operator P1(�̄r0) is uniformly bounded. For any t1, t2 ∈ [0, 1], t1 < t2, we
have

|(P1x)(t2) − (P1x)(t1)|
≤ 1

�(q)

∫ t1

0

[
(t2 − s)q−1 − (t1 − s)q−1

]
| f (s, x(s))|ds

+ 1

�(q)

∫ t2

t1
(t2 − s)q−1| f (s, x(s))|ds

+ |t2 − t1|
|A|

{

|a|
∫ 1

0

(1 − s)q

�(q + 1)
| f (s, x(s))|ds

+ |a|
∫ η

0

(η − s)q

�(q + 1)

∣
∣ f (s, x(s))

∣
∣ds +

∫ ξ

0

(ξ − s)q−1

�(q)

∣
∣ f (s, x(s))

∣
∣ds

}

≤ Mr

�(q)

∫ t1

0

[
(t2 − s)q−1 − (t1 − s)q−1

]
ds + Mr

�(q)

∫ t2

t1
(t2 − s)q−1ds

+ Mr |t2 − t1|
|A|

{

|a|
∫ 1

0

(1 − s)q

�(q + 1)
ds + |a|

∫ η

0

(η − s)q

�(q + 1)
ds +

∫ ξ

0

(ξ − s)q−1

�(q)
ds

}

≤ Mr

�(q)

∫ t1

0

[
(t2 − s)q−1 − (t1 − s)q−1

]
ds + Mr

�(q)

∫ t2

t1
(t2 − s)q−1ds

+ Mr |t2 − t1|
|A|�(q + 1)

{ |a|(1 + ηq+1)

q + 1
+ ξq

}

,

which is independent of x and tends to zero as t2−t1 → 0.Thus,P1 is equicontinuous.
Hence, by the Arzelá-Ascoli Theorem, P1(�̄r0) is a relatively compact set. Now, let
xn ⊂ �̄r0 with ‖xn−x‖ → 0.Then the limit ‖xn(t)−x(t)‖ → 0 is uniformly valid on
[0, 1]. From the uniform continuity of f (t, x) on the compact set [0, 1] × [−r0, r0],
it follows that ‖ f (t, xn(t)) − f (t, x(t))‖ → 0 is uniformly valid on [0, 1]. Hence
‖P1xn − P1x‖ → 0 as n → ∞ which proves the continuity of P1. This completes
the proof of Step 1.

Step 2. The operatorP2 : �̄r0 → C([0, 1],R) is contractive. This is a consequence
of (A2).
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Step 3. The set P(�̄r0) is bounded. The assumptions (A2) and (A4) imply that

‖P2(x)‖ ≤ k0(|x0| + �r0),

for any x ∈ �̄r0 . This, with the boundedness of the set P1(�̄r0) implies that the set
P(�̄r0) is bounded.

Step 4. Finally, it will be shown that the case (C2) in Lemma 3.1 does not hold. On
the contrary, we suppose that (C2) holds. Then, we have that there exist λ ∈ (0, 1)
and x ∈ ∂�r0 such that x = λPx . So, we have ‖x‖ = r0 and

x(t) = λ
[
1 + t

A

(
a(1 − η) − 1

)]
(x0 + g(x)) + λ

∫ t

0

(t − s)q−1

�(q)
f (s, x(s))ds

+ λ
t

A

{

a
∫ 1

0

(1 − s)q

�(q + 1)
f (s, x(s))ds − a

∫ η

0

(η − s)q

�(q + 1)
f (s, x(s))ds

−
∫ ξ

0

(ξ − s)q−1

�(q)
f (s, x(s))ds

}

, t ∈ [0, 1].

Using the assumptions (A4) − (A6), we get

r0 ≤ ψ(r0)

[
1

�(q)

∫ 1

0
(t − s)q−1 p(s)ds + 1

|A|
{ |a|

�(q + 1)

∫ 1

0
(1 − s)q p(s)ds

+ |a|
�(q + 1)

∫ η

0
(η − s)q p(s)ds + 1

�(q)

∫ ξ

0
(ξ − s)q p(s)ds

}]

+
∣
∣
∣1 + 1

A

(
a(1 − η) − 1

)∣
∣
∣(|x0| + �r0),

which yields

r0 ≤ k0|x0| + p0ψ(r0)‖p‖ + k0�r0.

Thus, we get a contradiction:

r0
k0|x0| + p0ψ(r0)‖p‖ ≤ 1

1 − k0�
.

Thus, the operators P1 and P2 satisfy all the conditions of Lemma 3.1. Hence, the
operator P has at least one fixed point x ∈ �̄r0 , which is the solution of the problem
(1.1). This completes the proof. �	
Example 3.2 Consider the following boundary value problem

⎧
⎪⎪⎨

⎪⎪⎩

cD3/2x(t) = 1

3

(√
t + 1

18

)
sin x, 0 < t < 1,

x(0) = 1

18
x

(
1

9

)

, x

(
1

4

)

= 1

4

∫ 1

1/3
x(s)ds.

(3.9)
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Observe that q = 3/2, f (t, x) = 1

3

(√
t + 1

18

)
sin x, x0 = 0, g(x) = x(1/9)

12
, � =

1/18, a = 1/4, ξ = 1/4, η = 1/3. Clearly (A1), (A2), and (A4) are satisfied. Further

| f (t, x)| ≤ 1

3

(√
t + 1

18

)
x, for any (t, x) ∈ [0, 1] × R, and hence p(t) = √

t + 1

18

and ψ(x) = 1

3
x . Thus, the condition (A5) is satisfied. With the given data, p0 ≈

2.00565, k0 = 5,

sup
r∈(0,∞)

r

k0|x0| + p0ψ(r)‖p‖ ≈ 1.417049,
1

1 − k0�
≈ 1.38461,

it is found that (A6) holds. Therefore, all the conditions of Theorem 3.2 are satisfied
and hence by its conclusion, the problem (3.9) has at least one solution on [0, 1].

4 Existence results for multivalued problem (1.2)

Let us recall some basic definitions on multivalued maps [16,20].
For a normed space (X, ‖ · ‖), let Pcl(X) = {Y ∈ P(X) : Y is closed}, Pb(X) =

{Y ∈ P(X) : Y is bounded}, Pcp(X) = {Y ∈ P(X) : Y is compact}, and Pcp,c(X) =
{Y ∈ P(X) : Y is compact and convex}. A multivalued map G : X → P(X) is
convex (closed) valued if G(x) is convex (closed) for all x ∈ X. The map G is
bounded on bounded sets if G(B) = ∪x∈BG(x) is bounded in X for all B ∈ Pb(X)

(i.e., supx∈B{sup{|y| : y ∈ G(x)}} < ∞). G is called upper semi-continuous (u.s.c.)
on X if for each x0 ∈ X, the set G(x0) is a nonempty closed subset of X , and if for
each open set N of X containing G(x0), there exists an open neighborhood N0 of x0
such that G(N0) ⊆ N . G is said to be completely continuous if G(B) is relatively
compact for every B ∈ Pb(X). If the multivalued map G is completely continuous
with nonempty compact values, then G is u.s.c. if and only if G has a closed graph,
i.e., xn → x∗, yn → y∗, yn ∈ G(xn) imply y∗ ∈ G(x∗). G has a fixed point if there
is x ∈ X such that x ∈ G(x). The fixed point set of the multivalued operator G will be
denoted by FixG. A multivalued map G : [0; 1] → Pcl(R) is said to be measurable if
for every y ∈ R, the function

t �−→ d(y,G(t)) = inf{|y − z| : z ∈ G(t)}

is measurable.

Definition 4.1 A function x ∈ AC1([0, 1],R) is a solution of the problem (1.2) if

x(0) = x0+g(x), x(ξ) = a
∫ 1

η

x(s) ds, and there exists a function f ∈ L1([0, 1],R)
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such that f (t) ∈ F(t, x(t)) a.e. on [0, 1] and

x(t) =
∫ t

0

(t − s)q−1

�(q)
f (s)ds + t

A

{

a
∫ 1

0

(1 − s)q

�(q + 1)
f (s)ds

− a
∫ η

0

(η − s)q

�(q + 1)
f (s)ds −

∫ ξ

0

(ξ − s)q−1

�(q)
f (s)ds

}

+
[
1 + t

A

(
a(1 − η) − 1

)]
(x0 + g(x)).

(4.1)

Here AC1([0, 1],R) will denote the space of functions x : [0, 1] → R that are
absolutely continuous and whose first derivative is absolutely continuous.

4.1 The Carathéodory Case

Definition 4.2 Amultivalued map F : [0, 1]×R → P(R) is said to be Carathéodory
if

(i) t �−→ F(t, x) is measurable for each x ∈ R;
(ii) x �−→ F(t, x) is upper semi-continuous for almost all t ∈ [0, 1];
Further a Carathéodory function F is called L1−Carathéodory if

(iii) for each α > 0, there exists ϕα ∈ L1([0, 1],R+) such that

‖F(t, x)‖ = sup{|v| : v ∈ F(t, x)} ≤ ϕα(t)

for all ‖x‖ ≤ α and for a. e. t ∈ [0, 1].
For each y ∈ C([0, 1],R), define the set of selections of F by

SF,y := {v ∈ L1([0, 1],R) : v(t) ∈ F(t, y(t)) for a.e. t ∈ [0, 1]}.

The following lemma will be used in the sequel.

Lemma 4.1 ([24]) Let X be a Banach space. Let F : [0, 1] × R → Pcp,c(X) be an
L1− Carathéodory multivalued map, and let � be a linear continuous mapping from
L1([0, 1], X) to C([0, 1], X). Then the operator

� ◦ SF : C([0, 1], X) → Pcp,c(C([0, 1], X)), x �→ (� ◦ SF )(x) = �(SF,x )

is a closed graph operator in C([0, 1], X) × C([0, 1], X).

To prove our main result in this section, we use the following form of the Nonlinear
Alternative for contractive maps [27, Corollary3.8].

Theorem 4.1 Let X be a Banach space and D a bounded neighborhood of 0 ∈ X. Let
Z1 : X → Pcp,c(X) and Z2 : D̄ → Pcp,c(X) two multivalued operators satisfying
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(a) Z1 is contraction, and
(b) Z2 is u.s.c and compact.

Then, if G = Z1 + Z2, either

(i) G has a fixed point in D̄ or
(ii) there is a point u ∈ ∂D and λ ∈ (0, 1) with u ∈ λG(u).

Theorem 4.2 Assume that (A2) holds. In addition we suppose that

(H1) F : [0, 1] × R → Pcp,c(R) is L1−Carathéodory multivalued map;
(H2) there exists a continuous nondecreasing function ψ : [0,∞) → (0,∞) and a

function p ∈ C([0, 1],R+) such that

‖F(t, x)‖P :=sup{|y| : y ∈ F(t, x)} ≤ p(t)ψ(‖x‖) for each (t, x)∈[0, 1]×R;

(H3) there exists a number M > 0 such that

(1 − k0�)M

ψ(M)p0‖p‖ + k0|x0| > 1, (4.2)

where p0 and k0 are defined in (3.5) and (3.6), respectively.
Then the boundary value problem (1.2) has at least one solution on [0, 1].
Proof To transform the problem (1.2) to a fixed point, we introduce an operator N :
C([0, 1],R) −→ P(C([0, 1],R)) defined by

N (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

h ∈ C([0, 1],R) :

h(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∫ t

0

(t − s)q−1

�(q)
f (s)ds + t

A

{

a
∫ 1

0

(1 − s)q

�(q + 1)
f (s)ds

− a
∫ η

0

(η − s)q

�(q + 1)
f (s)ds −

∫ ξ

0

(ξ − s)q−1

�(q)
f (s)ds

}

+
[
1 + t

A

(
a(1 − η) − 1

)]
(x0 + g(x)),

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

for f ∈ SF,x .

Now, we define two operators A : C([0, 1],R) −→ C([0, 1],R) by

Ax(t) =
[
1 + t

A

(
a(1 − η) − 1

)]
(x0 + g(x)), (4.3)

and a multivalued operator B : C([0, 1],R) −→ P(C([0, 1],R)) by

B(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

h ∈ C([0, 1],R) :

h(t) =

⎧
⎪⎪⎨

⎪⎪⎩

∫ t

0

(t − s)q−1

�(q)
f (s)ds + t

A

{

a
∫ 1

0

(1 − s)q

�(q + 1)
f (s)ds

−a
∫ η

0

(η − s)q

�(q + 1)
f (s)ds −

∫ ξ

0

(ξ − s)q−1

�(q)
f (s)ds

}

.

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(4.4)
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Observe that N = A + B. We shall show that the operators A and B satisfy all the
conditions of Theorem 4.1 on [0, 1]. The proof consists of several steps and claims.

Step 1: We show thatA is a contraction on C([0, 1],R). For x, y ∈ C([0, 1],R), we
have

|Ax(t) − Ay(t)| =
∣
∣
∣1 + t

A

(
a(1 − η) − 1

)∣
∣
∣|g(x) − g(y)|

≤
∣
∣
∣1 + 1

A

(
a(1 − η) − 1

)∣
∣
∣|g(x) − g(y)|,

≤ k0�‖x − y‖,

which, on taking supremum over t ∈ [0, 1], yields

‖Ax − Ay‖ ≤ L0‖x − y‖, L0 = k0� < 1.

This shows that A is a contraction as L0 < 1.
Step 2: B is compact and convex valued, and it is completely continuous. This will be
established in several claims.
Claim I: B maps bounded sets into bounded sets in C([0, 1],R). Let Br = {x ∈
C([0, 1],R) : ‖x‖ ≤ r} be a bounded set inC([0, 1],R). Then, for each h ∈ B(x), x ∈
Bρ , there exists f ∈ SF,x such that

h(t) =
∫ t

0

(t − s)q−1

�(q)
f (s)ds + t

A

{

a
∫ 1

0

(1 − s)q

�(q + 1)
f (s)ds

− a
∫ η

0

(η − s)q

�(q + 1)
f (s)ds −

∫ ξ

0

(ξ − s)q−1

�(q)
f (s)ds

}

.

Then, for t ∈ [0, 1], we have

|h(t)| ≤
∫ t

0

(t − s)q−1

�(q)
| f (s)|ds + 1

|A|
{

|a|
∫ 1

0

(1 − s)q

�(q + 1)
| f (s)|ds

+ |a|
∫ η

0

(η − s)q

�(q + 1)
| f (s)|ds +

∫ ξ

0

(ξ − s)q−1

�(q)
| f (s)|ds

}

≤ ψ(‖x‖)
�(q + 1)

[

1 + 1

|A|
{ |a|(1 + ηq+1)

q + 1
+ ξq

}]

‖p‖.

Thus,

‖h‖ ≤ ψ(‖x‖)
�(q + 1)

[

1 + 1

|A|
{ |a|(1 + ηq+1)

q + 1
+ ξq

}]

‖p‖.
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Claim II:Bmaps bounded sets into equicontinuous sets. Let t1, t2 ∈ [0, 1]with t1 < t2
and x ∈ Bρ. Then, for each h ∈ B(x), we obtain

|h(t2) − h(t1)|
≤ ψ(‖x‖)‖p‖

�(q)

∫ t1

0
[(t2−s)q−1−(t1 − s)q−1]ds + ψ(‖x‖)‖p‖

�(q)

∫ t2

t1
(t2 − s)q−1ds

+ ψ(‖x‖)‖p‖|t2 − t1|
|A|

{

|a|
∫ 1

0

(1 − s)q

�(q + 1)
ds

+ |a|
∫ η

0

(η − s)q

�(q + 1)
ds +

∫ ξ

0

(ξ − s)q−1

�(q)
ds

}

.

Obviously the right-hand side of the above inequality tends to zero independently
of x ∈ Bρ as t2 − t1 → 0. Therefore it follows by the Ascoli-Arzelá theorem that
B : C([0, 1],R) → P(C([0, 1],R)) is completely continuous.
Claim III: B has a closed graph. Let xn → x∗, hn ∈ B(xn) and hn → h∗. Then we
need to show that h∗ ∈ B(x∗). Associated with hn ∈ B(xn), there exists fn ∈ SF,xn
such that for each t ∈ [0, 1],

hn(t) =
∫ t

0

(t − s)q−1

�(q)
fn(s)ds + t

A

{

a
∫ 1

0

(1 − s)q

�(q + 1)
fn(s)ds

− a
∫ η

0

(η − s)q

�(q + 1)
fn(s)ds −

∫ ξ

0

(ξ − s)q−1

�(q)
fn(s)ds

}

.

Thus, it suffices to show that there exists f∗ ∈ SF,x∗ such that for each t ∈ [0, 1],

h∗(t) =
∫ t

0

(t − s)q−1

�(q)
f∗(s)ds + t

A

{

a
∫ 1

0

(1 − s)q

�(q + 1)
f∗(s)ds

− a
∫ η

0

(η − s)q

�(q + 1)
f∗(s)ds −

∫ ξ

0

(ξ − s)q−1

�(q)
f∗(s)ds

}

.

Let us consider the linear operator � : L1([0, 1],R) → C([0, 1],R) given by

f �→ �( f )(t) =
∫ t

0

(t − s)q−1

�(q)
f (s)ds + t

A

{

a
∫ 1

0

(1 − s)q

�(q + 1)
f (s)ds

− a
∫ η

0

(η − s)q

�(q + 1)
f (s)ds −

∫ ξ

0

(ξ − s)q−1

�(q)
f (s)ds

}

.
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Observe that

‖hn(t) − h∗(t)‖
=

∥
∥
∥
∥

∫ t

0

(t − s)q−1

�(q)
( fn(s) − f∗(s))ds + t

A

{

a
∫ 1

0

(1 − s)q

�(q + 1)
( fn(s) − f∗(s))ds

− a
∫ η

0

(η − s)q

�(q + 1)
( fn(s) − f∗(s))ds −

∫ ξ

0

(ξ − s)q−1

�(q)
( fn(s) − f∗(s))ds

}∥
∥
∥
∥ → 0,

as n → ∞.

Thus, it follows by Lemma 4.1 that � ◦ SF is a closed graph operator. Further, we
have hn(t) ∈ �(SF,xn ). Since xn → x∗, therefore, we have

h∗(t) =
∫ t

0

(t − s)q−1

�(q)
f∗(s)ds + t

A

{

a
∫ 1

0

(1 − s)q

�(q + 1)
f∗(s)ds

− a
∫ η

0

(η − s)q

�(q + 1)
f∗(s)ds −

∫ ξ

0

(ξ − s)q−1

�(q)
f∗(s)ds

}

,

for some f∗ ∈ SF,x∗ . Hence B has a closed graph (and therefore has closed values).
In consequence, the operator B is compact valued.

Thus, the operators A and B satisfy all the conditions of Theorem 4.1, and hence,
its conclusion implies either condition (i) or condition (ii) holds. We show that the
conclusion (ii) is not possible. If x ∈ λA(x) + λB(x) for λ ∈ (0, 1), then there exists
f ∈ SF,x such that

x(t) =
∫ t

0

(t − s)q−1

�(q)
f (s)ds + t

A

{

a
∫ 1

0

(1 − s)q

�(q + 1)
f (s)ds

− a
∫ η

0

(η − s)q

�(q + 1)
f (s)ds −

∫ ξ

0

(ξ − s)q−1

�(q)
f (s)ds

}

+
[
1 + t

A

(
a(1 − η) − 1

)]
(x0 + g(x)), t ∈ [0, 1].

Following the method for proof of Claim I, we can obtain

|x(t)| ≤ ψ(‖x‖)
�(q + 1)

[

1 + 1

|A|
{ |a|(1 + ηq+1)

q + 1
+ ξq

}]

‖p‖

+
∣
∣
∣1 + 1

A

(
a(1 − η) − 1

)∣
∣
∣[|x0| + �‖x‖].

Thus,

‖x‖ ≤ ψ(‖x‖)p0‖p‖ + k0(|x0| + �‖x‖). (4.5)
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If condition (ii) of Theorem 4.1 holds, then there exist λ ∈ (0, 1) and x ∈ ∂Br with
x = λN (x). Then, x is a solution of (1.2) with ‖x‖ = M. Now, by the inequality
(4.5), we get

(1 − k0�)M

ψ(M)p0‖p‖ + k0|x0| ≤ 1

which contradicts (4.2). Hence, N has a fixed point in [0, 1] by Theorem 4.1, and
consequently the problem (1.2) has a solution. This completes the proof. �	
Example 4.1 Consider the following boundary value problem

⎧
⎨

⎩

cD3/2x(t) ∈ F(t, x), 0 < t < 1,

x(0) = 1

15
+ 1

12
x(1/9), x

( 1
4

) = 1
4

∫ 1
1/3 x(s)ds.

(4.6)

Here, q = 3/2, x0 = 1/15, g(x) = 1
12 x(1/9), a = 1/4, ξ = 1/4, η = 1/3, and

F : [0, 1] × R → P(R) is a multivalued map given by

x → F(t, x) =
[
1

9

x3

x3 + 3
+ 1

8
(t + 1),

1

2
cos x

]

.

For f ∈ F, we have

| f | ≤ max

[
1

9

x3

x3 + 3
+ 1

8
(t + 1),

1

2
cos x

]

≤ 1

2
.

Thus,

‖F(t, x)‖P := sup{|y| : y ∈ F(t, x)} ≤ p(t)ψ(‖x‖), x ∈ R,

with p(t) = 1, ψ(‖x‖) = 1/2. Furthermore, p0 ≈ 2.00565, k0 = 5, and by the
condition (H3), we have � = 1/12. Obviously � < k−1

0 . With the given data, it is
found that M > M1, M1 ≈ 2.29056. Clearly, all the conditions of Theorem 4.2 are
satisfied, and hence the problem (4.6) has at least one solution on [0, 1].

4.2 The Lower Semi-continuous Case

In this section, we study the case when F is not necessarily convex valued by applying
the nonlinear alternative of Leray-Schauder type and a selection theorem due to Bres-
san and Colombo [11] for lower semi-continuous maps with decomposable values.

Let usmention some auxiliary facts. Let X be a nonempty closed subset of a Banach
space E and G : X → P(E) be a multivalued operator with nonempty closed values.
G is lower semi-continuous (l.s.c.) if the set {y ∈ X : G(y) ∩ B �= ∅} is open for
any open set B in E . Let A be a subset of [0, 1] × R. A is L ⊗ B measurable if A
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belongs to the σ -algebra generated by all sets of the formJ ×D, whereJ is Lebesgue
measurable in [0, 1] and D is Borel measurable in R. A subset A of L1([0, 1],R) is
decomposable if for all u, v ∈ A and measurable J ⊂ [0, 1] = J , the function
uχJ + vχJ−J ∈ A, where χJ stands for the characteristic function of J .

Definition 4.3 Let Y be a separable metric space and let N : Y → P(L1([0, 1],R))

be amultivalued operator.We say N has a property (BC) if N is lower semi-continuous
(l.s.c.) and has nonempty closed and decomposable values.

Let F : [0, 1] × R → P(R) be a multivalued map with nonempty compact values.
Define a multivalued operatorF : C([0, 1]×R) → P(L1([0, 1],R)) associated with
F as

F(x) = {w ∈ L1([0, 1],R) : w(t) ∈ F(t, x(t)) for a.e. t ∈ [0, 1]},

which is called the Nemytskii operator associated with F.

Definition 4.4 Let F :[0, 1] × R → P(R) be a multivalued function with nonempty
compact values. We say F is of lower semi-continuous type (l.s.c. type) if its asso-
ciated Nemytskii operator F is lower semi-continuous and has nonempty closed and
decomposable values.

Lemma 4.2 ([17]) Let Y be a separable metric space, and let N : Y →
P(L1([0, 1],R)) be a multivalued operator satisfying the property (BC). Then N
has a continuous selection, that is, there exists a continuous function (single-valued)
g : Y → L1([0, 1],R) such that g(x) ∈ N (x) for every x ∈ Y .

Theorem 4.3 Assume that (A2), (H2), (H3) and the following condition hold:

(H4) F : [0, 1] × R → P(R) is a nonempty compact-valued multivalued map such
that

(a) (t, x) �−→ F(t, x) is L ⊗ B measurable;
(b) x �−→ F(t, x) is lower semi-continuous for each t ∈ [0, 1].

Then the boundary value problem (1.2) has at least one solution on [0, 1].
Proof It follows from (H2) and (H4) that F is of l.s.c. type. Then, by Lemma 4.2, there
exists a continuous function f : C([0, 1],R) → L1([0, 1],R) such that f (x) ∈ F(x)
for all x ∈ C([0, 1],R).

Consider the problem

⎧
⎨

⎩

cDqx(t) = f (x(t)), 0 < t < 1, 1 < q ≤ 2,

x(0) = x0 + g(x), x(ξ) = a
∫ 1

η

x(s)ds, 0 < ξ < η.
(4.7)

Observe that if x ∈ AC1([0, 1],R) is a solution of (4.7), then x is a solution to
the problem (1.2). Now, we define two operators, namely A′ : C([0, 1],R) −→
C([0, 1],R) by

A′x(t) =
[
1 + t

A

(
a(1 − η) − 1

)]
(x0 + g(x)), (4.8)
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and B′ : C([0, 1],R) −→ C([0, 1],R) by

B′x(t) =

⎧
⎪⎪⎨

⎪⎪⎩

∫ t

0

(t − s)q−1

�(q)
f (x(s))ds + t

A

{

a
∫ 1

0

(1 − s)q

�(q + 1)
f (x(s))ds

− a
∫ η

0

(η − s)q

�(q + 1)
f (x(s))ds −

∫ ξ

0

(ξ − s)q−1

�(q)
f (x(s))ds

}

.

(4.9)

ClearlyA′,B′:C([0, 1],R) → C([0, 1],R) are continuous. The arguments used in the
proof ofTheorem4.2 apply andhence guarantee thatA′ andB′ satisfy all the conditions
of the Nonlinear Alternative for contractive maps in the single-valued setting [21], and
hence the problem (4.7) has a solution. �	
Acknowledgments The authors are grateful to the anonymous referees for their valuable comments.
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